1
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
2
|
Lo CCH, Woo PYM, Cheung VCK. Task-based EEG and fMRI paradigms in a multimodal clinical diagnostic framework for disorders of consciousness. Rev Neurosci 2024; 35:775-787. [PMID: 38804042 DOI: 10.1515/revneuro-2023-0159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 05/29/2024]
Abstract
Disorders of consciousness (DoC) are generally diagnosed by clinical assessment, which is a predominantly motor-driven process and accounts for up to 40 % of non-communication being misdiagnosed as unresponsive wakefulness syndrome (UWS) (previously known as prolonged/persistent vegetative state). Given the consequences of misdiagnosis, a more reliable and objective multimodal protocol to diagnosing DoC is needed, but has not been produced due to concerns regarding their interpretation and reliability. Of the techniques commonly used to detect consciousness in DoC, task-based paradigms (active paradigms) produce the most unequivocal result when findings are positive. It is well-established that command following (CF) reliably reflects preserved consciousness. Task-based electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) can detect motor-independent CF and reveal preserved covert consciousness in up to 14 % of UWS patients. Accordingly, to improve the diagnostic accuracy of DoC, we propose a practical multimodal clinical decision framework centered on task-based EEG and fMRI, and complemented by measures like transcranial magnetic stimulation (TMS-EEG).
Collapse
Affiliation(s)
- Chris Chun Hei Lo
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Peter Yat Ming Woo
- Division of Neurosurgery, Department of Surgery, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Vincent C K Cheung
- School of Biomedical Sciences, and Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| |
Collapse
|
3
|
Mancuso M, Mencarelli L, Abbruzzese L, Basagni B, Zoccolotti P, Scarselli C, Capitani S, Neri F, Santarnecchi E, Rossi S. Modulation of Corticospinal Excitability during Action Observation in Patients with Disorders of Consciousness. Brain Sci 2024; 14:371. [PMID: 38672020 PMCID: PMC11048666 DOI: 10.3390/brainsci14040371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Brain imaging studies have recently provided some evidence in favor of covert cognitive processes that are ongoing in patients with disorders of consciousness (DoC) (e.g., a minimally conscious state and vegetative state/unresponsive wakefulness syndrome) when engaged in passive sensory stimulation or active tasks such as motor imagery. In this exploratory study, we used transcranial magnetic stimulation (TMS) of the motor cortex to assess modulations of corticospinal excitability induced by action observation in eleven patients with DoC. Action observation is known to facilitate corticospinal excitability in healthy subjects, unveiling how the observer's motor system maps others' actions onto her/his motor repertoire. Additional stimuli were non-biological motion and acoustic startle stimuli, considering that sudden and loud acoustic stimulation is known to lower corticospinal excitability in healthy subjects. The results indicate that some form of motor resonance is spared in a subset of patients with DoC, with some significant difference between biological and non-biological motion stimuli. However, there was no covariation between corticospinal excitability and the type of DoC diagnosis (i.e., whether diagnosed with VS/UWS or MCS). Similarly, no covariation was detected with clinical changes between admission and discharge in clinical outcome measures. Both motor resonance and the difference between the resonance with biological/non-biological motion discrimination correlated with the amplitude of the N20 somatosensory evoked potentials, following the stimulation of the median nerve at the wrist (i.e., the temporal marker signaling the activation of the contralateral primary somatosensory cortex). Moreover, the startle-evoking stimulus produced an anomalous increase in corticospinal excitability, suggesting a functional dissociation between cortical and subcortical circuits in patients with DoC. Further work is needed to better comprehend the conditions in which corticospinal facilitation occurs and whether and how they may relate to individual clinical parameters.
Collapse
Affiliation(s)
- Mauro Mancuso
- Physical and Rehabilitative Medicine Unit, NHS-USL Tuscany South-Est, 58100 Grosseto, Italy;
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Lucia Mencarelli
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Siena Brain Investigation and Neuromodulation (Si-BIN) Lab, University of Siena, 53100 Siena, Italy; (L.M.); (F.N.); (S.R.)
| | - Laura Abbruzzese
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Benedetta Basagni
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Pierluigi Zoccolotti
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Cristiano Scarselli
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Simone Capitani
- Tuscany Rehabilitation Clinic, 52025 Montevarchi, Italy; (L.A.); (P.Z.); (C.S.); (S.C.)
| | - Francesco Neri
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Siena Brain Investigation and Neuromodulation (Si-BIN) Lab, University of Siena, 53100 Siena, Italy; (L.M.); (F.N.); (S.R.)
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital & Harvard Medical School, Boston, MA 02114, USA;
| | - Simone Rossi
- Dipartimento di Scienze Mediche, Chirurgiche e Neuroscienze, Siena Brain Investigation and Neuromodulation (Si-BIN) Lab, University of Siena, 53100 Siena, Italy; (L.M.); (F.N.); (S.R.)
| |
Collapse
|
4
|
Comanducci A, Casarotto S, Rosanova M, Derchi CC, Viganò A, Pirastru A, Blasi V, Cazzoli M, Navarro J, Edlow BL, Baglio F, Massimini M. Unconsciousness or unresponsiveness in akinetic mutism? Insights from a multimodal longitudinal exploration. Eur J Neurosci 2024; 59:860-873. [PMID: 37077023 DOI: 10.1111/ejn.15994] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/02/2023] [Accepted: 04/17/2023] [Indexed: 04/21/2023]
Abstract
The clinical assessment of patients with disorders of consciousness (DoC) relies on the observation of behavioural responses to standardised sensory stimulation. However, several medical comorbidities may directly impair the production of reproducible and appropriate responses, thus reducing the sensitivity of behaviour-based diagnoses. One such comorbidity is akinetic mutism (AM), a rare neurological syndrome characterised by the inability to initiate volitional motor responses, sometimes associated with clinical presentations that overlap with those of DoC. In this paper, we describe the case of a patient with large bilateral mesial frontal lesions, showing prolonged behavioural unresponsiveness and severe disorganisation of electroencephalographic (EEG) background, compatible with a vegetative state/unresponsive wakefulness syndrome (VS/UWS). By applying an unprecedented multimodal battery of advanced imaging and electrophysiology-based techniques (AIE) encompassing spontaneous EEG, evoked potentials, event-related potentials, transcranial magnetic stimulation combined with EEG and structural and functional MRI, we provide the following: (i) a demonstration of the preservation of consciousness despite unresponsiveness in the context of AM, (ii) a plausible neurophysiological explanation for behavioural unresponsiveness and its subsequent recovery during rehabilitation stay and (iii) novel insights into the relationships between DoC, AM and parkinsonism. The present case offers proof-of-principle evidence supporting the clinical utility of a multimodal hierarchical workflow that combines AIEs to detect covert signs of consciousness in unresponsive patients.
Collapse
Affiliation(s)
| | - Silvia Casarotto
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | - Mario Rosanova
- Department Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| | | | | | | | - Valeria Blasi
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Marta Cazzoli
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Jorge Navarro
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Brian L Edlow
- Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | | | - Marcello Massimini
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Department Biomedical and Clinical Sciences, University of Milan, Milan, Italy
| |
Collapse
|
5
|
Gallucci A, Varoli E, Del Mauro L, Hassan G, Rovida M, Comanducci A, Casarotto S, Lo Re V, Romero Lauro LJ. Multimodal approaches supporting the diagnosis, prognosis and investigation of neural correlates of disorders of consciousness: A systematic review. Eur J Neurosci 2024; 59:874-933. [PMID: 38140883 DOI: 10.1111/ejn.16149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 08/30/2023] [Accepted: 09/11/2023] [Indexed: 12/24/2023]
Abstract
The limits of the standard, behaviour-based clinical assessment of patients with disorders of consciousness (DoC) prompted the employment of functional neuroimaging, neurometabolic, neurophysiological and neurostimulation techniques, to detect brain-based covert markers of awareness. However, uni-modal approaches, consisting in employing just one of those techniques, are usually not sufficient to provide an exhaustive exploration of the neural underpinnings of residual awareness. This systematic review aimed at collecting the evidence from studies employing a multimodal approach, that is, combining more instruments to complement DoC diagnosis, prognosis and better investigating their neural correlates. Following the PRISMA guidelines, records from PubMed, EMBASE and Scopus were screened to select peer-review original articles in which a multi-modal approach was used for the assessment of adult patients with a diagnosis of DoC. Ninety-two observational studies and 32 case reports or case series met the inclusion criteria. Results highlighted a diagnostic and prognostic advantage of multi-modal approaches that involve electroencephalography-based (EEG-based) measurements together with neuroimaging or neurometabolic data or with neurostimulation. Multimodal assessment deepened the knowledge on the neural networks underlying consciousness, by showing correlations between the integrity of the default mode network and the different clinical diagnosis of DoC. However, except for studies using transcranial magnetic stimulation combined with electroencephalography, the integration of more than one technique in most of the cases occurs without an a priori-designed multi-modal diagnostic approach. Our review supports the feasibility and underlines the advantages of a multimodal approach for the diagnosis, prognosis and for the investigation of neural correlates of DoCs.
Collapse
Affiliation(s)
- Alessia Gallucci
- Ph.D. Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
| | - Erica Varoli
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Lilia Del Mauro
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Gabriel Hassan
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
| | - Margherita Rovida
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| | - Angela Comanducci
- IRCSS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
- Università Campus Bio-Medico di Roma, Rome, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences, University of Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Vincenzina Lo Re
- Neurology Service, Department of Diagnostic and Therapeutic Services, Istituto di Ricovero e Cura a Carattere Scientifico-Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione (IRCCS ISMETT), Palermo, Italy
| | - Leonor J Romero Lauro
- NeuroMi (Neuroscience Center), University of Milano-Bicocca, Milan, Italy
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
| |
Collapse
|
6
|
Franzova E, Shen Q, Doyle K, Chen JM, Egbebike J, Vrosgou A, Carmona JC, Grobois L, Heinonen GA, Velazquez A, Gonzales IJ, Egawa S, Agarwal S, Roh D, Park S, Connolly ES, Claassen J. Injury patterns associated with cognitive motor dissociation. Brain 2023; 146:4645-4658. [PMID: 37574216 PMCID: PMC10629765 DOI: 10.1093/brain/awad197] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 04/14/2023] [Accepted: 05/28/2023] [Indexed: 08/15/2023] Open
Abstract
In unconscious appearing patients with acute brain injury, wilful brain activation to motor commands without behavioural signs of command following, known as cognitive motor dissociation (CMD), is associated with functional recovery. CMD can be detected by applying machine learning to EEG recorded during motor command presentation in behaviourally unresponsive patients. Identifying patients with CMD carries clinical implications for patient interactions, communication with families, and guidance of therapeutic decisions but underlying mechanisms of CMD remain unknown. By analysing structural lesion patterns and network level dysfunction we tested the hypothesis that, in cases with preserved arousal and command comprehension, a failure to integrate comprehended motor commands with motor outputs underlies CMD. Manual segmentation of T2-fluid attenuated inversion recovery and diffusion weighted imaging sequences quantifying structural injury was performed in consecutive unresponsive patients with acute brain injury (n = 107) who underwent EEG-based CMD assessments and MRI. Lesion pattern analysis was applied to identify lesion patterns common among patients with (n = 21) and without CMD (n = 86). Thalamocortical and cortico-cortical network connectivity were assessed applying ABCD classification of power spectral density plots and weighted pairwise phase consistency (WPPC) to resting EEG, respectively. Two distinct structural lesion patterns were identified on MRI for CMD and three for non-CMD patients. In non-CMD patients, injury to brainstem arousal pathways including the midbrain were seen, while no CMD patients had midbrain lesions. A group of non-CMD patients was identified with injury to the left thalamus, implicating possible language comprehension difficulties. Shared lesion patterns of globus pallidus and putamen were seen for a group of CMD patients, which have been implicated as part of the anterior forebrain mesocircuit in patients with reversible disorders of consciousness. Thalamocortical network dysfunction was less common in CMD patients [ABCD-index 2.3 (interquartile range, IQR 2.1-3.0) versus 1.4 (IQR 1.0-2.0), P < 0.0001; presence of D 36% versus 3%, P = 0.0006], but WPPC was not different. Bilateral cortical lesions were seen in patients with and without CMD. Thalamocortical disruption did not differ for those with CMD, but long-range WPPC was decreased in 1-4 Hz [odds ratio (OR) 0.8; 95% confidence interval (CI) 0.7-0.9] and increased in 14-30 Hz frequency ranges (OR 1.2; 95% CI 1.0-1.5). These structural and functional data implicate a failure of motor command integration at the anterior forebrain mesocircuit level with preserved thalamocortical network function for CMD patients with subcortical lesions. Amongst patients with bilateral cortical lesions preserved cortico-cortical network function is associated with CMD detection. These data may allow screening for CMD based on widely available structural MRI and resting EEG.
Collapse
Affiliation(s)
- Eva Franzova
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Qi Shen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Kevin Doyle
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Justine M Chen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jennifer Egbebike
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Athina Vrosgou
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jerina C Carmona
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Lauren Grobois
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Gregory A Heinonen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Angela Velazquez
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | | | - Satoshi Egawa
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Sachin Agarwal
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - David Roh
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Soojin Park
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - E Sander Connolly
- Department of Neurological Surgery, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Columbia University Medical Center, NewYork-Presbyterian Hospital, New York, NY, USA
| |
Collapse
|
7
|
Mizrahi T, Axelrod V. Naturalistic auditory stimuli with fNIRS prefrontal cortex imaging: A potential paradigm for disorder of consciousness diagnostics (a study with healthy participants). Neuropsychologia 2023; 187:108604. [PMID: 37271305 DOI: 10.1016/j.neuropsychologia.2023.108604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 06/01/2023] [Accepted: 06/02/2023] [Indexed: 06/06/2023]
Abstract
Disorder of consciousness (DOC) is a devastating condition due to brain damage. A patient in this condition is non-responsive, but nevertheless might be conscious at least at some level. Determining the conscious level of DOC patients is important for both medical and ethical reasons, but reliably achieving this has been a major challenge. Naturalistic stimuli in combination with neuroimaging have been proposed as a promising approach for DOC patient diagnosis. Capitalizing on and extending this proposal, the goal of the present study conducted with healthy participants was to develop a new paradigm with naturalistic auditory stimuli and functional near-infrared spectroscopy (fNIRS) - an approach that can be used at the bedside. Twenty-four healthy participants passively listened to 9 min of auditory story, scrambled auditory story, classical music, and scrambled classical music segments while their prefrontal cortex activity was recorded using fNIRS. We found much higher intersubject correlation (ISC) during story compared to scrambled story conditions both at the group level and in the majority of individual subjects, suggesting that fNIRS imaging of the prefrontal cortex might be a sensitive method to capture neural changes associated with narrative comprehension. In contrast, the ISC during the classical music segment did not differ reliably from scrambled classical music and was also much lower than the story condition. Our main result is that naturalistic auditory stories with fNIRS might be used in a clinical setup to identify high-level processing and potential consciousness in DOC patients.
Collapse
Affiliation(s)
- Tamar Mizrahi
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel; Head Injuries Rehabilitation Department, Sheba Medical Center, Ramat Gan, Israel
| | - Vadim Axelrod
- The Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan, Israel.
| |
Collapse
|
8
|
Aubinet C, Chatelle C, Gosseries O, Carrière M, Laureys S, Majerus S. Residual implicit and explicit language abilities in patients with disorders of consciousness: A systematic review. Neurosci Biobehav Rev 2021; 132:391-409. [PMID: 34864003 DOI: 10.1016/j.neubiorev.2021.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 11/13/2021] [Accepted: 12/01/2021] [Indexed: 01/14/2023]
Abstract
Language assessment in post-comatose patients is difficult due to their limited behavioral repertoire; yet associated language deficits might lead to an underestimation of consciousness levels in unresponsive wakefulness syndrome (UWS) or minimally conscious state (MCS; -/+) diagnoses. We present a systematic review of studies from 2002 assessing residual language abilities with neuroimaging, electrophysiological or behavioral measures in patients with severe brain injury. Eighty-five articles including a total of 2278 patients were assessed for quality. The median percentages of patients showing residual implicit language abilities (i.e., cortical responses to specific words/sentences) were 33 % for UWS, 50 % for MCS- and 78 % for MCS + patients, whereas explicit language abilities (i.e., command-following using brain-computer interfaces) were reported in 20 % of UWS, 33 % of MCS- and 50 % of MCS + patients. Cortical responses to verbal stimuli increased along with consciousness levels and the progressive recovery of consciousness after a coma was paralleled by the reappearance of both implicit and explicit language processing. This review highlights the importance of language assessment in patients with disorders of consciousness.
Collapse
Affiliation(s)
- Charlène Aubinet
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium.
| | - Camille Chatelle
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Manon Carrière
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau, University Hospital of Liège, Belgium; Fund for Scientific Research, FNRS, Belgium
| | - Steve Majerus
- Fund for Scientific Research, FNRS, Belgium; Psychology and Neuroscience of Cognition Research Unit, University of Liège, Belgium.
| |
Collapse
|
9
|
Abdalmalak A, Milej D, Norton L, Debicki DB, Owen AM, Lawrence KS. The Potential Role of fNIRS in Evaluating Levels of Consciousness. Front Hum Neurosci 2021; 15:703405. [PMID: 34305558 PMCID: PMC8296905 DOI: 10.3389/fnhum.2021.703405] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/31/2021] [Indexed: 12/13/2022] Open
Abstract
Over the last few decades, neuroimaging techniques have transformed our understanding of the brain and the effect of neurological conditions on brain function. More recently, light-based modalities such as functional near-infrared spectroscopy have gained popularity as tools to study brain function at the bedside. A recent application is to assess residual awareness in patients with disorders of consciousness, as some patients retain awareness albeit lacking all behavioural response to commands. Functional near-infrared spectroscopy can play a vital role in identifying these patients by assessing command-driven brain activity. The goal of this review is to summarise the studies reported on this topic, to discuss the technical and ethical challenges of working with patients with disorders of consciousness, and to outline promising future directions in this field.
Collapse
Affiliation(s)
- Androu Abdalmalak
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Daniel Milej
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| | - Loretta Norton
- Department of Psychology, King's College, Western University, London, ON, Canada
| | - Derek B Debicki
- Brain and Mind Institute, Western University, London, ON, Canada.,Clinical Neurological Sciences, Western University, London, ON, Canada
| | - Adrian M Owen
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada.,Department of Psychology, Western University, London, ON, Canada
| | - Keith St Lawrence
- Imaging Program, Lawson Health Research Institute, London, ON, Canada.,Department of Medical Biophysics, Western University, London, ON, Canada
| |
Collapse
|
10
|
Pain Perception in Disorder of Consciousness: A Scoping Review on Current Knowledge, Clinical Applications, and Future Perspective. Brain Sci 2021; 11:brainsci11050665. [PMID: 34065349 PMCID: PMC8161058 DOI: 10.3390/brainsci11050665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/05/2021] [Accepted: 05/19/2021] [Indexed: 01/18/2023] Open
Abstract
Pain perception in individuals with prolonged disorders of consciousness (PDOC) is still a matter of debate. Advanced neuroimaging studies suggest some cortical activations even in patients with unresponsive wakefulness syndrome (UWS) compared to those with a minimally conscious state (MCS). Therefore, pain perception has to be considered even in individuals with UWS. However, advanced neuroimaging assessment can be challenging to conduct, and its findings are sometimes difficult to be interpreted. Conversely, multichannel electroencephalography (EEG) and laser-evoked potentials (LEPs) can be carried out quickly and are more adaptable to the clinical needs. In this scoping review, we dealt with the neurophysiological basis underpinning pain in PDOC, pointing out how pain perception assessment in these individuals might help in reducing the misdiagnosis rate. The available literature data suggest that patients with UWS show a more severe functional connectivity breakdown among the pain-related brain areas compared to individuals in MCS, pointing out that pain perception increases with the level of consciousness. However, there are noteworthy exceptions, because some UWS patients show pain-related cortical activations that partially overlap those observed in MCS individuals. This suggests that some patients with UWS may have residual brain functional connectivity supporting the somatosensory, affective, and cognitive aspects of pain processing (i.e., a conscious experience of the unpleasantness of pain), rather than only being able to show autonomic responses to potentially harmful stimuli. Therefore, the significance of the neurophysiological approach to pain perception in PDOC seems to be clear, and despite some methodological caveats (including intensity of stimulation, multimodal paradigms, and active vs. passive stimulation protocols), remain to be solved. To summarize, an accurate clinical and neurophysiological assessment should always be performed for a better understanding of pain perception neurophysiological underpinnings, a more precise differential diagnosis at the level of individual cases as well as group comparisons, and patient-tailored management.
Collapse
|
11
|
Bifurcation in brain dynamics reveals a signature of conscious processing independent of report. Nat Commun 2021; 12:1149. [PMID: 33608533 PMCID: PMC7895979 DOI: 10.1038/s41467-021-21393-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 01/21/2021] [Indexed: 12/05/2022] Open
Abstract
An outstanding challenge for consciousness research is to characterize the neural signature of conscious access independently of any decisional processes. Here we present a model-based approach that uses inter-trial variability to identify the brain dynamics associated with stimulus processing. We demonstrate that, even in the absence of any task or behavior, the electroencephalographic response to auditory stimuli shows bifurcation dynamics around 250–300 milliseconds post-stimulus. Namely, the same stimulus gives rise to late sustained activity on some trials, and not on others. This late neural activity is predictive of task-related reports, and also of reports of conscious contents that are randomly sampled during task-free listening. Source localization further suggests that task-free conscious access recruits the same neural networks as those associated with explicit report, except for frontal executive components. Studying brain dynamics through variability could thus play a key role for identifying the core signatures of conscious access, independent of report. Current knowledge on the neural basis of consciousness mostly relies on situations where people report their perception. Here, the authors provide evidence for the idea that bifurcation in brain dynamics reflects conscious perception independent of report.
Collapse
|
12
|
Formaggio E, Del Felice A, Cavinato M, Storti SF, Arcaro C, Turco C, Salvi L, Avesani R, Piccione F, Manganotti P. EEG to Identify Attempted Movement in Unresponsive Wakefulness Syndrome. Clin EEG Neurosci 2020; 51:339-347. [PMID: 32248697 DOI: 10.1177/1550059420911525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Assessment of consciousness following severe brain-injury is challenging. Our hypothesis is that electroencephalography (EEG) can provide information on awareness, in terms of oscillatory activity and network task-related modifications, in people with disorders of consciousness. Similar results were obtained with neuroimaging techniques; we aim at demonstrating the use of EEG, which is low cost and routinely implemented, to the same goal. Nineteen-channel EEG was recorded in 7 persons with unresponsive wakefulness syndrome (UWS) and in 10 healthy subjects during the execution of active (attempted movement) and passive motor tasks as well as 2 mental imagery tasks. Event-related synchronization/desynchronization (ERS/ERD), coherence and network parameters were calculated in delta (1-4 Hz), theta (4-8 Hz), alpha1 (8-10 Hz), alpha2 (10-12 Hz), and beta (13-30 Hz) ranges. In UWS subjects, passive movement induced a weak alpha2 ERD over contralateral sensorimotor area. During motor imagery, ERD was detected over the frontal and motor contralateral brain areas; during spatial imagery, ERS in lower alpha band over the right temporo-parietal regions was missing. In UWS, functional connectivity provided evidence of network disruption and isolation of the motor areas, which cannot dialog with adjacent network nodes, likely suggesting a diffuse structural alteration. Our findings suggest that people with a clinical diagnosis of UWS were able to modulate their brain activity when prompted to perform movement tasks and thus suggest EEG as a potential tool to support diagnosis of disorders of consciousness.
Collapse
Affiliation(s)
- Emanuela Formaggio
- Department of Neuroscience, Section of Rehabilitation, University of Padua, Padua, Italy
| | - Alessandra Del Felice
- Department of Neuroscience, Section of Rehabilitation, University of Padua, Padua, Italy.,Padova Neuroscience Center, University of Padua, Padua, Italy
| | | | - Silvia F Storti
- Department of Computer Science, University of Verona, Verona, Italy
| | - Chiara Arcaro
- Fondazione Ospedale San Camillo IRCCS, Venice, Italy
| | | | - Luca Salvi
- Rehabilitation Service, Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | - Renato Avesani
- Rehabilitation Service, Sacro Cuore Don Calabria Hospital, Negrar, Verona, Italy
| | | | - Paolo Manganotti
- Department of Medicine, Surgery and Health Sciences, Clinical Neurology Unit, Cattinara University Hospital, Trieste, Italy
| |
Collapse
|
13
|
Petit S, Badcock NA, Woolgar A. Finding hidden treasures: A child-friendly neural test of task-following in individuals using functional Transcranial Doppler ultrasound. Neuropsychologia 2020; 146:107515. [PMID: 32504634 DOI: 10.1016/j.neuropsychologia.2020.107515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 12/25/2022]
Abstract
Despite growing interest in the mental life of individuals who cannot communicate verbally, objective and non-invasive tests of covert cognition are still sparse. In this study, we assessed the ability of neurotypical children to understand and follow task instructions by measuring neural responses through functional transcranial Doppler ultrasound (fTCD). We recorded blood flow velocity for the two brain hemispheres of twenty children (aged 9 to 12) while they performed either a language task or a visuospatial memory task, on identical visual stimuli. We extracted measures of neural lateralisation for the two tasks separately to investigate lateralisation, and we compared the left-minus-right pattern of activation across tasks to assess task-following. At the group level, we found that neural responses were left-lateralised when children performed the language task, and not when they performed the visuospatial task. However, with statistically robust analyses and controlled paradigms, significant lateralisation in individual children was less frequent than expected from the literature. Nonetheless, the pattern of hemispheric activation for the two tasks allowed us to confirm task-following in the group of participants, as well as in over half of the individuals. This provides a promising avenue for a covert and inexpensive test of children's ability to follow task instructions and perform different mental tasks on identical stimuli.
Collapse
Affiliation(s)
- Selene Petit
- Perception in Action Research Centre, Macquarie University, Australia; Department of Cognitive Science, Macquarie University, Australia; ARC Centre of Excellence in Cognition and its Disorders (CCD), Australia.
| | - Nicholas A Badcock
- Perception in Action Research Centre, Macquarie University, Australia; Department of Cognitive Science, Macquarie University, Australia; ARC Centre of Excellence in Cognition and its Disorders (CCD), Australia; School of Psychological Science, University of Western Australia, Crawley, Australia
| | - Alexandra Woolgar
- Perception in Action Research Centre, Macquarie University, Australia; Department of Cognitive Science, Macquarie University, Australia; ARC Centre of Excellence in Cognition and its Disorders (CCD), Australia; Medical Research Council (UK), Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
14
|
Kondziella D, Bender A, Diserens K, van Erp W, Estraneo A, Formisano R, Laureys S, Naccache L, Ozturk S, Rohaut B, Sitt JD, Stender J, Tiainen M, Rossetti AO, Gosseries O, Chatelle C. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur J Neurol 2020; 27:741-756. [PMID: 32090418 DOI: 10.1111/ene.14151] [Citation(s) in RCA: 338] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Accepted: 01/09/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND AND PURPOSE Patients with acquired brain injury and acute or prolonged disorders of consciousness (DoC) are challenging. Evidence to support diagnostic decisions on coma and other DoC is limited but accumulating. This guideline provides the state-of-the-art evidence regarding the diagnosis of DoC, summarizing data from bedside examination techniques, functional neuroimaging and electroencephalography (EEG). METHODS Sixteen members of the European Academy of Neurology (EAN) Scientific Panel on Coma and Chronic Disorders of Consciousness, representing 10 European countries, reviewed the scientific evidence for the evaluation of coma and other DoC using standard bibliographic measures. Recommendations followed the Grading of Recommendations Assessment, Development and Evaluation (GRADE) system. The guideline was endorsed by the EAN. RESULTS Besides a comprehensive neurological examination, the following suggestions are made: probe for voluntary eye movements using a mirror; repeat clinical assessments in the subacute and chronic setting, using the Coma Recovery Scale - Revised; use the Full Outline of Unresponsiveness score instead of the Glasgow Coma Scale in the acute setting; obtain clinical standard EEG; search for sleep patterns on EEG, particularly rapid eye movement sleep and slow-wave sleep; and, whenever feasible, consider positron emission tomography, resting state functional magnetic resonance imaging (fMRI), active fMRI or EEG paradigms and quantitative analysis of high-density EEG to complement behavioral assessment in patients without command following at the bedside. CONCLUSIONS Standardized clinical evaluation, EEG-based techniques and functional neuroimaging should be integrated for multimodal evaluation of patients with DoC. The state of consciousness should be classified according to the highest level revealed by any of these three approaches.
Collapse
Affiliation(s)
- D Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark.,Department of Neurosciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - A Bender
- Department of Neurology, Ludwig-Maximilians-Universität München, Munich, Germany.,Therapiezentrum Burgau, Burgau, Germany
| | - K Diserens
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - W van Erp
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium.,Department of Primary Care, Radboud University Medical Center, Nijmegen, The Netherlands
| | - A Estraneo
- Neurology Unit, Santa Maria della Pietà General Hospital, Nola, Italy.,IRCCS Fondazione don Carlo Gnocchi ONLUS, Florence, Italy
| | - R Formisano
- Post-Coma Unit, Neurorehabilitation Hospital and Research Institution, Santa Lucia Foundation, Rome, Italy
| | - S Laureys
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - L Naccache
- Department of Neurology, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - S Ozturk
- Department of Neurology, Faculty of Medicine, Selcuk University, Konya, Turkey
| | - B Rohaut
- Department of Neurology, AP-HP, Groupe hospitalier Pitié-Salpêtrière, Paris, France.,Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France.,Neuro-ICU, Department of Neurology, Columbia University, New York, NY, USA
| | - J D Sitt
- Sorbonne Université, UPMC Univ Paris 06, Faculté de Médecine Pitié-Salpêtrière, Paris, France
| | - J Stender
- Department of Neurosurgery, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - M Tiainen
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
| | - A O Rossetti
- Department of Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois and University of Lausanne, Lausanne, Switzerland
| | - O Gosseries
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium
| | - C Chatelle
- Coma Science Group, GIGA Consciousness, University and University Hospital of Liège, Liège, Belgium.,Laboratory for NeuroImaging of Coma and Consciousness - Department of Neurology, Harvard Medical School, Massachusetts General Hospital, Boston, MA, USA
| | | |
Collapse
|
15
|
Wang F, Hu N, Hu X, Jing S, Heine L, Thibaut A, Huang W, Yan Y, Wang J, Schnakers C, Laureys S, Di H. Detecting Brain Activity Following a Verbal Command in Patients With Disorders of Consciousness. Front Neurosci 2019; 13:976. [PMID: 31572121 PMCID: PMC6753948 DOI: 10.3389/fnins.2019.00976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 08/30/2019] [Indexed: 11/20/2022] Open
Abstract
Background The accurate assessment of patients with disorders of consciousness (DOC) is a challenge to most experienced clinicians. As a potential clinical tool, functional magnetic resonance imaging (fMRI) could detect residual awareness without the need for the patients’ actual motor responses. Methods We adopted a simple active fMRI motor paradigm (hand raising) to detect residual awareness in these patients. Twenty-nine patients were recruited. They met the diagnosis of minimally conscious state (MCS) (male = 6, female = 2; n = 8), vegetative state/unresponsive wakefulness syndrome (VS/UWS) (male = 17, female = 4; n = 21). Results We analyzed the command-following responses for robust evidence of statistically reliable markers of motor execution, similar to those found in 15 healthy controls. Of the 29 patients, four (two MCS, two VS/UWS) could adjust their brain activity to the “hand-raising” command, and they showed activation in motor-related regions (which could not be discovered in the own-name task). Conclusion Longitudinal behavioral assessments showed that, of these four patients, two in a VS/UWS recovered to MCS and one from MCS recovered to MCS+ (i.e., showed command following). In patients with no response to hand raising task, six VS/UWS and three MCS ones showed recovery in follow-up procedure. The simple active fMRI “hand-raising” task can elicit brain activation in patients with DOC, similar to those observed in healthy volunteers. Activity of the motor-related network may be taken as an indicator of high-level cognition that cannot be discerned through conventional behavioral assessment.
Collapse
Affiliation(s)
- Fuyan Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Department of Radiology, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Nantu Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Xiaohua Hu
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China.,Department of Rehabilitation, Hangzhou Wujing Hospital, Hangzhou, China
| | - Shan Jing
- Department of Rehabilitation, Hangzhou Wujing Hospital, Hangzhou, China
| | - Lizette Heine
- INSERM, U1028, CNRS, UMR5292, Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center, Lyon, France.,Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Wangshan Huang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Yifan Yan
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Jing Wang
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| | - Caroline Schnakers
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium.,Department of Neurosurgery, University of California, Los Angeles, Los Angeles, CA, United States
| | - Steven Laureys
- Coma Science Group, GIGA-Research, CHU University Hospital of Liège, Liège, Belgium
| | - Haibo Di
- International Unresponsive Wakefulness Syndrome and Consciousness Science Institute, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
16
|
Riganello F, Larroque SK, Di Perri C, Prada V, Sannita WG, Laureys S. Measures of CNS-Autonomic Interaction and Responsiveness in Disorder of Consciousness. Front Neurosci 2019; 13:530. [PMID: 31293365 PMCID: PMC6598458 DOI: 10.3389/fnins.2019.00530] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 05/08/2019] [Indexed: 12/25/2022] Open
Abstract
Neuroimaging studies have demonstrated functional interactions between autonomic (ANS) and brain (CNS) structures involved in higher brain functions, including attention and conscious processes. These interactions have been described by the Central Autonomic Network (CAN), a concept model based on the brain-heart two-way integrated interaction. Heart rate variability (HRV) measures proved reliable as non-invasive descriptors of the ANS-CNS function setup and are thought to reflect higher brain functions. Autonomic function, ANS-mediated responsiveness and the ANS-CNS interaction qualify as possible independent indicators for clinical functional assessment and prognosis in Disorders of Consciousness (DoC). HRV has proved helpful to investigate residual responsiveness in DoC and predict clinical recovery. Variability due to internal (e.g., homeostatic and circadian processes) and environmental factors remains a key independent variable and systematic research with this regard is warranted. The interest in bidirectional ANS-CNS interactions in a variety of physiopathological conditions is growing, however, these interactions have not been extensively investigated in DoC. In this brief review we illustrate the potentiality of brain-heart investigation by means of HRV analysis in assessing patients with DoC. The authors' opinion is that this easy, inexpensive and non-invasive approach may provide useful information in the clinical assessment of this challenging patient population.
Collapse
Affiliation(s)
- Francesco Riganello
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
- S. Anna Institute, Research in Advanced Neurorehabilitation, Crotone, Italy
| | - Stephen Karl Larroque
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
| | - Carol Di Perri
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Valeria Prada
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal/Child Sciences, Polyclinic Hospital San Martino IRCCS, University of Genoa, Genoa, Italy
| | - Walter G. Sannita
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal/Child Sciences, Polyclinic Hospital San Martino IRCCS, University of Genoa, Genoa, Italy
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
17
|
Berlingeri M, Magnani FG, Salvato G, Rosanova M, Bottini G. Neuroimaging Studies on Disorders of Consciousness: A Meta-Analytic Evaluation. J Clin Med 2019; 8:jcm8040516. [PMID: 31014041 PMCID: PMC6517954 DOI: 10.3390/jcm8040516] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/27/2019] [Accepted: 04/10/2019] [Indexed: 11/17/2022] Open
Abstract
Neuroimaging tools could open a window on residual neurofunctional activity in the absence of detectable behavioural responses in patients with disorders of consciousness (DOC). Nevertheless, the literature on this topic is characterised by a large heterogeneity of paradigms and methodological approaches that can undermine the reproducibility of the results. To explicitly test whether task-related functional magnetic resonance imaging (fMRI) can be used to systematically detect neurofunctional differences between different classes of DOC, and whether these differences are related with a specific category of cognitive tasks (either active or passive), we meta-analyzed 22 neuroimaging studies published between 2005 and 2017 using the Activation Likelihood Estimate method. The results showed that: (1) active and passive tasks rely on well-segregated patterns of activations; (2) both unresponsive wakeful syndrome and patients in minimally conscious state activated a large portion of the dorsal-attentional network; (3) shared activations between patients fell mainly in the passive activation map (7492 voxels), while only 48 voxels fell in a subcortical region of the active-map. Our results suggest that DOCs can be described along a continuum—rather than as separated clinical categories—and characterised by a widespread dysfunction of brain networks rather than by the impairment of a well functionally anatomically defined one.
Collapse
Affiliation(s)
- Manuela Berlingeri
- Department of Humanistic Studies (DISTUM), University of Urbino Carlo Bo, 61029 Urbino, Italy.
- Center of Clinical Developmental Neuropsychology, ASUR Marche, Area Vasta 1 Pesaro, 61122 Pesaro, Italy.
- NeuroMi, Milan Center for Neuroscience, 20126 Milano, Italy.
| | - Francesca Giulia Magnani
- NeuroMi, Milan Center for Neuroscience, 20126 Milano, Italy.
- Center of Cognitive Neuropsychology, ASTT Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy.
| | - Gerardo Salvato
- NeuroMi, Milan Center for Neuroscience, 20126 Milano, Italy.
- Center of Cognitive Neuropsychology, ASTT Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy.
- Brain and Behavioral Science Department, Università degli Studi di Pavia, 27100 Pavia, Italy.
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "Luigi Sacco", University of Milan, 20122 Milano, Italy.
- Fondazione Europea di Ricerca Biomedica Onlus, 20063 Milan, Italy.
| | - Gabriella Bottini
- NeuroMi, Milan Center for Neuroscience, 20126 Milano, Italy.
- Center of Cognitive Neuropsychology, ASTT Grande Ospedale Metropolitano Niguarda, 20162 Milano, Italy.
- Brain and Behavioral Science Department, Università degli Studi di Pavia, 27100 Pavia, Italy.
| |
Collapse
|
18
|
Chen X, Tang C, Zhou H, Li Z. Effect of amantadine on vegetative state after traumatic brain injury: a functional magnetic resonance imaging study. J Int Med Res 2018; 47:1015-1024. [PMID: 30514146 PMCID: PMC6381504 DOI: 10.1177/0300060518814127] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE We assessed the use of functional magnetic resonance imaging (fMRI) to observe residual brain function and responsiveness to amantadine in a patient in a vegetative state (VS) following traumatic brain injury. METHOD We observed cerebral cortex activation in a 52-year-old man in a VS, and in a healthy individual using fMRI during passive listening and motor-imagery tasks. The patient received oral amantadine for 3 months. fMRI was repeated after treatment. RESULTS Activation around the left insular regions occurred during stimulation by a familiar voice, and activity in the left temporal and bi-occipital cortices occurred during stimulation by a familiar/unfamiliar voice. Activity in the bilateral frontal and parietal cortices occurred during the motor-imagination task. Brain cortex activation was reduced in the VS patient compared with the healthy volunteer. However, the patient responded to certain auditory stimuli and motor imagery, suggesting that he retained some intact auditory and motor cortical functions. fMRI scans after 3 months of treatment showed increased activation of brain areas corresponding to task instructions. CONCLUSION fMRI could be used to observe the effects of amantadine on brain function, and to aid the diagnosis and prognostic prediction in VS patients in terms of recovery and rehabilitation planning.
Collapse
Affiliation(s)
- Xiaowei Chen
- 1 Department of Physical Medicine and Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin, China
| | - CheukYing Tang
- 2 Department of Radiology, Mount Sinai School of Medicine, New York, NY, United States
| | - Hongwei Zhou
- 3 Department of Radiology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Zhenlan Li
- 1 Department of Physical Medicine and Rehabilitation, The First Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
19
|
Yelden K, Duport S, James LM, Kempny A, Farmer SF, Leff AP, Playford ED. Late recovery of awareness in prolonged disorders of consciousness -a cross-sectional cohort study. Disabil Rehabil 2017. [PMID: 28633545 DOI: 10.1080/09638288.2017.1339209] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE To detect any improvement of awareness in prolonged disorders of consciousness in the long term. METHODS A total of 34 patients with prolonged disorders of consciousness (27 vegetative state and seven minimally conscious state; 16 males; aged 21-73) were included in the study. All patients were initially diagnosed with vegetative/minimally conscious state on admission to our specialist neurological rehabilitation unit. Re-assessment was performed 2-16 years later using Coma Recovery Scale-Revised. RESULTS Although remaining severely disabled, 32% of the patients showed late improvement of awareness evidenced with development of non-reflexive responses such as reproducible command following and localization behaviors. Most of the late recoveries occurred in patients with subarachnoid hemorrhage (5/11, 45.5%). The ages of patients within the late recovery group (Mean = 45, SD = 11.4) and non-recovery group (Mean = 43, SD = 15.5) were not statistically different (p = 0.76). CONCLUSIONS This study shows that late improvements in awareness are not exceptional in non-traumatic prolonged disorders of consciousness cases. It highlights the importance of long-term follow up of patients with prolonged disorders of consciousness, regardless of the etiology, age, and time passed since the brain injury. Long-term follow up will help clinicians to identify patients who may benefit from further assessment and rehabilitation. Although only one patient achieved recovery of function, recovery of awareness may have important ethical implications especially where withdrawal of artificial nutrition and hydration is considered. Implications for rehabilitation Long-term regular follow-up of people with prolonged disorders of consciousness is important. Albeit with poor functional outcomes late recovery of awareness is possible in both traumatic and non-traumatic prolonged disorders of consciousness cases. Recovery of awareness has significant clinical and ethical implications especially where withdrawal of artificial nutrition and hydration is considered.
Collapse
Affiliation(s)
- Kudret Yelden
- a Research Department , Royal Hospital for Neuro-disability , London , UK.,b Department of Brain Repair and Rehabilitation , Institute of Neurology, University College London , London , UK
| | - Sophie Duport
- a Research Department , Royal Hospital for Neuro-disability , London , UK
| | - Leon M James
- c Neurophysiology Department , Cromwell Hospital , London , UK
| | - Agnieszka Kempny
- a Research Department , Royal Hospital for Neuro-disability , London , UK.,b Department of Brain Repair and Rehabilitation , Institute of Neurology, University College London , London , UK
| | - Simon F Farmer
- d Department of Neurology , National Hospital for Neurology and Neurosurgery , London , UK
| | - Alex P Leff
- b Department of Brain Repair and Rehabilitation , Institute of Neurology, University College London , London , UK.,e Institute of Cognitive Neuroscience , University College London , London , UK
| | - E Diane Playford
- a Research Department , Royal Hospital for Neuro-disability , London , UK.,b Department of Brain Repair and Rehabilitation , Institute of Neurology, University College London , London , UK
| |
Collapse
|
20
|
Sontheimer A, Vassal F, Jean B, Feschet F, Lubrano V, Lemaire JJ. fMRI study of graduated emotional charge for detection of covert activity using passive listening to narratives. Neuroscience 2017; 349:291-302. [DOI: 10.1016/j.neuroscience.2017.02.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 02/03/2017] [Accepted: 02/21/2017] [Indexed: 12/13/2022]
|
21
|
Bahrami S, Shamsi M. A Non-Parametric Approach for the Activation Detection of Block Design fMRI Simulated Data Using Self-Organizing Maps and Support Vector Machine. JOURNAL OF MEDICAL SIGNALS AND SENSORS 2017; 7:153-162. [PMID: 28840116 PMCID: PMC5551299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
Functional magnetic resonance imaging (fMRI) is a popular method to probe the functional organization of the brain using hemodynamic responses. In this method, volume images of the entire brain are obtained with a very good spatial resolution and low temporal resolution. However, they always suffer from high dimensionality in the face of classification algorithms. In this work, we combine a support vector machine (SVM) with a self-organizing map (SOM) for having a feature-based classification by using SVM. Then, a linear kernel SVM is used for detecting the active areas. Here, we use SOM for feature extracting and labeling the datasets. SOM has two major advances: (i) it reduces dimension of data sets for having less computational complexity and (ii) it is useful for identifying brain regions with small onset differences in hemodynamic responses. Our non-parametric model is compared with parametric and non-parametric methods. We use simulated fMRI data sets and block design inputs in this paper and consider the contrast to noise ratio (CNR) value equal to 0.6 for simulated datasets. fMRI simulated dataset has contrast 1-4% in active areas. The accuracy of our proposed method is 93.63% and the error rate is 6.37%.
Collapse
Affiliation(s)
- Sheyda Bahrami
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran,Address for correspondence: Miss. Sheyda Bahrami, Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran. E-mail:
| | - Mousa Shamsi
- Department of Electrical Engineering, Sahand University of Technology, Tabriz, Iran
| |
Collapse
|
22
|
Pain perception in patients with chronic disorders of consciousness: What can limbic system tell us? Clin Neurophysiol 2016; 128:454-462. [PMID: 28160751 DOI: 10.1016/j.clinph.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 12/10/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Although it is believed that patients with Unresponsive Wakefulness Syndrome (UWS) do not feel pain, recent neuroimaging and neurophysiologic studies have demonstrated some residual traces of nociceptive processing. METHODS To confirm this growing evidence, we evaluated 21 patients suffering from chronic disorders of consciousness (DOC) (both UWS, n=11, and Minimally Conscious State - MCS -, n=10), using an Event-Related Potential (ERP) Low-Resolution Brain Electromagnetic Tomography (LORETA) approach, based on nociceptive repeated laser stimulation (RLS). We delivered laser stimuli to the dorsum of both hands and analysed the γ-band LORETA activations and the ERP γ-power magnitude induced by laser stimulation, as well as the heart rate variability (HRV). RESULTS We found partially preserved cortical activations and ERP γ-power magnitude in all MCS and two UWS individuals. These effects were paralleled by a purposeful behaviour, and a reduced HRV concerning nociceptive stimulation, whereas the two UWS individuals showed no more than reflex behaviours, besides a strong limbic activation. CONCLUSIONS Some UWS patients may somehow perceive the affective components of nociceptive stimulation. SIGNIFICANCE The diagnosis of functional locked-in syndrome should be taken into account when dealing with DOC differential diagnosis.
Collapse
|
23
|
Sergent C, Faugeras F, Rohaut B, Perrin F, Valente M, Tallon-Baudry C, Cohen L, Naccache L. Multidimensional cognitive evaluation of patients with disorders of consciousness using EEG: A proof of concept study. NEUROIMAGE-CLINICAL 2016; 13:455-469. [PMID: 28116238 PMCID: PMC5233797 DOI: 10.1016/j.nicl.2016.12.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/25/2016] [Accepted: 12/07/2016] [Indexed: 01/04/2023]
Abstract
The use of cognitive evoked potentials in EEG is now part of the routine evaluation of non-communicating patients with disorders of consciousness in several specialized medical centers around the world. They typically focus on one or two cognitive markers, such as the mismatch negativity or the P3 to global auditory regularity. However it has become clear that none of these markers in isolation is at the same time sufficiently specific and sufficiently sensitive to be taken as the unique gold standard for diagnosing consciousness. A good way forward would be to combine several cognitive markers within the same test to improve evaluation. Furthermore, given the diversity of lesions leading to disorders of consciousness, it is important not only to probe whether a patient is conscious or not, but also to establish a more general and nuanced profile of the residual cognitive capacities of each patient using a combination of markers. In the present study we built a unique EEG protocol that probed 8 dimensions of cognitive processing in a single 1.5 h session. This protocol probed variants of classical markers together with new markers of spatial attention, which has not yet been studied in these patients. The eight dimensions were: (1) own name recognition, (2) temporal attention, (3) spatial attention, (4) detection of spatial incongruence (5) motor planning, and (6,7,8) modulations of these effects by the global context, reflecting higher-level functions. This protocol was tested in 15 healthy control subjects and in 17 patients with various etiologies, among which 13 could be included in the analysis. The results in the control group allowed a validation and a specific description of the cognitive levels probed by each marker. At the single-subject level, this combined protocol allowed assessing the presence of both classical and newly introduced markers for each patient and control, and revealed that the combination of several markers increased diagnostic sensitivity. The presence of a high-level effect in any of the three tested domains distinguished between minimally conscious and vegetative patients, while the presence of low-level effects was similar in both groups. In summary, this study constitutes a validated proof of concept in favor of probing multiple cognitive dimensions to improve the evaluation of non-communicating patients. At a more conceptual level, this EEG tool can help achieve a better understanding of disorders of consciousness by exploring consciousness in its multiple cognitive facets. This new EEG protocol probes 8 cognitive functions within a single 1.5 h session. It allows a complete neuropsychological evaluation only based on brain activity. It increases sensitivity in detecting both low-level and high-level functions in patients. Only the high-level functions distinguish minimally conscious from vegetative states. Multidimensional EEG testing is feasible in patients and can improve evaluation.
Collapse
Affiliation(s)
- Claire Sergent
- Laboratoire Psychologie de la Perception, Université Paris Descartes et Centre National de la Recherche Scientifique, UMR8242, 45 rue des Saints Pères, 75006 Paris, France
| | - Frédéric Faugeras
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; AP-HP, Hôpital Henri Mondor-Albert Chenevier, Neurological Unit, Créteil, France; AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurophysiology, Paris, France; INSERM, U 1127, F-75013 Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Benjamin Rohaut
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Fabien Perrin
- Auditory Cognition and Psychoacoustics Team, Lyon Neuroscience Research Center (UCBL, CNRS UMR5292, Inserm U1028), Lyon, France
| | - Mélanie Valente
- Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Catherine Tallon-Baudry
- Cognitive Neuroscience Laboratory, Institut National de la Santé et de la Recherche Médicale (INSERM)-École Normale Supérieure (ENS), Paris, France
| | - Laurent Cohen
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| | - Lionel Naccache
- AP-HP, Groupe hospitalier Pitié-Salpêtrière, Department of Neurology, Paris, France; Institut du Cerveau et de la Moelle épinière, ICM, PICNIC Lab, F-75013 Paris, France
| |
Collapse
|
24
|
Keller I, Garbacenkaite R. Neurofeedback in three patients in the state of unresponsive wakefulness. Appl Psychophysiol Biofeedback 2016; 40:349-56. [PMID: 26159769 DOI: 10.1007/s10484-015-9296-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Some severely brain injured patients remain unresponsive, only showing reflex movements without any response to command. This syndrome has been named unresponsive wakefulness syndrome (UWS). The objective of the present study was to determine whether UWS patients are able to alter their brain activity using neurofeedback (NFB) technique. A small sample of three patients received a daily session of NFB for 3 weeks. We applied the ratio of theta and beta amplitudes as a feedback variable. Using an automatic threshold function, patients heard their favourite music whenever their theta/beta ratio dropped below the threshold. Changes in awareness were assessed weekly with the JFK Coma Recovery Scale-Revised for each treatment week, as well as 3 weeks before and after NFB. Two patients showed a decrease in their theta/beta ratio and theta-amplitudes during this period. The third patient showed no systematic changes in his EEG activity. The results of our study provide the first evidence that NFB can be used in patients in a state of unresponsive wakefulness.
Collapse
Affiliation(s)
- Ingo Keller
- Schoen Klinik Bad Aibling, Kolbermoorer Strasse 72, 83043, Bad Aibling, Germany.
| | - Ruta Garbacenkaite
- Clinical Neuropsychology Unit and Outpatient Service, Saarland University, Saarbruecken, Germany
| |
Collapse
|
25
|
Gibson RM, Owen AM, Cruse D. Brain-computer interfaces for patients with disorders of consciousness. PROGRESS IN BRAIN RESEARCH 2016; 228:241-91. [PMID: 27590972 DOI: 10.1016/bs.pbr.2016.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The disorders of consciousness refer to clinical conditions that follow a severe head injury. Patients diagnosed as in a vegetative state lack awareness, while patients diagnosed as in a minimally conscious state retain fluctuating awareness. However, it is a challenge to accurately diagnose these disorders with clinical assessments of behavior. To improve diagnostic accuracy, neuroimaging-based approaches have been developed to detect the presence or absence of awareness in patients who lack overt responsiveness. For the small subset of patients who retain awareness, brain-computer interfaces could serve as tools for communication and environmental control. Here we review the existing literature concerning the sensory and cognitive abilities of patients with disorders of consciousness with respect to existing brain-computer interface designs. We highlight the challenges of device development for this special population and address some of the most promising approaches for future investigations.
Collapse
Affiliation(s)
- R M Gibson
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada; University of Western Ontario, London, ON, Canada.
| | - A M Owen
- The Brain and Mind Institute, University of Western Ontario, London, ON, Canada; University of Western Ontario, London, ON, Canada
| | - D Cruse
- School of Psychology, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
26
|
Kondziella D, Friberg CK, Frokjaer VG, Fabricius M, Møller K. Preserved consciousness in vegetative and minimal conscious states: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2016; 87:485-92. [PMID: 26139551 DOI: 10.1136/jnnp-2015-310958] [Citation(s) in RCA: 176] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 06/18/2015] [Indexed: 11/04/2022]
Abstract
Active, passive and resting state paradigms using functional MRI (fMRI) or EEG may reveal consciousness in the vegetative (VS) and the minimal conscious state (MCS). A meta-analysis was performed to assess the prevalence of preserved consciousness in VS and MCS as revealed by fMRI and EEG, including command following (active paradigms), cortical functional connectivity elicited by external stimuli (passive paradigms) and default mode networks (resting state). Studies were selected from multiple indexing databases until February 2015 and evaluated using the Quality Assessment of Diagnostic Accuracy Studies-2. 37 studies were identified, including 1041 patients (mean age 43 years, range 16-89; male/female 2.1:1; 39.5% traumatic brain injuries). MCS patients were more likely than VS patients to follow commands during active paradigms (32% vs 14%; OR 2.85 (95% CI 1.90 to 4.27; p<0.0001)) and to show preserved functional cortical connectivity during passive paradigms (55% vs 26%; OR 3.53 (95% CI 2.49 to 4.99; p<0.0001)). Passive paradigms suggested preserved consciousness more often than active paradigms (38% vs 24%; OR 1.98 (95% CI 1.54 to 2.54; p<0.0001)). Data on resting state paradigms were insufficient for statistical evaluation. In conclusion, active paradigms may underestimate the degree of consciousness as compared to passive paradigms. While MCS patients show signs of preserved consciousness more frequently in both paradigms, roughly 15% of patients with a clinical diagnosis of VS are able to follow commands by modifying their brain activity. However, there remain important limitations at the single-subject level; for example, patients from both categories may show command following despite negative passive paradigms.
Collapse
Affiliation(s)
- Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark Institute of Neuroscience, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christian K Friberg
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vibe G Frokjaer
- Neurobiology Research Unit, Copenhagen University Hospital and Center for Integrated Molecular Brain Imaging, Copenhagen, Denmark
| | - Martin Fabricius
- Department of Clinical Neurophysiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Kirsten Møller
- Department of Neuroanesthesiology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
27
|
Stankevich LA, Sonkin KM, Shemyakina NV, Nagornova ZV, Khomenko JG, Perets DS, Koval AV. EEG pattern decoding of rhythmic individual finger imaginary movements of one hand. ACTA ACUST UNITED AC 2016. [DOI: 10.1134/s0362119716010175] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Schorr B, Schlee W, Arndt M, Bender A. Coherence in resting-state EEG as a predictor for the recovery from unresponsive wakefulness syndrome. J Neurol 2016; 263:937-953. [PMID: 26984609 DOI: 10.1007/s00415-016-8084-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/18/2016] [Accepted: 02/28/2016] [Indexed: 12/27/2022]
Abstract
We investigated differences of EEG coherence within (short-range), and between (long-range) specified brain areas as diagnostic markers for different states in disorders of consciousness (DOC), and their predictive value for recovery from unresponsive wakefulness syndrome (UWS). EEGs of 73 patients and 24 controls were recorded and coma recovery scale- revised (CRS-R) scores were assessed. CRS-R of UWS patients was collected after 12 months and divided into two groups (improved/unimproved). Frontal, parietal, fronto-parietal, fronto-temporal, and fronto-occipital coherence was computed, as well as EEG power over frontal, parietal, occipital, and temporal areas. Minimally conscious patients (MCS) and UWS patients could not be differentiated based on their coherence patterns or on EEG power. Fronto-parietal and parietal coherence could positively predict improvement of UWS patients, i.e. recovery from UWS to MCS. Parietal coherence was significantly higher in delta and theta frequencies in the improved group, as well as the coherence between frontal and parietal regions in delta, theta, alpha, and beta frequencies. High parietal delta and theta, and high fronto-parietal theta and alpha coherence appear to provide strong early evidence for recovery from UWS with high predictive sensitivity and specificity. Short and long-range coherence can have a diagnostic value in the prognosis of recovery from UWS.
Collapse
Affiliation(s)
- Barbara Schorr
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany. .,Clinical and Biological Psychology, Institute of Psychology and Education, Ulm University, Albert-Einstein-Allee 47, 89069, Ulm, Germany.
| | - Winfried Schlee
- Institute for Psychiatry and Psychotherapy, University of Regensburg, Universitätsstraße 84, 93053, Regensburg, Germany
| | - Marion Arndt
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany
| | - Andreas Bender
- Therapiezentrum Burgau, Kapuzinerstraße 34, 89331, Burgau, Germany.,Department of Neurology, Klinikum Grosshadern, University of Munich, Marchioninistraße 15, 81377, Munich, Germany
| |
Collapse
|
29
|
Mäki-Marttunen V, Castro M, Olmos L, Leiguarda R, Villarreal M. Modulation of the default-mode network and the attentional network by self-referential processes in patients with disorder of consciousness. Neuropsychologia 2016; 82:149-160. [PMID: 26796715 DOI: 10.1016/j.neuropsychologia.2016.01.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 11/17/2015] [Accepted: 01/17/2016] [Indexed: 01/23/2023]
Abstract
Disorders of consciousness (DOC) are related to an altered capacity of the brain to successfully integrate and segregate information. Alterations in brain functional networks structure have been found in fMRI studies, which could account for the incapability of the brain to efficiently manage internally and externally generated information. Here we assess the modulation of neural activity in areas of the networks related to active introspective or extrospective processing in 9 patients with DOC and 17 controls using fMRI. In addition, we assess the functional connectivity between those areas in resting state. Patients were experimentally studied in an early phase after the event of brain injury (3±1 months after the event) and subsequently in a second session 4±1 months after the first session. The results showed that the concerted modulation of the default mode network (DMN) and attentional network (AN) in response to the active involvement in the task improved with the level of consciousness, reflecting an integral recovery of the brain in its ability to be engaged in cognitive processes. In addition, functional connectivity decreased between the DMN and AN with recovery. Our results help to further understand the neural underpins of the disorders of consciousness.
Collapse
Affiliation(s)
- Verónica Mäki-Marttunen
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina.
| | - Mariana Castro
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina
| | - Lisandro Olmos
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina
| | - Ramón Leiguarda
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| | - Mirta Villarreal
- Institute for Neurological Research, F.L.E.N.I., Montañeses 2325, 1428 Buenos Aires, Argentina; CONICET, Buenos Aires, Argentina; Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Argentina
| |
Collapse
|
30
|
Osborne NR, Owen AM, Fernández-Espejo D. The dissociation between command following and communication in disorders of consciousness: an fMRI study in healthy subjects. Front Hum Neurosci 2015; 9:493. [PMID: 26441593 PMCID: PMC4569885 DOI: 10.3389/fnhum.2015.00493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/24/2015] [Indexed: 01/18/2023] Open
Abstract
Neuroimaging studies have identified a subgroup of patients with a Disorder of Consciousness (DOC) who, while being behaviorally non-responsive, are nevertheless able to follow commands by modulating their brain activity in motor imagery (MI) tasks. These techniques have even allowed for binary communication in a small number of DOC patients. However, the majority of patients who can follow commands are unable to use their responses to communicate. A similar dissociation between present command following (CF) and absent communication abilities has been reported in overt behavioral assessments. However, the neural correlates of this dissociation in both overt and covert modalities are unknown. Here, we used functional magnetic resonance imaging (fMRI) to explore the neural mechanisms underlying CF and selection of responses for binary communication using either executed or imagined movements. Fifteen healthy participants executed or imagined two different types of arm movements that were either pre-determined by the experimenters (CF) or decided by them (action selection, AS). Action selection involved greater activity in high-level associative areas in frontal and parietal regions than CF. Additionally, motor execution (ME), as compared to MI, activated contralateral motor cortex, while the opposite contrast revealed activation in the ipsilateral sensorimotor cortex and the left inferior frontal gyrus. Importantly, there was no interaction between the task (CF/AS) and modality (MI/ME). Our results suggest that the neural processes involved in following a motor command or selecting between two motor actions are not dependent on how the response is expressed (via ME/MI). They also suggest a potential neural basis for the distinction in cognitive abilities seen in DOC patients.
Collapse
Affiliation(s)
- Natalie R Osborne
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Davinia Fernández-Espejo
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| |
Collapse
|
31
|
Edlow BL, Rosenthal ES. Diagnostic, Prognostic, and Advanced Imaging in Severe Traumatic Brain Injury. CURRENT TRAUMA REPORTS 2015. [DOI: 10.1007/s40719-015-0018-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
32
|
Riganello F, Cortese MD, Dolce G, Lucca LF, Sannita WG. The Autonomic System Functional State Predicts Responsiveness in Disorder of Consciousness. J Neurotrauma 2015; 32:1071-7. [PMID: 25604680 DOI: 10.1089/neu.2014.3539] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Diagnosis and early prognosis of the vegetative state/unresponsive wakefulness syndrome (VS/UWS) and its differentiation from the minimally-conscious state still rest on the clinical observation of responsiveness. The incidence of established clinical indicators of responsiveness also has proven variable in the single subject and is correlated to measures of heart rate variability (HRV) describing the sympathetic/parasympathetic balance. We tested responsiveness when the HRV descriptors nuLF and peakLF were or were not in the ranges with highest incidence of response based on findings from previous studies (10.0-70.0 and 0.05-0.11 Hz, respectively). Testing was blind by The Coma Recovery Scale-revised in the two conditions and in two experimental sessions with a one-week interval. The incidence of responses was not randomly distributed in the "response" and "no-response" conditions (McNemar test; p < 0.0001). The observed incidence in the "response" condition (visual: 55.1%; auditory: 51.5%) was higher than predicted statistically (32.1%) or described in previous clinical studies; responses were only occasional in the "no-response" condition (visual, 15.9%; auditory, 13.4%). Models validated the predictability with high accuracy. The current clinical criteria for diagnosis and prognosis based on neurological signs should be reconsidered, including variability over time and the autonomic system functional state, which could also qualify per se as an independent indicator for diagnosis and prognosis.
Collapse
Affiliation(s)
- Francesco Riganello
- 1 Institute S. Anna and RAN-Research in Advanced Rehabilitation , Crotone, Italy
| | - Maria D Cortese
- 1 Institute S. Anna and RAN-Research in Advanced Rehabilitation , Crotone, Italy
| | - Giuliano Dolce
- 1 Institute S. Anna and RAN-Research in Advanced Rehabilitation , Crotone, Italy
| | - Lucia F Lucca
- 1 Institute S. Anna and RAN-Research in Advanced Rehabilitation , Crotone, Italy
| | - Walter G Sannita
- 2 Department of Neuroscience, Ophthalmology, and Genetics, University of Genova , Genova, Italy .,3 Department of Psychiatry, State University of New York , Stony Brook, New York
| |
Collapse
|
33
|
Gibson RM, Fernández-Espejo D, Gonzalez-Lara LE, Kwan BY, Lee DH, Owen AM, Cruse D. Multiple tasks and neuroimaging modalities increase the likelihood of detecting covert awareness in patients with disorders of consciousness. Front Hum Neurosci 2014; 8:950. [PMID: 25505400 PMCID: PMC4244609 DOI: 10.3389/fnhum.2014.00950] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/07/2014] [Indexed: 01/14/2023] Open
Abstract
Minimal or inconsistent behavioral responses to command make it challenging to accurately diagnose the level of awareness of a patient with a Disorder of consciousness (DOC). By identifying markers of mental imagery being covertly performed to command, functional neuroimaging (fMRI), electroencephalography (EEG) has shown that some of these patients are aware despite their lack of behavioral responsiveness. We report the findings of behavioral, fMRI, and EEG approaches to detecting command-following in a group of patients with DOC. From an initial sample of 14 patients, complete data across all tasks was obtained in six cases. Behavioral evaluations were performed with the Coma Recovery Scale—Revised. Both fMRI and EEG evaluations involved the completion of previously validated mental imagery tasks—i.e., motor imagery (EEG and fMRI) and spatial navigation imagery (fMRI). One patient exhibited statistically significant evidence of motor imagery in both the fMRI and EEG tasks, despite being unable to follow commands behaviorally. Two behaviorally non-responsive patients produced appropriate activation during the spatial navigation fMRI task. However, neither of these patients successfully completed the motor imagery tasks, likely due to specific motor area damage in at least one of these cases. A further patient demonstrated command following only in the EEG motor imagery task, and two patients did not demonstrate command following in any of the behavioral, EEG, or fMRI assessments. Due to the heterogeneity of etiology and pathology in this group, DOC patients vary in terms of their suitability for some forms of neuroimaging, the preservation of specific neural structures, and the cognitive resources that may be available to them. Assessments of a range of cognitive abilities supported by spatially-distinct brain regions and indexed by multiple neural signatures are therefore required in order to accurately characterize a patient's level of residual cognition and awareness.
Collapse
Affiliation(s)
- Raechelle M Gibson
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | | | | | - Benjamin Y Kwan
- Department of Medical Imaging, University of Western Ontario London, ON, Canada
| | - Donald H Lee
- Department of Medical Imaging, University of Western Ontario London, ON, Canada ; Department of Radiology, London Health Sciences Centre London, ON, Canada
| | - Adrian M Owen
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada ; Department of Psychology, University of Western Ontario London, ON, Canada
| | - Damian Cruse
- The Brain and Mind Institute, University of Western Ontario London, ON, Canada
| |
Collapse
|
34
|
Schorr B, Schlee W, Arndt M, Lulé D, Kolassa IT, Lopez-Rolon A, Bender A. Stability of auditory event-related potentials in coma research. J Neurol 2014; 262:307-15. [DOI: 10.1007/s00415-014-7561-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 10/16/2014] [Accepted: 10/24/2014] [Indexed: 11/29/2022]
|
35
|
Estis G, Ezri T, Tomori Z. Cough, expiration and aspiration reflexes: possible anesthetic implications - a brief review. Rom J Anaesth Intensive Care 2014; 21:113-117. [PMID: 28913442 PMCID: PMC5505348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Systematic study in animals indicated, that in addition to cough there are 2 distinct airway reflexes. The aspiration reflex (AspR) characterized by rapid and strong gasp-like inspiration provoked by stimulation of nasopharynx, nasal phyltrum or auricle of ear. The expiration reflex (ExpR) manifests by prompt expiration, induced by laryngeal stimulation. Both reflexes strongly activate the brainstem inspiratory or expiratory generators, respectively, and inhibit the opposite respiratory and various functional disorders. This paper indicates several functional disorders occurring during manipulation with airways in anaesthesiological practice, which can be influenced positively or negatively by application of these special reflexes (asphyxia, breath-holding, laryngospasm, bronchospasm, sleep apnoea episodes, arrhythmia, collapse, etc.). The AspR, ExpR and CR (cough reflex) have important clinical relevance in anaesthesia and emergency medicine applicable also in domestic therapy and in hardly accessible places particularly by application of ICT (Information & Communication Technologies) using a mobile connection of the patient with the remote hospital centre.
Collapse
Affiliation(s)
- Gad Estis
- Department of Anesthesia, Assuta Medical Center, Tel Aviv, Israel
| | - Tiberiu Ezri
- Department of Anesthesia, Wolfson Medical Center, Holon, Affiliated to Tel Aviv University, Israel
| | - Zoltan Tomori
- Department of Physiology, University of PJ Safarik, Kosice, Slovak Republic
| |
Collapse
|
36
|
Gosseries O, Zasler ND, Laureys S. Recent advances in disorders of consciousness: Focus on the diagnosis. Brain Inj 2014; 28:1141-50. [PMID: 25099018 DOI: 10.3109/02699052.2014.920522] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Olivia Gosseries
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liege , Liege , Belgium
| | | | | |
Collapse
|
37
|
Habbal D, Gosseries O, Noirhomme Q, Renaux J, Lesenfants D, Bekinschtein TA, Majerus S, Laureys S, Schnakers C. Volitional electromyographic responses in disorders of consciousness. Brain Inj 2014; 28:1171-9. [PMID: 24911192 DOI: 10.3109/02699052.2014.920519] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE The aim of the study was to validate the use of electromyography (EMG) for detecting responses to command in patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS) or in minimally conscious state (MCS). METHODS Thirty-eight patients were included in the study (23 traumatic, 25 patients >1 year post-onset), 10 diagnosed as being in VS/UWS, eight in MCS- (no response to command) and 20 in MCS+ (response to command). Eighteen age-matched controls participated in the experiment. The paradigm consisted of three commands (i.e. 'Move your hands', 'Move your legs' and 'Clench your teeth') and one control sentence (i.e. 'It is a sunny day') presented in random order. Each auditory stimulus was repeated 4 times within one block with a stimulus-onset asynchrony of 30 seconds. RESULTS Post-hoc analyses with Bonferroni correction revealed that EMG activity was higher solely for the target command in one patient in permanent VS/UWS and in three patients in MCS+. CONCLUSION The use of EMG could help clinicians to detect conscious patients who do not show any volitional response during standard behavioural assessments. However, further investigations should determine the sensitivity of EMG as compared to neuroimaging and electrophysiological assessments.
Collapse
Affiliation(s)
- Dina Habbal
- Coma Science Group, Cyclotron Research Center and Neurology Department, University and University Hospital of Liège , Liège , Belgium
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
Advances in task-based functional MRI (fMRI), resting-state fMRI (rs-fMRI), and arterial spin labeling (ASL) perfusion MRI have occurred at a rapid pace in recent years. These techniques for measuring brain function have great potential to improve the accuracy of prognostication for civilian and military patients with traumatic coma. In addition, fMRI, rs-fMRI, and ASL perfusion MRI have provided novel insights into the pathophysiology of traumatic disorders of consciousness, as well as the mechanisms of recovery from coma. However, functional neuroimaging techniques have yet to achieve widespread clinical use as prognostic tests for patients with traumatic coma. Rather, a broad spectrum of methodological hurdles currently limits the feasibility of clinical implementation. In this review, we discuss the basic principles of fMRI, rs-fMRI, and ASL perfusion MRI and their potential applications as prognostic tools for patients with traumatic coma. We also discuss future strategies for overcoming the current barriers to clinical implementation.
Collapse
Affiliation(s)
- Brian L Edlow
- Department of Neurology, Massachusetts General Hospital, 55 Fruit Street - Lunder 650, Boston, MA 02114, USA.
| | | | | |
Collapse
|
39
|
Disorders of consciousness after acquired brain injury: the state of the science. Nat Rev Neurol 2014; 10:99-114. [PMID: 24468878 DOI: 10.1038/nrneurol.2013.279] [Citation(s) in RCA: 463] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The concept of consciousness continues to defy definition and elude the grasp of philosophical and scientific efforts to formulate a testable construct that maps to human experience. Severe acquired brain injury results in the dissolution of consciousness, providing a natural model from which key insights about consciousness may be drawn. In the clinical setting, neurologists and neurorehabilitation specialists are called on to discern the level of consciousness in patients who are unable to communicate through word or gesture, and to project outcomes and recommend approaches to treatment. Standards of care are not available to guide clinical decision-making for this population, often leading to inconsistent, inaccurate and inappropriate care. In this Review, we describe the state of the science with regard to clinical management of patients with prolonged disorders of consciousness. We review consciousness-altering pathophysiological mechanisms, specific clinical syndromes, and novel diagnostic and prognostic applications of advanced neuroimaging and electrophysiological procedures. We conclude with a provocative discussion of bioethical and medicolegal issues that are unique to this population and have a profound impact on care, as well as raising questions of broad societal interest.
Collapse
|
40
|
Esquinas AM. High-Risk Infections: Influence of Down-Regulation and Up-Regulation of Cough Using Airway Reflexes and Breathing Maneuvers. NONINVASIVE VENTILATION IN HIGH-RISK INFECTIONS AND MASS CASUALTY EVENTS 2014. [PMCID: PMC7120457 DOI: 10.1007/978-3-7091-1496-4_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Coughing is a watchdog of the lungs. It represents the most important airway defensive reflex and one of the main symptoms of respiratory disease. During coughing and sneezing, particles of mucus can be expelled for a distance of up to 9 m [1]. Various pathogens, if present, may therefore, infect nearby people and animals, contributing to massive dissemination of airborne infections. In addition to using various protective measures, down-regulation of coughing plays a substantial role in preventing dissemination of respiratory infections. For example, about 80 % of passengers on a 3-h airplane trip may be infected by the cough of an individual carrying the flu virus. These newly infected passengers then disseminate the viral infection at their destinations worldwide.
Collapse
Affiliation(s)
- Antonio M. Esquinas
- Intensive Care & Non Invasive Ventilatory Unit, Hospital Morales Meseguer, Murcia, Spain
| |
Collapse
|
41
|
Gibson RM, Chennu S, Owen AM, Cruse D. Complexity and familiarity enhance single-trial detectability of imagined movements with electroencephalography. Clin Neurophysiol 2013; 125:1556-67. [PMID: 24388403 DOI: 10.1016/j.clinph.2013.11.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 10/28/2013] [Accepted: 11/23/2013] [Indexed: 11/19/2022]
Abstract
OBJECTIVE We sought to determine whether the sensorimotor rhythms (SMR) elicited during motor imagery (MI) of complex and familiar actions could be more reliably detected with electroencephalography (EEG), and subsequently classified on a single-trial basis, than those elicited during relatively simpler imagined actions. METHODS Groups of healthy volunteers, including experienced pianists and ice hockey players, performed MI of varying complexity and familiarity. Their electroencephalograms were recorded and compared using brain-computer interface (BCI) approaches and spectral analyses. RESULTS Relative to simple MI, significantly more participants produced classifiable SMR for complex MI. During MI of performance of a complex musical piece, the EEG of the experienced pianists was classified significantly more accurately than during MI of performance of a simpler musical piece. The accuracy of EEG classification was also significantly more sustained during complex MI. CONCLUSION MI of complex actions results in EEG responses that are more reliably classified for more individuals than MI of relatively simpler actions, and familiarity with actions enhances these responses in some cases. SIGNIFICANCE The accuracy of SMR-based BCIs in non-communicative patients may be improved by employing familiar and complex actions. Increased sensitivity to MI may also improve diagnostic accuracy for severely brain-injured patients in a vegetative state.
Collapse
Affiliation(s)
- Raechelle M Gibson
- The Brain and Mind Institute, Department of Psychology, Western University, London, Ont., Canada.
| | - Srivas Chennu
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | - Adrian M Owen
- The Brain and Mind Institute, Department of Psychology, Western University, London, Ont., Canada
| | - Damian Cruse
- The Brain and Mind Institute, Department of Psychology, Western University, London, Ont., Canada
| |
Collapse
|
42
|
Implementing novel imaging methods for improved diagnosis of disorder of consciousness patients. J Neurol Sci 2013; 334:130-8. [DOI: 10.1016/j.jns.2013.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 08/07/2013] [Indexed: 11/20/2022]
|
43
|
Abstract
Recent developments in functional neuroimaging have provided a number of new tools for assessing patients who clinically appear to be in a vegetative state. These techniques have been able to reveal awareness and even allow rudimentary communication in some patients who remain entirely behaviourally non-responsive. The implications of these results extend well beyond the immediate clinical and scientific findings to influencing legal proceedings, raising new ethical questions about the withdrawal of nutrition and hydration and providing new options for patients and families in that decision-making process. The findings have also motivated significant public discourse about the role of neuroscience research in society.
Collapse
|
44
|
Vogel D, Markl A, Yu T, Kotchoubey B, Lang S, Müller F. Can Mental Imagery Functional Magnetic Resonance Imaging Predict Recovery in Patients With Disorders of Consciousness? Arch Phys Med Rehabil 2013; 94:1891-8. [DOI: 10.1016/j.apmr.2012.11.053] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2012] [Revised: 11/20/2012] [Accepted: 11/26/2012] [Indexed: 10/26/2022]
|
45
|
|
46
|
Harrison AH, Connolly JF. Finding a way in: A review and practical evaluation of fMRI and EEG for detection and assessment in disorders of consciousness. Neurosci Biobehav Rev 2013; 37:1403-19. [PMID: 23680699 DOI: 10.1016/j.neubiorev.2013.05.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/26/2013] [Accepted: 05/06/2013] [Indexed: 01/28/2023]
|
47
|
Markl A, Yu T, Vogel D, Müller F, Kotchoubey B, Lang S. Brain processing of pain in patients with unresponsive wakefulness syndrome. Brain Behav 2013; 3:95-103. [PMID: 23533065 PMCID: PMC3607151 DOI: 10.1002/brb3.110] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 11/07/2012] [Accepted: 11/12/2012] [Indexed: 01/18/2023] Open
Abstract
By definition, patients with unresponsive wakefulness syndrome (UWS) do not experience pain, but it is still not completely understood how far their brain can process noxious stimuli. The few positron emission tomography studies that have examined pain processing did not yield a clear and consistent result. We performed an functional magnetic resonance imaging scan in 30 UWS patients of nontraumatic etiology and 15 age- and sex-matched healthy control participants (HC). In a block design, noxious electrical stimuli were presented at the patients' left index finger, alternating with a resting baseline condition. Sixteen of the UWS patients (53%) showed neural activation in at least one subsystem of the pain-processing network. More specifically, 15 UWS patients (50%) showed responses in the sensory-discriminative pain network, 30% in the affective pain network. The data indicate that some patients completely fulfilling the clinical UWS criteria have the neural substrates of noxious stimulation processing, which resemble that in control individuals. We therefore suppose that at least some of these patients can experience pain.
Collapse
Affiliation(s)
- Alexandra Markl
- Schön Klinik Bad Aibling Kolbermoorer Straβe 72, 83043 Bad Aibling, Germany ; Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-University Tübingen Gartenstraβe 29, 72074 Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
48
|
Gantner IS, Bodart O, Laureys S, Demertzi A. Our rapidly changing understanding of acute and chronic disorders of consciousness: challenges for neurologists. FUTURE NEUROLOGY 2013. [DOI: 10.2217/fnl.12.77] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
A number of recent studies suggest that some ‘vegetative state’ patients have been misdiagnosed, judging by their ability to follow commands and in some cases even communicate through brain activity. Such studies highlight the difficulty in forming a diagnosis based only on behavioral assessments. We think that neuroimaging and electrophysiology methods will be used more frequently in clinical settings, integrated with existing behavioral assessments. Such efforts are expected to lead to a more accurate understanding of individual patients’ cognitive abilities or even provide prognostic indicators. In terms of treatment planning (i.e., pain management and end-of-life decision-making), patients with disorders of consciousness are now offered the possibility of expressing their preferences by means of brain–computer interfaces. What remains to be clarified is the degree to which such indirect responses can be considered reliable and of legal representation.
Collapse
Affiliation(s)
- Ithabi S Gantner
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| | - Olivier Bodart
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| | - Steven Laureys
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| | - Athena Demertzi
- Coma Science Group, Cyclotron Research Center & CHU Neurology Department, University of Liège, Allée du 6 Août no 8, Sart Tilman B30, 4000 Liège, Belgium
| |
Collapse
|
49
|
Cruse D, Chennu S, Fernández-Espejo D, Payne WL, Young GB, Owen AM. Detecting awareness in the vegetative state: electroencephalographic evidence for attempted movements to command. PLoS One 2012; 7:e49933. [PMID: 23185489 PMCID: PMC3503880 DOI: 10.1371/journal.pone.0049933] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Accepted: 10/18/2012] [Indexed: 12/02/2022] Open
Abstract
Patients in the Vegetative State (VS) do not produce overt motor behavior to command and are therefore considered to be unaware of themselves and of their environments. However, we recently showed that high-density electroencephalography (EEG) can be used to detect covert command-following in some VS patients. Due to its portability and inexpensiveness, EEG assessments of awareness have the potential to contribute to a standard clinical protocol, thus improving diagnostic accuracy. However, this technique requires refinement and optimization if it is to be used widely as a clinical tool. We asked a patient who had been repeatedly diagnosed as VS for 12-years to try to move his left and right hands, between periods of rest, while EEG was recorded from four scalp electrodes. We identified appropriate and statistically reliable modulations of sensorimotor beta rhythms following commands to try to move, which could be significantly classified at a single-trial level. These reliable effects indicate that the patient attempted to follow the commands, and was therefore aware, but was unable to execute an overtly discernable action. The cognitive demands of this novel task are lower than those used previously and, crucially, allow for awareness to be determined on the basis of a 20-minute EEG recording made with only four electrodes. This approach makes EEG assessments of awareness clinically viable, and therefore has potential for inclusion in a standard assessment of awareness in the VS.
Collapse
Affiliation(s)
- Damian Cruse
- Brain and Mind Institute, University of Western Ontario, London, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
50
|
Mindsight: diagnostics in disorders of consciousness. Crit Care Res Pract 2012; 2012:624724. [PMID: 23213492 PMCID: PMC3505640 DOI: 10.1155/2012/624724] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 04/30/2012] [Accepted: 07/08/2012] [Indexed: 12/20/2022] Open
Abstract
Diagnosis of patients with disorders of consciousness (comprising coma, vegetative state/unresponsive wakefulness syndrome, and minimally conscious state) has long been dependent on unstandardized behavioral tests. The arrival of standardized behavioral tools, and especially the Coma Recovery Scale revised, uncovered a high rate of misdiagnosis. Ancillary techniques, such as brain imaging and electrophysiological examinations, are ever more often being deployed to aid in the search for remaining consciousness. They are used to look for brain activity patterns similar to those found in healthy controls. The development of portable and cheaper devices will make these techniques more widely available.
Collapse
|