1
|
Lee MM, Stoodley CJ. Neural bases of reading fluency: A systematic review and meta-analysis. Neuropsychologia 2024; 202:108947. [PMID: 38964441 DOI: 10.1016/j.neuropsychologia.2024.108947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 06/26/2024] [Accepted: 06/29/2024] [Indexed: 07/06/2024]
Abstract
Reading fluency, the ability to read quickly and accurately, is a critical marker of successful reading and is notoriously difficult to improve in reading disabled populations. Despite its importance to functional literacy, fluency is a relatively under-studied aspect of reading, and the neural correlates of reading fluency are not well understood. Here, we review the literature of the neural correlates of reading fluency as well as rapid automatized naming (RAN), a task that is robustly related to reading fluency. In a qualitative review of the neuroimaging literature, we evaluated structural and functional MRI studies of reading fluency in readers from a range of skill levels. This was followed by a quantitative activation likelihood estimate (ALE) meta-analysis of fMRI studies of reading speed and RAN measures. We anticipated that reading speed, relative to untimed reading and reading-related tasks, would harness ventral reading pathways that are thought to enable the fast, visual recognition of words. The qualitative review showed that speeded reading taps the entire canonical reading network. The meta-analysis indicated a stronger role of the ventral reading pathway in rapid reading and rapid naming. Both reviews identified regions outside the canonical reading network that contribute to reading fluency, such as the bilateral insula and superior parietal lobule. We suggest that fluent reading engages both domain-specific reading pathways as well as domain-general regions that support overall task performance and discuss future avenues of research to expand our understanding of the neural bases of fluent reading.
Collapse
Affiliation(s)
- Marissa M Lee
- Department of Neuroscience, American University, USA; Center for Applied Brain and Cognitive Sciences, Tufts University, USA
| | - Catherine J Stoodley
- Department of Neuroscience, American University, USA; Developing Brain Institute, Children's National Hospital, USA; Departments of Neurology and Pediatrics, The George Washington University School of Medicine and Health Sciences, USA.
| |
Collapse
|
2
|
Wei Y, Wang J, Wang H, Paz-Alonso PM. Functional interactions underlying visuospatial orthographic processes in Chinese reading. Cereb Cortex 2024; 34:bhae359. [PMID: 39294003 DOI: 10.1093/cercor/bhae359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
As a logographic writing system, Chinese reading involves the processing of visuospatial orthographic (ORT) properties. However, this aspect has received relatively less attention in neuroimaging research, which has tended to emphasize phonological (PHO) and semantic (SEM) aspects in processing Chinese characters. Here, we compared the functional correlates supporting all these three processes in a functional MRI single-character reading study, in which 35 native Chinese adults were asked to make ORT, PHO, and SEM judgments in separate task-specific activation blocks. Our findings revealed increased involvement of the right hemisphere in processing Chinese visuospatial orthography, particularly evident in the right ventral occipito-temporal cortex (vOTC). Additionally, time course analysis revealed that the left superior parietal gyrus (SPG) was initially involved in SEM processing but contributed to the visuospatial processing of words in a later time window. Finally, ORT processing demonstrated stronger recruitment of left vOTC-SPG-middle frontal gyrus (MFG) functional connectivity compared to SEM processing. This functional coupling correlated with reduced regional engagement of the left vOTC and MFG, highlighting that visuospatial ORT processes in reading Chinese rely on functional interactions among key regions rather than local regional processes. In conclusion, these findings underscore visuospatial ORT processes as a distinctive feature of reading logographic characters.
Collapse
Affiliation(s)
- Yanjun Wei
- Key Laboratory of the Cognitive Science of Language, Beijing Language and Culture University, Ministry of Education, Xueyuan Road 15, Beijing 10083, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Jianqin Wang
- Key Laboratory of the Cognitive Science of Language, Beijing Language and Culture University, Ministry of Education, Xueyuan Road 15, Beijing 10083, China
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Huiping Wang
- Center for the Cognitive Science of Language, Beijing Language and Culture University, Xueyuan Road 15, Beijing 10083, China
| | - Pedro M Paz-Alonso
- BCBL, Basque Center on Cognition, Brain and Language, Mikeletegi Pasalekua 69, Donostia 20009, Spain
- Ikerbasque, Basque Foundation for Science, Bilbo 48013, Spain
| |
Collapse
|
3
|
Hauw F, Béranger B, Cohen L. Subtitled speech: the neural mechanisms of ticker-tape synaesthesia. Brain 2024; 147:2530-2541. [PMID: 38620012 PMCID: PMC11224615 DOI: 10.1093/brain/awae114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 02/21/2024] [Accepted: 03/21/2024] [Indexed: 04/17/2024] Open
Abstract
The acquisition of reading modifies areas of the brain associated with vision and with language, in addition to their connections. These changes enable reciprocal translation between orthography and the sounds and meaning of words. Individual variability in the pre-existing cerebral substrate contributes to the range of eventual reading abilities, extending to atypical developmental patterns, including dyslexia and reading-related synaesthesias. The present study is devoted to the little-studied but highly informative ticker-tape synaesthesia, in which speech perception triggers the vivid and irrepressible perception of words in their written form in the mind's eye. We scanned a group of 17 synaesthetes and 17 matched controls with functional MRI, while they listened to spoken sentences, words, numbers or pseudowords (Experiment 1), viewed images and written words (Experiment 2) or were at rest (Experiment 3). First, we found direct correlates of the ticker-tape synaesthesia phenomenon: during speech perception, as ticker-tape synaesthesia was active, synaesthetes showed over-activation of left perisylvian regions supporting phonology and of the occipitotemporal visual word form area, where orthography is represented. Second, we provided support to the hypothesis that ticker-tape synaesthesia results from atypical relationships between spoken and written language processing: the ticker-tape synaesthesia-related regions overlap closely with cortices activated during reading, and the overlap of speech-related and reading-related areas is larger in synaesthetes than in controls. Furthermore, the regions over-activated in ticker-tape synaesthesia overlap with regions under-activated in dyslexia. Third, during the resting state (i.e. in the absence of current ticker-tape synaesthesia), synaesthetes showed increased functional connectivity between left prefrontal and bilateral occipital regions. This pattern might reflect a lowered threshold for conscious access to visual mental contents and might imply a non-specific predisposition to all synaesthesias with a visual content. These data provide a rich and coherent account of ticker-tape synaesthesia as a non-detrimental developmental condition created by the interaction of reading acquisition with an atypical cerebral substrate.
Collapse
Affiliation(s)
- Fabien Hauw
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| | - Benoît Béranger
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
| | - Laurent Cohen
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, Institut du Cerveau, ICM, Paris 75013, France
- AP-HP, Hôpital de La Pitié Salpêtrière, Fédération de Neurologie, Paris 75013, France
| |
Collapse
|
4
|
Sinha N, Nikki Arrington C, Malins JG, Pugh KR, Frijters JC, Morris R. The reading-attention relationship: Variations in working memory network activity during single word decoding in children with and without dyslexia. Neuropsychologia 2024; 195:108821. [PMID: 38340962 PMCID: PMC11284775 DOI: 10.1016/j.neuropsychologia.2024.108821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 01/18/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
This study utilized a neuroimaging task to assess working memory (WM) network recruitment during single word reading. Associations between WM and reading comprehension skills are well documented. Several converging models suggest WM may also contribute to foundational reading skills, but few studies have assessed this contribution directly. Two groups of children (77 developmental dyslexia (DD), 22 controls) completed a functional magnetic resonance imaging (fMRI) task to identify activation of a priori defined regions of the WM network. fMRI trials consisted of familiar word, pseudoword, and false font stimuli within a 1-back oddball task to assess how activation in the WM network differs in response to stimuli that can respectively be processed using word recognition, phonological decoding, or non-word strategies. Results showed children with DD recruited WM regions bilaterally in response to all stimulus types, whereas control children recruited left-lateralized WM regions during the pseudoword condition only. Group-level comparisons revealed activation differences in the defined WM network regions for false font and familiar word, but not pseudoword conditions. This effect was driven by increased activity in participants with DD in right hemisphere frontal, parietal, and motor regions despite poorer task performance. Findings suggest the WM network may contribute to inefficient decoding and word recognition strategies in children with DD.
Collapse
Affiliation(s)
- Niki Sinha
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada.
| | - C Nikki Arrington
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; GSU/GT Center for Advanced Brain Imaging, Georgia State University, Atlanta, GA, 30318, United States; Center for Translational Research in Neuroimaging and Data Science, Georgia State University, Atlanta, GA, 30303, United States
| | - Jeffrey G Malins
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States; Haskins Laboratories, New Haven, CT, 06511, United States
| | - Kenneth R Pugh
- Haskins Laboratories, New Haven, CT, 06511, United States; Department of Linguistics, Yale University, New Haven, CT, 06520, United States; Department of Psychological Sciences, University of Connecticut, Storrs, CT, 06269, United States
| | - Jan C Frijters
- Department of Child and Youth Studies, Brock University, St. Catharines, ON, L2S 3A1, Canada
| | - Robin Morris
- Department of Psychology, Georgia State University, Atlanta, GA, 30303, United States
| |
Collapse
|
5
|
Yablonski M, Karipidis II, Kubota E, Yeatman JD. The transition from vision to language: Distinct patterns of functional connectivity for subregions of the visual word form area. Hum Brain Mapp 2024; 45:e26655. [PMID: 38488471 PMCID: PMC10941549 DOI: 10.1002/hbm.26655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 12/22/2023] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Reading entails transforming visual symbols to sound and meaning. This process depends on specialized circuitry in the visual cortex, the visual word form area (VWFA). Recent findings suggest that this text-selective cortex comprises at least two distinct subregions: the more posterior VWFA-1 is sensitive to visual features, while the more anterior VWFA-2 processes higher level language information. Here, we explore whether these two subregions also exhibit different patterns of functional connectivity. To this end, we capitalize on two complementary datasets: Using the Natural Scenes Dataset (NSD), we identify text-selective responses in high-quality 7T adult data (N = 8), and investigate functional connectivity patterns of VWFA-1 and VWFA-2 at the individual level. We then turn to the Healthy Brain Network (HBN) database to assess whether these patterns replicate in a large developmental sample (N = 224; age 6-20 years), and whether they relate to reading development. In both datasets, we find that VWFA-1 is primarily correlated with bilateral visual regions. In contrast, VWFA-2 is more strongly correlated with language regions in the frontal and lateral parietal lobes, particularly the bilateral inferior frontal gyrus. Critically, these patterns do not generalize to adjacent face-selective regions, suggesting a specific relationship between VWFA-2 and the frontal language network. No correlations were observed between functional connectivity and reading ability. Together, our findings support the distinction between subregions of the VWFA, and suggest that functional connectivity patterns in the ventral temporal cortex are consistent over a wide range of reading skills.
Collapse
Affiliation(s)
- Maya Yablonski
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
| | - Iliana I. Karipidis
- Department of Psychiatry and Behavioral SciencesStanford School of MedicineStanfordCaliforniaUSA
- Department of Child and Adolescent Psychiatry and PsychotherapyUniversity Hospital of Psychiatry Zurich, University of ZurichZürichSwitzerland
- Neuroscience Center ZurichUniversity of Zurich and ETHZurichSwitzerland
| | - Emily Kubota
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| | - Jason D. Yeatman
- Division of Developmental‐Behavioral Pediatrics, Department of PediatricsStanford University School of MedicineStanfordCaliforniaUSA
- Stanford University Graduate School of EducationStanfordCaliforniaUSA
- Psychology DepartmentStanford UniversityStanfordCaliforniaUSA
| |
Collapse
|
6
|
How Characters Are Learned Leaves Its Mark on the Neural Substrates of Chinese Reading. eNeuro 2022; 9:ENEURO.0111-22.2022. [PMID: 36635247 PMCID: PMC9787807 DOI: 10.1523/eneuro.0111-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 12/02/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Understanding how the brain functions differently as one learns to read may shed light on the controversial nature of the reading ability of human being. Logographic writing system such as Chinese has been found to rely on specialized neural substrates beyond the reading network of alphabetic languages. The ability to read in Chinese has also been proposed to rely on writing skills. However, it was unclear whether the learning-related alteration of neural responses was language specific or resulted from the more reliance on writing practice during acquisition. This study investigated whether the emergence of typical logographic-specific regions relied on learning by writing. We taught proficient alphabetic language readers Chinese characters and used pre-test and post-test to identify changes in two critical stages of reading, namely, orthographic processing and orthographic-to-phonological mapping. Two typical left hemispheric areas for logographic reading showed increased responses to characters in the brains of proficient alphabetic readers after learning, regardless of whether the learning strategy involved writing practice. Moreover, learning strategy modulated the response magnitude or multivoxel patterns in the left superior parietal lobule, left middle frontal gyrus, and right fusiform gyrus, some of which were task dependent. The findings corroborated a limited role of writing in the emergence of logographic-specific reading network and suggested the heterogeneous nature of different brain regions in this network.
Collapse
|
7
|
Guo W, Geng S, Cao M, Feng J. The Brain Connectome for Chinese Reading. Neurosci Bull 2022; 38:1097-1113. [PMID: 35575936 PMCID: PMC9468198 DOI: 10.1007/s12264-022-00864-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/20/2022] [Indexed: 10/18/2022] Open
Abstract
Chinese, as a logographic language, fundamentally differs from alphabetic languages like English. Previous neuroimaging studies have mainly focused on alphabetic languages, while the exploration of Chinese reading is still an emerging and fast-growing research field. Recently, a growing number of neuroimaging studies have explored the neural circuit of Chinese reading. Here, we summarize previous research on Chinese reading from a connectomic perspective. Converging evidence indicates that the left middle frontal gyrus is a specialized hub region that connects the ventral with dorsal pathways for Chinese reading. Notably, the orthography-to-phonology and orthography-to-semantics mapping, mainly processed in the ventral pathway, are more specific during Chinese reading. Besides, in addition to the left-lateralized language-related regions, reading pathways in the right hemisphere also play an important role in Chinese reading. Throughout, we comprehensively review prior findings and emphasize several challenging issues to be explored in future work.
Collapse
Affiliation(s)
- Wanwan Guo
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Shujie Geng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China
| | - Miao Cao
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China.
| | - Jianfeng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 200433, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Ministry of Education), Fudan University, Shanghai, 200433, China.
| |
Collapse
|
8
|
Siok WT, Tan LH. Is phonological deficit a necessary or sufficient condition for Chinese reading disability? BRAIN AND LANGUAGE 2022; 226:105069. [PMID: 35021145 DOI: 10.1016/j.bandl.2021.105069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 06/14/2023]
Abstract
While phonological skills have been found to be correlated with reading across different writing systems, recent findings have shown that developmental dyslexia in Chinese individuals has multiple deficits, and no single factor has ever been identified as crucial for learning this writing system. To examine whether a deficit in the phonological or another cognitive domain is a necessary or sufficient condition for Chinese reading disability, this study examined the cognitive profiles of 521 good readers and 502 dyslexic readers in Chinese primary schools using a battery of behavioral measures covering phonological, visual, orthographic, visual-motor coordination and working memory skills. The results showed that among all cognitive measures, phonological skills correlated more strongly with character reading performance but that poor phonological skills did not necessarily or sufficiently lead to poor reading performance in Chinese.
Collapse
Affiliation(s)
- Wai Ting Siok
- Department of Linguistics, The University of Hong Kong, Hong Kong Special Administrative Region.
| | - Li Hai Tan
- Guangdong-Hong Kong-Macau Institute of CNS Regeneration and Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University (Shenzhen), China; Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
9
|
Sex differences in the intrinsic reading neural networks of Chinese children. Dev Cogn Neurosci 2022; 54:101098. [PMID: 35325839 PMCID: PMC8943427 DOI: 10.1016/j.dcn.2022.101098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 02/05/2022] [Accepted: 03/13/2022] [Indexed: 11/24/2022] Open
Abstract
Sex differences in reading performance have been considered a relatively stable phenomenon. However, there is no general agreement about their neural basis, which might be due to that sex differences are largely influenced by age. This paper focuses on the sex differences in the reading-related neural network of Chinese children and its interaction with age. We also attempt to predict reading abilities based on neural network. Fifty-three boys and 56 girls (8.2–14.6 years of age) were recruited. We collected their resting-state fMRI and behavioural data. Restricted sex differences were found in the resting-state reading neural network compared to extensive age by sex interaction effect. Specifically, the interactions between sex and age indicated that with increasing age, girls showed greater connectivity strength between visual orthographic areas and other brain areas within the reading network, while boys showed an opposite trend. After controlling age, the prediction models of reading performance for the girls mainly included interhemispheric connections, while the intrahemispheric connections (particularly the phonological route) mainly contributed to predicting the reading ability for boys. Taken together, these findings suggest that sex differences in reading neural networks are modulated by age. Partialling out age, boys and girls also show the stable sex differences in relationship between reading neural circuit and reading behaviour. Sex differences in reading neural networks are modulated by age. Girls’ RSFCs within reading neural networks increase with age, contrary to boys. Intra- and interhemispheric RSFCs predict the reading ability of boys and girls, respectively.
Collapse
|
10
|
Tang ST, Liu FF, Li ZC, Deng KG, Song RR, Zuo PX. Orthographic Processing of Developmental Dyslexic Children in China: Evidence from an Event-Related Potential Study. Curr Med Sci 2021; 41:1239-1246. [PMID: 34874487 DOI: 10.1007/s11596-021-2468-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 10/01/2021] [Indexed: 11/25/2022]
Abstract
OBJECTIVE This study aimed to explore the orthographic processing of simplified Chinese characters in developmental dyslexic children in Kashgar, Xinjiang, China, and provide a theoretical basis for intervention strategies for developmental dyslexia in Chinese. METHODS Using event-related potential (ERP) measures, 18 developmental dyslexic children and 23 typically developing children performed a character decision task with three types of stimuli: real characters (RCs), pseudocharacters (PCs), and noncharacters (NCs). RESULTS Behavioral results showed that the control children displayed a faster and higher accurate performance than the dyslexic children across PCs and NCs. ERP data revealed that the RCs and PCs elicited a stronger P200 than the NCs. Compared with the RCs and NCs, children in the control group showed more N400 negatives for PCs. It is worth mentioning that dyslexic children did not show any difference on N400, which reflected the insufficient orthographic processing of dyslexic children in China. CONCLUSION These results show that Chinese dyslexic children had orthographic processing defects.
Collapse
Affiliation(s)
- Shu-Ting Tang
- Medical College, Shihezi University, Shihezi, 832002, China
| | - Fang-Fang Liu
- Medical College, Shihezi University, Shihezi, 832002, China
| | - Zeng-Chun Li
- Medical College, Shihezi University, Shihezi, 832002, China
| | - Ke-Gao Deng
- Medical College, Shihezi University, Shihezi, 832002, China
| | - Ran-Ran Song
- Medical College, Shihezi University, Shihezi, 832002, China.
- School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Peng-Xiang Zuo
- Medical College, Shihezi University, Shihezi, 832002, China.
| |
Collapse
|
11
|
Mao J, Liu L, Perkins K, Cao F. Poor reading is characterized by a more connected network with wrong hubs. BRAIN AND LANGUAGE 2021; 220:104983. [PMID: 34174464 DOI: 10.1016/j.bandl.2021.104983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 06/01/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Using graph theory, we examined topological organization of the language network in Chinese children with poor reading during an auditory rhyming task and a visual spelling task, compared to reading-matched controls and age-matched controls. First, poor readers (PR) showed reduced clustering coefficient in the left inferior frontal gyrus (IFG) and higher nodal efficiency in the bilateral superior temporal gyri (STG) during the visual task, indicating a less functionally specialized cluster around the left IFG and stronger functional links between bilateral STGs and other regions. Furthermore, PR adopted additional right-hemispheric hubs in both tasks, which may explain increased global efficiency across both tasks and lower normalized characteristic shortest path length in the visual task for the PR. These results underscore deficits in the left IFG during visual word processing and conform previous findings about compensation in the right hemisphere in children with poor reading.
Collapse
Affiliation(s)
- Jiaqi Mao
- Department of Psychology, Sun Yat-Sen University, China
| | - Lanfang Liu
- Department of Psychology, Sun Yat-Sen University, China
| | - Kyle Perkins
- Department of Teaching and Learning, College of Arts, Sciences and Education, Florida International University, United States
| | - Fan Cao
- Department of Psychology, Sun Yat-Sen University, China.
| |
Collapse
|
12
|
Failure of resting-state frontal-occipital connectivity in linking visual perception with reading fluency in Chinese children with developmental dyslexia. Neuroimage 2021; 233:117911. [PMID: 33711483 DOI: 10.1016/j.neuroimage.2021.117911] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 02/22/2021] [Accepted: 02/23/2021] [Indexed: 11/23/2022] Open
Abstract
It is widely accepted that impairment in visual perception impedes children's reading development, and further studies have demonstrated significant enhancement in reading fluency after visual perceptual training. However, the mechanism of the neural linkage between visual perception and reading is unclear. The purpose of this study was to examine the intrinsic functional relationship between visual perception (indexed by the texture discrimination task,TDT) and reading ability (character reading and reading fluency) in Chinese children with developmental dyslexia (DD) and those with typical development (TD). The resting-state functional connectivity (RSFC) between the primary visual cortex (V1, BA17) and the entire brain was analyzed. In addition, how RSFC maps are associated with TDT performance and reading ability in the DD and TD groups was examined. The results demonstrated that the strength of the RSFC between V1 and the left middle frontal gyrus (LMFG, BA9/BA46) was significantly correlated with both the threshold (SOA) of the TDT and reading fluency in TD children but not in DD children. Moreover, LMFG-V1 resting-state connectivity played a mediating role in the association of visual texture discrimination and reading fluency, but not in character reading, in TD children. In contrast, this mediation was absent in DD children, albeit their strengths of RSFC between V1 and the left middle frontal gyrus (LMFG) were comparable to those for the TD group. These findings indicate that typically developing children use the linkage of the RSFC between the V1 and LMFG for visual perception skills, which in turn promote fluent reading; in contrast, children with dyslexia, who had higher TDT thresholds than TD children, could not take advantage of their frontal-occipital connectivity to improve reading fluency abilities. These findings suggest that visual perception plays an important role in reading skills and that children with developmental dyslexia lack the ability to use their frontal-occipital connectivity to link visual perception with reading fluency.
Collapse
|
13
|
Yan X, Perkins K, Cao F. A hierarchical deficit model of reading disability: Evidence from dynamic causal modelling analysis. Neuropsychologia 2021; 154:107777. [PMID: 33549584 DOI: 10.1016/j.neuropsychologia.2021.107777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 12/16/2022]
Abstract
Deficits have been documented in visuo-orthographic processing as well as phonological retrieval/manipulation during visual word reading in individuals with reading disability (RD); however, the relationship between these deficits remains unclear. Previously, we found that during word reading, visuo-orthographic deficit appears to be a neural signature of RD, but deficits in phonological retrieval/manipulation appears to be a consequence of being RD (Cao et al., 2020). Therefore, in the current study, we directly tested the hypothesis that during visual word reading, deficit in phonological retrieval/manipulation may result from weakened input from visuo-orthographic regions, and that this relationship tends to be universal across languages. We conducted a dynamic causal modelling analysis of fMRI data from Chinese-English bilingual children (9-11 years, N = 78) with or without RD during a visual word rhyming judgment task. We found a weaker connection from the left inferior temporal gyrus (ITG) to the left dorsal inferior frontal gyrus (dIFG) in children with RD and reading controls than the connection found in age controls for both Chinese and English. This finding suggests that the phonological deficit at the dIFG may result from weak input from the visuo-orthographic region and this connection appears to be responsive to reading level rather than RD, because the reading-control children were similar to children with RD. We also found that the left ITG was selectively connected with language-specific regions (i.e., the left inferior parietal lobe (IPL) for Chinese and the left ventral inferior frontal gyrus (vIFG) for English) depending on the language being processed; however, this language selectivity was reduced in children with RD, suggesting that decreased language specialization is associated with RD. Using a double control design, our study suggests that during reading, the visuo-orthographic deficit of RD constrains the development of the connection from orthography to phonology and to other language-specific processing due to distorted quantity and quality of reading.
Collapse
Affiliation(s)
- Xiaohui Yan
- Department of Psychology, Sun Yat-Sen University, China
| | | | - Fan Cao
- Department of Psychology, Sun Yat-Sen University, China.
| |
Collapse
|
14
|
Zhang G, Yuan B, Hua H, Lou Y, Lin N, Li X. Individual differences in first-pass fixation duration in reading are related to resting-state functional connectivity. BRAIN AND LANGUAGE 2021; 213:104893. [PMID: 33360162 DOI: 10.1016/j.bandl.2020.104893] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 06/12/2023]
Abstract
Although there are considerable individual differences in eye movements during text reading, their neural correlates remain unclear. In this study, we investigated the relationship between the first-pass fixation duration (FPFD) in natural reading and resting-state functional connectivity (RSFC) in the brain. We defined the brain regions associated with early visual processing, word identification, attention shifts, and oculomotor control as seed regions. The results showed that individual FPFDs were positively correlated with individual RSFCs between the early visual network, visual word form area, and eye movement control/dorsal attention network. Our findings provide new evidence on the neural correlates of eye movements in text reading and indicate that individual differences in fixation time may shape the RSFC differences in the brain through the time-on-task effect and the mechanism of Hebbian learning.
Collapse
Affiliation(s)
- Guangyao Zhang
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Binke Yuan
- Center for Language and Brain, Shenzhen Institute of Neuroscience, Shenzhen, China
| | - Huimin Hua
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Ya Lou
- Beijing Institute of Education, Beijing, China
| | - Nan Lin
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| | - Xingshan Li
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
15
|
Zhang L, Hu J, Liu X, Nichols ES, Lu C, Liu L. Disrupted Subcortical-Cortical Connections in a Phonological but Not Semantic Task in Chinese Children With Dyslexia. Front Hum Neurosci 2021; 14:611008. [PMID: 33536890 PMCID: PMC7848143 DOI: 10.3389/fnhum.2020.611008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/21/2020] [Indexed: 11/26/2022] Open
Abstract
Reading disability has been considered as a disconnection syndrome. Recently, an increasing number of studies have emphasized the role of subcortical regions in reading. However, the majority of research on reading disability has focused on the connections amongst brain regions within the classic cortical reading network. Here, we used graph theoretical analysis to investigate whether subcortical regions serve as hubs (regions highly connected with other brain regions) during reading both in Chinese children with reading disability (N = 15, age ranging from 11.03 to 13.08 years) and in age-matched typically developing children (N = 16, age ranging from 11.17 to 12.75 years) using a visual rhyming judgment task and a visual meaning judgment task. We found that the bilateral thalami were the unique hubs for typically developing children across both tasks. Additionally, subcortical regions (right putamen, left pallidum) were also unique hubs for typically developing children but only in the rhyming task. Among these subcortical hub regions, the left pallidum showed reduced connectivity with inferior frontal regions in the rhyming judgment but not semantic task in reading disabled compared with typically developing children. These results suggest that subcortical-cortical disconnection, which may be particularly relevant to the phonological and phonology-related learning process, may be associated with Chinese reading disability.
Collapse
Affiliation(s)
- Lihuan Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Jiali Hu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Xin Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Emily S Nichols
- Faculty of Education, Western University, London, ON, Canada.,Brain and Mind Institute, Western University, London, ON, Canada
| | - Chunming Lu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Li Liu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| |
Collapse
|
16
|
Crosstalk between Depression and Dementia with Resting-State fMRI Studies and Its Relationship with Cognitive Functioning. Biomedicines 2021; 9:biomedicines9010082. [PMID: 33467174 PMCID: PMC7830949 DOI: 10.3390/biomedicines9010082] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/11/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of dementia, and depression is a risk factor for developing AD. Epidemiological studies provide a clinical correlation between late-life depression (LLD) and AD. Depression patients generally remit with no residual symptoms, but LLD patients demonstrate residual cognitive impairment. Due to the lack of effective treatments, understanding how risk factors affect the course of AD is essential to manage AD. Advances in neuroimaging, including resting-state functional MRI (fMRI), have been used to address neural systems that contribute to clinical symptoms and functional changes across various psychiatric disorders. Resting-state fMRI studies have contributed to understanding each of the two diseases, but the link between LLD and AD has not been fully elucidated. This review focuses on three crucial and well-established networks in AD and LLD and discusses the impacts on cognitive decline, clinical symptoms, and prognosis. Three networks are the (1) default mode network, (2) executive control network, and (3) salience network. The multiple properties emphasized here, relevant for the hypothesis of the linkage between LLD and AD, will be further developed by ongoing future studies.
Collapse
|
17
|
Mohammadi B, Münte TF, Cole DM, Sami A, Boltzmann M, Rüsseler J. Changed functional connectivity at rest in functional illiterates after extensive literacy training. Neurol Res Pract 2020; 2:12. [PMID: 33324918 PMCID: PMC7650047 DOI: 10.1186/s42466-020-00058-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 04/22/2020] [Indexed: 12/25/2022] Open
Abstract
Background About 6.2 million adults in Germany cannot read and write properly despite attending school for several years. They are considered to be functional illiterates (FI). Since the ability to read and write is crucial for being employed and socially accepted, we developed a special literacy training to overcome these deficits. Methods In this study, we investigate training-related changes in intrinsic functional connectivity (iFC) at rest in a group of 20 FI and 20 adult normal readers using resting state functional magnetic resonance imaging (rsfMRI). We used independent component analysis (ICA) to define different networks. Results Before training, the between group analysis showed increased iFC in FI in a left-fronto-parietal network (LFPN; anterior insula, medial frontal cortex, lateral and frontal parietal regions) and in the Basal Ganglia network (BGN: thalamus, caudate, putamen, pallidum, amygdala, supplementary motor cortex and cingulate gyrus). Furthermore, the Visual Network-1 (VN1; temporal occipital fusiform gyrus, lateral occipital cortex, occipital pole, lingual gyrus, thalamus) showed decreased iFC in FI. After training the FI group showed reversal of the “hyperconnectivity” in middle frontal gyrus and in the frontal orbital cortex and between supramarginal gyrus and the BGN. Furthermore, functional connectivity increased in FI VN1 (lateral occipital cortex, insular cortex). These changes in connectivity correlated with gains in reading speed and spelling accuracy. Conclusions These findings show that poor reading and writing abilities are associated with abnormalities in iFC in several brain areas subserving cognitive processes important for reading. Intensive literacy training induces changes in the functional connectivity between and within neural networks important for literacy skills.
Collapse
Affiliation(s)
- Bahram Mohammadi
- CNS-LAB, International Neuroscience Institute (INI), Hannover, Germany.,Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Ratzeburger Allee 160, 23562 Lübeck, Germany.,Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - David M Cole
- Translational Neuromodeling Unit, Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Amir Sami
- CNS-LAB, International Neuroscience Institute (INI), Hannover, Germany
| | - Melanie Boltzmann
- Department of Psychology, University of Bamberg, Bamberg, Germany.,Bamberg Graduate School of Cognitive and Affective Sciences (BAGrACS), Bamberg, Germany.,Neurologische Klinik Hessisch Oldendorf, Hessisch Oldendorf, Germany
| | - Jascha Rüsseler
- Department of Psychology, University of Bamberg, Bamberg, Germany.,Bamberg Graduate School of Cognitive and Affective Sciences (BAGrACS), Bamberg, Germany
| |
Collapse
|
18
|
Functional connectivity alterations associated with literacy difficulties in early readers. Brain Imaging Behav 2020; 15:2109-2120. [PMID: 33048291 DOI: 10.1007/s11682-020-00406-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
The link between literacy difficulties and brain alterations has been described in depth. Resting-state fMRI (rs-fMRI) has been successfully applied to the study of intrinsic functional connectivity (iFc) both in dyslexia and typically developing children. Most related studies have focused on the stages from late childhood into adulthood using a seed to voxel approach. Our study analyzes iFc in an early childhood sample using the multivariate pattern analysis. This facilitates a hypothesis-free analysis and the possible identification of abnormal functional connectivity patterns at a whole brain level. Thirty-four children with literacy difficulties (LD) (7.1 ± 0.69 yr.) and 30 typically developing children (TD) (7.43 ± 0.52 yr.) were selected. Functional brain connectivity was measured using an rs-fMRI acquisition. The LD group showed a higher iFc between the right middle frontal gyrus (rMFG) and the default mode network (DMN) regions, and a lower iFc between the rMFG and both the bilateral insular cortex and the supramarginal gyrus. These results are interpreted as a DMN on/off routine malfunction in the LD group, which suggests an alteration of the task control network regulating DMN activity. In the LD group, the posterior cingulate cortex also showed a lower iFc with both the middle temporal poles and the fusiform gyrus. This could be interpreted as a failure in the integration of information between brain regions that facilitate reading. Our results show that children with literacy difficulties have an altered functional connectivity in their reading and attentional networks at the beginning of the literacy acquisition. Future studies should evaluate whether or not these alterations could indicate a risk of developing dyslexia.
Collapse
|
19
|
Hashimoto T, Higuchi H, Uno A, Yokota S, Asano K, Taki Y, Kawashima R. Association Between Resting-State Functional Connectivity and Reading in Two Writing Systems in Japanese Children With and Without Developmental Dyslexia. Brain Connect 2020; 10:254-266. [PMID: 32567365 PMCID: PMC7465633 DOI: 10.1089/brain.2020.0759] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Introduction: Japanese is unique, as it features two distinct writing systems that share the same sound and meaning: syllabic Hiragana and logographic Kanji scripts. Acquired reading difficulties in Hiragana and Kanji have been examined in older patients with brain lesions. However, the precise mechanisms underlying deficits in developmental dyslexia (DD) remain unclear. Materials and Methods: The neural signatures of Japanese children with DD were examined by using resting-state functional magnetic resonance imaging. We examined 22 dyslexic and 46 typically developing (TD) children, aged 7–14 years. Results: Reading performance in each writing system was correlated with neural connectivity in TD children. In contrast, in children with DD, weak associations between neural connectivity and reading performance were observed. In TD children, Hiragana-reading fluency was positively correlated with the left fusiform gyrus network. No significant correlations between Hiragana fluency and neural connectivity were observed in children with DD. Correspondingly, there were fewer correlations between Kanji accuracy and strength of reading-related connectivity in children with DD, whereas positive correlations with the bilateral fronto-parietal network and negative correlations with the left fusiform network were found in TD children. Discussion: These data suggest that positive and negative coupling with neural connectivity is associated with developing Japanese reading skills. Further, different neural connectivity correlations between Hiragana fluency and Kanji accuracy were detected in TD children but less in children with DD. Conclusion: The two writing systems may exert differential effects and deficits on reading in healthy children and in children with DD, respectively.
Collapse
Affiliation(s)
- Teruo Hashimoto
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Hiroki Higuchi
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Akira Uno
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Japan
| | - Susumu Yokota
- Faculty of Art and Science, Kyushu University, Fukuoka, Japan
| | - Kohei Asano
- Kokoro Research Center, Kyoto University, Kyoto, Japan
| | - Yasuyuki Taki
- Department of Nuclear Medicine and Radiology, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| |
Collapse
|
20
|
Impact of literacy on the functional connectivity of vision and language related networks. Neuroimage 2020; 213:116722. [DOI: 10.1016/j.neuroimage.2020.116722] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 03/03/2020] [Accepted: 03/06/2020] [Indexed: 11/15/2022] Open
|
21
|
Guerin JB, Greiner HM, Mangano FT, Leach JL. Functional MRI in Children: Current Clinical Applications. Semin Pediatr Neurol 2020; 33:100800. [PMID: 32331615 DOI: 10.1016/j.spen.2020.100800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Functional magnetic resonance imaging has become a critical research tool for evaluating brain function during active tasks and resting states. This has improved our understanding of developmental trajectories in children as well as the plasticity of neural networks in disease states. In the clinical setting, functional maps of eloquent cortex in patients with brain lesions and/or epilepsy provides crucial information for presurgical planning. Although children are inherently challenging to scan in this setting, preparing them appropriately and providing adequate resources can help achieve useful clinical data. This article will review the basic underlying physiologic aspects of functional magnetic resonance imaging, review clinically relevant research applications, describe known validation data compared to gold standard techniques and detail future directions of this technology.
Collapse
Affiliation(s)
- Julie B Guerin
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN
| | - Hansel M Greiner
- Division of Neurology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH
| | - Francesco T Mangano
- Division of Pediatric Neurosurgery, University of Cincinnati College of Medicine Department of Neurosurgery, Cincinnati, OH
| | - James L Leach
- Department of Pediatric Radiology and Medical Imaging, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Radiology, Mayo Clinic, Rochester, MN.
| |
Collapse
|
22
|
Zhou W, Pang W, Zhang L, Xu H, Li P, Shu H. Altered connectivity of the visual word form area in the low-vision population: A resting-state fMRI study. Neuropsychologia 2020; 137:107302. [DOI: 10.1016/j.neuropsychologia.2019.107302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/22/2019] [Accepted: 12/06/2019] [Indexed: 01/26/2023]
|
23
|
Resting-state EEG reveals global network deficiency in dyslexic children. Neuropsychologia 2020; 138:107343. [DOI: 10.1016/j.neuropsychologia.2020.107343] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 01/01/2020] [Accepted: 01/13/2020] [Indexed: 12/22/2022]
|
24
|
Abstract
Among the range of methods available to assess neurodevelopmental disorders, functional MRI (fMRI) has been a preferred tool of choice. Indeed, fMRI can reveal functional alterations in brain networks, irrespective of their structural integrity. Yet, whether fMRI studies have provided unique added value and influenced the clinical care and assessments in children with these conditions remains controversial. This chapter aims to give an overview of the clinical use of task-based as well as resting-state fMRI in children with neurodevelopmental disorders, such as dyslexia, DLD, and epilepsy. We introduce analysis methods that appear promising (namely PPI and machine learning) and describe strengths and limitations of fMRI in the field of pediatrics. Altogether, we suggest that fMRI has provided us with a unique understanding of some developmental conditions. Indeed, findings from group studies have both informed neuroanatomical models and revealed compensation mechanisms. In addition, improvements have made fMRI an increasingly child-friendly method. Nevertheless, clinicians should be aware of limitations, including (1) lack of replication of results, (2) the limited specificity as a diagnostic tool, and (3) difficulties with interpretation of findings. The use of fMRI in the clinic currently remains restricted, with the exception of epilepsy surgery planning, where it is used routinely.
Collapse
Affiliation(s)
- Frédérique Liégeois
- Cognitive Neuroscience and Neuropsychiatry Section, Great Ormond Street Institute of Child Health, University College, London, United Kingdom.
| | - Rachael Elward
- Cognitive Neuroscience and Neuropsychiatry Section, Great Ormond Street Institute of Child Health, University College, London, United Kingdom; (2)School of Applied Sciences, London South Bank University, London, United Kingdom
| |
Collapse
|
25
|
Schiavi C, Finzi A, Cellini M. Steady-State Pattern Electroretinogram and Frequency Doubling Technology in Adult Dyslexic Readers. Clin Ophthalmol 2019; 13:2451-2459. [PMID: 31849443 PMCID: PMC6912011 DOI: 10.2147/opth.s229898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 11/27/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose Dyslexia is a reading disorder with neurological deficit of the magnocellular pathway. The aim of our study was to evaluate the functionality of the magnocellular-Y (M-Y) retinal ganglion cells in adult dyslexic subjects using steady-state pattern electroretinogram and frequency doubling perimetry. Methods Ten patients with dyslexia (7 females and 3 males), mean age 28.7 ± 5.9 years, and 10 subjects without dyslexia (6 females and 4 males), mean age 27.8 ± 4.1 years, were enrolled in the study and underwent both steady-state pattern-electroretinogram examination and frequency doubling perimetry. Results There was a significant difference in the amplitude of the steady-state pattern electroretinogram of the dyslexic group and the healthy controls (0.610±0.110 μV vs 1.250±0.296 μV; p=0.0001). Furthermore, in the dyslexic group we found a significant difference between the right eye and the left eye (0.671±0.11 μV vs 0.559±0.15 μV; p=0.001). With frequency doubling perimetry, the pattern standard deviation index increased in dyslexic eyes compared to healthy controls (4.40±0.81 dB vs 2.99±0.35 dB; p=0.0001) and in the left eye versus the right eye of the dyslexic group (4.43±1.10 dB vs 3.66±0.96 dB; p=0.031). There was a correlation between the reduction in the wave amplitude of the pattern electroretinogram and the simultaneous increase in the pattern standard deviation values (r=0.80; p=0.001). This correlation was also found to be present in the left eye (r=0.93; p<0.001) and the right eye (r=0.81; p=0.005) of dyslexic subjects. Conclusion Our study shows that there was an alteration of the activity of M-Y retinal ganglion cells, especially in the left eye. It confirms that in dyslexia there is a deficit of visual attention with damage not only of the magnocellular-dorsal pathway but also of the M-Y retinal ganglion cells.
Collapse
Affiliation(s)
- Costantino Schiavi
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna 40138, Italy
| | - Alessandro Finzi
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna 40138, Italy
| | - Mauro Cellini
- Department of Experimental, Diagnostic, and Specialty Medicine, Ophthalmology Service, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
26
|
Zhou W, Liu Y, Su M, Yan M, Shu H. Alternating-color words influence Chinese sentence reading: Evidence from neural connectivity. BRAIN AND LANGUAGE 2019; 197:104663. [PMID: 31404828 DOI: 10.1016/j.bandl.2019.104663] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/15/2019] [Accepted: 07/17/2019] [Indexed: 06/10/2023]
Abstract
In order to investigate how language and attention systems are affected by word boundary information during reading, we conducted a functional magnetic resonance imaging (fMRI) experiment in which text-color in naturally unspaced Chinese sentences were systematically manipulated in three experimental conditions, that is, text-color alternation consistent or inconsistent with word boundary (i.e., alternating-color word and non-word conditions), as well as a mono-color baseline condition. Twenty college students (14 females; 23.1 years old) were required to silently read 72 sentences during fMRI scanning. We found that the conditions of word boundary modulated the brain connections between the visual word form area (VWFA) and dorsal attention regions, and between the VWFA and language-related regions. These results suggest that the coordination between the VWFA and dorsal attention regions plays an important role in grouping characters and guiding the saccade according to perceptual grouping based on color, and that the connection between VWFA and MTG could be the neural mechanism of lexical access during Chinese text reading.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Yimei Liu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Mengmeng Su
- Elementary Educational College, Capital Normal University, Beijing, China
| | - Ming Yan
- Department of Psychology, University of Macau, Taipa, Macau.
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
27
|
Ellenblum G, Purcell JJ, Song X, Rapp B. High-level Integrative Networks: A Resting-state fMRI Investigation of Reading and Spelling. J Cogn Neurosci 2019; 31:961-977. [PMID: 30938593 DOI: 10.1162/jocn_a_01405] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Orthographic processing skills (reading and spelling) are evolutionarily recent and mastered late in development, providing an opportunity to investigate how the properties of the neural networks supporting skills of this type compare to those supporting evolutionarily older, well-established "reference" networks. Although there has been extensive research using task-based fMRI to study the neural substrates of reading, there has been very little using resting-state fMRI to examine the properties of orthographic networks. In this investigation using resting-state fMRI, we compare the within-network and across-network coherence properties of reading and spelling networks directly to these properties of reference networks, and we also compare the network properties of the key node of the orthographic networks-the visual word form area-to those of the other nodes of the orthographic and reference networks. Consistent with previous results, we find that orthographic processing networks do not exhibit certain basic network coherence properties displayed by other networks. However, we identify novel distinctive properties of the orthographic processing networks and establish that the visual word form area has unusually high levels of connectivity with a broad range of brain areas. These characteristics form the basis of our proposal that orthographic networks represent a class of "high-level integrative networks" with distinctive properties that allow them to recruit and integrate multiple, lower level processes.
Collapse
Affiliation(s)
| | | | - Xiaowei Song
- Northwestern University.,National Institutes of Health.,University of Maryland, Baltimore
| | | |
Collapse
|
28
|
Lou C, Duan X, Altarelli I, Sweeney JA, Ramus F, Zhao J. White matter network connectivity deficits in developmental dyslexia. Hum Brain Mapp 2019; 40:505-516. [PMID: 30251768 PMCID: PMC6865529 DOI: 10.1002/hbm.24390] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 01/18/2023] Open
Abstract
A number of studies have shown an abnormal connectivity of certain white matter pathways in developmental dyslexia, as well as correlations between these white matter pathways and behavioral deficits. However, whether developmental dyslexia presents broader white matter network connectivity disruption is currently unknown. The present study reconstructed white matter networks for 26 dyslexic children (11.61 ± 1.31 years) and 31 age-matched controls (11.49 ± 1.36 years) using constrained spherical deconvolution tractography. Network-based statistics (NBS) analysis was performed to identify network connectivity deficits in dyslexic individuals. Network topological features were measured based on graph theory to examine whether these parameters correlate with literacy skills, and whether they explain additional variance over previously established white matter connectivity abnormalities in dyslexic children. The NBS analysis identified a network connecting the left-occipital-temporal cortex and temporo-parietal cortex that had decreased streamlines in dyslexic children. Four network topological parameters (clustering coefficient, local efficiency, transitivity, and global efficiency) were positively correlated with literacy skills of dyslexic children, and explained a substantial proportion of additional variance in literacy skills beyond connectivity measures of white matter pathways. This study for the first time reports a disconnection in a local subnetwork in the left hemisphere in dyslexia and shows that the global white matter network topological properties contribute to reduced literacy skills in dyslexic children.
Collapse
Affiliation(s)
- Chenglin Lou
- School of PsychologyShaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'anChina
| | - Xiting Duan
- School of PsychologyShaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'anChina
| | - Irene Altarelli
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d'Etudes CognitivesEcole Normale Supérieure, PSL Research UniversityParisFrance
- Faculty Psychology and Science De L'éducation (FPSE)University of GenevaGenevaSwitzerland
| | - John A. Sweeney
- Department of Psychiatry and Behavioral NeuroscienceUniversity of CincinnatiCincinnatiOhio
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, EHESS, CNRS), Département d'Etudes CognitivesEcole Normale Supérieure, PSL Research UniversityParisFrance
| | - Jingjing Zhao
- School of PsychologyShaanxi Normal University, and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'anChina
| |
Collapse
|
29
|
Xia Z, Zhang L, Hoeft F, Gu B, Gong G, Shu H. Neural Correlates of Oral Word Reading, Silent Reading Comprehension, and Cognitive Subcomponents. INTERNATIONAL JOURNAL OF BEHAVIORAL DEVELOPMENT 2018; 42:342-356. [PMID: 29904229 DOI: 10.1177/0165025417727872] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The ability to read is essential for cognitive development. To deepen our understanding of reading acquisition, we explored the neuroanatomical correlates (cortical thickness (CT)) of word reading fluency and sentence comprehension efficiency in Chinese with a group of typically developing children (N = 21; 12 females and 9 males; age range 10.7-12.3 years). Then, we investigated the relationship between the CT of reading-defined regions and the cognitive subcomponents of reading to determine whether our study lends support to the multi-component model. The results demonstrated that children's performance on oral word reading was positively correlated with CT in the left superior temporal gyrus (LSTG), inferior temporal gyrus (LITG), supramarginal gyrus (LSMG) and right superior temporal gyrus (RSTG). Moreover, CT in the LSTG, LSMG and LITG uniquely predicted children's phonetic representation, phonological awareness, and orthography-phonology mapping skills, respectively. By contrast, children's performance on sentence reading comprehension was positively correlated with CT in the left parahippocampus (LPHP) and right calcarine fissure (RV1). As for the subcomponents of reading, CT in the LPHP was exclusively correlated with morphological awareness, whereas CT in the RV1 was correlated with orthography-semantic mapping. Taken together, these findings indicate that the reading network of typically developing children consists of multiple subdivisions, thus providing neuroanatomical evidence in support of the multi-componential view of reading.
Collapse
Affiliation(s)
- Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China.,Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), USA
| | - Linjun Zhang
- Faculty of Linguistic Sciences and KIT-BLCU MEG Laboratory for Brain Science, Beijing Language and Culture University, China
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences, University of California, San Francisco (UCSF), USA.,Precision Learning Center (PrecL), UC, USA.,Dyslexia Center, UCSF, USA.,Haskins Laboratories, 300 George Street #900, New Haven, USA.,Department of Neuropsychiatry, Keio University School of Medicine, Japan
| | - Bin Gu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, China.,Center for Collaboration and Innovation in Brain and Learning Sciences, Beijing Normal University, China
| |
Collapse
|
30
|
Zhou W, Xia Z, Georgiou GK, Shu H. The Distinct Roles of Dorsal and Ventral Visual Systems in Naming of Chinese Characters. Neuroscience 2018; 390:256-264. [PMID: 30176323 DOI: 10.1016/j.neuroscience.2018.08.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Revised: 08/20/2018] [Accepted: 08/23/2018] [Indexed: 11/28/2022]
Abstract
We aimed to investigate the role of dorsal and ventral visual systems in rapid naming of simple Chinese characters. Twenty college students (10 female; Mage = 22.5 years) were required to covertly read a character- and a cross-matrix during an fMRI experiment. A basic prosaccade and a prosaccade-naming task were also performed to confirm the functional significance of the findings. The results of whole brain analysis showed that both dorsal and ventral visual systems were activated in the character-matrix reading. The cross-matrix scanning elicited weaker activation in the left middle frontal gyrus, superior temporal gyrus, and ventral occipitotemporal cortex. Next, whereas both top-down and bottom-up effective connectivities (ECs) were found between these two systems in the character-matrix reading, only top-down ECs were observed in the cross-matrix scanning. Moreover, in the character-matrix reading, we found a negative correlation between the reaction time of naming in the prosaccade-naming task and the EC strength from visual word form area to superior temporal gyrus and a positive correlation between the reaction time in the basic prosaccade task and the EC strength from middle frontal gyrus to intraparietal sulcus. The cross-matrix scanning did not show any brain-behavior relationship. These results suggest that while the dorsal visual system is mainly engaged in eye-movement control, the ventral system is associated more with orthographic processing and orthography-phonology mapping.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, China
| | | | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University, China.
| |
Collapse
|
31
|
Su M, Zhao J, Thiebaut de Schotten M, Zhou W, Gong G, Ramus F, Shu H. Alterations in white matter pathways underlying phonological and morphological processing in Chinese developmental dyslexia. Dev Cogn Neurosci 2018; 31:11-19. [PMID: 29727819 PMCID: PMC6969203 DOI: 10.1016/j.dcn.2018.04.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 04/10/2018] [Accepted: 04/10/2018] [Indexed: 01/18/2023] Open
Abstract
Chinese is a logographic language that is different from alphabetic languages in visual and semantic complexity. Thus far, it is still unclear whether Chinese children with dyslexia show similar disruption of white matter pathways as in alphabetic languages. The present study focused on the alteration of white matter pathways in Chinese children with dyslexia. Using diffusion tensor imaging tractography, the bilateral arcuate fasciculus (AF-anterior, AF-posterior and AF-direct segments), inferior fronto-occipital fasciculus (IFOF) and inferior longitudinal fasciculus (ILF) were delineated in each individual’s native space. Compared with age-matched controls, Chinese children with dyslexia showed reduced fractional anisotropy in the left AF-direct and the left ILF. Further regression analyses revealed a functional dissociation between the left AF-direct and the left ILF. The AF-direct tract integrity was associated with phonological processing skill, an ability important for reading in all writing systems, while the ILF integrity was associated with morphological processing skill, an ability more strongly recruited for Chinese reading. In conclusion, the double disruption locus in Chinese children with dyslexia, and the functional dissociation between dorsal and ventral pathways reflect both universal and specific properties of reading in Chinese.
Collapse
Affiliation(s)
- Mengmeng Su
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China; Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France; College of Elementary Education, Capital Normal University, Beijing, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Group, Brain and Spine Institute (ICM), CNRS UMR 7225, INSERM-UPMC UMRS 1127, Paris, France
| | - Wei Zhou
- Beijing Key Lab of Learning and Cognition, School of Psychology, Capital Normal University, Beijing, China
| | - Gaolang Gong
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China
| | - Franck Ramus
- Laboratoire de Sciences Cognitives et Psycholinguistique (ENS, CNRS, EHESS), Ecole Normale Supérieure, PSL Research University, Paris, France.
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, China.
| |
Collapse
|
32
|
Price GR, Yeo DJ, Wilkey ED, Cutting LE. Prospective relations between resting-state connectivity of parietal subdivisions and arithmetic competence. Dev Cogn Neurosci 2018; 30:280-290. [PMID: 28268177 PMCID: PMC5568461 DOI: 10.1016/j.dcn.2017.02.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 02/02/2017] [Accepted: 02/17/2017] [Indexed: 12/12/2022] Open
Abstract
The present study investigates the relation between resting-state functional connectivity (rsFC) of cytoarchitectonically defined subdivisions of the parietal cortex at the end of 1st grade and arithmetic performance at the end of 2nd grade. Results revealed a dissociable pattern of relations between rsFC and arithmetic competence among subdivisions of intraparietal sulcus (IPS) and angular gyrus (AG). rsFC between right hemisphere IPS subdivisions and contralateral IPS subdivisions positively correlated with arithmetic competence. In contrast, rsFC between the left hIP1 and the right medial temporal lobe, and rsFC between the left AG and left superior frontal gyrus, were negatively correlated with arithmetic competence. These results suggest that strong inter-hemispheric IPS connectivity is important for math development, reflecting either neurocognitive mechanisms specific to arithmetic processing, domain-general mechanisms that are particularly relevant to arithmetic competence, or structural 'cortical maturity'. Stronger connectivity between IPS, and AG, subdivisions and frontal and temporal cortices, however, appears to be negatively associated with math development, possibly reflecting the ability to disengage suboptimal problem-solving strategies during mathematical processing, or to flexibly reorient task-based networks. Importantly, the reported results pertain even when controlling for reading, spatial attention, and working memory, suggesting that the observed rsFC-behavior relations are specific to arithmetic competence.
Collapse
Affiliation(s)
- Gavin R Price
- Department of Psychology & Human Development, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA
| | - Darren J Yeo
- Department of Psychology & Human Development, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA; Division of Psychology, School of Humanities and Social Sciences, Nanyang Technological University,14 Nanyang Avenue, 637332, Singapore, Singapore
| | - Eric D Wilkey
- Department of Psychology & Human Development, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA
| | - Laurie E Cutting
- Department of Special Education, Peabody College, Vanderbilt University,230 Appleton Place, Nashville, TN, 37203, USA.
| |
Collapse
|
33
|
Buchweitz A, Costa AC, Toazza R, de Moraes AB, Cara VM, Esper NB, Aguzzoli C, Gregolim B, Dresch LF, Soldatelli MD, da Costa JC, Portuguez MW, Franco AR. Decoupling of the Occipitotemporal Cortex and the Brain’s Default-Mode Network in Dyslexia and a Role for the Cingulate Cortex in Good Readers: A Brain Imaging Study of Brazilian Children. Dev Neuropsychol 2018; 44:146-157. [DOI: 10.1080/87565641.2017.1292516] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Augusto Buchweitz
- School of Humanities, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Adriana Corrêa Costa
- School of Humanities, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Rudineia Toazza
- Graduate School of Neurosciences, Basic Health Sciences Institute, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Ana Bassôa de Moraes
- Graduate School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Valentina Metsavaht Cara
- Graduate School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Nathália Bianchini Esper
- Graduate School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
- School of Engineering, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Cristiano Aguzzoli
- School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Bruna Gregolim
- School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Luiz Fernando Dresch
- School of Engineering, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Matheus Dorigatti Soldatelli
- School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Jaderson Costa da Costa
- School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Mirna Wetters Portuguez
- School of Medicine, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| | - Alexandre Rosa Franco
- School of Engineering, Brain Institute of Rio Grande do Sul (BRAINS), Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre, Brazil
| |
Collapse
|
34
|
Abstract
Purpose of Review Developmental dyslexia is characterized by an impaired acquisition of fluent and skilled reading ability. Numerous studies have explored the neural correlates of this neurodevelopmental disorder, with most classic accounts strongly focussing on left temporoparietal regions. We will review recent findings from structural and functional MRI studies that suggest a more important role of occipitotemporal cortex abnormalities in dyslexia. Recent Findings Recent findings highlight the role of the occipitotemporal cortex which exhibits functional as well as structural abnormalities in dyslexic readers and in children at risk for dyslexia and suggest a more central role for the occipitotemporal cortex in the pathophysiology of dyslexia. Summary We demonstrate the importance of the occipitotemporal cortex in for understanding impaired reading acquisition and point out how future research might enhance our understanding of functional and structural impairments in the reading network via large-scale data analysis approaches.
Collapse
|
35
|
Liu X, Gao Y, Di Q, Hu J, Lu C, Nan Y, Booth JR, Liu L. Differences between child and adult large-scale functional brain networks for reading tasks. Hum Brain Mapp 2017; 39:662-679. [PMID: 29124823 DOI: 10.1002/hbm.23871] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 01/19/2023] Open
Abstract
Reading is an important high-level cognitive function of the human brain, requiring interaction among multiple brain regions. Revealing differences between children's large-scale functional brain networks for reading tasks and those of adults helps us to understand how the functional network changes over reading development. Here we used functional magnetic resonance imaging data of 17 adults (19-28 years old) and 16 children (11-13 years old), and graph theoretical analyses to investigate age-related changes in large-scale functional networks during rhyming and meaning judgment tasks on pairs of visually presented Chinese characters. We found that: (1) adults had stronger inter-regional connectivity and nodal degree in occipital regions, while children had stronger inter-regional connectivity in temporal regions, suggesting that adults rely more on visual orthographic processing whereas children rely more on auditory phonological processing during reading. (2) Only adults showed between-task differences in inter-regional connectivity and nodal degree, whereas children showed no task differences, suggesting the topological organization of adults' reading network is more specialized. (3) Children showed greater inter-regional connectivity and nodal degree than adults in multiple subcortical regions; the hubs in children were more distributed in subcortical regions while the hubs in adults were more distributed in cortical regions. These findings suggest that reading development is manifested by a shift from reliance on subcortical to cortical regions. Taken together, our study suggests that Chinese reading development is supported by developmental changes in brain connectivity properties, and some of these changes may be domain-general while others may be specific to the reading domain.
Collapse
Affiliation(s)
- Xin Liu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yue Gao
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Qiqi Di
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Jiali Hu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Chunming Lu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Yun Nan
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - James R Booth
- Department of Psychology and Human Development, Vanderbilt University, Nashville, Tennessee, 37203
| | - Li Liu
- National Key Laboratory of Cognitive Neuroscience and Learning & IDG/McGovern, Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| |
Collapse
|
36
|
Black JM, Xia Z, Hoeft F. Neurobiological Bases of Reading Disorder Part II: The Importance of Developmental Considerations in Typical and Atypical Reading. LANGUAGE AND LINGUISTICS COMPASS 2017; 11:e12252. [PMID: 29276529 PMCID: PMC5736136 DOI: 10.1111/lnc3.12252] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Decoding-based reading disorder (RD; aka developmental dyslexia) is one of the most common neurodevelopmental disorders, affecting approximately 5-10% of school-aged children across languages. Even though neuroimaging studies suggest an impairment of the left reading network in RD, the onset of this deficit and its developmental course, which may include constancy and change, is largely unknown. There is now growing evidence that the recruitment of brain networks underlying perceptual, cognitive and linguistic processes relevant to reading acquisition varies with age. These age-dependent changes may in turn impact the neurocognitive characteristics of RD observed at specific developmental stages. Here we synthesize findings from functional and structural magnetic resonance imaging (MRI) studies to increase our understanding of the developmental time course of the neural bases underlying (a)typical reading. We first provide an overview of the brain bases of typical and atypical (impaired) reading. Next we describe how the understanding of RD can be deepened through scientific attention to age effects, for example, by integrating findings from cross-sectional studies of RD at various ages. Finally, we accent findings from extant longitudinal studies that directly examine developmental reading trajectories beginning in the preliterate stage at both group and individual levels. Although science is at the very early stage of understanding developmental aspects of neural deficits in RD, evidence to date characterizes RD by atypical brain maturation. We know that reading impairment may adversely impact multiple life domains such as academic achievement and social relationships, and unfortunately, that these negative outcomes can persist and compound into adulthood. We contend that exploring the developmental trajectories of RD will contribute to a greater understanding of how neural systems support reading acquisition. Further, we propose and cite evidence that the etiology of RD can be better investigated by distinguishing primary deficits from secondary impairments unfolding along development. These exciting and modern investigatory efforts can also indirectly contribute to a centered practice of early and accurate identification and optimal intervention to support the development of foundational pre-literacy skills and fluent reading. In sum, integrating a developmental understanding into the science and practice of reading acquisition and intervention is both possible and necessary.
Collapse
Affiliation(s)
| | - Zhichao Xia
- Department of Psychiatry and Weill Institute for Neurosciences,
University of California, San Francisco (UCSF), USA
- State Key Laboratory of Cognitive Neuroscience and Learning
& IDG/McGovern Institute for Brain Research, Beijing Normal University,
China
- Center for Collaboration and Innovation in Brain and Learning
Sciences, Beijing Normal University, China
| | - Fumiko Hoeft
- Department of Psychiatry and Weill Institute for Neurosciences,
University of California, San Francisco (UCSF), USA
- Precision Learning Center (PrecL), UC, USA
- Dyslexia Center, UCSF, USA
- Haskins Laboratories, USA
- Department of Neuropsychiatry, Keio University School of Medicine,
Japan
| |
Collapse
|
37
|
Different relationship of magnocellular-dorsal function and reading-related skills between Chinese developing and skilled readers. PLoS One 2017; 12:e0179712. [PMID: 28704422 PMCID: PMC5509136 DOI: 10.1371/journal.pone.0179712] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 06/03/2017] [Indexed: 11/19/2022] Open
Abstract
Previous studies have indicated that the relationship between magnocellular-dorsal (M-D) function and reading-related skills may vary with reading development in readers of alphabetic languages. Since this relationship could be affected by the orthographic depth of writing systems, the present study explored the relationship between M-D function and reading-related skills in Chinese, a writing system with a deeper orthography than alphabetic languages. Thirty-seven primary school students and fifty-one undergraduate students participated. Orthographic and phonological awareness tests were adopted as reading-related skill measurements. A steady-pedestal paradigm was used to assess the low-spatial-frequency contrast thresholds of M-D function. Results showed that M-D function was only correlated with orthographic awareness for adults, revealing an enhancement with reading development; while being related to phonological awareness only for children revealing a developmental decrement. It suggested that the mechanism responsible for the relationship between M-D activity and reading-related skills was affected by the characteristics of literacy development in Chinese.
Collapse
|
38
|
Li Y, Zhang L, Xia Z, Yang J, Shu H, Li P. The Relationship between Intrinsic Couplings of the Visual Word Form Area with Spoken Language Network and Reading Ability in Children and Adults. Front Hum Neurosci 2017; 11:327. [PMID: 28690507 PMCID: PMC5481365 DOI: 10.3389/fnhum.2017.00327] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/06/2017] [Indexed: 11/13/2022] Open
Abstract
Reading plays a key role in education and communication in modern society. Learning to read establishes the connections between the visual word form area (VWFA) and language areas responsible for speech processing. Using resting-state functional connectivity (RSFC) and Granger Causality Analysis (GCA) methods, the current developmental study aimed to identify the difference in the relationship between the connections of VWFA-language areas and reading performance in both adults and children. The results showed that: (1) the spontaneous connectivity between VWFA and the spoken language areas, i.e., the left inferior frontal gyrus/supramarginal gyrus (LIFG/LSMG), was stronger in adults compared with children; (2) the spontaneous functional patterns of connectivity between VWFA and language network were negatively correlated with reading ability in adults but not in children; (3) the causal influence from LIFG to VWFA was negatively correlated with reading ability only in adults but not in children; (4) the RSFCs between left posterior middle frontal gyrus (LpMFG) and VWFA/LIFG were positively correlated with reading ability in both adults and children; and (5) the causal influence from LIFG to LSMG was positively correlated with reading ability in both groups. These findings provide insights into the relationship between VWFA and the language network for reading, and the role of the unique features of Chinese in the neural circuits of reading.
Collapse
Affiliation(s)
- Yu Li
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China.,Department of Cognitive Science and ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, NSW, Australia
| | - Linjun Zhang
- Faculty of Linguistic Sciences and KIT-BLCU MEG Laboratory for Brain Science, Beijing Language and Culture UniversityBeijing, China
| | - Zhichao Xia
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Jie Yang
- Department of Cognitive Science and ARC Centre of Excellence in Cognition and its Disorders, Macquarie UniversitySydney, NSW, Australia
| | - Hua Shu
- National Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Ping Li
- Department of Psychology and Center for Brain, Behavior and Cognition, Pennsylvania State University University Park, PA, United States
| |
Collapse
|
39
|
Zhou W, Shu H. A meta-analysis of functional magnetic resonance imaging studies of eye movements and visual word reading. Brain Behav 2017; 7:e00683. [PMID: 28523225 PMCID: PMC5434188 DOI: 10.1002/brb3.683] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 02/06/2017] [Accepted: 02/13/2017] [Indexed: 11/23/2022] Open
Abstract
INTRODUCTION The pattern of eye movements during reading is substantially correlated with linguistic factors. While there have been a large number of studies on the neural mechanisms of eye movements and word reading separately, a limited number of studies have compared the activation patterns of these two processes and discussed the associations of their corresponding brain regions within the framework of naturalistic reading. METHODS This study conducted a meta-analysis of the existing functional magnetic resonance imaging literature on prosaccades and visual word reading using the activation likelihood estimation algorithm. RESULTS Our main finding was that, although prosaccades and word reading mainly activated dorsal and ventral brain areas, respectively, they both activated the left precentral gyrus (PreCG), left superior parietal lobe, right PreCG, right lingual gyrus, and bilateral medial frontal gyrus. CONCLUSION These findings provide new insights into cognitive processes involved with naturalistic reading, which requires both eye movements and word reading.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Lab of Learning and Cognition Department of Psychology Capital Normal University Beijing China.,Beijing Advanced Innovation Center for Imaging Technology Capital Normal University Beijing China
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning IDG/McGovern Institute for Brain Research Beijing Normal University Beijing China
| |
Collapse
|
40
|
Privileged Functional Connectivity between the Visual Word Form Area and the Language System. J Neurosci 2017; 37:5288-5297. [PMID: 28450544 DOI: 10.1523/jneurosci.0138-17.2017] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 04/03/2017] [Accepted: 04/08/2017] [Indexed: 01/09/2023] Open
Abstract
The visual word form area (VWFA) is a region in the left occipitotemporal sulcus of literate individuals that is purportedly specialized for visual word recognition. However, there is considerable controversy about its functional specificity and connectivity, with some arguing that it serves as a domain-general, rather than word-specific, visual processor. The VWFA is a critical region for testing hypotheses about the nature of cortical organization, because it is known to develop only through experience (i.e., reading acquisition), and widespread literacy is too recent to have influenced genetic determinants of brain organization. Using a combination of advanced fMRI analysis techniques, including individual functional localization, multivoxel pattern analysis, and high-resolution resting-state functional connectivity (RSFC) analyses, with data from 33 healthy adult human participants, we demonstrate that (1) the VWFA can discriminate words from nonword letter strings (pseudowords); (2) the VWFA has preferential RSFC with Wernicke's area and other core regions of the language system; and (3) the strength of the RSFC between the VWFA and Wernicke's area predicts performance on a semantic classification task with words but not other categories of visual stimuli. Our results are consistent with the hypothesis that the VWFA is specialized for lexical processing of real words because of its functional connectivity with Wernicke's area.SIGNIFICANCE STATEMENT The visual word form area (VWFA) is critical for determining the nature of category-related organization of the ventral visual system. However, its functional specificity and connectivity are fiercely debated. Recent work concluded that the VWFA is a domain-general, rather than word-specific, visual processor with no preferential functional connectivity with the language system. Using more advanced techniques, our results stand in stark contrast to these earlier findings. We demonstrate that the VWFA is highly specialized for lexical processing of real words, and that a fundamental factor driving this specialization is its preferential intrinsic functional connectivity with core regions of the language system. Our results support the hypothesis that intrinsic functional connectivity contributes to category-related specialization within the human ventral visual system.
Collapse
|
41
|
Cao F, Yan X, Wang Z, Liu Y, Wang J, Spray GJ, Deng Y. Neural signatures of phonological deficits in Chinese developmental dyslexia. Neuroimage 2017; 146:301-311. [DOI: 10.1016/j.neuroimage.2016.11.051] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/16/2022] Open
|
42
|
Feng X, Li L, Zhang M, Yang X, Tian M, Xie W, Lu Y, Liu L, Bélanger NN, Meng X, Ding G. Dyslexic Children Show Atypical Cerebellar Activation and Cerebro-Cerebellar Functional Connectivity in Orthographic and Phonological Processing. THE CEREBELLUM 2016; 16:496-507. [DOI: 10.1007/s12311-016-0829-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
43
|
Zhou W, Wang X, Xia Z, Bi Y, Li P, Shu H. Neural Mechanisms of Dorsal and Ventral Visual Regions during Text Reading. Front Psychol 2016; 7:1399. [PMID: 27695434 PMCID: PMC5023685 DOI: 10.3389/fpsyg.2016.01399] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 09/01/2016] [Indexed: 11/21/2022] Open
Abstract
When reading a narrative text, both the dorsal and ventral visual systems are activated. To illustrate the patterns of interactions between the dorsal and ventral visual systems in text reading, we conducted analyses of functional connectivity (FC) and effective connectivity (EC) in a left-hemispheric network for reading-driven functional magnetic resonance imaging (fMRI) and resting-state fMRI (rs-fMRI) data. In reading-driven fMRI (Experiment 1), we found significant FCs among the left middle frontal gyrus (MFG), the left intraparietal sulcus (IPS), and the visual word form area (VWFA), and there were top–down effects from the left MFG to the left IPS, from the left MFG to the VWFA, and from the left IPS to the VWFA. In rs-fMRI (Experiment 2), we identified FCs and ECs for MFG-IPS and IPS-VWFA connections. In addition, the brain–behavior relationship in resting states showed that the dorsal connection was more associated with reading fluency relative to lexical decision. The combination of two experiments revealed that the MFG-IPS and the VWFA-IPS connections were shared connections both in reading-driven fMRI and rs-fMRI, and that the MFG-VWFA was specific connectivity in reading-driven fMRI. These results suggest that top–down effects from the dorsal visual system to ventral visual system play an important role in text reading.
Collapse
Affiliation(s)
- Wei Zhou
- Beijing Key Lab of Learning and Cognition, Department of Psychology, Capital Normal UniversityBeijing, China; Beijing Advanced Innovation Center for Imaging Technology, Capital Normal UniversityBeijing, China; State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal UniversityBeijing, China
| | - Xiaojuan Wang
- School of Psychology, Shaanxi Normal University Xi'an, China
| | - Zhichao Xia
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Yanchao Bi
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| | - Ping Li
- Department of Psychology and Center for Brain, Behavior and Cognition, Pennsylvania State University, University Park PA, USA
| | - Hua Shu
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain Research, Beijing Normal University Beijing, China
| |
Collapse
|