1
|
Schlaeger S, Mühlau M, Gilbert G, Vavasour I, Amthor T, Doneva M, Menegaux A, Mora M, Lauerer M, Pongratz V, Zimmer C, Wiestler B, Kirschke JS, Preibisch C, Berg RC. Sensitivity of multi-parametric quantitative magnetic resonance imaging for multiple sclerosis pathology. PLoS One 2025; 20:e0318415. [PMID: 40238815 PMCID: PMC12002544 DOI: 10.1371/journal.pone.0318415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/15/2025] [Indexed: 04/18/2025] Open
Abstract
BACKGROUND In recent years, quantitative magnetic resonance imaging (MRI) made progress towards clinical applicability mainly through advances in acceleration techniques. In patients with multiple sclerosis (MS), objective quantitative MRI-based characterization of subtle pathological alterations in lesions, perilesion (PL), as well as normal-appearing (NA) white matter (NAWM) and grey matter (NAGM) would revolutionize clinical assessment. While numerous quantitative techniques have been applied in studies of MS patients, their diagnostic significance especially for individual patients with relatively short disease duration is unclear. Therefore, we investigated the sensitivity of several quantitative MRI parameters to focal and diffuse MS pathology in a clinical feasibility study with a small sample size. METHODS In 13 MS patients with a mean disease duration of 8 years and a mean EDSS of 1.1 as well as 14 healthy age-matched controls (HC), we acquired nine (semi-)quantitative magnetic resonance (MR) biomarkers, namely myelin water fraction (MWF), magnetization transfer (MT) saturation (MTsat), inhomogeneous MT ratio (ihMTR), quantitative longitudinal relaxation time (qT1), intrinsic (qT2) and effective (qT2*) quantitative transverse relaxation times, proton density (PD), quantitative susceptibility mapping (QSM), and the ratio between T1-weighted and T2-weighted images (T1w/T2w). Four volumes of interest were automatically defined (NA/HC grey matter (GM), NA/HC white matter (WM), lesion, and PL), and biomarker values were analyzed between groups and tissue types. RESULTS For all nine assessed biomarkers, mean values per patient were significantly different between lesion, PL, and NAWM (p < 0.05, FDR corrected). The lesion values of qT1, qT2, qT2 * , PD, and QSM were rather inhomogeneous. Furthermore, MWF, MTsat, and ihMTR were sensitive to diffuse WM pathology in MS with the largest absolute differences between NAWM and HCWM medians, albeit not statistically significant after correction for multiple testing. DISCUSSION In our study, we successfully compared nine different quantitative MR parameters within the same subjects for tissue characterization of MS. Our study adds relevant aspects to the current debate on different sensitivities of various quantitative MR biomarkers to MS pathology. While all investigated MR biomarkers allowed characterizing lesions in individual patients, a separation of NAWM and HCWM could be most promising with the myelin-sensitive measures MWF, MTsat, and ihMTR.
Collapse
Affiliation(s)
- Sarah Schlaeger
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Radiology, LMU University Hospital, LMU Munich, Munich, Germany
| | - Mark Mühlau
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | | | - Irene Vavasour
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | | | | | - Aurore Menegaux
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Maria Mora
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Markus Lauerer
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Viola Pongratz
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Claus Zimmer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Benedikt Wiestler
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Jan S. Kirschke
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christine Preibisch
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Ronja C. Berg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
- Department of Neurology, School of Medicine and Health, TUM Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| |
Collapse
|
2
|
Laporte JP, Akhonda MABS, Cortina LE, Faulkner ME, Gong Z, Guo A, Bae J, Fox NY, Zhang N, Bergeron CM, Ferrucci L, Egan JM, Bouhrara M. Investigating the association between human brainstem microstructural integrity and hypertension using magnetic resonance relaxometry. Hypertens Res 2025; 48:1564-1574. [PMID: 39849049 PMCID: PMC11972960 DOI: 10.1038/s41440-025-02114-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
The brainstem plays a vital role in regulating blood pressure, and disruptions to its neural pathways have been linked to hypertension. However, it remains unclear whether subtle microstructural changes in the brainstem are associated with an individual's blood pressure status. This exploratory, cross-sectional study investigated the relationship between brainstem microstructure, myelination, and hypertensive status in 116 cognitively unimpaired adults (aged 22-94 years). Advanced MRI techniques, including relaxometry (R1, R2) and myelin water fraction (MWF) analysis, were employed to assess microstructural integrity and myelin content in ten brainstem subregions. Our results revealed significant associations between higher microstructural damage or lower myelin content (indicated by lower R1, R2, or MWF values) and hypertensive status, particularly in the midbrain tegmentum. Notably, combining these MRI metrics yielded high classification accuracy (AUC > 0.85). Our findings suggest a potential link between disrupted brainstem tissue integrity, myelin content, and elevated blood pressure, warranting further longitudinal investigations to explore this relationship.
Collapse
Affiliation(s)
- John P Laporte
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Mohammad A B S Akhonda
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Mary E Faulkner
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Alex Guo
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Jonghyun Bae
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Noam Y Fox
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Nathan Zhang
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Christopher M Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Luigi Ferrucci
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Josephine M Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224, MD, USA.
| |
Collapse
|
3
|
Celada M, Zaarour N, Cheung J, Gross C, Lim A, Buchman A, Saberi P, Varma G, VanderHorst V. Standardization of postmortem human brainstem along the rostrocaudal axis to accommodate for heterogeneity in samples. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645559. [PMID: 40236243 PMCID: PMC11996440 DOI: 10.1101/2025.03.26.645559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Human postmortem brain tissues provide an indispensable resource that is crucial for the understanding of neurological conditions, whether related to pathology subtype, burden, distribution or cell-type specificity. Pathology staging protocols provide guidelines for standardized sampling of brain tissues, but cover only a subset of regions affected by pathologies. Thus, to study how various neuropathologies and cell types in highly specialized circuit nodes correlate with functions specifically served by these nodes, additional protocols are necessary. This especially applies to brainstem tissues due to the small dimension of regions of interest and interindividual variability of specimens, whether due to procurement or intrinsic differences. Here we systematically assessed factors contributing to heterogeneity in the length of whole brainstem samples and then presented a standardized approach to reproducibly assign rostrocaudal levels, with standardization relying upon readily identifiable internal landmarks. We validated this approach using postmortem MRI imaging. Standardized brainstem length correlated positively with subject height and negatively with subject age of death. By providing a reference series, reproducible levels can be assigned to individual histological sections or MRI images, i.e. when full brainstem specimens are not available and irrespective of platform, promoting reproducibility.
Collapse
|
4
|
Mooney RA, Celnik PA. Effector-dependent decline in strength and subcortical motor excitability with aging. Neurobiol Aging 2025; 147:98-104. [PMID: 39733761 DOI: 10.1016/j.neurobiolaging.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 12/31/2024]
Abstract
A decline in upper limb strength is common with normal aging. However, whether age-related strength decline is paralleled by reduced excitability of descending motor pathways is unclear. The reticulospinal tract is a key subcortical pathway involved in gross motor output and exhibits increased excitability following resistance training. Here, we sought to determine age-related effects on strength and reticulospinal excitability in flexors and extensors of the upper limb in humans. In 15 younger and 14 older adults, we quantified upper limb strength using dynamometry, and reticulospinal excitability by using transcranial magnetic stimulation to elicit ipsilateral motor evoked potentials. We observed a decline in flexion, but not extension strength, in older compared with younger adults. This behavioral pattern was paralleled by an age-related reduction in ipsilateral motor evoked potential presence specific to flexor muscles. Our findings indicate that reduced excitability of the reticulospinal tract, which exhibits strong innervation of flexor muscles, may be a key contributor to upper limb strength decline commonly observed in older adults.
Collapse
Affiliation(s)
- Ronan A Mooney
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Shirley Ryan AbilityLab, Chicago, IL, USA.
| | - Pablo A Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Shirley Ryan AbilityLab, Chicago, IL, USA
| |
Collapse
|
5
|
Bouhrara M, Walker KA, Alisch JSR, Gong Z, Mazucanti CH, Lewis A, Moghekar AR, Turek L, Collingham V, Shehadeh N, Fantoni G, Kaileh M, Bergeron CM, Bergeron J, Resnick SM, Egan JM. Association of Plasma Markers of Alzheimer's Disease, Neurodegeneration, and Neuroinflammation with the Choroid Plexus Integrity in Aging. Aging Dis 2024; 15:2230-2240. [PMID: 38300640 PMCID: PMC11346414 DOI: 10.14336/ad.2023.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
The choroid plexus (CP) is a vital brain structure essential for cerebrospinal fluid (CSF) production. Moreover, alterations in the CP's structure and function are implicated in molecular conditions and neuropathologies including multiple sclerosis, Alzheimer's disease, and stroke. Our goal is to provide the first characterization of the association between variation in the CP microstructure and macrostructure/volume using advanced magnetic resonance imaging (MRI) methodology, and blood-based biomarkers of Alzheimer's disease (Aß42/40 ratio; pTau181), neuroinflammation and neuronal injury (GFAP; NfL). We hypothesized that plasma biomarkers of brain pathology are associated with disordered CP structure. Moreover, since cerebral microstructural changes can precede macrostructural changes, we also conjecture that these differences would be evident in the CP microstructural integrity. Our cross-sectional study was conducted on a cohort of 108 well-characterized individuals, spanning 22-94 years of age, after excluding participants with cognitive impairments and non-exploitable MR imaging data. Established automated segmentation methods were used to identify the CP volume/macrostructure using structural MR images, while the microstructural integrity of the CP was assessed using our advanced quantitative high-resolution MR imaging of longitudinal and transverse relaxation times (T1 and T2). After adjusting for relevant covariates, positive associations were observed between pTau181, NfL and GFAP and all MRI metrics. These associations reached significance (p<0.05) except for CP volume vs. pTau181 (p=0.14), CP volume vs. NfL (p=0.35), and T2 vs. NFL (p=0.07). Further, negative associations between Aß42/40 and all MRI metrics were observed but reached significance only for Aß42/40 vs. T2 (p=0.04). These novel findings demonstrate that reduced CP macrostructural and microstructural integrity is positively associated with blood-based biomarkers of AD pathology, neurodegeneration/neuroinflammation and neurodegeneration. Degradation of the CP structure may co-occur with AD pathology and neuroinflammation ahead of clinically detectable cognitive impairment, making the CP a potential structure of interest for early disease detection or treatment monitoring.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Keenan A. Walker
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Joseph S. R. Alisch
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Caio H. Mazucanti
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Alexandria Lewis
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Abhay R. Moghekar
- Johns Hopkins University School of Medicine, Baltimore, 21224 MD, USA.
| | - Lisa Turek
- Clinical Research Core, Baltimore, MD 21224, USA.
| | | | | | | | - Mary Kaileh
- Clinical Research Core, Baltimore, MD 21224, USA.
| | - Christopher M. Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Jan Bergeron
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Susan M. Resnick
- Laboratory of Behavioral Neuroscience, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| | - Josephine M. Egan
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
6
|
Hu M, Xu F, Liu S, Yao Y, Xia Q, Zhu C, Zhang X, Tang H, Qaiser Z, Liu S, Tang Y. Aging pattern of the brainstem based on volumetric measurement and optimized surface shape analysis. Brain Imaging Behav 2024; 18:396-411. [PMID: 38155336 DOI: 10.1007/s11682-023-00840-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2023] [Indexed: 12/30/2023]
Abstract
The brainstem, a small and crucial structure, is connected to the cerebrum, spinal cord, and cerebellum, playing a vital role in regulating autonomic functions, transmitting motor and sensory information, and modulating cognitive processes, emotions, and consciousness. While previous research has indicated that changes in brainstem anatomy can serve as a biomarker for aging and neurodegenerative diseases, the structural changes that occur in the brainstem during normal aging remain unclear. This study aimed to examine the age- and sex-related differences in the global and local structural measures of the brainstem in 187 healthy adults (ranging in age from 18 to 70 years) using structural magnetic resonance imaging. The findings showed a significant negative age effect on the volume of the two major components of the brainstem: the medulla oblongata and midbrain. The shape analysis revealed that atrophy primarily occurs in specific structures, such as the pyramid, cerebral peduncle, superior and inferior colliculi. Surface area and shape analysis showed a trend of flattening in the aging brainstem. There were no significant differences between the sexes or sex-by-age interactions in brainstem structural measures. These findings provide a systematic description of age associations with brainstem structures in healthy adults and may provide a reference for future research on brain aging and neurodegenerative diseases.
Collapse
Affiliation(s)
- Minqi Hu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Feifei Xu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shizhou Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yuan Yao
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Qing Xia
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Caiting Zhu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Xinwen Zhang
- Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
| | - Haiyan Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Zubair Qaiser
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Shuwei Liu
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China
| | - Yuchun Tang
- Department of Anatomy and Neurobiology, Research Center for Sectional and Imaging Anatomy, Shandong Provincial Key Laboratory of Mental Disorder, Shandong Key Laboratory of Digital Human and Clinical Anatomy, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
- Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, 250012, Shandong, China.
- Advanced Medical Research Institute, Cheeloo College of Medicine, Shandong University, Jinan, 250012, Shandong, China.
| |
Collapse
|
7
|
Coffman C, Feczko E, Larsen B, Tervo-Clemmens B, Conan G, Lundquist JT, Houghton A, Moore LA, Weldon K, McCollum R, Perrone AJ, Fayzullobekova B, Madison TJ, Earl E, Dominguez OM, Fair DA, Basu S. Heritability estimation of subcortical volumes in a multi-ethnic multi-site cohort study. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.11.575231. [PMID: 38260520 PMCID: PMC10802572 DOI: 10.1101/2024.01.11.575231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Heritability of regional subcortical brain volumes (rSBVs) describes the role of genetics in middle and inner brain development. rSBVs are highly heritable in adults but are not characterized well in adolescents. The Adolescent Brain Cognitive Development study (ABCD), taken over 22 US sites, provides data to characterize the heritability of subcortical structures in adolescence. In ABCD, site-specific effects co-occur with genetic effects which can bias heritability estimates. Existing methods adjusting for site effects require additional steps to adjust for site effects and can lead to inconsistent estimation. We propose a random-effect model-based method of moments approach that is a single step estimator and is a theoretically consistent estimator even when sites are imbalanced and performs well under simulations. We compare methods on rSBVs from ABCD. The proposed approach yielded heritability estimates similar to previous results derived from single-site studies. The cerebellum cortex and hippocampus were the most heritable regions (> 50%).
Collapse
Affiliation(s)
- Christian Coffman
- Division of Biostatistics, University of Minnesota, 100 Church Street SE, Minneapolis, 55455-0213, MN, USA
| | - Eric Feczko
- Department of Pediatrics, University of Minnesota, 100 Church Street SE, Minneapolis, 55455-0213, MN, USA
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Bart Larsen
- Department of Pediatrics, University of Minnesota, 100 Church Street SE, Minneapolis, 55455-0213, MN, USA
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Brenden Tervo-Clemmens
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, 100 Church Street SE, Minneapolis, 55455-0213, MN, USA
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Gregory Conan
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Jacob T. Lundquist
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Audrey Houghton
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Lucille A. Moore
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Kimberly Weldon
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Rae McCollum
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Anders J. Perrone
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Begim Fayzullobekova
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Thomas J. Madison
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Eric Earl
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Oscar Miranda Dominguez
- Department of Pediatrics, University of Minnesota, 100 Church Street SE, Minneapolis, 55455-0213, MN, USA
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Damien A. Fair
- Department of Pediatrics, University of Minnesota, 100 Church Street SE, Minneapolis, 55455-0213, MN, USA
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| | - Saonli Basu
- Division of Biostatistics, University of Minnesota, 100 Church Street SE, Minneapolis, 55455-0213, MN, USA
- Masonic Institue for the Devloping Brain, University of Minnesota, 2025 East River Parkway, Minneapolis, 55414, MN, USA
| |
Collapse
|
8
|
Lal C, Ayappa I, Ayas N, Beaudin AE, Hoyos C, Kushida CA, Kaminska M, Mullins A, Naismith SL, Osorio RS, Phillips CL, Parekh A, Stone KL, Turner AD, Varga AW. The Link between Obstructive Sleep Apnea and Neurocognitive Impairment: An Official American Thoracic Society Workshop Report. Ann Am Thorac Soc 2022; 19:1245-1256. [PMID: 35913462 PMCID: PMC9353960 DOI: 10.1513/annalsats.202205-380st] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There is emerging evidence that obstructive sleep apnea (OSA) is a risk factor for preclinical Alzheimer's disease (AD). An American Thoracic Society workshop was convened that included clinicians, basic scientists, and epidemiologists with expertise in OSA, cognition, and dementia, with the overall objectives of summarizing the state of knowledge in the field, identifying important research gaps, and identifying potential directions for future research. Although currently available cognitive screening tests may allow for identification of cognitive impairment in patients with OSA, they should be interpreted with caution. Neuroimaging in OSA can provide surrogate measures of disease chronicity, but it has methodological limitations. Most data on the impact of OSA treatment on cognition are for continuous positive airway pressure (CPAP), with limited data for other treatments. The cognitive domains improving with CPAP show considerable heterogeneity across studies. OSA can negatively influence risk, manifestations, and possibly progression of AD and other forms of dementia. Sleep-dependent memory tasks need greater incorporation into OSA testing, with better delineation of sleep fragmentation versus intermittent hypoxia effects. Plasma biomarkers may prove to be sensitive, feasible, and scalable biomarkers for use in clinical trials. There is strong biological plausibility, but insufficient data, to prove bidirectional causality of the associations between OSA and aging pathology. Engaging, recruiting, and retaining diverse populations in health care and research may help to decrease racial and ethnic disparities in OSA and AD. Key recommendations from the workshop include research aimed at underlying mechanisms; longer-term longitudinal studies with objective assessment of OSA, sensitive cognitive markers, and sleep-dependent cognitive tasks; and pragmatic study designs for interventional studies that control for other factors that may impact cognitive outcomes and use novel biomarkers.
Collapse
|
9
|
Aye N, Lehmann N, Kaufmann J, Heinze HJ, Düzel E, Taubert M, Ziegler G. Test-retest reliability of multi-parametric maps (MPM) of brain microstructure. Neuroimage 2022; 256:119249. [PMID: 35487455 DOI: 10.1016/j.neuroimage.2022.119249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/22/2022] [Accepted: 04/25/2022] [Indexed: 10/18/2022] Open
Abstract
Multiparameter mapping (MPM) is a quantitative MRI protocol that is promising for studying microstructural brain changes in vivo with high specificity. Reliability values are an important prior knowledge for efficient study design and facilitating replicable findings in development, aging and neuroplasticity research. To explore longitudinal reliability of MPM we acquired the protocol in 31 healthy young subjects twice over a rescan interval of 4 weeks. We assessed the within-subject coefficient of variation (WCV), the between-subject coefficient of variation (BCV), and the intraclass correlation coefficient (ICC). Using these metrics, we investigated the reliability of (semi-) quantitative magnetization transfer saturation (MTsat), proton density (PD), transversal relaxation (R2*) and longitudinal relaxation (R1). To increase relevance for explorative studies in development and training-induced plasticity, we assess reliability both on local voxel- as well as ROI-level. Finally, we disentangle contributions and interplay of within- and between-subject variability to ICC and assess the optimal degree of spatial smoothing applied to the data. We reveal evidence that voxelwise ICC reliability of MPMs is moderate to good with median values in cortex (subcortical GM): MT: 0.789 (0.447) PD: 0.553 (0.264) R1: 0.555 (0.369) R2*: 0.624 (0.477). The Gaussian smoothing kernel of 2 to 4 mm FWHM resulted in optimal reproducibility. We discuss these findings in the context of longitudinal intervention studies and the application to research designs in neuroimaging field.
Collapse
Affiliation(s)
- Norman Aye
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany.
| | - Nico Lehmann
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, 04103 Leipzig, Germany
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany
| | - Hans-Jochen Heinze
- Department of Neurology, Otto von Guericke University, Leipziger Straße 44, 39120 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Leibniz-Institute for Neurobiology (LIN), Brenneckestraße 6, 39118 Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, Alexandra House, 17-19 Queen Square, Bloomsbury, London, WC1N 3AZ United Kingdom
| | - Marco Taubert
- Faculty of Human Sciences, Institute III, Department of Sport Science, Otto von Guericke University, Zschokkestraße 32, 39104 Magdeburg, Germany; Center for Behavioral and Brain Science (CBBS), Otto von Guericke University, Universitätsplatz 2, 39106 Magdeburg, Germany
| | - Gabriel Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Leipziger Straße 44, 39120 Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research, Otto von Guericke University, Leipziger Str. 44, 39120 Magdeburg, Germany
| |
Collapse
|
10
|
Kiely M, Triebswetter C, Cortina LE, Gong Z, Alsameen MH, Spencer RG, Bouhrara M. Insights into human cerebral white matter maturation and degeneration across the adult lifespan. Neuroimage 2022; 247:118727. [PMID: 34813969 PMCID: PMC8792239 DOI: 10.1016/j.neuroimage.2021.118727] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 10/15/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
White matter (WM) microstructural properties change across the adult lifespan and with neuronal diseases. Understanding microstructural changes due to aging is paramount to distinguish them from neuropathological changes. Conducted on a large cohort of 147 cognitively unimpaired subjects, spanning a wide age range of 21 to 94 years, our study evaluated sex- and age-related differences in WM microstructure. Specifically, we used diffusion tensor imaging (DTI) magnetic resonance imaging (MRI) indices, sensitive measures of myelin and axonal density in WM, and myelin water fraction (MWF), a measure of the fraction of the signal of water trapped within the myelin sheets, to probe these differences. Furthermore, we examined regional correlations between MWF and DTI indices to evaluate whether the DTI metrics provide information complementary to MWF. While sexual dimorphism was, overall, nonsignificant, we observed region-dependent differences in MWF, that is, myelin content, and axonal density with age and found that both exhibit nonlinear, but distinct, associations with age. Furthermore, DTI indices were moderately correlated with MWF, indicating their good sensitivity to myelin content as well as to other constituents of WM tissue such as axonal density. The microstructural differences captured by our MRI metrics, along with their weak to moderate associations with MWF, strongly indicate the potential value of combining these outcome measures in a multiparametric approach. Furthermore, our results support the last-in-first-out and the gain-predicts-loss hypotheses of WM maturation and degeneration. Indeed, our results indicate that the posterior WM regions are spared from neurodegeneration as compared to anterior regions, while WM myelination follows a temporally symmetric time course across the adult life span.
Collapse
Affiliation(s)
- Matthew Kiely
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Curtis Triebswetter
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Luis E Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Zhaoyuan Gong
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Maryam H Alsameen
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Richard G Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA
| | - Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, 21224 MD, USA.
| |
Collapse
|
11
|
Rangarajan V, Schreiber JJ, Barragan B, Schaefer SY, Honeycutt CF. Delays in the Reticulospinal System Are Associated With a Reduced Capacity to Learn a Simulated Feeding Task in Older Adults. Front Neural Circuits 2022; 15:681706. [PMID: 35153677 PMCID: PMC8829385 DOI: 10.3389/fncir.2021.681706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/15/2021] [Indexed: 11/13/2022] Open
Abstract
Learning declines with age. Recent evidence indicates that the brainstem may play an important role in learning and motor skill acquisition. Our objective was to determine if delays in the reticular formation, measured via the startle reflex, correspond to age-related deficits in learning and retention. We hypothesized that delays in the startle reflex would be linearly correlated to learning and retention deficits in older adults. To determine if associations were unique to the reticulospinal system, we also evaluated corticospinal contributions with transcranial magnetic stimulation. Our results showed a linear relationship between startle onset latency and percent learning and retention but no relationship between active or passive motor-evoked potential onsets or peak-to-peak amplitude. These results lay the foundation for further study to evaluate if (1) the reticular formation is a subcortical facilitator of skill acquisition and (2) processing delays in the reticular formation contribute to age-related learning deficits.
Collapse
|
12
|
Jacków-Nowicka J, Podgórski P, Bladowska J, Szcześniak D, Rymaszewska J, Zatońska K, Połtyn-Zaradna K, Szuba A, Sa Siadek M, Zimny A. The Impact of Common Epidemiological Factors on Gray and White Matter Volumes in Magnetic Resonance Imaging-Is Prevention of Brain Degeneration Possible? Front Neurol 2021; 12:633619. [PMID: 34326804 PMCID: PMC8315783 DOI: 10.3389/fneur.2021.633619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 06/07/2021] [Indexed: 11/13/2022] Open
Abstract
Introduction: The aim of the study was to evaluate the impact of multiple risk factors (age, diabetes, hypertension, hyperlipidemia, BMI, smoking, alcohol) on the gray and white matter volumes as well as on the burden of white matter hyperintensities (WMH). Material and Methods: The study group consisted of 554 subjects (age range: 50–69 yrs, F/M: 367/187) recruited from the larger cohort of the Polish fraction of the Prospective Urban Rural Epidemiological (PURE) study. The participants answered questionnaires about their lifestyle, underwent physical and psychological examination (MoCA test), laboratory blood tests followed by brain MRI. Volumetric measurements of the total gray matter (GMvol), total white matter (WMvol) and WHM (WMHvol) normalized to the total intracranial volume were performed using the Computational Anatomy Toolbox 12 (CAT12) and Statistical Parametric Maps 12 (SPM12) based on 3D T1-weighted sequence. The influence of risk factors was assessed using multiple regression analysis before and after correction for multiple comparisons. Results: Older age was associated with lower GMvol and WMvol, and higher WMHvol (p < 0.001). Smaller GMvol volume was associated with higher WMHvol (p < 0.001). Higher WMHvol was associated with hypertension (p = 0.01) and less significantly with hyperlipidemia (only before correction p = 0.03). Diabetes, abnormal BMI, smoking and alcohol intake did not have any significant impact on GMvol, WMvol or WMHvol (p > 0.05). MoCA score was not influenced by any of the factors. Conclusions: Gray matter loss is strongly associated with the accumulation of WMH which seems to be potentially preventable by maintaining normal blood pressure and cholesterol levels.
Collapse
Affiliation(s)
- Jagoda Jacków-Nowicka
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wrocław, Poland
| | - Przemysław Podgórski
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wrocław, Poland
| | - Joanna Bladowska
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wrocław, Poland
| | - Dorota Szcześniak
- Department of Psychiatry, Wroclaw Medical University, Wrocław, Poland
| | | | - Katarzyna Zatońska
- Department of Social Medicine, Wroclaw Medical University, Wrocław, Poland
| | | | - Andrzej Szuba
- Department of Angiology, Hypertension and Diabetology, Wroclaw Medical University, Wrocław, Poland
| | - Marek Sa Siadek
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wrocław, Poland
| | - Anna Zimny
- Department of General and Interventional Radiology and Neuroradiology, Wroclaw Medical University, Wrocław, Poland
| |
Collapse
|
13
|
Bouhrara M, Cortina LE, Khattar N, Rejimon AC, Ajamu S, Cezayirli DS, Spencer RG. Maturation and degeneration of the human brainstem across the adult lifespan. Aging (Albany NY) 2021; 13:14862-14891. [PMID: 34115614 PMCID: PMC8221341 DOI: 10.18632/aging.203183] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 05/20/2021] [Indexed: 04/12/2023]
Abstract
Brainstem tissue microstructural properties change across the adult lifespan. However, studies elucidating the biological processes that govern brainstem maturation and degeneration in-vivo are lacking. In the present work, conducted on a large cohort of 140 cognitively unimpaired subjects spanning a wide age range of 21 to 94 years, we implemented a multi-parameter approach to characterize the sex- and age differences. In addition, we examined regional correlations between myelin water fraction (MWF), a direct measure of myelin content, and diffusion tensor imaging indices, and transverse and longitudinal relaxation rates to evaluate whether these metrics provide information complementary to MWF. We observed region-dependent differences in myelin content and axonal density with age and found that both exhibit an inverted U-shape association with age in several brainstem substructures. We emphasize that the microstructural differences captured by our distinct MRI metrics, along with their weak associations with MWF, strongly indicate the potential of using these outcome measures in a multi-parametric approach. Furthermore, our results support the gain-predicts-loss hypothesis of tissue maturation and degeneration in the brainstem. Indeed, our results indicate that myelination follows a temporally symmetric time course across the adult life span, while axons appear to degenerate significantly more rapidly than they mature.
Collapse
Affiliation(s)
- Mustapha Bouhrara
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Luis E. Cortina
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Nikkita Khattar
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Abinand C. Rejimon
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Samuel Ajamu
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Defne S. Cezayirli
- Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
14
|
Faber J, Schaprian T, Berkan K, Reetz K, França MC, de Rezende TJR, Hong J, Liao W, van de Warrenburg B, van Gaalen J, Durr A, Mochel F, Giunti P, Garcia-Moreno H, Schoels L, Hengel H, Synofzik M, Bender B, Oz G, Joers J, de Vries JJ, Kang JS, Timmann-Braun D, Jacobi H, Infante J, Joules R, Romanzetti S, Diedrichsen J, Schmid M, Wolz R, Klockgether T. Regional Brain and Spinal Cord Volume Loss in Spinocerebellar Ataxia Type 3. Mov Disord 2021; 36:2273-2281. [PMID: 33951232 PMCID: PMC9521507 DOI: 10.1002/mds.28610] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 01/22/2023] Open
Abstract
Background: Given that new therapeutic options for spinocerebellar ataxias are on the horizon, there is a need for markers that reflect disease-related alterations, in particular, in the preataxic stage, in which clinical scales are lacking sensitivity. Objective: The objective of this study was to quantify regional brain volumes and upper cervical spinal cord areas in spinocerebellar ataxia type 3 in vivo across the entire time course of the disease. Methods: We applied a brain segmentation approach that included a lobular subsegmentation of the cerebellum to magnetic resonance images of 210 ataxic and 48 preataxic spinocerebellar ataxia type 3 mutation carriers and 63 healthy controls. In addition, cervical cord cross-sectional areas were determined at 2 levels. Results: The metrics of cervical spinal cord segments C3 and C2, medulla oblongata, pons, and pallidum, and the cerebellar anterior lobe were reduced in preataxic mutation carriers compared with controls. Those of cervical spinal cord segments C2 and C3, medulla oblongata, pons, midbrain, cerebellar lobules crus II and X, cerebellar white matter, and pallidum were reduced in ataxic compared with nonataxic carriers. Of all metrics studied, pontine volume showed the steepest decline across the disease course. It covaried with ataxia severity, CAG repeat length, and age. The multivariate model derived from this analysis explained 46.33% of the variance of pontine volume. Conclusion: Regional brain and spinal cord tissue loss in spinocerebellar ataxia type 3 starts before ataxia onset. Pontine volume appears to be the most promising imaging biomarker candidate for interventional trials that aim at slowing the progression of spinocerebellar ataxia type 3.
Collapse
Affiliation(s)
- Jennifer Faber
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Tamara Schaprian
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Koyak Berkan
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Kathrin Reetz
- Department of Neurology, RWTH Aachen University, Bonn, Germany.,JARA-Brain Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany
| | - Marcondes Cavalcante França
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.,Department of Neurology, University of Campinas, Campinas, Brazil
| | - Thiago Junqueira Ribeiro de Rezende
- Brazilian Institute of Neuroscience and Neurotechnology (BRAINN), Campinas, Brazil.,Department of Neurology, University of Campinas, Campinas, Brazil
| | - Jiang Hong
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Weihua Liao
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| | - Bart van de Warrenburg
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Judith van Gaalen
- Department of Neurology, Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France
| | - Fanny Mochel
- Sorbonne Université, Paris Brain Institute, AP-HP, INSERM, CNRS, Pitié-Salpêtrière University Hospital, Paris, France
| | - Paola Giunti
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Hector Garcia-Moreno
- Ataxia Centre, Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, United Kingdom.,National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, United Kingdom
| | - Ludger Schoels
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Holger Hengel
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases and Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,German Centre for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Benjamin Bender
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Tübingen, Germany
| | - Gulin Oz
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - James Joers
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jereon J de Vries
- Department of Neurology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Jun-Suk Kang
- Department of Neurology, Goethe University, Frankfurt am Main, Germany
| | | | - Heike Jacobi
- Department of Neurology, University Hospital of Heidelberg, Heidelberg, Germany
| | - Jon Infante
- Neurology Service, University Hospital Marques de Valdecilla-IDIVAL, University of Cantabria, Centro de Investigacion Biomedica en Red de Enfermedades Neurodegenerativas (CIBERNED), Santander, Spain
| | | | - Sandro Romanzetti
- JARA-Brain Institute Molecular Neuroscience and Neuroimaging, Forschungszentrum Jülich, Jülich, Germany
| | - Jorn Diedrichsen
- Brain Mind Institute, Departmentof Computer Science, Department of Statistics, University of Western Ontario, London, Canada
| | - Matthias Schmid
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.,Institute of Medical Biometry, Informatics and Epidemiology, University Hospital Bonn, Bonn, Germany
| | | | - Thomas Klockgether
- DZNE, German Center for Neurodegenerative Diseases, Bonn, Germany.,Department of Neurology, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
15
|
Sander L, Horvath A, Pezold S, Andermatt S, Amann M, Sinnecker T, Wendebourg MJ, Kesenheimer E, Yaldizli Ö, Kappos L, Granziera C, Wuerfel J, Cattin P, Schlaeger R. Improving Accuracy of Brainstem MRI Volumetry: Effects of Age and Sex, and Normalization Strategies. Front Neurosci 2021; 14:609422. [PMID: 33424541 PMCID: PMC7785816 DOI: 10.3389/fnins.2020.609422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 11/30/2020] [Indexed: 12/04/2022] Open
Abstract
Background: Brainstem-mediated functions are impaired in neurodegenerative diseases and aging. Atrophy can be visualized by MRI. This study investigates extrinsic sources of brainstem volume variability, intrinsic sources of anatomical variability, and the influence of age and sex on the brainstem volumes in healthy subjects. We aimed to develop efficient normalization strategies to reduce the effects of intrinsic anatomic variability on brainstem volumetry. Methods: Brainstem segmentation was performed from MPRAGE data using our deep-learning-based brainstem segmentation algorithm MD-GRU. The extrinsic variability of brainstem volume assessments across scanners and protocols was investigated in two groups comprising 11 (median age 33.3 years, 7 women) and 22 healthy subjects (median age 27.6 years, 50% women) scanned twice and compared using Dice scores. Intrinsic anatomical inter-individual variability and age and sex effects on brainstem volumes were assessed in segmentations of 110 healthy subjects (median age 30.9 years, range 18–72 years, 53.6% women) acquired on 1.5T (45%) and 3T (55%) scanners. The association between brainstem volumes and predefined anatomical covariates was studied using Pearson correlations. Anatomical variables with associations of |r| > 0.30 as well as the variables age and sex were used to construct normalization models using backward selection. The effect of the resulting normalization models was assessed by % relative standard deviation reduction and by comparing the inter-individual variability of the normalized brainstem volumes to the non-normalized values using paired t- tests with Bonferroni correction. Results: The extrinsic variability of brainstem volumetry across different field strengths and imaging protocols was low (Dice scores > 0.94). Mean inter-individual variability/SD of total brainstem volumes was 9.8%/7.36. A normalization based on either total intracranial volume (TICV), TICV and age, or v-scale significantly reduced the inter-individual variability of total brainstem volumes compared to non-normalized volumes and similarly reduced the relative standard deviation by about 35%. Conclusion: The extrinsic variability of the novel brainstem segmentation method MD-GRU across different scanners and imaging protocols is very low. Anatomic inter-individual variability of brainstem volumes is substantial. This study presents efficient normalization models for variability reduction in brainstem volumetry in healthy subjects.
Collapse
Affiliation(s)
- Laura Sander
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Antal Horvath
- Department of Biomedical Engineering, Center for Medical Image Analysis & Navigation (CIAN), University of Basel, Allschwil, Switzerland
| | - Simon Pezold
- Department of Biomedical Engineering, Center for Medical Image Analysis & Navigation (CIAN), University of Basel, Allschwil, Switzerland
| | - Simon Andermatt
- Department of Biomedical Engineering, Center for Medical Image Analysis & Navigation (CIAN), University of Basel, Allschwil, Switzerland
| | - Michael Amann
- Department of Biomedical Engineering, Medical Image Analysis Center (MIAC AG) and qbig, University of Basel, Basel, Switzerland
| | - Tim Sinnecker
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland.,Department of Biomedical Engineering, Medical Image Analysis Center (MIAC AG) and qbig, University of Basel, Basel, Switzerland
| | - Maria J Wendebourg
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Eva Kesenheimer
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Özgür Yaldizli
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Cristina Granziera
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Jens Wuerfel
- Department of Biomedical Engineering, Medical Image Analysis Center (MIAC AG) and qbig, University of Basel, Basel, Switzerland
| | - Philippe Cattin
- Department of Biomedical Engineering, Center for Medical Image Analysis & Navigation (CIAN), University of Basel, Allschwil, Switzerland
| | - Regina Schlaeger
- Neurologic Clinic and Policlinic, Departments of Medicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland.,Translational Imaging in Neurology (ThINK) Basel, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| |
Collapse
|
16
|
Kannenberg S, Caspers J, Dinkelbach L, Moldovan AS, Ferrea S, Südmeyer M, Butz M, Schnitzler A, Hartmann CJ. Investigating the 1-year decline in midbrain-to-pons ratio in the differential diagnosis of PSP and IPD. J Neurol 2020; 268:1526-1532. [PMID: 33277666 PMCID: PMC7990839 DOI: 10.1007/s00415-020-10327-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 11/10/2020] [Accepted: 11/19/2020] [Indexed: 11/03/2022]
Abstract
Background A reliable measure of PSP-specific midbrain atrophy, the midbrain-to-pons ratio (MTPR) has been reported to support the differential diagnosis of progressive supranuclear palsy (PSP) from idiopathic Parkinson’s disease (IPD). Since longitudinal analyses are lacking so far, the present study aimed to evaluate the diagnostic value of the relative change of MTPR (relΔt_MTPR) over a 1-year period in patients with PSP, IPD, and healthy controls (HC). Methods Midsagittal individual MRIs of patients with PSP (n = 15), IPD (n = 15), and healthy controls (HC; n = 15) were assessed and the MTPR at baseline and after 1 year were defined. The diagnostic accuracy of the MTPR and its relative change were evaluated using ROC curve analyses. Results PSP-patients had a significantly lower MTPR at baseline (M = 0.45 ± 0.06), compared to both non-PSP groups (F (2, 41) = 62.82, p < 0.001), with an overall predictive accuracy of 95.6% for an MTPR ≤ 0.54. PSP-patients also presented a significantly stronger 1-year decline in MTPR compared to IPD (p < 0.001). Though predictive accuracy of relΔt_MTPR for PSP (M = − 4.74% ± 4.48) from IPD (M = + 1.29 ± 3.77) was good (76.6%), ROC analysis did not reveal a significant improvement of diagnostic accuracy by combining the MTPR and relΔt_MTPR (p = 0.670). Still, specificity for PSP increased, though not significantly (p = 0.500). Conclusion The present results indicate that the relΔt_MTPR is a potentially useful tool to support the differential diagnosis of PSP from IPD. For its relative 1-year change, still, more evaluation is needed.
Collapse
Affiliation(s)
- Silja Kannenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Julian Caspers
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany.
| | - Lars Dinkelbach
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alexia-S Moldovan
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| | - Stefano Ferrea
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Martin Südmeyer
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Department of Neurology, Ernst Von Bergmann Hospital, Charlottenstraße 72, 14467, Potsdam, Germany
| | - Markus Butz
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany
| | - Christian J Hartmann
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich Heine University Düsseldorf, Universitätsstraße 1, 40225, Düsseldorf, Germany.,Department of Neurology, Medical Faculty, University Hospital Düsseldorf, Moorenstraße 5, 40225, Düsseldorf, Germany
| |
Collapse
|
17
|
Mullins AE, Kam K, Parekh A, Bubu OM, Osorio RS, Varga AW. Obstructive Sleep Apnea and Its Treatment in Aging: Effects on Alzheimer's disease Biomarkers, Cognition, Brain Structure and Neurophysiology. Neurobiol Dis 2020; 145:105054. [PMID: 32860945 PMCID: PMC7572873 DOI: 10.1016/j.nbd.2020.105054] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/08/2023] Open
Abstract
Here we review the impact of obstructive sleep apnea (OSA) on biomarkers of Alzheimer's disease (AD) pathogenesis, neuroanatomy, cognition and neurophysiology, and present the research investigating the effects of continuous positive airway pressure (CPAP) therapy. OSA is associated with an increase in AD markers amyloid-β and tau measured in cerebrospinal fluid (CSF), by Positron Emission Tomography (PET) and in blood serum. There is some evidence suggesting CPAP therapy normalizes AD biomarkers in CSF but since mechanisms for amyloid-β and tau production/clearance in humans are not completely understood, these findings remain preliminary. Deficits in the cognitive domains of attention, vigilance, memory and executive functioning are observed in OSA patients with the magnitude of impairment appearing stronger in younger people from clinical settings than in older community samples. Cognition improves with varying degrees after CPAP use, with the greatest effect seen for attention in middle age adults with more severe OSA and sleepiness. Paradigms in which encoding and retrieval of information are separated by periods of sleep with or without OSA have been done only rarely, but perhaps offer a better chance to understand cognitive effects of OSA than isolated daytime testing. In cognitively normal individuals, changes in EEG microstructure during sleep, particularly slow oscillations and spindles, are associated with biomarkers of AD, and measures of cognition and memory. Similar changes in EEG activity are reported in AD and OSA, such as "EEG slowing" during wake and REM sleep, and a degradation of NREM EEG microstructure. There is evidence that CPAP therapy partially reverses these changes but large longitudinal studies demonstrating this are lacking. A diagnostic definition of OSA relying solely on the Apnea Hypopnea Index (AHI) does not assist in understanding the high degree of inter-individual variation in daytime impairments related to OSA or response to CPAP therapy. We conclude by discussing conceptual challenges to a clinical trial of OSA treatment for AD prevention, including inclusion criteria for age, OSA severity, and associated symptoms, the need for a potentially long trial, defining relevant primary outcomes, and which treatments to target to optimize treatment adherence.
Collapse
Affiliation(s)
- Anna E Mullins
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Korey Kam
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ankit Parekh
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Omonigho M Bubu
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Ricardo S Osorio
- Center for Brain Health, Department of Psychiatry, NYU Langone Medical Center, New York, NY 10016, USA
| | - Andrew W Varga
- Mount Sinai Integrative Sleep Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| |
Collapse
|
18
|
Ye R, Rua C, O'Callaghan C, Jones PS, Hezemans FH, Kaalund SS, Tsvetanov KA, Rodgers CT, Williams G, Passamonti L, Rowe JB. An in vivo probabilistic atlas of the human locus coeruleus at ultra-high field. Neuroimage 2020; 225:117487. [PMID: 33164875 PMCID: PMC7779564 DOI: 10.1016/j.neuroimage.2020.117487] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/22/2020] [Accepted: 10/17/2020] [Indexed: 12/16/2022] Open
Abstract
Early and profound pathological changes are evident in the locus coeruleus (LC) in dementia and Parkinson's disease, with effects on arousal, attention, cognitive and motor control. The LC can be identified in vivo using non-invasive magnetic resonance imaging techniques which have potential as biomarkers for detecting and monitoring disease progression. Technical limitations of existing imaging protocols have impaired the sensitivity to regional contrast variance or the spatial variability on the rostrocaudal extent of the LC, with spatial mapping consistent with post mortem findings. The current study employs a sensitive magnetisation transfer sequence using ultrahigh field 7T MRI to investigate the LC structure in vivo at high-resolution (0.4 × 0.4 × 0.5 mm). Magnetisation transfer images from 53 healthy older volunteers (52 - 84 years) clearly revealed the spatial features of the LC and were used to create a probabilistic LC atlas for older adults. This atlas may be especially relevant for studying disorders associated with older age. To use the atlas does not require use of the same MT sequence of 7T MRI, provided good co-registration and normalisation is achieved. Consistent rostrocaudal gradients of slice-wise volume, contrast and variance along the LC were observed, mirroring distinctive ex vivo spatial distributions of LC cells in its subregions. The contrast-to-noise ratios were calculated for the peak voxels, and for the averaged signals within the atlas, to accommodate the volumetric differences in estimated contrast. The probabilistic atlas is freely available, and the MRI dataset will be made available for non-commercial research, for replication or to facilitate accurate LC localisation and unbiased contrast extraction in future studies.
Collapse
Affiliation(s)
- Rong Ye
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK.
| | - Catarina Rua
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia; Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - P Simon Jones
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Frank H Hezemans
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Sanne S Kaalund
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK
| | - Kamen A Tsvetanov
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Guy Williams
- Wolfson Brain Imaging Centre, University of Cambridge, Cambridge, UK
| | - Luca Passamonti
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; Istituto di Bioimmagini e Fisiologia Molecolare (IBFM), Consiglio Nazionale delle Ricerche (CNR), Milano, Italy
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge and Cambridge University Hospitals NHS Foundation Trust, Herchel Smith Building for Brain and Mind Sciences, Forvie Site, Robinson Way, Cambridge CB2 0SZ, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
19
|
Functional MRI Reveals Locomotion-Control Neural Circuits in Human Brainstem. Brain Sci 2020; 10:brainsci10100757. [PMID: 33092164 PMCID: PMC7589833 DOI: 10.3390/brainsci10100757] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 11/17/2022] Open
Abstract
The cuneiform nucleus (CN) and the pedunculopontine nucleus (PPN) in the midbrain control coordinated locomotion in vertebrates, but whether similar mechanisms exist in humans remain to be elucidated. Using functional magnetic resonance imaging, we found that simulated gait evoked activations in the CN, PPN, and other brainstem regions in humans. Brain networks were constructed for each condition using functional connectivity. Bilateral CN–PPN and the four pons–medulla regions constituted two separate modules under all motor conditions, presenting two brainstem functional units for locomotion control. Outside- and inside-brainstem nodes were connected more densely although the links between the two groups were sparse. Functional connectivity and network analysis revealed the role of brainstem circuits in dual-task walking and walking automaticity. Together, our findings indicate that the CN, PPN, and other brainstem regions participate in locomotion control in humans.
Collapse
|
20
|
Fenske SJ, Bierer D, Chelimsky G, Conant L, Ustine C, Yan K, Chelimsky T, Kutch JJ. Sensitivity of functional connectivity to periaqueductal gray localization, with implications for identifying disease-related changes in chronic visceral pain: A MAPP Research Network neuroimaging study. Neuroimage Clin 2020; 28:102443. [PMID: 33027702 PMCID: PMC7548991 DOI: 10.1016/j.nicl.2020.102443] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 08/10/2020] [Accepted: 09/16/2020] [Indexed: 12/27/2022]
Abstract
Previous studies examining the resting-state functional connectivity of the periaqueductal gray (PAG) in chronic visceral pain have localized PAG coordinates derived from BOLD responses to provoked acute pain. These coordinates appear to be several millimeters anterior of the anatomical location of the PAG. Therefore, we aimed to determine whether measures of PAG functional connectivity are sensitive to the localization technique, and if the localization approach has an impact on detecting disease-related differences in chronic visceral pain patients. We examined structural and resting-state functional MRI (rs-fMRI) images from 209 participants in the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. We applied three different localization techniques to define a region-of-interest (ROI) for the PAG: 1) a ROI previously-published as a Montreal Neurological Institute (MNI) coordinate surrounded by a 3 mm radius sphere (MNI-sphere), 2) a ROI that was hand-traced over the PAG in a MNI template brain (MNI-trace), and 3) a ROI that was hand-drawn over the PAG in structural images from 30 individual participants (participant-trace). We compared the correlation among the rs-fMRI signals from these PAG ROIs, as well as the functional connectivity of these ROIs with the whole brain. First, we found important non-uniformities in brainstem rs-fMRI signals, as rs-fMRI signals from the MNI-trace ROI were significantly more similar to the participant-trace ROI than to the MNI-sphere ROI. We then found that choice of ROI also impacts whole-brain functional connectivity, as measures of PAG functional connectivity throughout the brain were more similar between MNI-trace and participant-trace compared to MNI-sphere and participant-trace. Finally, we found that ROI choice impacts detection of disease-related differences, as functional connectivity differences between pelvic pain patients and healthy controls were much more apparent using the MNI-trace ROI compared to the MNI-sphere ROI. These results indicate that the ROI used to localize the PAG is critical, especially when examining brain functional connectivity changes in chronic visceral pain patients.
Collapse
Affiliation(s)
- Sonja J Fenske
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Douglas Bierer
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Gisela Chelimsky
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Center for Pediatric Neurogastroenterology, Motility, and Autonomic Disorders, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Lisa Conant
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Candida Ustine
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ke Yan
- Division of Quantitative Health Sciences, Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Thomas Chelimsky
- Department of Neurology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason J Kutch
- Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
21
|
Fazio P, Ferreira D, Svenningsson P, Halldin C, Farde L, Westman E, Varrone A. High-resolution PET imaging reveals subtle impairment of the serotonin transporter in an early non-depressed Parkinson's disease cohort. Eur J Nucl Med Mol Imaging 2020; 47:2407-2416. [PMID: 32020370 PMCID: PMC7396398 DOI: 10.1007/s00259-020-04683-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 01/03/2020] [Indexed: 12/14/2022]
Abstract
PURPOSE The serotonin transporter (SERT) is a biochemical marker for monoaminergic signaling in brain and has been suggested to be involved inthe pathophysiology of Parkinson's disease (PD). The aim of this PET study was to examine SERT availability in relevant brain regions in early stages ofnon-depressed PD patients. METHODS In a cross-sectional study, 18 PD patients (13 M/5F, 64 ± 7 years, range 46-74 years, disease duration 2.9 ± 2.6 years; UPDRS motor 21.9 ± 5.2) and 20 age- and gender-matched healthy control (HC) subjects (15 M/5F, 61 ± 7 years, range 50-72 years) were included. In a subsequent longitudinal phase, ten of the PD patients (7 M/3F, UPDRS motor 20.6 ± 6.9) underwent a second PET measurement after 18-24 months. After a 3-T MRI acquisition, baseline PET measurements were performed with [11C]MADAM using a high-resolution research tomograph. The non-displaceablebinding potential (BPND) was chosen as the outcome measure and was estimated at voxel level on wavelet-aided parametric images, by using the Logan graphical analysis and the cerebellum as reference region. A molecular template was generated to visualize and define different subdivisions of the raphe nuclei in the brainstem. Subortical and cortical regions of interest were segmented using FreeSurfer. Univariate analyses and multivariate network analyses were performed on the PET data. RESULTS The univariate region-based analysis showed no differences in SERT levels when the PD patients were compared with the HC neither at baseline or after 2 years of follow-up. The multivariate network analysis also showed no differences at baseline. However, prominent changes in integration and segregation measures were observed at follow-up, indicating a disconnection of the cortical and subcortical regions from the three nuclei of the raphe. CONCLUSION We conclude that the serotoninergic system in PD patients seems to become involved with a network dysregulation as the disease progresses, suggesting a disturbed serotonergic signaling from raphe nuclei to target subcortical and cortical regions.
Collapse
Affiliation(s)
- Patrik Fazio
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden.
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden.
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Per Svenningsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Section of Neurology, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Christer Halldin
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden
| | - Lars Farde
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Clinical Geriatrics, Karolinska Institutet, Stockholm, Sweden
- Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, SE5 8AF, UK
| | - Andrea Varrone
- Center for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, & Stockholm Health Care Services, RegionStockholm, Karolinska University Hospital, SE-17176, R5:02, Visionsgatan 70A, Stockholm, Sweden
| |
Collapse
|
22
|
Shepherd TM, Ades-Aron B, Bruno M, Schambra HM, Hoch MJ. Direct In Vivo MRI Discrimination of Brain Stem Nuclei and Pathways. AJNR Am J Neuroradiol 2020; 41:777-784. [PMID: 32354712 DOI: 10.3174/ajnr.a6542] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/19/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND PURPOSE The brain stem is a complex configuration of small nuclei and pathways for motor, sensory, and autonomic control that are essential for life, yet internal brain stem anatomy is difficult to characterize in living subjects. We hypothesized that the 3D fast gray matter acquisition T1 inversion recovery sequence, which uses a short inversion time to suppress signal from white matter, could improve contrast resolution of brain stem pathways and nuclei with 3T MR imaging. MATERIALS AND METHODS After preliminary optimization for contrast resolution, the fast gray matter acquisition T1 inversion recovery sequence was performed in 10 healthy subjects (5 women; mean age, 28.8 ± 4.8 years) with the following parameters: TR/TE/TI = 3000/2.55/410 ms, flip angle = 4°, isotropic resolution = 0.8 mm, with 4 averages (acquired separately and averaged outside k-space to reduce motion; total scan time = 58 minutes). One subject returned for an additional 5-average study that was combined with a previous session to create a highest quality atlas for anatomic assignments. A 1-mm isotropic resolution, 12-minute version, proved successful in a patient with a prior infarct. RESULTS The fast gray matter acquisition T1 inversion recovery sequence generated excellent contrast resolution of small brain stem pathways in all 3 planes for all 10 subjects. Several nuclei could be resolved directly by image contrast alone or indirectly located due to bordering visualized structures (eg, locus coeruleus and pedunculopontine nucleus). CONCLUSIONS The fast gray matter acquisition T1 inversion recovery sequence has the potential to provide imaging correlates to clinical conditions that affect the brain stem, improve neurosurgical navigation, validate diffusion tractography of the brain stem, and generate a 3D atlas for automatic parcellation of specific brain stem structures.
Collapse
Affiliation(s)
- T M Shepherd
- From the Departments of Radiology (T.M.S., B.A.-A., M.B.)
| | - B Ades-Aron
- From the Departments of Radiology (T.M.S., B.A.-A., M.B.).,Electrical and Computer Engineering (B.A.-A.)
| | - M Bruno
- From the Departments of Radiology (T.M.S., B.A.-A., M.B.)
| | - H M Schambra
- Neurology (H.M.S.), New York University, New York, New York
| | - M J Hoch
- Department of Radiology (M.J.H.), University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
23
|
Van Egroo M, Narbutas J, Chylinski D, Villar González P, Maquet P, Salmon E, Bastin C, Collette F, Vandewalle G. Sleep-wake regulation and the hallmarks of the pathogenesis of Alzheimer's disease. Sleep 2020; 42:5289316. [PMID: 30649520 DOI: 10.1093/sleep/zsz017] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Indexed: 01/23/2023] Open
Abstract
While efficient treatments for Alzheimer's disease (AD) remain elusive, a growing body of research has highlighted sleep-wake regulation as a potential modifiable factor to delay disease progression. Evidence accumulated in recent years is pointing toward a tight link between sleep-wake disruption and the three main hallmarks of the pathogenesis of AD, i.e. abnormal amyloid-beta (Aβ) and tau proteins accumulation, and neurodegeneration. However, all three hallmarks are rarely considered together in the same study. In this review, we gather and discuss findings in favor of an association between sleep-wake disruption and each AD hallmark in animal models and in humans, with a focus on the preclinical stages of the disease. We emphasize that these relationships are likely bidirectional for each of these hallmarks. Altogether, current findings provide strong support for considering sleep-wake disruption as a true risk factor in the early unfolding of AD, but more research integrating recent technical advances is needed, particularly with respect to tau protein and neurodegeneration. Interventional longitudinal studies among cognitively healthy older individuals should assess the practical use of improving sleep-wake regulation to slow down the progression of AD pathogenesis.
Collapse
Affiliation(s)
- Maxime Van Egroo
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | - Justinas Narbutas
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Daphne Chylinski
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| | | | - Pierre Maquet
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Eric Salmon
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Christine Bastin
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Fabienne Collette
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium.,Psychology and Cognitive Neuroscience Research Unit, University of Liège, Liège, Belgium
| | - Gilles Vandewalle
- GIGA-Cyclotron Research Centre-In Vivo Imaging, University of Liège, Liège, Belgium
| |
Collapse
|
24
|
Fernández-Cabello S, Kronbichler M, Van Dijk KRA, Goodman JA, Spreng RN, Schmitz TW, on behalf of the Alzheimer’s Disease Neuroimaging Initiative. Basal forebrain volume reliably predicts the cortical spread of Alzheimer's degeneration. Brain 2020; 143:993-1009. [PMID: 32203580 PMCID: PMC7092749 DOI: 10.1093/brain/awaa012] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 12/25/2022] Open
Abstract
Alzheimer's disease neurodegeneration is thought to spread across anatomically and functionally connected brain regions. However, the precise sequence of spread remains ambiguous. The prevailing model used to guide in vivo human neuroimaging and non-human animal research assumes that Alzheimer's degeneration starts in the entorhinal cortices, before spreading to the temporoparietal cortex. Challenging this model, we previously provided evidence that in vivo markers of neurodegeneration within the nucleus basalis of Meynert (NbM), a subregion of the basal forebrain heavily populated by cortically projecting cholinergic neurons, precedes and predicts entorhinal degeneration. There have been few systematic attempts at directly comparing staging models using in vivo longitudinal biomarker data, and none to our knowledge testing if comparative evidence generalizes across independent samples. Here we addressed the sequence of pathological staging in Alzheimer's disease using two independent samples of the Alzheimer's Disease Neuroimaging Initiative (n1 = 284; n2 = 553) with harmonized CSF assays of amyloid-β and hyperphosphorylated tau (pTau), and longitudinal structural MRI data over 2 years. We derived measures of grey matter degeneration in a priori NbM and the entorhinal cortical regions of interest. To examine the spreading of degeneration, we used a predictive modelling strategy that tests whether baseline grey matter volume in a seed region accounts for longitudinal change in a target region. We demonstrated that predictive spread favoured the NbM→entorhinal over the entorhinal→NbM model. This evidence generalized across the independent samples. We also showed that CSF concentrations of pTau/amyloid-β moderated the observed predictive relationship, consistent with evidence in rodent models of an underlying trans-synaptic mechanism of pathophysiological spread. The moderating effect of CSF was robust to additional factors, including clinical diagnosis. We then applied our predictive modelling strategy to an exploratory whole-brain voxel-wise analysis to examine the spatial specificity of the NbM→entorhinal model. We found that smaller baseline NbM volumes predicted greater degeneration in localized regions of the entorhinal and perirhinal cortices. By contrast, smaller baseline entorhinal volumes predicted degeneration in the medial temporal cortex, recapitulating a prior influential staging model. Our findings suggest that degeneration of the basal forebrain cholinergic projection system is a robust and reliable upstream event of entorhinal and neocortical degeneration, calling into question a prevailing view of Alzheimer's disease pathogenesis.
Collapse
Affiliation(s)
- Sara Fernández-Cabello
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
| | - Martin Kronbichler
- Department of Psychology, University of Salzburg, Salzburg, Austria
- Centre for Cognitive Neuroscience, University of Salzburg, Salzburg, Austria
- Neuroscience Institute, Christian-Doppler Medical Centre, Paracelsus Medical University, Salzburg, Austria
| | - Koene R A Van Dijk
- Clinical and Translational Imaging, Early Clinical Development, Pfizer Inc, Cambridge, MA, USA
| | - James A Goodman
- Clinical and Translational Imaging, Early Clinical Development, Pfizer Inc, Cambridge, MA, USA
| | - R Nathan Spreng
- Laboratory of Brain and Cognition, Montreal Neurological Institute, Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Departments of Psychiatry and Psychology, McGill University, Montreal, QC, Canada
- Douglas Mental Health University Institute, Verdun, QC, Canada
- McConnell Brain Imaging Centre, McGill University, Montreal, QC, Canada
| | - Taylor W Schmitz
- Brain and Mind Institute, Western University, London, ON, Canada
- Department of Physiology and Pharmacology, Western University, London, ON, Canada
| | | |
Collapse
|
25
|
Network-Based Imaging and Connectomics. Stereotact Funct Neurosurg 2020. [DOI: 10.1007/978-3-030-34906-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
26
|
Quantitative age-dependent differences in human brainstem myelination assessed using high-resolution magnetic resonance mapping. Neuroimage 2019; 206:116307. [PMID: 31669302 DOI: 10.1016/j.neuroimage.2019.116307] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 10/18/2019] [Accepted: 10/21/2019] [Indexed: 12/13/2022] Open
Abstract
Previous in-vivo magnetic resonance imaging (MRI)-based studies of age-related differences in the human brainstem have focused on volumetric morphometry. These investigations have provided pivotal insights into regional brainstem atrophy but have not addressed microstructural age differences. However, growing evidence indicates the sensitivity of quantitative MRI to microstructural tissue changes in the brain. These studies have largely focused on the cerebrum, with very few MR investigations addressing age-dependent differences in the brainstem, in spite of its central role in the regulation of vital functions. Several studies indicate early brainstem alterations in a myriad of neurodegenerative diseases and dementias. The paucity of MR-focused investigations is likely due in part to the challenges imposed by the small structural scale of the brainstem itself as well as of substructures within, requiring accurate high spatial resolution imaging studies. In this work, we applied our recently developed approach to high-resolution myelin water fraction (MWF) mapping, a proxy for myelin content, to investigate myelin differences with normal aging within the brainstem. In this cross-sectional investigation, we studied a large cohort (n = 125) of cognitively unimpaired participants spanning a wide age range (21-94 years) and found a decrease in myelination with age in most brainstem regions studied, with several regions exhibiting a quadratic association between myelin and age. We believe that this study is the first investigation of MWF differences with normative aging in the adult brainstem. Further, our results provide reference MWF values.
Collapse
|
27
|
Sanders O, Hsiao HY, Savin DN, Creath RA, Rogers MW. Aging changes in protective balance and startle responses to sudden drop perturbations. J Neurophysiol 2019; 122:39-50. [PMID: 31017835 PMCID: PMC6689787 DOI: 10.1152/jn.00431.2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 04/05/2019] [Accepted: 04/17/2019] [Indexed: 01/25/2023] Open
Abstract
This study investigated aging changes in protective balance and startle responses to sudden drop perturbations and their effect on landing impact forces (vertical ground reaction forces, vGRF) and balance stability. Twelve healthy older (6 men; mean age = 72.5 ± 2.32 yr, mean ± SE) and 12 younger adults (7 men; mean age = 28.09 ± 1.03 yr) stood atop a moveable platform and received externally triggered drop perturbations of the support surface. Electromyographic activity was recorded bilaterally over the sternocleidomastoid (SCM), middle deltoid, biceps brachii, vastus lateralis (VL), biceps femoris (BF), medial gastrocnemius (MG), and tibialis anterior (TA). Whole body kinematics were recorded with motion analysis. Stability in the anteroposterior direction was quantified using the margin of stability (MoS). Incidence of early onset of bilateral SCM activation within 120 ms after drop onset was present during the first-trial response (FTR) for all participants. Co-contraction indexes during FTRs between VL and BF as well as TA and MG were significantly greater in the older group (VL/BF by 26%, P < 0.05; TA/MG by 37%, P < 0.05). Reduced shoulder abduction between FTR and last-trial responses, indicative of habituation, was present across both groups. Significant age-related differences in landing strategy were present between groups, because older adults had greater trunk flexion (P < 0.05) and less knee flexion (P < 0.05) that resulted in greater peak vGRFs and decreased MoS compared with younger adults. These findings suggest age-associated abnormalities of delayed, exaggerated, and poorly habituated startle/postural FTRs are linked with greater landing impact force and diminished balance stabilization. NEW & NOTEWORTHY This study investigated the role of startle as a pathophysiological mechanism contributing to balance impairment in aging. We measured neuromotor responses as younger and older adults stood on a platform that dropped unexpectedly. Group differences in landing strategies indicated age-associated abnormalities of delayed, exaggerated, and poorly habituated startle/postural responses linked with a higher magnitude of impact force and decreased balance stabilization. The findings have implications for determining mechanisms contributing to falls and related injuries.
Collapse
Affiliation(s)
- Ozell Sanders
- Division of Rehabilitation Medicine, The Children's Hospital of Philadelphia , Philadelphia, Pennsylvania
| | - Hao Yuan Hsiao
- Department of Kinesiology and Health Education, University of Texas at Austin , Austin, Texas
| | - Douglas N Savin
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Robert A Creath
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| | - Mark W Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine, Baltimore, Maryland
| |
Collapse
|
28
|
Amoroso N, La Rocca M, Bellantuono L, Diacono D, Fanizzi A, Lella E, Lombardi A, Maggipinto T, Monaco A, Tangaro S, Bellotti R. Deep Learning and Multiplex Networks for Accurate Modeling of Brain Age. Front Aging Neurosci 2019; 11:115. [PMID: 31178715 PMCID: PMC6538815 DOI: 10.3389/fnagi.2019.00115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/01/2019] [Indexed: 12/27/2022] Open
Abstract
Recent works have extensively investigated the possibility to predict brain aging from T1-weighted MRI brain scans. The main purposes of these studies are the investigation of subject-specific aging mechanisms and the development of accurate models for age prediction. Deviations between predicted and chronological age are known to occur in several neurodegenerative diseases; as a consequence, reaching higher levels of age prediction accuracy is of paramount importance to develop diagnostic tools. In this work, we propose a novel complex network model for brain based on segmenting T1-weighted MRI scans in rectangular boxes, called patches, and measuring pairwise similarities using Pearson's correlation to define a subject-specific network. We fed a deep neural network with nodal metrics, evaluating both the intensity and the uniformity of connections, to predict subjects' ages. Our model reaches high accuracies which compare favorably with state-of-the-art approaches. We observe that the complex relationships involved in this brain description cannot be accurately modeled with standard machine learning approaches, such as Ridge and Lasso regression, Random Forest, and Support Vector Machines, instead a deep neural network has to be used.
Collapse
Affiliation(s)
- Nicola Amoroso
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Bari, Italy
| | - Marianna La Rocca
- Laboratory of Neuro Imaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Loredana Bellantuono
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy
| | | | | | - Eufemia Lella
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Bari, Italy
| | | | - Tommaso Maggipinto
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Bari, Italy
| | | | | | - Roberto Bellotti
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli studi di Bari "A. Moro", Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Bari, Italy
| |
Collapse
|
29
|
Hoch MJ, Bruno MT, Faustin A, Cruz N, Crandall L, Wisniewski T, Devinsky O, Shepherd TM. 3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 1: Brain Stem. AJNR Am J Neuroradiol 2019; 40:401-407. [PMID: 30705073 DOI: 10.3174/ajnr.a5956] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022]
Abstract
BACKGROUND AND PURPOSE The brain stem is compactly organized with life-sustaining sensorimotor and autonomic structures that can be affected by numerous pathologies but can be difficult to resolve on conventional MR imaging. MATERIALS AND METHODS We applied an optimized TSE T2 sequence to washed postmortem brain samples to reveal exquisite and reproducible brain stem anatomic MR imaging contrast comparable with histologic atlases. This resource-efficient approach can be performed across multiple whole-brain samples with relatively short acquisition times (2 hours per imaging plane) using clinical 3T MR imaging systems. RESULTS We identified most brain stem structures at 7 canonical axial levels. Multiplanar or oblique planes illustrate the 3D course and spatial relationships of major brain stem white matter pathways. Measurements of the relative position, course, and cross-sectional area of these pathways across multiple samples allow estimation of pathway location in other samples or clinical subjects. Possible structure-function asymmetries in these pathways will require further study-that is, the cross-sectional area of the left corticospinal tract in the midpons appeared 20% larger (n = 13 brains, P < .10). CONCLUSIONS Compared with traditional atlases, multiplanar MR imaging contrast has advantages for learning and retaining brain stem anatomy for clinicians and trainees. Direct TSE MR imaging sequence discrimination of brain stem anatomy can help validate other MR imaging contrasts, such as diffusion tractography, or serve as a structural template for extracting quantitative MR imaging data in future postmortem investigations.
Collapse
Affiliation(s)
- M J Hoch
- From the Department of Radiology and Imaging Sciences (M.J.H.), Emory University, Atlanta, Georgia
| | - M T Bruno
- Departments of Radiology (M.T.B., N.C., T.M.S.)
| | | | - N Cruz
- Departments of Radiology (M.T.B., N.C., T.M.S.)
| | - L Crandall
- Neurology (L.C., T.W., O.D.)
- SUDC Registry and Research Collaborative (L.C., O.D.), New York, New York
| | - T Wisniewski
- Neurology (L.C., T.W., O.D.)
- Psychiatry (T.W.), New York University, New York, New York
| | - O Devinsky
- Neurology (L.C., T.W., O.D.)
- SUDC Registry and Research Collaborative (L.C., O.D.), New York, New York
| | - T M Shepherd
- Departments of Radiology (M.T.B., N.C., T.M.S.)
- Center for Advanced Imaging Innovation and Research (T.M.S.), New York, New York
| |
Collapse
|
30
|
Akram H, Dayal V, Mahlknecht P, Georgiev D, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Ashburner J, Behrens T, Hariz M, Zrinzo L. Connectivity derived thalamic segmentation in deep brain stimulation for tremor. Neuroimage Clin 2018; 18:130-142. [PMID: 29387530 PMCID: PMC5790021 DOI: 10.1016/j.nicl.2018.01.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Revised: 12/23/2017] [Accepted: 01/13/2018] [Indexed: 02/02/2023]
Abstract
The ventral intermediate nucleus (VIM) of the thalamus is an established surgical target for stereotactic ablation and deep brain stimulation (DBS) in the treatment of tremor in Parkinson's disease (PD) and essential tremor (ET). It is centrally placed on a cerebello-thalamo-cortical network connecting the primary motor cortex, to the dentate nucleus of the contralateral cerebellum through the dentato-rubro-thalamic tract (DRT). The VIM is not readily visible on conventional MR imaging, so identifying the surgical target traditionally involved indirect targeting that relies on atlas-defined coordinates. Unfortunately, this approach does not fully account for individual variability and requires surgery to be performed with the patient awake to allow for intraoperative targeting confirmation. The aim of this study is to identify the VIM and the DRT using probabilistic tractography in patients that will undergo thalamic DBS for tremor. Four male patients with tremor dominant PD and five patients (three female) with ET underwent high angular resolution diffusion imaging (HARDI) (128 diffusion directions, 1.5 mm isotropic voxels and b value = 1500) preoperatively. Patients received VIM-DBS using an MR image guided and MR image verified approach with indirect targeting. Postoperatively, using parallel Graphical Processing Unit (GPU) processing, thalamic areas with the highest diffusion connectivity to the primary motor area (M1), supplementary motor area (SMA), primary sensory area (S1) and contralateral dentate nucleus were identified. Additionally, volume of tissue activation (VTA) corresponding to active DBS contacts were modelled. Response to treatment was defined as 40% reduction in the total Fahn-Tolosa-Martin Tremor Rating Score (FTMTRS) with DBS-ON, one year from surgery. Three out of nine patients had a suboptimal, long-term response to treatment. The segmented thalamic areas corresponded well to anatomically known counterparts in the ventrolateral (VL) and ventroposterior (VP) thalamus. The dentate-thalamic area, lay within the M1-thalamic area in a ventral and lateral location. Streamlines corresponding to the DRT connected M1 to the contralateral dentate nucleus via the dentate-thalamic area, clearly crossing the midline in the mesencephalon. Good response was seen when the active contact VTA was in the thalamic area with highest connectivity to the contralateral dentate nucleus. Non-responders had active contact VTAs outside the dentate-thalamic area. We conclude that probabilistic tractography techniques can be used to segment the VL and VP thalamus based on cortical and cerebellar connectivity. The thalamic area, best representing the VIM, is connected to the contralateral dentate cerebellar nucleus. Connectivity based segmentation of the VIM can be achieved in individual patients in a clinically feasible timescale, using HARDI and high performance computing with parallel GPU processing. This same technique can map out the DRT tract with clear mesencephalic crossing.
Collapse
Key Words
- AC, anterior commissure
- BEDPOSTX, Bayesian estimation of diffusion parameters obtained using sampling techniques X
- BET, brain extraction tool
- CI, confidence interval
- CON, connectivity
- Connectivity
- DBS
- DBS, deep brain stimulation
- DF, degrees of freedom
- DICOM, digital imaging and communications in medicine
- DRT
- DWI
- DWI, diffusion weighted imaging
- Deep brain stimulation
- Dentate nucleus
- Dentato-rubro-thalamic tract
- Diffusion weighted imaging
- EV, explanatory variable
- FLIRT, FMRIB's linear image registration tool
- FMRIB, Oxford centre for functional MRI of the brain
- FNIRT, FMRIB's non-linear image registration tool
- FSL, FMRIB's software library
- FoV, field of view
- GLM, general linear model
- HARDI, high angular resolution diffusion imaging
- HFS, high frequency stimulation
- IPG, implantable pulse generator
- LC, Levodopa challenge
- LEDD, l-DOPA equivalent daily dose
- M1, primary motor cortex
- MMS, mini-mental score
- MNI, Montreal neurological institute
- MPRAGE, magnetization-prepared rapid gradient-echo
- MPTP, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine
- NHNN, National Hospital for Neurology and Neurosurgery
- NIfTI, neuroimaging informatics technology initiative
- PC, posterior commissure
- PD
- PFC, prefrontal cortex
- PMC, premotor cortex
- Parkinson's disease
- S1, primary sensory cortex
- SAR, specific absorption rate
- SD, standard deviation
- SE, standard error
- SMA, supplementary motor area
- SNR, signal-to-noise ratio
- SSEPI, single-shot echo planar imaging
- STN, subthalamic nucleus
- TFCE, threshold-free cluster enhancement
- TMS, transcranial magnetic stimulation
- Tremor
- UPDRS, unified Parkinson's disease rating scale
- VBM, voxel based morphometry
- VIM
- VL
- VL, ventral lateral
- VP, ventral posterior
- VTA, volume of tissue activated
- Ventrointermedialis
- Ventrolateral nucleus
- cZI, caudal zona incerta
Collapse
Affiliation(s)
- Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK.
| | - Viswas Dayal
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Philipp Mahlknecht
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Neurology, Innsbruck Medical University, Innsbruck, Austria
| | - Dejan Georgiev
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Jonathan Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
| | - Tim Behrens
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford OX3 9DU, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London WC1N 3BG, UK
| |
Collapse
|
31
|
Keuken MC, Bazin PL, Backhouse K, Beekhuizen S, Himmer L, Kandola A, Lafeber JJ, Prochazkova L, Trutti A, Schäfer A, Turner R, Forstmann BU. Effects of aging on T₁, T₂*, and QSM MRI values in the subcortex. Brain Struct Funct 2017; 222:2487-2505. [PMID: 28168364 PMCID: PMC5541117 DOI: 10.1007/s00429-016-1352-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/16/2016] [Indexed: 11/14/2022]
Abstract
The aging brain undergoes several anatomical changes that can be measured with Magnetic Resonance Imaging (MRI). Early studies using lower field strengths have assessed changes in tissue properties mainly qualitatively, using [Formula: see text]- or [Formula: see text]- weighted images to provide image contrast. With the development of higher field strengths (7 T and above) and more advanced MRI contrasts, quantitative measures can be acquired even of small subcortical structures. This study investigates volumetric, spatial, and quantitative MRI parameter changes associated with healthy aging in a range of subcortical nuclei, including the basal ganglia, red nucleus, and the periaqueductal grey. The results show that aging has a heterogenous effects across regions. Across the subcortical areas an increase of [Formula: see text] values is observed, most likely indicating a loss of myelin. Only for a number of areas, a decrease of [Formula: see text] and increase of QSM is found, indicating an increase of iron. Aging also results in a location shift for a number of structures indicating the need for visualization of the anatomy of individual brains.
Collapse
Affiliation(s)
- M C Keuken
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands.
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands.
| | - P-L Bazin
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - K Backhouse
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - S Beekhuizen
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - L Himmer
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A Kandola
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - J J Lafeber
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - L Prochazkova
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A Trutti
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
| | - A Schäfer
- Siemens Healthcare GmbH, Diagnostic Imaging, Magnetic Resonance, Research and Development, Erlangen, Germany
| | - R Turner
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - B U Forstmann
- Integrative Model-based Cognitive Neuroscience Research Unit, University of Amsterdam, Amsterdam, The Netherlands
- Netherlands Institute for Neuroscience, an Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
32
|
Akram H, Sotiropoulos SN, Jbabdi S, Georgiev D, Mahlknecht P, Hyam J, Foltynie T, Limousin P, De Vita E, Jahanshahi M, Hariz M, Ashburner J, Behrens T, Zrinzo L. Subthalamic deep brain stimulation sweet spots and hyperdirect cortical connectivity in Parkinson's disease. Neuroimage 2017; 158:332-345. [PMID: 28711737 DOI: 10.1016/j.neuroimage.2017.07.012] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Revised: 07/05/2017] [Accepted: 07/09/2017] [Indexed: 01/17/2023] Open
Abstract
OBJECTIVES Firstly, to identify subthalamic region stimulation clusters that predict maximum improvement in rigidity, bradykinesia and tremor, or emergence of side-effects; and secondly, to map-out the cortical fingerprint, mediated by the hyperdirect pathways which predict maximum efficacy. METHODS High angular resolution diffusion imaging in twenty patients with advanced Parkinson's disease was acquired prior to bilateral subthalamic nucleus deep brain stimulation. All contacts were screened one-year from surgery for efficacy and side-effects at different amplitudes. Voxel-based statistical analysis of volumes of tissue activated models was used to identify significant treatment clusters. Probabilistic tractography was employed to identify cortical connectivity patterns associated with treatment efficacy. RESULTS All patients responded well to treatment (46% mean improvement off medication UPDRS-III [p < 0.0001]) without significant adverse events. Cluster corresponding to maximum improvement in tremor was in the posterior, superior and lateral portion of the nucleus. Clusters corresponding to improvement in bradykinesia and rigidity were nearer the superior border in a further medial and posterior location. The rigidity cluster extended beyond the superior border to the area of the zona incerta and Forel-H2 field. When the clusters where averaged, the coordinates of the area with maximum overall efficacy was X = -10(-9.5), Y = -13(-1) and Z = -7(-3) in MNI(AC-PC) space. Cortical connectivity to primary motor area was predictive of higher improvement in tremor; whilst that to supplementary motor area was predictive of improvement in bradykinesia and rigidity; and connectivity to prefrontal cortex was predictive of improvement in rigidity. INTERPRETATION These findings support the presence of overlapping stimulation sites within the subthalamic nucleus and its superior border, with different cortical connectivity patterns, associated with maximum improvement in tremor, rigidity and bradykinesia.
Collapse
Affiliation(s)
- Harith Akram
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK.
| | - Stamatios N Sotiropoulos
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK; Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| | - Saad Jbabdi
- Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Dejan Georgiev
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Philipp Mahlknecht
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Jonathan Hyam
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - Thomas Foltynie
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Patricia Limousin
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Enrico De Vita
- Neuroradiological Academic Unit, Department of Brain Repair and Rehabilitation, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK; Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, University College London NHS Foundation Trust, London, UK
| | - Marjan Jahanshahi
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Marwan Hariz
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Department of Clinical Neuroscience, Umeå University, Umeå, Sweden
| | - John Ashburner
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Tim Behrens
- Wellcome Trust Centre for Neuroimaging, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Centre for Functional MRI of the Brain (FMRIB), John Radcliffe Hospital, Oxford, OX3 9DU, UK
| | - Ludvic Zrinzo
- Unit of Functional Neurosurgery, Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK; Victor Horsley Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
33
|
Relationship between brainstem neurodegeneration and clinical impairment in traumatic spinal cord injury. NEUROIMAGE-CLINICAL 2017. [PMID: 28649492 PMCID: PMC5470571 DOI: 10.1016/j.nicl.2017.05.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Background Brainstem networks are pivotal in sensory and motor function and in recovery following experimental spinal cord injury (SCI). Objective To quantify neurodegeneration and its relation to clinical impairment in major brainstem pathways and nuclei in traumatic SCI. Methods Quantitative MRI data of 30 chronic traumatic SCI patients (15 with tetraplegia and 15 with paraplegia) and 23 controls were acquired. Patients underwent a full neurological examination. We calculated quantitative myelin-sensitive (magnetisation transfer saturation (MT) and longitudinal relaxation rate (R1)) and iron-sensitive (effective transverse relaxation rate (R2*)) maps. We constructed brainstem tissue templates using a multivariate Gaussian mixture model and assessed volume loss, myelin reductions, and iron accumulation across the brainstem pathways (e.g. corticospinal tracts (CSTs) and medial lemniscus), and nuclei (e.g. red nucleus and periaqueductal grey (PAG)). The relationship between structural changes and clinical impairment were assessed using regression analysis. Results Volume loss was detected in the CSTs and in the medial lemniscus. Myelin-sensitive MT and R1 were reduced in the PAG, the CSTs, the dorsal medulla and pons. No iron-sensitive changes in R2* were detected. Lower pinprick score related to more myelin reductions in the PAG, whereas lower functional independence was related to more myelin reductions in the vestibular and pontine nuclei. Conclusion Neurodegeneration, indicated by volume loss and myelin reductions, is evident in major brainstem pathways and nuclei following traumatic SCI; the magnitude of these changes relating to clinical impairment. Thus, quantitative MRI protocols offer new targets, which may be used as neuroimaging biomarkers in treatment trials. Quantitative MRI revealed in-vivo brainstem neurodegeneration in SCI patients. Atrophy was evident in major sensorimotor brainstem pathways. The magnitude of myelin reduction in brainstem nuclei related to clinical disability
Collapse
|
34
|
Ishida T, Donishi T, Iwatani J, Yamada S, Takahashi S, Ukai S, Shinosaki K, Terada M, Kaneoke Y. Elucidating the aberrant brain regions in bipolar disorder using T1-weighted/T2-weighted magnetic resonance ratio images. Psychiatry Res Neuroimaging 2017; 263:76-84. [PMID: 28366873 DOI: 10.1016/j.pscychresns.2017.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2016] [Revised: 02/22/2017] [Accepted: 03/17/2017] [Indexed: 01/28/2023]
Abstract
Although diffusion tensor imaging (DTI) have revealed brain abnormalities in bipolar disorder (BD) subjects, DTI methods might not detect disease-related abnormalities in the white matter (WM) where nerve fibers are crossing. We investigated BD myelin-related abnormal brain regions in both gray matter and WM for 29 BD and 33 healthy control (HC) participants using T1-weighted (T1w)/T2-weighted (T2w) ratio images that increase myelin-related contrast irrespective of nerve fiber orientation. To check effect of the brain volume, the results were compared with those of voxel-based morphometry (VBM). We found significantly lower T1w/T2w signal intensity in broad WM regions in BD subjects, including the corpus callosum, corona radiata, internal capsule, middle cerebellar peduncle and cerebellum. Regional volume reduction was found in the WM bilateral posterior thalami and retrolenticular part of the internal capsules of BD subjects. We also performed tract-based spatial statistics (TBSS) in 25 BD and 24 HC participants and compared those for the T1w/T2w ratio images. Both methods detected the BD corpus callosum abnormality. Further, the ratio images detected the corona radiata and the cerebellar abnormality in BD. These results suggest that T1w/T2w ratio image analysis could take a complementary role with the DTI method in elucidating myelin-related abnormalities in BD.
Collapse
Affiliation(s)
- Takuya Ishida
- Department of System Neurophysiology, and Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan; Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan.
| | - Tomohiro Donishi
- Department of System Neurophysiology, and Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Jun Iwatani
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shinichi Yamada
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Shun Takahashi
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Satoshi Ukai
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Kazuhiro Shinosaki
- Department of Neuropsychiatry, Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| | - Masaki Terada
- Wakayama-Minami Radiology Clinic, 870-2 Kimiidera, Wakayama 641-0012, Japan
| | - Yoshiki Kaneoke
- Department of System Neurophysiology, and Graduate School of Wakayama Medical University, 811-1 Kimiidera, Wakayama 641-8509, Japan
| |
Collapse
|
35
|
Viviani R, Pracht ED, Brenner D, Beschoner P, Stingl JC, Stöcker T. Multimodal MEMPRAGE, FLAIR, and [Formula: see text] Segmentation to Resolve Dura and Vessels from Cortical Gray Matter. Front Neurosci 2017; 11:258. [PMID: 28536501 PMCID: PMC5423271 DOI: 10.3389/fnins.2017.00258] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 04/21/2017] [Indexed: 02/03/2023] Open
Abstract
While widely in use in automated segmentation approaches for the detection of group differences or of changes associated with continuous predictors in gray matter volume, T1-weighted images are known to represent dura and cortical vessels with signal intensities similar to those of gray matter. By considering multiple signal sources at once, multimodal segmentation approaches may be able to resolve these different tissue classes and address this potential confound. We explored here the simultaneous use of FLAIR and apparent transverse relaxation rates (a signal related to T2* relaxation maps and having similar contrast) with T1-weighted images. Relative to T1-weighted images alone, multimodal segmentation had marked positive effects on 1. the separation of gray matter from dura, 2. the exclusion of vessels from the gray matter compartment, and 3. the contrast with extracerebral connective tissue. While obtainable together with the T1-weighted images without increasing scanning times, apparent transverse relaxation rates were less effective than added FLAIR images in providing the above mentioned advantages. FLAIR images also improved the detection of cortical matter in areas prone to susceptibility artifacts in standard MPRAGE T1-weighted images, while the addition of transverse relaxation maps exacerbated the effect of these artifacts on segmentation. Our results confirm that standard MPRAGE segmentation may overestimate gray matter volume by wrongly assigning vessels and dura to this compartment and show that multimodal approaches may greatly improve the specificity of cortical segmentation. Since multimodal segmentation is easily implemented, these benefits are immediately available to studies focusing on translational applications of structural imaging.
Collapse
Affiliation(s)
- Roberto Viviani
- Institute of Psychology, University of InnsbruckInnsbruck, Austria.,Psychiatry and Psychotherapy Clinic III, University of UlmUlm, Germany
| | | | - Daniel Brenner
- German Center for Neurodegenerative Diseases (DZNE)Bonn, Germany
| | - Petra Beschoner
- Clinic for Psychosomatic Medicine and Psychotherapy, University of UlmUlm, Germany
| | - Julia C Stingl
- Research Division, Federal Institute for Drugs and Medical DevicesBonn, Germany.,Center for Translational Medicine, University of Bonn Medical SchoolBonn, Germany
| | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE)Bonn, Germany.,Department of Physics and Astronomy, University of BonnBonn, Germany
| |
Collapse
|
36
|
Menant O, Andersson F, Zelena D, Chaillou E. The benefits of magnetic resonance imaging methods to extend the knowledge of the anatomical organisation of the periaqueductal gray in mammals. J Chem Neuroanat 2016; 77:110-120. [DOI: 10.1016/j.jchemneu.2016.06.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 10/21/2022]
|
37
|
Fazio P, Schain M, Varnäs K, Halldin C, Farde L, Varrone A. Mapping the distribution of serotonin transporter in the human brainstem with high-resolution PET: Validation using postmortem autoradiography data. Neuroimage 2016; 133:313-320. [DOI: 10.1016/j.neuroimage.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 03/08/2016] [Accepted: 03/09/2016] [Indexed: 11/28/2022] Open
|
38
|
Cherubini A, Caligiuri ME, Peran P, Sabatini U, Cosentino C, Amato F. Importance of Multimodal MRI in Characterizing Brain Tissue and Its Potential Application for Individual Age Prediction. IEEE J Biomed Health Inform 2016; 20:1232-9. [PMID: 27164612 DOI: 10.1109/jbhi.2016.2559938] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2(*) relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. The results of the linear model were used to predict apparent age in different regions of individual brain. This approach pointed to a number of novel applications that could potentially help highlighting areas particularly vulnerable to disease.
Collapse
|
39
|
Cherubini A, Caligiuri ME, Péran P, Sabatini U, Cosentino C, Amato F. Brain tissues atrophy is not always the best structural biomarker of physiological aging: A multimodal cross-sectional study. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:5436-40. [PMID: 26737521 DOI: 10.1109/embc.2015.7319621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
This study presents a voxel-based multiple regression analysis of different magnetic resonance image modalities, including anatomical T1-weighted, T2* relaxometry, and diffusion tensor imaging. Quantitative parameters sensitive to complementary brain tissue alterations, including morphometric atrophy, mineralization, microstructural damage, and anisotropy loss, were compared in a linear physiological aging model in 140 healthy subjects (range 20-74 years). The performance of different predictors and the identification of the best biomarker of age-induced structural variation were compared without a priori anatomical knowledge. The best quantitative predictors in several brain regions were iron deposition and microstructural damage, rather than macroscopic tissue atrophy. Age variations were best resolved with a combination of markers, suggesting that multiple predictors better capture age-induced tissue alterations. These findings highlight the importance of a combined evaluation of multimodal biomarkers for the study of aging and point to a number of novel applications for the method described.
Collapse
|
40
|
Badve C, Yu A, Rogers M, Ma D, Liu Y, Schluchter M, Sunshine J, Griswold M, Gulani V. Simultaneous T 1 and T 2 Brain Relaxometry in Asymptomatic Volunteers using Magnetic Resonance Fingerprinting. ACTA ACUST UNITED AC 2015; 1:136-144. [PMID: 26824078 PMCID: PMC4727840 DOI: 10.18383/j.tom.2015.00166] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Magnetic resonance fingerprinting (MRF) is an imaging tool that produces multiple magnetic resonance imaging parametric maps from a single scan. Herein we describe the normal range and progression of MRF-derived relaxometry values with age in healthy individuals. In total, 56 normal volunteers (24 men and 32 women) aged 11-71 years were scanned. Regions of interest were drawn on T1 and T2 maps in 38 areas, including lobar and deep white matter (WM), deep gray nuclei, thalami, and posterior fossa structures. Relaxometry differences were assessed using a forward stepwise selection of a baseline model that included either sex, age, or both, where variables were included if they contributed significantly (P < .05). In addition, differences in regional anatomy, including comparisons between hemispheres and between anatomical subcomponents, were assessed by paired t tests. MRF-derived T1 and T2 in frontal WM regions increased with age, whereas occipital and temporal regions remained relatively stable. Deep gray nuclei such as substantia nigra, were found to have age-related decreases in relaxometry. Differences in sex were observed in T1 and T2 of temporal regions, the cerebellum, and pons. Men were found to have more rapid age-related changes in frontal and parietal WM. Regional differences were identified between hemispheres, between the genu and splenium of the corpus callosum, and between posteromedial and anterolateral thalami. In conclusion, MRF quantification measures relaxometry trends in healthy individuals that are in agreement with the current understanding of neurobiology and has the ability to uncover additional patterns that have not yet been explored.
Collapse
Affiliation(s)
- Chaitra Badve
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Alice Yu
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Matthew Rogers
- School of Medicine, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Dan Ma
- Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Yiying Liu
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Schluchter
- Biostatistics and Bioinformatics Core, Case Western Reserve University, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Jeffrey Sunshine
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Mark Griswold
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Vikas Gulani
- Department of Radiology, Case Western Reserve University and University Hospitals of Cleveland, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA; Department of Biomedical Engineering, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| |
Collapse
|
41
|
Ziegler G, Penny WD, Ridgway GR, Ourselin S, Friston KJ. Estimating anatomical trajectories with Bayesian mixed-effects modeling. Neuroimage 2015; 121:51-68. [PMID: 26190405 PMCID: PMC4607727 DOI: 10.1016/j.neuroimage.2015.06.094] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 03/04/2015] [Accepted: 06/30/2015] [Indexed: 01/29/2023] Open
Abstract
We introduce a mass-univariate framework for the analysis of whole-brain structural trajectories using longitudinal Voxel-Based Morphometry data and Bayesian inference. Our approach to developmental and aging longitudinal studies characterizes heterogeneous structural growth/decline between and within groups. In particular, we propose a probabilistic generative model that parameterizes individual and ensemble average changes in brain structure using linear mixed-effects models of age and subject-specific covariates. Model inversion uses Expectation Maximization (EM), while voxelwise (empirical) priors on the size of individual differences are estimated from the data. Bayesian inference on individual and group trajectories is realized using Posterior Probability Maps (PPM). In addition to parameter inference, the framework affords comparisons of models with varying combinations of model order for fixed and random effects using model evidence. We validate the model in simulations and real MRI data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) project. We further demonstrate how subject specific characteristics contribute to individual differences in longitudinal volume changes in healthy subjects, Mild Cognitive Impairment (MCI), and Alzheimer's Disease (AD).
Collapse
Affiliation(s)
- G Ziegler
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; Dementia Research Centre, Institute of Neurology, University College London, UK.
| | - W D Penny
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK
| | - G R Ridgway
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK; FMRIB, Nuffield Dept. of Clinical Neurosciences, University of Oxford, UK
| | - S Ourselin
- Dementia Research Centre, Institute of Neurology, University College London, UK; Translational Imaging Group, Centre for Medical Image Computing, University College London, UK
| | - K J Friston
- Wellcome Trust Centre for Neuroimaging, Institute of Neurology, University College London, UK
| |
Collapse
|
42
|
Beissner F. Functional MRI of the Brainstem: Common Problems and their Solutions. Clin Neuroradiol 2015; 25 Suppl 2:251-7. [PMID: 25981409 DOI: 10.1007/s00062-015-0404-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 04/28/2015] [Indexed: 01/22/2023]
Abstract
Functional magnetic resonance imaging (fMRI) of the brainstem is a relatively young field that is rapidly evolving. While it is still difficult to obtain usable fMRI signals from this complicated brain region, the past few years have seen a number of important advances that bring us closer to routine application of this method in the clinical and scientific setting. This review gives an overview of the technical capabilities and limitations of brainstem fMRI. It explains the major brainstem-specific problems and gives advice on how to avoid or counteract them. In particular, I discuss how spatial resolution issues can be overcome by using appropriate sequences, coils, and spatial preprocessing, how the effects of physiological noise can be mitigated by noise modeling and spatial masking, and how the functional heterogeneity of brainstem nuclei needs to be taken into account, when planning a study. Solving these common problems is a prerequisite for any scientist or clinician interested in applying fMRI to measure brainstem activity.
Collapse
Affiliation(s)
- F Beissner
- Somatosensory and Autonomic Therapy Research, Institute for Diagnostic and Interventional Neuroradiology, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625, Hannover, Germany.
| |
Collapse
|
43
|
Anatomical changes at the level of the primary synapse in neuropathic pain: evidence from the spinal trigeminal nucleus. J Neurosci 2015; 35:2508-15. [PMID: 25673845 DOI: 10.1523/jneurosci.3756-14.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Accumulated evidence from experimental animal models suggests that neuronal loss within the dorsal horn is involved in the development and/or maintenance of peripheral neuropathic pain. However, to date, no study has specifically investigated whether such neuroanatomical changes also occur at this level in humans. Using brain imaging techniques, we sought to determine whether anatomical changes were present in the spinal trigeminal nucleus in subjects with chronic orofacial neuropathic pain. In 22 subjects with painful trigeminal neuropathy and 44 pain-free controls, voxel-based morphometry of T1-weighted anatomical images and diffusion tensor images were used to assess regional gray matter volume and microstructural changes within the brainstem. In addition, deterministic tractography was used to assess the integrity of ascending pain pathways. Orofacial neuropathic pain was associated with significant regional gray matter volume decreases, fractional anisotropy increases, and mean diffusivity decreases within the spinal trigeminal nucleus, specifically the subnucleus oralis. In addition, tractography revealed no significant differences in diffusivity properties in the root entry zone of the trigeminal nerve, the spinal trigeminal tract, or the ventral trigeminothalamic tracts in painful trigeminal neuropathy subjects compared with controls. These data reveal that chronic neuropathic pain in humans is associated with discrete alterations in the anatomy of the primary synapse. These neuroanatomical changes may be critical for the generation and/or maintenance of pathological pain.
Collapse
|
44
|
Tresch UA, Perreault EJ, Honeycutt CF. Startle evoked movement is delayed in older adults: implications for brainstem processing in the elderly. Physiol Rep 2014; 2:2/6/e12025. [PMID: 24907294 PMCID: PMC4208637 DOI: 10.14814/phy2.12025] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Little attention has been given to how age affects the neural processing of movement within the brainstem. Since the brainstem plays a critical role in motor control throughout the whole body, having a clear understanding of deficits in brainstem function could provide important insights into movement deficits in older adults. A unique property of the startle reflex is its ability to involuntarily elicit planned movements, a phenomenon referred to as startReact. The noninvasive startReact response has previously been used to probe both brainstem utilization and motor planning. Our objective was to evaluate deficits in startReact hand extension movements in older adults. We hypothesized that startReact hand extension will be intact but delayed. Electromyography was recorded from the sternocleidomastoid (SCM) muscle to detect startle and the extensor digitorum communis (EDC) to quantify movement onset in both young (24 ± 1) and older adults (70 ± 11). Subjects were exposed to a startling loud sound when prepared to extend their hand. Trials were split into those where a startle did (SCM+) and did not (SCM−) occur. We found that startReact was intact but delayed in older adults. SCM+ onset latencies were faster than SCM− trials in both the populations, however, SCM+ onset latencies were slower in older adults compared to young (Δ = 8 msec). We conclude that the observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our objective was to utilize the noninvasive startReact phenomenon, which is mediated through the brainstem, to gain insight into brainstem processing in older adults. We found that startReact hand extension was intact but delayed in older adults. The observed age‐related delay in the startReact response most likely arises from central processing delays within the brainstem. Our result that the startReact response is delayed in older individuals highlights that movements (e.g., posture, locomotion) and reflexes (e.g., long‐latency stretch reflexes) that are coordinated by the brainstem may have similar deficits in older adults.
Collapse
Affiliation(s)
| | - Eric J Perreault
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois Department of Biomedical Engineering, Northwestern University, Evanston, Illinois Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, Illinois
| | - Claire F Honeycutt
- Sensory Motor Performance Program, Rehabilitation Institute of Chicago, Chicago, Illinois
| |
Collapse
|
45
|
Brown TM. Neuropsychiatric scurvy. PSYCHOSOMATICS 2014; 56:12-20. [PMID: 25619670 DOI: 10.1016/j.psym.2014.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 03/29/2014] [Accepted: 03/31/2014] [Indexed: 11/18/2022]
Abstract
BACKGROUND Scurvy is a disease with well-known peripheral symptoms, such as bleeding and pain. METHODS The clinical and historical evidence for a distinct form of scurvy affecting the central nervous system, called neuropsychiatric scurvy, is reviewed. Pathophysiologic factors are described, as well as its diagnosis and management.
Collapse
Affiliation(s)
- Thomas M Brown
- Audie L. Murphy Memorial Veterans Administration Center, San Antonio, TX.
| |
Collapse
|
46
|
Accolla EA, Dukart J, Helms G, Weiskopf N, Kherif F, Lutti A, Chowdhury R, Hetzer S, Haynes JD, Kühn AA, Draganski B. Brain tissue properties differentiate between motor and limbic basal ganglia circuits. Hum Brain Mapp 2014; 35:5083-92. [PMID: 24777915 PMCID: PMC4282398 DOI: 10.1002/hbm.22533] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 03/10/2014] [Accepted: 04/08/2014] [Indexed: 12/24/2022] Open
Abstract
Despite advances in understanding basic organizational principles of the human basal ganglia, accurate in vivo assessment of their anatomical properties is essential to improve early diagnosis in disorders with corticosubcortical pathology and optimize target planning in deep brain stimulation. Main goal of this study was the detailed topological characterization of limbic, associative, and motor subdivisions of the subthalamic nucleus (STN) in relation to corresponding corticosubcortical circuits. To this aim, we used magnetic resonance imaging and investigated independently anatomical connectivity via white matter tracts next to brain tissue properties. On the basis of probabilistic diffusion tractography we identified STN subregions with predominantly motor, associative, and limbic connectivity. We then computed for each of the nonoverlapping STN subregions the covariance between local brain tissue properties and the rest of the brain using high‐resolution maps of magnetization transfer (MT) saturation and longitudinal (R1) and transverse relaxation rate (R2*). The demonstrated spatial distribution pattern of covariance between brain tissue properties linked to myelin (R1 and MT) and iron (R2*) content clearly segregates between motor and limbic basal ganglia circuits. We interpret the demonstrated covariance pattern as evidence for shared tissue properties within a functional circuit, which is closely linked to its function. Our findings open new possibilities for investigation of changes in the established covariance pattern aiming at accurate diagnosis of basal ganglia disorders and prediction of treatment outcome. Hum Brain Mapp 35:5083–5092, 2014. © 2014 The Authors. Human Brain Mapping Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ettore A Accolla
- Department of Neurology, Charité University Medicine Berlin, Berlin, Germany; LREN, Département des Neurosciences Cliniques, CHUV, Université de Lausanne, Lausanne, Switzerland; Berlin Center for Advanced Neuroimaging, Charité Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Beissner F, Baudrexel S. Investigating the human brainstem with structural and functional MRI. Front Hum Neurosci 2014; 8:116. [PMID: 24616692 PMCID: PMC3937611 DOI: 10.3389/fnhum.2014.00116] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 02/17/2014] [Indexed: 11/29/2022] Open
Affiliation(s)
- Florian Beissner
- Department of Neuroradiology, Somatosensory and Autonomic Therapy Research, Hannover Medical School , Hannover , Germany ; Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital , Charlestown, MA , USA
| | - Simon Baudrexel
- Department of Neurology, Goethe University Frankfurt, University Hospital , Frankfurt am Main , Germany
| |
Collapse
|