1
|
Blumenstock S, Arakelyan D, Del Grosso N, Schneider S, Shao Y, Gjoni E, Klein R, Dudanova I, Komiyama T. Optogenetic restoration of neuron subtype-specific cortical activity ameliorates motor deficits in Huntington's Disease mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.07.637155. [PMID: 39974900 PMCID: PMC11839025 DOI: 10.1101/2025.02.07.637155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Huntington's disease (HD) is a devastating movement disorder without a current cure. Although the monogenic basis of HD is well-defined, the complex downstream effects that underlie behavioral symptoms are poorly understood. These effects include cortical dysfunctions, yet the role of specific cortical neuronal subtypes in HD symptoms remain largely unexplored. Here, we used longitudinal in vivo two-photon calcium imaging to examine the activity of two cortical inhibitory neuron (IN) subtypes and excitatory corticostriatal projection neurons (CSPNs) in the motor cortex of R6/2 HD mouse model throughout disease progression. We found that motor deficits in R6/2 mice were accompanied by neuron type-specific abnormalities in movement-related activity, including hypoactivity of vasoactive intestinal peptide (VIP)-INs and CSPNs. Optogenetic activation of VIP-INs in R6/2 mice restored healthy levels of activity in VIP-INs and their downstream CSPNs and ameliorated motor deficits in R6/2 mice. Our findings highlight cortical INs as a potential therapeutic target for HD and possibly other neurological diseases.
Collapse
|
2
|
Jari S, Ratne N, Tadas M, Katariya R, Kale M, Umekar M, Taksande B. Imidazoline receptors as a new therapeutic target in Huntington's disease: A preclinical overview. Ageing Res Rev 2024; 101:102482. [PMID: 39236858 DOI: 10.1016/j.arr.2024.102482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/12/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
An autosomal dominant neurodegenerative disease called Huntington's disease (HD) is characterized by motor dysfunction, cognitive decline, and a variety of psychiatric symptoms due to the expansion of polyglutamine in the Huntingtin gene. The disease primarily affects the striatal neurons within the basal ganglia, leading to significant neuronal loss and associated symptoms such as chorea and dystonia. Current therapeutic approaches focus on symptom management without altering the disease's progression, highlighting a pressing need for novel treatment strategies. Recent studies have identified imidazoline receptors (IRs) as promising targets for neuroprotective and disease-modifying interventions in HD. IRs, particularly the I1 and I2 subtypes, are involved in critical physiological processes such as neurotransmission, neuronal excitability, and cell survival. Activation of these receptors has been shown to modulate neurotransmitter release and provide neuroprotective effects in preclinical models of neurodegeneration. This review discusses the potential of IR-targeted therapies to not only alleviate multiple symptoms of HD but also possibly slow the progression of the disease. We emphasize the necessity for ongoing research to further elucidate the role of IRs in HD and develop selective ligands that could lead to effective and safe treatments, thereby significantly improving patient outcomes and quality of life.
Collapse
Affiliation(s)
- Sakshi Jari
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Nandini Ratne
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Manasi Tadas
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Raj Katariya
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Mayur Kale
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Milind Umekar
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| | - Brijesh Taksande
- Division of Neuroscience, Department of Pharmacology, Smt. Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur, Maharashtra 441002, India.
| |
Collapse
|
3
|
Kim LJY, Kundu B, Moretti P, Lozano AM, Rahimpour S. Advancements in surgical treatments for Huntington disease: From pallidotomy to experimental therapies. Neurotherapeutics 2024; 21:e00452. [PMID: 39304438 PMCID: PMC11585891 DOI: 10.1016/j.neurot.2024.e00452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/12/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024] Open
Abstract
Huntington disease (HD) is an autosomal dominant neurodegenerative disorder characterized by choreic movements, behavioral changes, and cognitive impairment. The pathogenesis of this process is a consequence of mutant protein toxicity in striatal and cortical neurons. Thus far, neurosurgical management of HD has largely been limited to symptomatic relief of motor symptoms using ablative and stimulation techniques. These interventions, however, do not modify the progressive course of the disease. More recently, disease-modifying experimental therapeutic strategies have emerged targeting intrastriatal infusion of neurotrophic factors, cell transplantation, HTT gene silencing, and delivery of intrabodies. Herein we review therapies requiring neurosurgical intervention, including those targeting symptom management and more recent disease-modifying agents, with a focus on safety, efficacy, and surgical considerations.
Collapse
Affiliation(s)
- Leo J Y Kim
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Bornali Kundu
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA
| | - Paolo Moretti
- Department of Neurology, University of Utah, Salt Lake City, UT, USA; Department of Neurology, George E. Wahlen VA Medical Center, Salt Lake City, UT, USA
| | - Andres M Lozano
- Division of Neurosurgery and Toronto Western Hospital Research Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Shervin Rahimpour
- Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT, USA; Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
4
|
Pavon N, Sun Y, Pak C. Cell type specification and diversity in subpallial organoids. Front Genet 2024; 15:1440583. [PMID: 39391063 PMCID: PMC11465425 DOI: 10.3389/fgene.2024.1440583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 09/11/2024] [Indexed: 10/12/2024] Open
Abstract
Neural organoids have emerged as valuable tools for studying the developing brain, sparking enthusiasm and driving their adoption in disease modeling, drug screening, and investigating fetal neural development. The increasing popularity of neural organoids as models has led to a wide range of methodologies aimed at continuous improvement and refinement. Consequently, research groups often improve and reconfigure protocols to create region-specific organoids, resulting in diverse phenotypes, including variations in morphology, gene expression, and cell populations. While these improvements are exciting, routine adoptions of such modifications and protocols in the research laboratories are often challenging due to the reiterative empirical testing necessary to validate the cell types generated. To address this challenge, we systematically compare the similarities and differences that exist across published protocols that generates subpallial-specific organoids to date. In this review, we focus specifically on exploring the production of major GABAergic neuronal subtypes, especially Medium Spiny Neurons (MSNs) and Interneurons (INs), from multiple subpallial organoid protocols. Importantly, we look to evaluate the cell type diversity and the molecular pathways manipulated to generate them, thus broadening our understanding of the existing subpallial organoids as well as assessing the in vitro applicability of specific patterning factors. Lastly, we discuss the current challenges and outlook on the improved patterning of region-specific neural organoids. Given the critical roles MSN and IN dysfunction play in neurological disorders, comprehending the GABAergic neurons generated by neural organoids will undoubtedly facilitate clinical translation.
Collapse
Affiliation(s)
- Narciso Pavon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
- Graduate Program in Neuroscience and Behavior, University of Massachusetts Amherst, Amherst, MA, United States
| | - Yubing Sun
- Department of Mechanical and Industrial Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - ChangHui Pak
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
5
|
Jellinger KA. Pathomechanisms of behavioral abnormalities in Huntington disease: an update. J Neural Transm (Vienna) 2024; 131:999-1012. [PMID: 38874766 DOI: 10.1007/s00702-024-02794-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 06/05/2024] [Indexed: 06/15/2024]
Abstract
Huntington disease (HD), a devastating autosomal-dominant neurodegenerative disease caused by an expanded CAG trinucleotide repeat, is clinically characterized by a triad of symptoms including involuntary motions, behavior problems and cognitive deficits. Behavioral symptoms with anxiety, irritability, obsessive-compulsive behaviors, apathy and other neuropsychiatric symptoms, occurring in over 50% of HD patients are important features of this disease and contribute to impairment of quality of life, but their pathophysiology is poorly understood. Behavior problems, more frequent than depression, can be manifest before obvious motor symptoms and occur across all HD stages, usually correlated with duration of illness. While specific neuropathological data are missing, the relations between gene expression and behavior have been elucidated in transgenic models of HD. Disruption of interneuronal communications, with involvement of prefronto-striato-thalamic networks and hippocampal dysfunctions produce deficits in multiple behavioral domains. These changes that have been confirmed by multistructural neuroimaging studies are due to a causal cascade linking molecular pathologies (glutamate-mediated excitotoxicity, mitochondrial dysfunctions inducing multiple biochemical and structural alterations) and deficits in multiple behavioral domains. The disruption of large-scale connectivities may explain the variability of behavior profiles and is useful in understanding the biological backgrounds of functional decline in HD. Such findings offer new avenues for targeted treatments in terms of minimizing neurobehavioral impairment in HD.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, Vienna, A-1150, Austria.
| |
Collapse
|
6
|
Jellinger KA. Mild cognitive impairment in Huntington's disease: challenges and outlooks. J Neural Transm (Vienna) 2024; 131:289-304. [PMID: 38265518 DOI: 10.1007/s00702-024-02744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Although Huntington's disease (HD) has classically been viewed as an autosomal-dominant inherited neurodegenerative motor disorder, cognitive and/or behavioral changes are predominant and often an early manifestation of disease. About 40% of individuals in the presymptomatic period of HD meet the criteria for mild cognitive impairment, later progressing to dementia. The heterogenous spectrum of cognitive decline is characterized by deficits across multiple domains, particularly executive dysfunctions, but the underlying pathogenic mechanisms are still poorly understood. Investigating the pathophysiology of cognitive changes may give insight into important and early neurodegenerative events. Multimodal imaging revealed circuit-wide gray and white matter degenerative processes in several key brain regions, affecting prefronto-striatal/cortico-basal ganglia circuits and many other functional brain networks. Studies in transgenic animal models indicated early synaptic dysfunction, deficient neurotrophic transport and other molecular changes contributing to neuronal death. Synaptopathy within the cerebral cortex, striatum and hippocampus may be particularly important in mediating cognitive and neuropsychiatric manifestations of HD, although many other neuronal systems are involved. The interaction of mutant huntingtin protein (mHTT) with tau and its implication for cognitive impairment in HD is a matter of discussion. Further neuroimaging and neuropathological studies are warranted to better elucidate early pathophysiological mechanisms and to develop validated biomarkers to detect patients' cognitive status during the early stages of the condition significantly to implement effective preventing or management strategies.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|
7
|
Regio S, Vachey G, Goñi E, Duarte F, Rybarikova M, Sipion M, Rey M, Huarte M, Déglon N. Revisiting the outcome of adult wild-type Htt inactivation in the context of HTT-lowering strategies for Huntington's disease. Brain Commun 2023; 5:fcad344. [PMID: 38116140 PMCID: PMC10729863 DOI: 10.1093/braincomms/fcad344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/11/2023] [Accepted: 12/06/2023] [Indexed: 12/21/2023] Open
Abstract
Huntingtin-lowering strategies are central to therapeutic approaches for Huntington's disease. Recent studies reported the induction of age- and cell type-specific phenotypes by conditional huntingtin knockout, but these experimental conditions did not precisely mimic huntingtin-lowering or gene-editing conditions in terms of the cells targeted and brain distribution, and no transcriptional profiles were provided. Here, we used the adeno-associated delivery system commonly used in CNS gene therapy programmes and the self-inactivating KamiCas9 gene-editing system to investigate the long-term consequences of wild-type mouse huntingtin inactivation in adult neurons and, thus, the feasibility and safety of huntingtin inactivation in these cells. Behavioural and neuropathological analyses and single-nuclei RNA sequencing indicated that huntingtin editing in 77% of striatal neurons and 16% of cortical projecting neurons in adult mice induced no behavioural deficits or cellular toxicity. Single-nuclei RNA sequencing in 11.5-month-old animals showed that huntingtin inactivation did not alter striatal-cell profiles or proportions. Few differentially expressed genes were identified and Augur analysis confirmed an extremely limited response to huntingtin inactivation in all cell types. Our results therefore indicate that wild-type huntingtin inactivation in adult striatal and projection neurons is well tolerated in the long term.
Collapse
Affiliation(s)
- Sara Regio
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Gabriel Vachey
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Enrique Goñi
- Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona 31008, Spain
| | - Fabio Duarte
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Margareta Rybarikova
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Mélanie Sipion
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Maria Rey
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| | - Maite Huarte
- Center for Applied Medical Research, University of Navarra, Pamplona 31008, Spain
- Institute of Health Research of Navarra (IdiSNA), Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona 31008, Spain
| | - Nicole Déglon
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies (LCMN), Lausanne 1011, Switzerland
| |
Collapse
|
8
|
Gantley L, Stringer BW, Conn VM, Ootsuka Y, Holds D, Slee M, Aliakbari K, Kirk K, Ormsby RJ, Webb ST, Hanson A, Lin H, Selth LA, Conn SJ. Functional Characterisation of the Circular RNA, circHTT(2-6), in Huntington's Disease. Cells 2023; 12:cells12091337. [PMID: 37174737 PMCID: PMC10177161 DOI: 10.3390/cells12091337] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/15/2023] Open
Abstract
Trinucleotide repeat disorders comprise ~20 severe, inherited, human neuromuscular and neurodegenerative disorders, which result from an abnormal expansion of repetitive sequences in the DNA. The most common of these, Huntington's disease (HD), results from expansion of the CAG repeat region in exon 1 of the HTT gene via an unknown mechanism. Since non-coding RNAs have been implicated in the initiation and progression of many diseases, herein we focused on a circular RNA (circRNA) molecule arising from non-canonical splicing (backsplicing) of HTT pre-mRNA. The most abundant circRNA from HTT, circHTT(2-6), was found to be more highly expressed in the frontal cortex of HD patients, compared with healthy controls, and positively correlated with CAG repeat tract length. Furthermore, the mouse orthologue (mmu_circHTT(2-6)) was found to be enriched within the brain and specifically the striatum, a region enriched for medium spiny neurons that are preferentially lost in HD. Transgenic overexpression of circHTT(2-6) in two human cell lines-SH-SY5Y and HEK293-reduced cell proliferation and nuclear size without affecting cell cycle progression or cellular size, or altering the CAG repeat region length within HTT. CircHTT(2-6) overexpression did not alter total HTT protein levels, but reduced its nuclear localisation. As these phenotypic and genotypic changes resemble those observed in HD patients, our results suggest that circHTT(2-6) may play a functional role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Laura Gantley
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Brett W Stringer
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Lifelong Health, South Australian Health and Medical Research Institute, Adelaide, SA 5000, Australia
| | - Vanessa M Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Youichirou Ootsuka
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Centre for Neuroscience, Human Physiology, College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Duncan Holds
- Department of Genetics and Molecular Pathology, SA Pathology, Flinders Medical Centre, Bedford Park, SA 5042, Australia
| | - Mark Slee
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kamelya Aliakbari
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Kirsty Kirk
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Rebecca J Ormsby
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Stuart T Webb
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Adrienne Hanson
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - He Lin
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| | - Luke A Selth
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
- Freemasons Centre for Male Health and Wellbeing, Flinders University, Bedford Park, SA 5042, Australia
- Adelaide Medical School, University of Adelaide, Adelaide, SA 5000, Australia
| | - Simon J Conn
- Flinders Health and Medical Research Institute (FHMRI), College of Medicine and Public Health, Flinders University, Bedford Park, SA 5042, Australia
| |
Collapse
|
9
|
Wieczorek I, Strosznajder RP. Recent Insight into the Role of Sphingosine-1-Phosphate Lyase in Neurodegeneration. Int J Mol Sci 2023; 24:ijms24076180. [PMID: 37047151 PMCID: PMC10093903 DOI: 10.3390/ijms24076180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 04/14/2023] Open
Abstract
Sphingosine-1-phosphate lyase (SPL) is a pyridoxal 5'-phosphate-dependent enzyme involved in the irreversible degradation of sphingosine-1-phosphate (S1P)-a bioactive sphingolipid that modulates a broad range of biological processes (cell proliferation, migration, differentiation and survival; mitochondrial functioning; and gene expression). Although SPL activity leads to a decrease in the available pool of S1P in the cell, at the same time, hexadecenal and phosphoethanolamine, compounds with potential biological activity, are generated. The increased expression and/or activity of SPL, and hence the imbalance between S1P and the end products of its cleavage, were demonstrated in several pathological states. On the other hand, loss-of-function mutations in the SPL encoding gene are a cause of severe developmental impairments. Recently, special attention has been paid to neurodegenerative diseases as the most common pathologies of the nervous system. This review summarizes the current findings concerning the role of SPL in the nervous system with an emphasis on neurodegeneration. Moreover, it briefly discusses pharmacological compounds directed to inhibit its activity.
Collapse
Affiliation(s)
- Iga Wieczorek
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| | - Robert Piotr Strosznajder
- Laboratory of Preclinical Research and Environmental Agents, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawińskiego 5 St., 02-106 Warsaw, Poland
| |
Collapse
|
10
|
Berk-Rauch HE, Choudhury A, Richards AT, Singh PK, Chen ZL, Norris EH, Strickland S, Ahn HJ. Striatal fibrinogen extravasation and vascular degeneration correlate with motor dysfunction in an aging mouse model of Alzheimer’s disease. Front Aging Neurosci 2023; 15:1064178. [PMID: 36967821 PMCID: PMC10034037 DOI: 10.3389/fnagi.2023.1064178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 02/13/2023] [Indexed: 03/11/2023] Open
Abstract
Introduction: Alzheimer’s Disease (AD) patients exhibit signs of motor dysfunction, including gait, locomotion, and balance deficits. Changes in motor function often precede other symptoms of AD as well as correlate with increased severity and mortality. Despite the frequent occurrence of motor dysfunction in AD patients, little is known about the mechanisms by which this behavior is altered.Methods and Results: In the present study, we investigated the relationship between cerebrovascular impairment and motor dysfunction in a mouse model of AD (Tg6799). We found an age-dependent increase of extravasated fibrinogen deposits in the cortex and striatum of AD mice. Interestingly, there was significantly decreased cerebrovascular density in the striatum of the 15-month-old as compared to 7-month-old AD mice. We also found significant demyelination and axonal damage in the striatum of aged AD mice. We analyzed striatum-related motor function and anxiety levels of AD mice at both ages and found that aged AD mice exhibited significant impairment of motor function but not in the younger AD mice.Discussion: Our finding suggests an enticing correlation between extravasated fibrinogen, cerebrovascular damage of the striatum, and motor dysfunction in an AD mouse model, suggesting a possible mechanism underlying motor dysfunction in AD.
Collapse
Affiliation(s)
- Hanna E. Berk-Rauch
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Arnab Choudhury
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
| | - Allison T. Richards
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Pradeep K. Singh
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Zu-Lin Chen
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Erin H. Norris
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Sidney Strickland
- Patricia and John Rosenwald Laboratory of Neurobiology and Genetics, The Rockefeller University, New York, NY, United States
| | - Hyung Jin Ahn
- Department of Pharmacology, Physiology and Neurosciences, Rutgers-New Jersey Medical School, Newark, NJ, United States
- Brain Health Institute, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Hyung Jin Ahn,
| |
Collapse
|
11
|
Alkahtani S, AL-Johani NS, Alarifi S. Mechanistic Insights, Treatment Paradigms, and Clinical Progress in Neurological Disorders: Current and Future Prospects. Int J Mol Sci 2023; 24:1340. [PMID: 36674852 PMCID: PMC9865061 DOI: 10.3390/ijms24021340] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Neurodegenerative diseases (NDs) are a major cause of disability and are related to brain development. The neurological signs of brain lesions can vary from mild clinical shortfalls to more delicate and severe neurological/behavioral symptoms and learning disabilities, which are progressive. In this paper, we have tried to summarize a collective view of various NDs and their possible therapeutic outcomes. These diseases often occur as a consequence of the misfolding of proteins post-translation, as well as the dysfunctional trafficking of proteins. In the treatment of neurological disorders, a challenging hurdle to cross regarding drug delivery is the blood-brain barrier (BBB). The BBB plays a unique role in maintaining the homeostasis of the central nervous system (CNS) by exchanging components between the circulations and shielding the brain from neurotoxic pathogens and detrimental compounds. Here, we outline the current knowledge about BBB deterioration in the evolving brain, its origin, and therapeutic interventions. Additionally, we summarize the physiological scenarios of the BBB and its role in various cerebrovascular diseases. Overall, this information provides a detailed account of BBB functioning and the development of relevant treatments for neurological disorders. This paper will definitely help readers working in the field of neurological scientific communities.
Collapse
Affiliation(s)
- Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | | |
Collapse
|
12
|
Kim H, Gomez-Pastor R. HSF1 and Its Role in Huntington's Disease Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1410:35-95. [PMID: 36396925 DOI: 10.1007/5584_2022_742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
PURPOSE OF REVIEW Heat shock factor 1 (HSF1) is the master transcriptional regulator of the heat shock response (HSR) in mammalian cells and is a critical element in maintaining protein homeostasis. HSF1 functions at the center of many physiological processes like embryogenesis, metabolism, immune response, aging, cancer, and neurodegeneration. However, the mechanisms that allow HSF1 to control these different biological and pathophysiological processes are not fully understood. This review focuses on Huntington's disease (HD), a neurodegenerative disease characterized by severe protein aggregation of the huntingtin (HTT) protein. The aggregation of HTT, in turn, leads to a halt in the function of HSF1. Understanding the pathways that regulate HSF1 in different contexts like HD may hold the key to understanding the pathomechanisms underlying other proteinopathies. We provide the most current information on HSF1 structure, function, and regulation, emphasizing HD, and discussing its potential as a biological target for therapy. DATA SOURCES We performed PubMed search to find established and recent reports in HSF1, heat shock proteins (Hsp), HD, Hsp inhibitors, HSF1 activators, and HSF1 in aging, inflammation, cancer, brain development, mitochondria, synaptic plasticity, polyglutamine (polyQ) diseases, and HD. STUDY SELECTIONS Research and review articles that described the mechanisms of action of HSF1 were selected based on terms used in PubMed search. RESULTS HSF1 plays a crucial role in the progression of HD and other protein-misfolding related neurodegenerative diseases. Different animal models of HD, as well as postmortem brains of patients with HD, reveal a connection between the levels of HSF1 and HSF1 dysfunction to mutant HTT (mHTT)-induced toxicity and protein aggregation, dysregulation of the ubiquitin-proteasome system (UPS), oxidative stress, mitochondrial dysfunction, and disruption of the structural and functional integrity of synaptic connections, which eventually leads to neuronal loss. These features are shared with other neurodegenerative diseases (NDs). Currently, several inhibitors against negative regulators of HSF1, as well as HSF1 activators, are developed and hold promise to prevent neurodegeneration in HD and other NDs. CONCLUSION Understanding the role of HSF1 during protein aggregation and neurodegeneration in HD may help to develop therapeutic strategies that could be effective across different NDs.
Collapse
Affiliation(s)
- Hyuck Kim
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
13
|
Gordon EM, Laumann TO, Marek S, Newbold DJ, Hampton JM, Seider NA, Montez DF, Nielsen AM, Van AN, Zheng A, Miller R, Siegel JS, Kay BP, Snyder AZ, Greene DJ, Schlaggar BL, Petersen SE, Nelson SM, Dosenbach NUF. Individualized Functional Subnetworks Connect Human Striatum and Frontal Cortex. Cereb Cortex 2022; 32:2868-2884. [PMID: 34718460 PMCID: PMC9247416 DOI: 10.1093/cercor/bhab387] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/14/2022] Open
Abstract
The striatum and cerebral cortex are interconnected via multiple recurrent loops that play a major role in many neuropsychiatric conditions. Primate corticostriatal connections can be precisely mapped using invasive tract-tracing. However, noninvasive human research has not mapped these connections with anatomical precision, limited in part by the practice of averaging neuroimaging data across individuals. Here we utilized highly sampled resting-state functional connectivity MRI for individual-specific precision functional mapping (PFM) of corticostriatal connections. We identified ten individual-specific subnetworks linking cortex-predominately frontal cortex-to striatum, most of which converged with nonhuman primate tract-tracing work. These included separable connections between nucleus accumbens core/shell and orbitofrontal/medial frontal gyrus; between anterior striatum and dorsomedial prefrontal cortex; between dorsal caudate and lateral prefrontal cortex; and between middle/posterior putamen and supplementary motor/primary motor cortex. Two subnetworks that did not converge with nonhuman primates were connected to cortical regions associated with human language function. Thus, precision subnetworks identify detailed, individual-specific, neurobiologically plausible corticostriatal connectivity that includes human-specific language networks.
Collapse
Affiliation(s)
- Evan M Gordon
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Scott Marek
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dillan J Newbold
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jacqueline M Hampton
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicole A Seider
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David F Montez
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ashley M Nielsen
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL 60611, USA
| | - Andrew N Van
- Department of Biomedical Engineering, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Annie Zheng
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ryland Miller
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joshua S Siegel
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Abraham Z Snyder
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA 92093, USA
| | - Bradley L Schlaggar
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Steven E Petersen
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Psychological & Brain Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven M Nelson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55454, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, MN 55454, USA
| | - Nico U F Dosenbach
- Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Kennedy Krieger Institute, Baltimore, MD 21205, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
- Program in Occupational Therapy, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
14
|
Desai R, Blacutt M, Youdan G, Fritz NE, Muratori LM, Hausdorff JM, Busse M, Quinn L. Postural control and gait measures derived from wearable inertial measurement unit devices in Huntington's disease: Recommendations for clinical outcomes. Clin Biomech (Bristol, Avon) 2022; 96:105658. [PMID: 35588586 DOI: 10.1016/j.clinbiomech.2022.105658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 02/07/2023]
Abstract
BACKGROUND Postural control impairments begin early in Huntington's disease yet measures most sensitive to progression have not been identified. The aims of this study were to: 1) evaluate postural control and gait in people with and without Huntington's disease using wearable sensors; and 2) identify measures related to diagnosis and clinical severity. METHODS 43 individuals with Huntington's disease and 15 age-matched peers performed standing with feet together and feet apart, sitting, and walking with wearable inertial sensors. One-way analysis of variance determined differences in measures of postural control and gait between early and mid-disease stage, and non-Huntington's disease peers. A random forest analysis identified feature importance for Huntington's disease diagnosis. Stepwise and ordinal regressions were used to determine predictors of clinical chorea and tandem walking scores respectively. FINDINGS There was a significant main effect for all postural control and gait measures comparing early stage, mid stage and non-Huntington's disease peers, except for gait cycle duration and step duration. Total sway, root mean square and mean velocity during sitting, as well as gait speed had the greatest importance in classifying disease status. Stepwise regression showed that root mean square during standing with feet apart significantly predicted clinical measure of chorea, and ordinal regression model showed that root mean square and total sway standing feet together significantly predicted clinical measure of tandem walking. INTERPRETATIONS Root mean square measures obtained in sitting and standing using wearable sensors have the potential to serve as biomarkers of postural control impairments in Huntington's disease.
Collapse
Affiliation(s)
- Radhika Desai
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA.
| | - Miguel Blacutt
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA.
| | - Gregory Youdan
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA.
| | - Nora E Fritz
- Wayne State University, Departments of Health Care Sciences and Neurology, Detroit, MI, USA.
| | - Lisa M Muratori
- Department Physical Therapy, Stony Brook University, New York, USA.
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition, and Mobility, Neurological Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel; Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, USA.
| | - Monica Busse
- Centre for Trials Research, Cardiff University, Cardiff, UK.
| | - Lori Quinn
- Department of Biobehavioral Sciences, Teachers College, Columbia University, New York, NY, USA; Centre for Trials Research, Cardiff University, Cardiff, UK.
| |
Collapse
|
15
|
Sepers MD, Mackay JP, Koch E, Xiao D, Mohajerani MH, Chan AW, Smith-Dijak AI, Ramandi D, Murphy TH, Raymond LA. Altered cortical processing of sensory input in Huntington disease mouse models. Neurobiol Dis 2022; 169:105740. [PMID: 35460870 DOI: 10.1016/j.nbd.2022.105740] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 04/10/2022] [Accepted: 04/16/2022] [Indexed: 11/24/2022] Open
Abstract
Huntington disease (HD), a hereditary neurodegenerative disorder, manifests as progressively impaired movement and cognition. Although early abnormalities of neuronal activity in striatum are well established in HD models, there are fewer in vivo studies of the cortex. Here, we record local field potentials (LFPs) in YAC128 HD model mice versus wild-type mice. In multiple cortical areas, limb sensory stimulation evokes a greater change in LFP power in YAC128 mice. Mesoscopic imaging using voltage-sensitive dyes reveals more extensive spread of evoked sensory signals across the cortical surface in YAC128 mice. YAC128 layer 2/3 sensory cortical neurons ex vivo show increased excitatory events, which could contribute to enhanced sensory responses in vivo. Cortical LFP responses to limb stimulation, visual and auditory input are also significantly increased in zQ175 HD mice. Results presented here extend knowledge of HD beyond ex vivo studies of individual neurons to the intact cortical network.
Collapse
Affiliation(s)
- Marja D Sepers
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - James P Mackay
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Ellen Koch
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Dongsheng Xiao
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Majid H Mohajerani
- Canadian Center for Behavioural Neuroscience, University of Lethbridge, Lethbridge T1K 3M4, Canada
| | - Allan W Chan
- Department of Psychiatry, University of Alberta, Edmonton, AB, Canada
| | - Amy I Smith-Dijak
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Daniel Ramandi
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Timothy H Murphy
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
16
|
Rebec GV, Koceja DM, Bunner KD. Measuring Movement in Health and Disease. Brain Res Bull 2022; 181:167-174. [PMID: 35122899 DOI: 10.1016/j.brainresbull.2022.01.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/15/2022] [Accepted: 01/29/2022] [Indexed: 01/07/2023]
Abstract
Evaluating and quantifying the many aspects of movement -- from open-field locomotion and stepping patterns in rodent models to stride trajectory and postural sway in human patients -- are key to understanding brain function. Various experimental approaches have been used in applying these lines of research to investigate the brain mechanisms underlying neurodegenerative disease. Although valuable, data on movement are often limited by the shortcomings inherent in the data collection process itself. Steve Fowler and his research group have been instrumental in pioneering a technology that both minimizes these pitfalls in studies of rodent behavior and has applications to research on human patients. At the center of this technology is the force-plate actometer, developed by the Fowler group to assess multiple aspects of movement in rodent models. Our review highlights how use of the actometer and related behavioral measurements provides valuable insight into Huntington's disease (HD), an autosomal dominant condition of progressively deteriorating behavioral control. HD typically emerges in mid-life and has been replicated in multiple genetically engineered mouse models. The actometer also can be a valuable addition to cutting-edge neuronal and synaptic technologies that are now increasingly applied to studies of behaving animals. In short, the impact of the Fowler contribution to the neuroscience of movement is both meaningful and ongoing.
Collapse
Affiliation(s)
- George V Rebec
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States.
| | - David M Koceja
- Department of Kinesiology, Indiana University, Bloomington, IN 47405, United States; Program in Neuroscience, Indiana University, Bloomington, IN 47405, United States
| | - Kendra D Bunner
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN 47405, United States
| |
Collapse
|
17
|
Solés-Tarrés I, Cabezas-Llobet N, Lefranc B, Leprince J, Alberch J, Vaudry D, Xifró X. Pituitary Adenylate Cyclase-Activating Polypeptide (PACAP) Protects Striatal Cells and Improves Motor Function in Huntington’s Disease Models: Role of PAC1 Receptor. Front Pharmacol 2022; 12:797541. [PMID: 35153755 PMCID: PMC8832515 DOI: 10.3389/fphar.2021.797541] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/31/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington’s disease (HD) is a hereditary neurodegenerative disorder caused by the expression of mutant huntingtin (mHtt). One of the main features of HD is the degeneration of the striatum that leads to motor discoordination. Pituitary adenylate cyclase-activating polypeptide (PACAP) is a neuropeptide that acts through three receptors named PAC1R, VPAC1R, and VPAC2R. In the present study, we first investigated the effect of PACAP on STHdhQ7/Q7 and STHdhQ111/Q111 cells that express wild-type Htt with 7 and mHtt with 111 glutamines, respectively. Then we explored the capacity of PACAP to rescue motor symptoms in the R6/1, a murine model of HD. We found that PACAP treatment (10–7 M) for 24 h protects STHdhQ111/Q111 cells from mHtt-induced apoptosis. This effect is associated with an increase in PAC1R transcription, phosphorylation of ERK and Akt, and an increase of intracellular c-fos, egr1, CBP, and BDNF protein content. Moreover, the use of pharmacological inhibitors revealed that activation of ERK and Akt mediates these antiapoptotic and neurotrophic effects of PACAP. To find out PAC1R implication, we treated STHdh cells with vasoactive intestinal peptide (VIP), which exhibits equal affinity for VPAC1R and VPAC2R, but lower affinity for PAC1R, in contrast to PACAP which has same affinity for the three receptors. VIP reduced cleaved caspase-3 protein level, without promoting the expression of c-fos, egr1, CBP, and the neurotrophin BDNF. We next measured the protein level of PACAP receptors in the striatum and cortex of R6/1 mice. We observed a specific reduction of PAC1R at the onset of motor symptoms. Importantly, the intranasal administration of PACAP to R6/1 animals restored the motor function and increased the striatal levels of PAC1R, CBP, and BDNF. In conclusion, PACAP exerts antiapoptotic and neurotrophic effects in striatal neurons mainly through PAC1R. This effect in HD striatum allows the recovery of motor function and point out PAC1R as a therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Irene Solés-Tarrés
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Núria Cabezas-Llobet
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
| | - Benjamin Lefranc
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jérôme Leprince
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Jordi Alberch
- Departament de Biomedicina, Institut de Neurociències, Facultat de Medicina, Universitat de Barcelona, Barcelona, Spain
- Institut D’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain
| | - David Vaudry
- Laboratory of Neuronal and Neuroendocrine Communication and Differentiation, Neuropeptides, Neuronal Death and Cell Plasticity Team, UNIROUEN, Inserm, Normandie University, Rouen, France
- Regional Cell Imaging Platform of Normandy (PRIMACEN), UNIROUEN, Normandie University, Rouen, France
| | - Xavier Xifró
- New Therapeutic Targets Group, Department of Medical Science, Faculty of Medicine, University of Girona, Girona, Spain
- *Correspondence: Xavier Xifró,
| |
Collapse
|
18
|
Kim C, Yousefian-Jazi A, Choi SH, Chang I, Lee J, Ryu H. Non-Cell Autonomous and Epigenetic Mechanisms of Huntington's Disease. Int J Mol Sci 2021; 22:12499. [PMID: 34830381 PMCID: PMC8617801 DOI: 10.3390/ijms222212499] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a rare neurodegenerative disorder caused by an expansion of CAG trinucleotide repeat located in the exon 1 of Huntingtin (HTT) gene in human chromosome 4. The HTT protein is ubiquitously expressed in the brain. Specifically, mutant HTT (mHTT) protein-mediated toxicity leads to a dramatic degeneration of the striatum among many regions of the brain. HD symptoms exhibit a major involuntary movement followed by cognitive and psychiatric dysfunctions. In this review, we address the conventional role of wild type HTT (wtHTT) and how mHTT protein disrupts the function of medium spiny neurons (MSNs). We also discuss how mHTT modulates epigenetic modifications and transcriptional pathways in MSNs. In addition, we define how non-cell autonomous pathways lead to damage and death of MSNs under HD pathological conditions. Lastly, we overview therapeutic approaches for HD. Together, understanding of precise neuropathological mechanisms of HD may improve therapeutic approaches to treat the onset and progression of HD.
Collapse
Affiliation(s)
- Chaebin Kim
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Ali Yousefian-Jazi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Seung-Hye Choi
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| | - Inyoung Chang
- Department of Biology, Boston University, Boston, MA 02215, USA;
| | - Junghee Lee
- Boston University Alzheimer’s Disease Research Center, Boston University, Boston, MA 02118, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA 02118, USA
- VA Boston Healthcare System, Boston, MA 02130, USA
| | - Hoon Ryu
- Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Korea; (C.K.); (A.Y.-J.); (S.-H.C.)
| |
Collapse
|
19
|
Bang S, Hwang KS, Jeong S, Cho IJ, Choi N, Kim J, Kim HN. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomater 2021; 132:379-400. [PMID: 34157452 DOI: 10.1016/j.actbio.2021.06.024] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The neural circuits of the central nervous system are the regulatory pathways for feeling, motion control, learning, and memory, and their dysfunction is closely related to various neurodegenerative diseases. Despite the growing demand for the unraveling of the physiology and functional connectivity of the neural circuits, their fundamental investigation is hampered because of the inability to access the components of neural circuits and the complex microenvironment. As an alternative approach, in vitro human neural circuits show principles of in vivo human neuronal circuit function. They allow access to the cellular compartment and permit real-time monitoring of neural circuits. In this review, we summarize recent advances in reconstituted in vitro neural circuits using engineering techniques. To this end, we provide an overview of the fabrication techniques and methods for stimulation and measurement of in vitro neural circuits. Subsequently, representative examples of in vitro neural circuits are reviewed with a particular focus on the recapitulation of structures and functions observed in vivo, and we summarize their application in the study of various brain diseases. We believe that the in vitro neural circuits can help neuroscience and the neuropharmacology. STATEMENT OF SIGNIFICANCE: Despite the growing demand to unravel the physiology and functional connectivity of the neural circuits, the studies on the in vivo neural circuits are frequently limited due to the poor accessibility. Furthermore, single neuron-based analysis has an inherent limitation in that it does not reflect the full spectrum of the neural circuit physiology. As an alternative approach, in vitro engineered neural circuit models have arisen because they can recapitulate the structural and functional characteristics of in vivo neural circuits. These in vitro neural circuits allow the mimicking of dysregulation of the neural circuits, including neurodegenerative diseases and traumatic brain injury. Emerging in vitro engineered neural circuits will provide a better understanding of the (patho-)physiology of neural circuits.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
20
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
21
|
Moreira-de-Sá A, Gonçalves FQ, Lopes JP, Silva HB, Tomé ÂR, Cunha RA, Canas PM. Motor Deficits Coupled to Cerebellar and Striatal Alterations in Ube3a m-/p+ Mice Modelling Angelman Syndrome Are Attenuated by Adenosine A 2A Receptor Blockade. Mol Neurobiol 2021; 58:2543-2557. [PMID: 33464534 DOI: 10.1007/s12035-020-02275-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 12/28/2020] [Indexed: 01/22/2023]
Abstract
Angelman syndrome (AS) is a neurogenetic disorder involving ataxia and motor dysfunction, resulting from the absence of the maternally inherited functional Ube3a protein in neurons. Since adenosine A2A receptor (A2AR) blockade relieves synaptic and motor impairments in Parkinson's or Machado-Joseph's diseases, we now tested if A2AR blockade was also effective in attenuating motor deficits in an AS (Ube3am-/p+) mouse model and if this involved correction of synaptic alterations in striatum and cerebellum. Chronic administration of the A2AR antagonist SCH58261 (0.1 mg/kg/day, ip) promoted motor learning of AS mice in the accelerating-rotarod task and rescued the grip strength impairment of AS animals. These motor impairments were accompanied by synaptic alterations in cerebellum and striatum typified by upregulation of synaptophysin and vesicular GABA transporters (vGAT) in the cerebellum of AS mice along with a downregulation of vGAT, vesicular glutamate transporter 1 (vGLUT1) and the dopamine active transporter in AS striatum. Notably, A2AR blockade prevented the synaptic alterations found in AS mice cerebellum as well as the downregulation of striatal vGAT and vGLUT1. This provides the first indications that A2AR blockade may counteract the characteristic motor impairments and synaptic changes of AS, although more studies are needed to unravel the underlying mechanisms.
Collapse
Affiliation(s)
- Ana Moreira-de-Sá
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Francisco Q Gonçalves
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
| | - João P Lopes
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
| | - Henrique B Silva
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Ângelo R Tomé
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Department of Life Sciences, Faculty of Sciences and Technology, University of Coimbra, 3000-456, Coimbra, Portugal
| | - Rodrigo A Cunha
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal
- Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Paula M Canas
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, Faculty of Medicine Building-Polo 1, 3004-504, Coimbra, Portugal.
| |
Collapse
|
22
|
Buren C, Tu G, Raymond LA. Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model. J Huntingtons Dis 2021; 9:149-161. [PMID: 32310183 DOI: 10.3233/jhd-200400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the Huntingtin gene (HTT). Studies suggest cortical to striatal (C-S) projections, which regulate movement and provide cell survival signals to SPNs, are altered in the pre-manifest and early symptomatic stages of HD. But whether and how presynaptic cortical terminals are affected in HD is not well explored. OBJECTIVE Test size and replenishment of readily releasable pool (RRP), and assess glutamate refill of C-S synapses in HD models. METHODS Immunocytochemistry was applied in C-S co-cultures generated from FVB/N (WT: wildtype) mice and YAC128, an HD mouse model expressing human HTT with 128 CAG repeats on the FVB/N background; Whole-cell patch clamp recordings from striatal neurons were performed both in cultures, with or without osmotic stimuli, and in acute brain slices from 6-month-old early symptomatic YAC128 mice and WT following prolonged trains of electrical stimuli in corpus callosum. RESULTS We found no change in the average size or vesicle replenishment rate of RRP in C-S synapses of YAC128, compared with WT, cultures at day in vitro 21, a time when immunocytochemistry showed comparable neuronal survival between the two genotypes. However, YAC128 C-S synapses showed a slowed rate of recovery of glutamate release in co-cultures as well as in acute brain slices. CONCLUSION Mutant HTT expression impairs glutamate refill but not RRP size or replenishment in C-S synapses. This work provides a foundation for examining the contribution of deficits in presynaptic cortical terminals on HD progression.
Collapse
Affiliation(s)
- Caodu Buren
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Gaqi Tu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Le Cann K, Foerster A, Rösseler C, Erickson A, Hautvast P, Giesselmann S, Pensold D, Kurth I, Rothermel M, Mattis VB, Zimmer-Bensch G, von Hörsten S, Denecke B, Clarner T, Meents J, Lampert A. The difficulty to model Huntington's disease in vitro using striatal medium spiny neurons differentiated from human induced pluripotent stem cells. Sci Rep 2021; 11:6934. [PMID: 33767215 PMCID: PMC7994641 DOI: 10.1038/s41598-021-85656-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by an expanded polyglutamine repeat in the huntingtin gene. The neuropathology of HD is characterized by the decline of a specific neuronal population within the brain, the striatal medium spiny neurons (MSNs). The origins of this extreme vulnerability remain unknown. Human induced pluripotent stem cell (hiPS cell)-derived MSNs represent a powerful tool to study this genetic disease. However, the differentiation protocols published so far show a high heterogeneity of neuronal populations in vitro. Here, we compared two previously published protocols to obtain hiPS cell-derived striatal neurons from both healthy donors and HD patients. Patch-clamp experiments, immunostaining and RT-qPCR were performed to characterize the neurons in culture. While the neurons were mature enough to fire action potentials, a majority failed to express markers typical for MSNs. Voltage-clamp experiments on voltage-gated sodium (Nav) channels revealed a large variability between the two differentiation protocols. Action potential analysis did not reveal changes induced by the HD mutation. This study attempts to demonstrate the current challenges in reproducing data of previously published differentiation protocols and in generating hiPS cell-derived striatal MSNs to model a genetic neurodegenerative disorder in vitro.
Collapse
Affiliation(s)
- Kim Le Cann
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Alec Foerster
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Corinna Rösseler
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Andelain Erickson
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Petra Hautvast
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | | | - Daniel Pensold
- Institute of Biology II, Division of Functional Epigenetics in the Animal Model, RWTH Aachen University, 52074, Aachen, Germany
| | - Ingo Kurth
- Intitute of Human Genetic, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Institute Für Biology II, Department Chemosensation, AG Neuromodulation, 52074, Aachen, Germany
| | - Virginia B Mattis
- Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
- Fujifilm Cellular Dynamics, Madison, WI, 53711, USA
| | - Geraldine Zimmer-Bensch
- Institute of Biology II, Division of Functional Epigenetics in the Animal Model, RWTH Aachen University, 52074, Aachen, Germany
| | - Stephan von Hörsten
- Intitute of Virology, Clinical and Molecular Virology, Animal Center of Preclinical Experiments (PETZ), 91054, Erlangen, Germany
| | | | - Tim Clarner
- Intitute for Neuroanatomy, MIT 1, 52074, Aachen, Germany
| | - Jannis Meents
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
- Multi Channel Systems MCS GmbH, Aspenhaustrasse 21, 72770, Reutlingen, Germany.
| | - Angelika Lampert
- Institute of Physiology, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| |
Collapse
|
24
|
Kumar MJV, Shah D, Giridharan M, Yadav N, Manjithaya R, Clement JP. Spatiotemporal analysis of soluble aggregates and autophagy markers in the R6/2 mouse model. Sci Rep 2021; 11:96. [PMID: 33420088 PMCID: PMC7794371 DOI: 10.1038/s41598-020-78850-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/17/2020] [Indexed: 01/29/2023] Open
Abstract
Maintenance of cellular proteostasis is vital for post-mitotic cells like neurons to sustain normal physiological function and homeostasis, defects in which are established hallmarks of several age-related conditions like AD, PD, HD, and ALS. The Spatio-temporal accumulation of aggregated proteins in the form of inclusion bodies/plaques is one of the major characteristics of many neurodegenerative diseases, including Huntington's disease (HD). Toxic accumulation of HUNTINGTIN (HTT) aggregates in neurons bring about the aberrant phenotypes of HD, including severe motor dysfunction, dementia, and cognitive impairment at the organismal level, in an age-dependent manner. In several cellular and animal models, aggrephagy induction has been shown to clear aggregate-prone proteins like HTT and ameliorate disease pathology by conferring neuroprotection. In this study, we used the mouse model of HD, R6/2, to understand the pathogenicity of mHTT aggregates, primarily focusing on autophagy dysfunction. We report that basal autophagy is not altered in R6/2 mice, whilst being functional at a steady-state level in neurons. Moreover, we tested the efficacy of a known autophagy modulator, Nilotinib (Tasigna™), presently in clinical trials for PD, and HD, in curbing mHTT aggregate growth and their potential clearance, which was ineffective in both inducing autophagy and rescuing the pathological phenotypes in R6/2 mice.
Collapse
Affiliation(s)
- M J Vijay Kumar
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Devanshi Shah
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Mridhula Giridharan
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Niraj Yadav
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India
| | - Ravi Manjithaya
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
- Molecular Biology and Genetics Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bangalore, India.
| |
Collapse
|
25
|
Ketogenic therapy in neurodegenerative and psychiatric disorders: From mice to men. Prog Neuropsychopharmacol Biol Psychiatry 2020; 101:109913. [PMID: 32151695 DOI: 10.1016/j.pnpbp.2020.109913] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 02/11/2020] [Accepted: 03/05/2020] [Indexed: 01/31/2023]
Abstract
Ketogenic diet is a low carbohydrate and high fat diet that has been used for over 100 years in the management of childhood refractory epilepsy. More recently, ketogenic diet has been investigated for a number of metabolic, neurodegenerative and neurodevelopmental disorders. In this comprehensive review, we critically examine the potential therapeutic benefits of ketogenic diet and ketogenic agents on neurodegenerative and psychiatric disorders in humans and translationally valid animal models. The preclinical literature provides strong support for the efficacy of ketogenic diet in a variety of diverse animal models of neuropsychiatric disorders. However, the evidence from clinical studies, while encouraging, particularly in Alzheimer's disease, psychotic and autism spectrum disorders, is limited to case studies and small pilot trials. Firm conclusion on the efficacy of ketogenic diet in psychiatric disorders cannot be drawn due to the lack of randomised, controlled clinical trials. The potential mechanisms of action of ketogenic therapy in these disorders with diverse pathophysiology may include energy metabolism, oxidative stress and immune/inflammatory processes. In conclusion, while ketogenic diet and ketogenic substances hold promise pre-clinically in a variety of neurodegenerative and psychiatric disorders, further studies, particularly randomised controlled clinical trials, are warranted to better understand their clinical efficacy and potential side effects.
Collapse
|
26
|
Bjerke IE, Puchades MA, Bjaalie JG, Leergaard TB. Database of literature derived cellular measurements from the murine basal ganglia. Sci Data 2020; 7:211. [PMID: 32632099 PMCID: PMC7338524 DOI: 10.1038/s41597-020-0550-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 06/04/2020] [Indexed: 11/09/2022] Open
Abstract
Quantitative measurements and descriptive statistics of different cellular elements in the brain are typically published in journal articles as text, tables, and example figures, and represent an important basis for the creation of biologically constrained computational models, design of intervention studies, and comparison of subject groups. Such data can be challenging to extract from publications and difficult to normalise and compare across studies, and few studies have so far attempted to integrate quantitative information available in journal articles. We here present a database of quantitative information about cellular parameters in the frequently studied murine basal ganglia. The database holds a curated and normalised selection of currently available data collected from the literature and public repositories, providing the most comprehensive collection of quantitative neuroanatomical data from the basal ganglia to date. The database is shared as a downloadable resource from the EBRAINS Knowledge Graph (https://kg.ebrains.eu), together with a workflow that allows interested researchers to update and expand the database with data from future reports.
Collapse
Affiliation(s)
- Ingvild E Bjerke
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
27
|
Chakroborty S, Manfredsson FP, Dec AM, Campbell PW, Stutzmann GE, Beaumont V, West AR. Phosphodiesterase 9A Inhibition Facilitates Corticostriatal Transmission in Wild-Type and Transgenic Rats That Model Huntington's Disease. Front Neurosci 2020; 14:466. [PMID: 32581668 PMCID: PMC7283904 DOI: 10.3389/fnins.2020.00466] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 04/15/2020] [Indexed: 12/18/2022] Open
Abstract
Huntington's disease (HD) results from abnormal expansion in CAG trinucleotide repeats within the HD gene, a mutation which leads to degeneration of striatal medium-sized spiny neurons (MSNs), deficits in corticostriatal transmission, and loss of motor control. Recent studies also indicate that metabolism of cyclic nucleotides by phosphodiesterases (PDEs) is dysregulated in striatal networks in a manner linked to deficits in corticostriatal transmission. The current study assessed cortically-evoked firing in electrophysiologically-identified MSNs and fast-spiking interneurons (FSIs) in aged (9-11 months old) wild-type (WT) and BACHD transgenic rats (TG5) treated with vehicle or the selective PDE9A inhibitor PF-04447943. WT and TG5 rats were anesthetized with urethane and single-unit activity was isolated during low frequency electrical stimulation of the ipsilateral motor cortex. Compared to WT controls, MSNs recorded in TG5 animals exhibited decreased spike probability during cortical stimulation delivered at low to moderate stimulation intensities. Moreover, large increases in onset latency of cortically-evoked spikes and decreases in spike probability were observed in FSIs recorded in TG5 animals. Acute systemic administration of the PDE9A inhibitor PF-04447943 significantly decreased the onset latency of cortically-evoked spikes in MSNs recorded in WT and TG5 rats. PDE9A inhibition also increased the proportion of MSNs responding to cortical stimulation and reversed deficits in spike probability observed in TG5 rats. As PDE9A is a cGMP specific enzyme, drugs such as PF-04447943 which act to facilitate striatal cGMP signaling and glutamatergic corticostriatal transmission could be useful therapeutic agents for restoring striatal function and alleviating motor and cognitive symptoms associated with HD.
Collapse
Affiliation(s)
- Shreaya Chakroborty
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Fredric P Manfredsson
- Parkinson's Disease Research Unit, Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Alexander M Dec
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Peter W Campbell
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Grace E Stutzmann
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Vahri Beaumont
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Anthony R West
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| |
Collapse
|
28
|
Striatal Nurr1 Facilitates the Dyskinetic State and Exacerbates Levodopa-Induced Dyskinesia in a Rat Model of Parkinson's Disease. J Neurosci 2020; 40:3675-3691. [PMID: 32238479 DOI: 10.1523/jneurosci.2936-19.2020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/13/2020] [Accepted: 03/19/2020] [Indexed: 12/23/2022] Open
Abstract
The transcription factor Nurr1 has been identified to be ectopically induced in the striatum of rodents expressing l-DOPA-induced dyskinesia (LID). In the present study, we sought to characterize Nurr1 as a causative factor in LID expression. We used rAAV2/5 to overexpress Nurr1 or GFP in the parkinsonian striatum of LID-resistant Lewis or LID-prone Fischer-344 (F344) male rats. In a second cohort, rats received the Nurr1 agonist amodiaquine (AQ) together with l-DOPA or ropinirole. All rats received a chronic DA agonist and were evaluated for LID severity. Finally, we performed single-unit recordings and dendritic spine analyses on striatal medium spiny neurons (MSNs) in drug-naïve rAAV-injected male parkinsonian rats. rAAV-GFP injected LID-resistant hemi-parkinsonian Lewis rats displayed mild LID and no induction of striatal Nurr1 despite receiving a high dose of l-DOPA. However, Lewis rats overexpressing Nurr1 developed severe LID. Nurr1 agonism with AQ exacerbated LID in F344 rats. We additionally determined that in l-DOPA-naïve rats striatal rAAV-Nurr1 overexpression (1) increased cortically-evoked firing in a subpopulation of identified striatonigral MSNs, and (2) altered spine density and thin-spine morphology on striatal MSNs; both phenomena mimicking changes seen in dyskinetic rats. Finally, we provide postmortem evidence of Nurr1 expression in striatal neurons of l-DOPA-treated PD patients. Our data demonstrate that ectopic induction of striatal Nurr1 is capable of inducing LID behavior and associated neuropathology, even in resistant subjects. These data support a direct role of Nurr1 in aberrant neuronal plasticity and LID induction, providing a potential novel target for therapeutic development.SIGNIFICANCE STATEMENT The transcription factor Nurr1 is ectopically induced in striatal neurons of rats exhibiting levodopa-induced dyskinesia [LID; a side-effect to dopamine replacement strategies in Parkinson's disease (PD)]. Here we asked whether Nurr1 is causing LID. Indeed, rAAV-mediated expression of Nurr1 in striatal neurons was sufficient to overcome LID-resistance, and Nurr1 agonism exacerbated LID severity in dyskinetic rats. Moreover, we found that expression of Nurr1 in l-DOPA naïve hemi-parkinsonian rats resulted in the formation of morphologic and electrophysiological signatures of maladaptive neuronal plasticity; a phenomenon associated with LID. Finally, we determined that ectopic Nurr1 expression can be found in the putamen of l-DOPA-treated PD patients. These data suggest that striatal Nurr1 is an important mediator of the formation of LID.
Collapse
|
29
|
Blumenstock S, Dudanova I. Cortical and Striatal Circuits in Huntington's Disease. Front Neurosci 2020; 14:82. [PMID: 32116525 PMCID: PMC7025546 DOI: 10.3389/fnins.2020.00082] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/21/2020] [Indexed: 12/28/2022] Open
Abstract
Huntington's disease (HD) is a hereditary neurodegenerative disorder that typically manifests in midlife with motor, cognitive, and/or psychiatric symptoms. The disease is caused by a CAG triplet expansion in exon 1 of the huntingtin gene and leads to a severe neurodegeneration in the striatum and cortex. Classical electrophysiological studies in genetic HD mouse models provided important insights into the disbalance of excitatory, inhibitory and neuromodulatory inputs, as well as progressive disconnection between the cortex and striatum. However, the involvement of local cortical and striatal microcircuits still remains largely unexplored. Here we review the progress in understanding HD-related impairments in the cortical and basal ganglia circuits, and outline new opportunities that have opened with the development of modern circuit analysis methods. In particular, in vivo imaging studies in mouse HD models have demonstrated early structural and functional disturbances within the cortical network, and optogenetic manipulations of striatal cell types have started uncovering the causal roles of certain neuronal populations in disease pathogenesis. In addition, the important contribution of astrocytes to HD-related circuit defects has recently been recognized. In parallel, unbiased systems biology studies are providing insights into the possible molecular underpinnings of these functional defects at the level of synaptic signaling and neurotransmitter metabolism. With these approaches, we can now reach a deeper understanding of circuit-based HD mechanisms, which will be crucial for the development of effective and targeted therapeutic strategies.
Collapse
Affiliation(s)
- Sonja Blumenstock
- Department of Molecules – Signaling – Development, Max Planck Institute of Neurobiology, Martinsried, Germany
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Irina Dudanova
- Molecular Neurodegeneration Group, Max Planck Institute of Neurobiology, Martinsried, Germany
| |
Collapse
|
30
|
Zlebnik NE, Gildish I, Sesia T, Fitoussi A, Cole EA, Carson BP, Cachope R, Cheer JF. Motivational Impairment is Accompanied by Corticoaccumbal Dysfunction in the BACHD-Tg5 Rat Model of Huntington's Disease. Cereb Cortex 2019; 29:4763-4774. [PMID: 30753343 PMCID: PMC7150618 DOI: 10.1093/cercor/bhz009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 12/19/2018] [Accepted: 01/14/2019] [Indexed: 11/14/2022] Open
Abstract
Neuropsychiatric symptoms, such as avolition, apathy, and anhedonia, precede the onset of debilitating motor symptoms in Huntington's disease (HD), and their development may give insight into early disease progression and treatment. However, the neuronal and circuit mechanisms of premanifest HD pathophysiology are not well-understood. Here, using a transgenic rat model expressing the full-length human mutant HD gene, we find early and profound deficits in reward motivation in the absence of gross motor abnormalities. These deficits are accompanied by significant and progressive dysfunction in corticostriatal processing and communication among brain areas critical for reward-driven behavior. Together, our results define early corticostriatal dysfunction as a possible pathogenic contributor to psychiatric disturbances and may help identify potential pharmacotherapeutic targets for the treatment of HD.
Collapse
Affiliation(s)
- Natalie E Zlebnik
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
| | - Iness Gildish
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
| | - Thibaut Sesia
- Department of Stereotaxy and Functional Neurosurgery, University Hospital of Cologne, Kerpener Str. 62 Cologne, Germany
| | - Aurelie Fitoussi
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
| | - Ellen A Cole
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
| | - Brian P Carson
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
| | - Roger Cachope
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
- CHDI Foundation, 6080 Center Drive, Suite 700, Los Angeles, CA, USA
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
- Department of Psychiatry, University of Maryland School of Medicine, 20 Penn St., Baltimore, MD, USA
| |
Collapse
|
31
|
Creus-Muncunill J, Ehrlich ME. Cell-Autonomous and Non-cell-Autonomous Pathogenic Mechanisms in Huntington's Disease: Insights from In Vitro and In Vivo Models. Neurotherapeutics 2019; 16:957-978. [PMID: 31529216 PMCID: PMC6985401 DOI: 10.1007/s13311-019-00782-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Huntington's disease (HD) is an autosomal dominant disorder caused by an expansion in the trinucleotide CAG repeat in exon-1 in the huntingtin gene, located on chromosome 4. When the number of trinucleotide CAG exceeds 40 repeats, disease invariably is manifested, characterized by motor, cognitive, and psychiatric symptoms. The huntingtin (Htt) protein and its mutant form (mutant huntingtin, mHtt) are ubiquitously expressed but although multiple brain regions are affected, the most vulnerable brain region is the striatum. Striatal medium-sized spiny neurons (MSNs) preferentially degenerate, followed by the cortical pyramidal neurons located in layers V and VI. Proposed HD pathogenic mechanisms include, but are not restricted to, excitotoxicity, neurotrophic support deficits, collapse of the protein degradation mechanisms, mitochondrial dysfunction, transcriptional alterations, and disorders of myelin. Studies performed in cell type-specific and regionally selective HD mouse models implicate both MSN cell-autonomous properties and cell-cell interactions, particularly corticostriatal but also with non-neuronal cell types. Here, we review the intrinsic properties of MSNs that contribute to their selective vulnerability and in addition, we discuss how astrocytes, microglia, and oligodendrocytes, together with aberrant corticostriatal connectivity, contribute to HD pathophysiology. In addition, mHtt causes cell-autonomous dysfunction in cell types other than MSNs. These findings have implications in terms of therapeutic strategies aimed at preventing neuronal dysfunction and degeneration.
Collapse
Affiliation(s)
- Jordi Creus-Muncunill
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Michelle E Ehrlich
- Department of Neurology, Icahn School of Medicine at Mount Sinai, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
32
|
Siracusa R, Fusco R, Cuzzocrea S. Astrocytes: Role and Functions in Brain Pathologies. Front Pharmacol 2019; 10:1114. [PMID: 31611796 PMCID: PMC6777416 DOI: 10.3389/fphar.2019.01114] [Citation(s) in RCA: 193] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Astrocytes are a population of cells with distinctive morphological and functional characteristics that differ within specific areas of the brain. Postnatally, astrocyte progenitors migrate to reach their brain area and related properties. They have a regulatory role of brain functions that are implicated in neurogenesis and synaptogenesis, controlling blood-brain barrier permeability and maintaining extracellular homeostasis. Mature astrocytes also express some genes enriched in cell progenitors, suggesting they can retain proliferative potential. Considering heterogeneity of cell population, it is not surprising that their disorders are related to a wide range of different neuro-pathologies. Brain diseases are characterized by the active inflammatory state of the astrocytes, which is usually described as up-regulation of glial fibrillary acidic protein (GFAP). In particular, the loss of astrocytes function as a result of cellular senescence could have implications for the neurodegenerative disorders, such as Alzheimer disease and Huntington disease, and for the aging brain. Astrocytes can also drive the induction and the progression of the inflammatory state due to their Ca2+ signals and that it is strongly related to the disease severity/state. Moreover, they contribute to the altered neuronal activity in several frontal cortex pathologies such as ischemic stroke and epilepsy. There, we describe the current knowledge pertaining to astrocytes' role in brain pathologies and discuss the possibilities to target them as approach toward pharmacological therapies for neuro-pathologies.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
33
|
Holley SM, Galvan L, Kamdjou T, Dong A, Levine MS, Cepeda C. Major Contribution of Somatostatin-Expressing Interneurons and Cannabinoid Receptors to Increased GABA Synaptic Activity in the Striatum of Huntington's Disease Mice. Front Synaptic Neurosci 2019; 11:14. [PMID: 31139071 PMCID: PMC6527892 DOI: 10.3389/fnsyn.2019.00014] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 04/23/2019] [Indexed: 01/01/2023] Open
Abstract
Huntington’s disease (HD) is a heritable neurological disorder that affects cognitive and motor performance in patients carrying the mutated huntingtin (HTT) gene. In mouse models of HD, previous reports showed a significant increase in spontaneous GABAA receptor-mediated synaptic activity in striatal spiny projection neurons (SPNs). In this study, using optogenetics and slice electrophysiology, we examined the contribution of γ-aminobutyric acid (GABA)-ergic parvalbumin (PV)- and somatostatin (SOM)-expressing interneurons to the increase in GABA neurotransmission using the Q175 (heterozygote) mouse model of HD. Patch clamp recordings in voltage-clamp mode were performed on SPNs from brain slices of presymptomatic (2 months) and symptomatic (8 and 12 months) Q175 mice and wildtype (WT) littermates. While inhibitory postsynaptic currents (IPSCs) evoked in SPNs following optical activation of PV- and SOM-expressing interneurons differed in amplitude, no genotype-dependent differences were observed at all ages from both interneuron types; however, responses evoked by either type were found to have faster kinetics in symptomatic mice. Since SOM-expressing interneurons are constitutively active in striatal brain slices, we then examined the effects of acutely silencing these neurons in symptomatic mice with enhanced Natronomonas pharaonis halorhodopsin (eNpHR). Optically silencing SOM-expressing interneurons resulted in a greater decrease in the frequency of spontaneous IPSCs (sIPSCs) in a subset of SPNs from Q175 mice compared to WTs, suggesting that SOM-expressing interneurons are the main contributors to the overall increased GABA synaptic activity in HD SPNs. Additionally, the effects of activating GABAB and cannabinoid (CB1) receptors were investigated to determine whether these receptors were involved in modulating interneuron-specific GABA synaptic transmission and if this modulation differed in HD mice. When selectively activating PV- and SOM-expressing interneurons in the presence of the CB1 receptor agonist WIN-55,212, the magnitudes of the evoked IPSCs in SPNs decreased for both interneuron types although this change was less prominent in symptomatic Q175 SPNs during SOM-expressing interneuron activation. Overall, these findings show that dysfunction of SOM-expressing interneurons contributes to the increased GABA synaptic activity found in HD mouse models and that dysregulation of the endocannabinoid system may contribute to this effect.
Collapse
Affiliation(s)
- Sandra M Holley
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Laurie Galvan
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Talia Kamdjou
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Ashley Dong
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Michael S Levine
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| | - Carlos Cepeda
- Intellectual and Developmental Disabilities Research Center, Department of Psychiatry and Biobehavioral Sciences, Jane and Terry Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
34
|
Mahan VL. Neurointegrity and neurophysiology: astrocyte, glutamate, and carbon monoxide interactions. Med Gas Res 2019; 9:24-45. [PMID: 30950417 PMCID: PMC6463446 DOI: 10.4103/2045-9912.254639] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022] Open
Abstract
Astrocyte contributions to brain function and prevention of neuropathologies are as extensive as that of neurons. Astroglial regulation of glutamate, a primary neurotransmitter, is through uptake, release through vesicular and non-vesicular pathways, and catabolism to intermediates. Homeostasis by astrocytes is considered to be of primary importance in determining normal central nervous system health and central nervous system physiology - glutamate is central to dynamic physiologic changes and central nervous system stability. Gasotransmitters may affect diverse glutamate interactions positively or negatively. The effect of carbon monoxide, an intrinsic central nervous system gasotransmitter, in the complex astrocyte homeostasis of glutamate may offer insights to normal brain development, protection, and its use as a neuromodulator and neurotherapeutic. In this article, we will review the effects of carbon monoxide on astrocyte homeostasis of glutamate.
Collapse
Affiliation(s)
- Vicki L. Mahan
- Division of Pediatric Cardiothoracic Surgery in the Department of Surgery, St. Christopher's Hospital for Children/Drexel University College of Medicine, Philadelphia, PA, USA
| |
Collapse
|
35
|
Cortico-Striatal Cross-Frequency Coupling and Gamma Genesis Disruptions in Huntington's Disease Mouse and Computational Models. eNeuro 2018; 5:eN-NWR-0210-18. [PMID: 30627632 PMCID: PMC6325534 DOI: 10.1523/eneuro.0210-18.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/19/2018] [Accepted: 11/12/2018] [Indexed: 12/16/2022] Open
Abstract
Abnormal gamma band power across cortex and striatum is an important phenotype of Huntington's disease (HD) in both patients and animal models, but neither the origin nor the functional relevance of this phenotype is well understood. Here, we analyzed local field potential (LFP) activity in freely behaving, symptomatic R6/2 and Q175 mouse models and corresponding wild-type (WT) controls. We focused on periods of quiet rest, which show strong γ activity in HD mice. Simultaneous recording from motor cortex and its target area in dorsal striatum in the R6/2 model revealed exaggerated functional coupling over that observed in WT between the phase of delta frequencies (1-4 Hz) in cortex and striatum and striatal amplitude modulation of low γ frequencies (25-55 Hz; i.e., phase-amplitude coupling, PAC), but no evidence that abnormal cortical activity alone can account for the increase in striatal γ power. Both HD mouse models had stronger coupling of γ amplitude to δ phase and more unimodal phase distributions than their WT counterparts. To assess the possible role of striatal fast-spiking interneurons (FSIs) in these phenomena, we developed a computational model based on additional striatal recordings from Q175 mice. Changes in peak γ frequency and power ratio were readily reproduced by our computational model, accounting for several experimental findings reported in the literature. Our results suggest that HD is characterized by both a reorganization of cortico-striatal drive and specific population changes related to intrastriatal synaptic coupling.
Collapse
|
36
|
Padovan-Neto FE, Jurkowski L, Murray C, Stutzmann GE, Kwan M, Ghavami A, Beaumont V, Park LC, West AR. Age- and sex-related changes in cortical and striatal nitric oxide synthase in the Q175 mouse model of Huntington's disease. Nitric Oxide 2018; 83:40-50. [PMID: 30528913 DOI: 10.1016/j.niox.2018.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/19/2018] [Accepted: 12/03/2018] [Indexed: 12/24/2022]
Abstract
In Huntington's disease (HD), corticostriatal and striatopallidal projection neurons preferentially degenerate as a result of mutant huntingtin expression. Pathological deficits in nitric oxide (NO) signaling have also been reported in corticostriatal circuits in HD, however, the impact of age and sex on nitrergic transmission is not well characterized. Thus, we utilized NADPH-diaphorase (NADPH-d) histochemistry and qPCR assays to assess neuronal NO synthase (nNOS) activity/expression in aged male and female Q175 heterozygous mice. Compared to age-matched controls, male Q175 mice exhibited reductions in NADPH-d staining in the motor cortex at 21, but not, 16 months of age. Comparisons across genotypes showed that striatal NADPH-d staining was significantly decreased at both 16 and 21 months of age. Comparisons within sexes in 21 month old mice revealed a decrease in striatal NADPH-d staining in males, but no changes were detected in females. Significant correlations between cortical and striatal NADPH-d staining deficits were also observed in males and females at both ages. To directly assess the role of constitutively active NOS isoforms in these changes, nNOS and endothelial NOS (eNOS) mRNA expression levels were examined in R6/2 (3 month old) and Q175 (11.5 month old) mice using qPCR assays. nNOS transcript expression was decreased in the cortex (40%) and striatum (54%) in R6/2 mice. nNOS mRNA down-regulation in striatum of Q175 animals was more modest (19%), and no changes were detected in cortex. eNOS expression was not changed in the cortex or striatum of Q175 mice. The current findings point to age-dependent deficits in nNOS activity in the HD cortex and striatum which appear first in the striatum and are more pronounced in males. Together, these observations and previous studies indicate that decreases in nitrergic transmission progress with age and are likely to contribute to corticostriatal circuit pathophysiology particularly in male patients with HD.
Collapse
Affiliation(s)
- Fernando E Padovan-Neto
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA.
| | - Lauren Jurkowski
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Conor Murray
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Grace E Stutzmann
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| | - Mei Kwan
- PsychoGenics Inc., Paramus, NJ, USA
| | | | | | - Larry C Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, USA
| | - Anthony R West
- Department of Neuroscience, The Chicago Medical School at Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
37
|
Piiponniemi TO, Parkkari T, Heikkinen T, Puoliväli J, Park LC, Cachope R, Kopanitsa MV. Impaired Performance of the Q175 Mouse Model of Huntington's Disease in the Touch Screen Paired Associates Learning Task. Front Behav Neurosci 2018; 12:226. [PMID: 30333735 PMCID: PMC6176131 DOI: 10.3389/fnbeh.2018.00226] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 09/10/2018] [Indexed: 01/16/2023] Open
Abstract
Cognitive disturbances often predate characteristic motor dysfunction in individuals with Huntington’s disease (HD) and place an increasing burden on the HD patients and caregivers with the progression of the disorder. Therefore, application of maximally translational cognitive tests to animal models of HD is imperative for the development of treatments that could alleviate cognitive decline in human patients. Here, we examined the performance of the Q175 mouse knock-in model of HD in the touch screen version of the paired associates learning (PAL) task. We found that 10–11-month-old heterozygous Q175 mice had severely attenuated learning curve in the PAL task, which was conceptually similar to previously documented impaired performance of individuals with HD in the PAL task of the Cambridge Neuropsychological Test Automated Battery (CANTAB). Besides high rate of errors in PAL task, Q175 mice exhibited considerably lower responding rate than age-matched wild-type (WT) animals. Our examination of effortful operant responding during fixed ratio (FR) and progressive ratio (PR) reinforcement schedules in a separate cohort of similar age confirmed slower and unselective performance of mutant animals, as observed during PAL task, but suggested that motivation to work for nutritional reward in the touch screen setting was similar in Q175 and WT mice. We also demonstrated that pronounced sensorimotor disturbances in Q175 mice can be detected at early touch screen testing stages, (e.g., during “Punish Incorrect” phase of operant pretraining), so we propose that shorter test routines may be utilised for more expedient studies of treatments aimed at the rescue of HD-related phenotype.
Collapse
Affiliation(s)
| | | | | | | | - Larry C Park
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Roger Cachope
- CHDI Management/CHDI Foundation, Los Angeles, CA, United States
| | - Maksym V Kopanitsa
- Charles River Discovery Services, Kuopio, Finland.,UK Dementia Research Institute at Imperial College London, Division of Brain Sciences, Department of Medicine, Imperial College London, London, United Kingdom
| |
Collapse
|
38
|
Ishii N, Mochizuki H, Miyamoto M, Ebihara Y, Shiomi K, Nakazato M. 18F-fluorodeoxyglucose positron emission tomography and magnetic resonance imaging evaluation of chorea. Neurol Int 2018; 10:7780. [PMID: 30344966 PMCID: PMC6176470 DOI: 10.4081/ni.2018.7780] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 06/23/2018] [Indexed: 11/25/2022] Open
Abstract
Chorea is thought to be caused by deactivation of the indirect pathway in the basal ganglia circuit. However, few imaging studies have evaluated the basal ganglia circuit in actual patients with chorea. We investigated the lesions and mechanisms underlying chorea using brain magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET). This retrospective case series included three patients with chorea caused by different diseases: hyperglycemic chorea, Huntington’s disease, and subarachnoid hemorrhage. All the patients showed dysfunction in the striatum detected by both MRI and FDG-PET. These neuroimaging findings confirm the theory that chorea is related to an impairment of the indirect pathway of basal ganglia circuit.
Collapse
Affiliation(s)
- Nobuyuki Ishii
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Hitoshi Mochizuki
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Miyuki Miyamoto
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Yuka Ebihara
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Kazutaka Shiomi
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| | - Masamitsu Nakazato
- Division of Neurology, Respirology, Endocrinology and Metabolism, Department of Internal Medicine, University of Miyazaki, Japan
| |
Collapse
|
39
|
Laprairie RB, Petr GT, Sun Y, Fischer KD, Denovan-Wright EM, Rosenberg PA. Huntington's disease pattern of transcriptional dysregulation in the absence of mutant huntingtin is produced by knockout of neuronal GLT-1. Neurochem Int 2018; 123:85-94. [PMID: 29709465 DOI: 10.1016/j.neuint.2018.04.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/02/2018] [Accepted: 04/24/2018] [Indexed: 12/11/2022]
Abstract
GLT-1 is the major glutamate transporter in the brain, and is expressed in astrocytes and in axon terminals in the hippocampus, cortex, and striatum. Neuronal GLT-1 accounts for only 5-10% of total brain GLT-1 protein, and its function is uncertain. In HD, synaptic dysfunction of the corticostriate synapse is well-established. Transcriptional dysregulation is a key feature of HD. We hypothesized that deletion of neuronal GLT-1, because it is expressed in axon terminals in the striatum, might produce a synaptopathy similar to that present in HD. If true, then some of the gene expression changes observed in HD might also be observed in the neuronal GLT-1 knockout. In situ hybridization using 33P labeled oligonucleotide probes was carried out to assess localization and expression of a panel of genes known to be altered in expression in HD. We found changes in the expression of cannabinoid receptors 1 and 2, preproenkaphalin, and PDE10A in the striatum of mice in which the GLT-1 gene was inactivated in neurons by expression of synapsin-Cre, compared to wild-type littermates. These changes in expression were observed at 12 weeks of age but not at 6 weeks of age. No changes in DARPP-32, PDE1B, NGFIA, or β-actin expression were observed. In addition, we found widespread alteration in expression of the dynamin 1 gene. The changes in expression in the neuronal GLT-1 knockout of genes thought to exemplify HD transcriptional dysregulation suggest an overlap in the synaptopathy caused by neuronal GLT-1 deletion and HD. These data further suggest that specific changes in expression of cannabinoid receptors, preproenkephalin, and PDE10A, considered to be the hallmark of HD transcriptional dysregulation, may be produced by an abnormality of glutamate homeostasis under the regulation of neuronal GLT-1, or a synaptic disturbance caused by that abnormality, independently of mutation in huntingtin.
Collapse
Affiliation(s)
- Robert B Laprairie
- Department of Pharmacology, Dalhousie University, Halifax, NS B3M 4R2, Canada
| | - Geraldine T Petr
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Yan Sun
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Kathryn D Fischer
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | | | - Paul A Rosenberg
- Department of Neurology and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
40
|
Reiner A, Deng Y. Disrupted striatal neuron inputs and outputs in Huntington's disease. CNS Neurosci Ther 2018; 24:250-280. [PMID: 29582587 PMCID: PMC5875736 DOI: 10.1111/cns.12844] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 02/15/2018] [Accepted: 02/16/2018] [Indexed: 12/22/2022] Open
Abstract
Huntington's disease (HD) is a hereditary progressive neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for the protein huntingtin, resulting in a pathogenic expansion of the polyglutamine tract in the N-terminus of this protein. The HD pathology resulting from the mutation is most prominent in the striatal part of the basal ganglia, and progressive differential dysfunction and loss of striatal projection neurons and interneurons account for the progression of motor deficits seen in this disease. The present review summarizes current understanding regarding the progression in striatal neuron dysfunction and loss, based on studies both in human HD victims and in genetic mouse models of HD. We review evidence on early loss of inputs to striatum from cortex and thalamus, which may be the basis of the mild premanifest bradykinesia in HD, as well as on the subsequent loss of indirect pathway striatal projection neurons and their outputs to the external pallidal segment, which appears to be the basis of the chorea seen in early symptomatic HD. Later loss of direct pathway striatal projection neurons and their output to the internal pallidal segment account for the severe akinesia seen late in HD. Loss of parvalbuminergic striatal interneurons may contribute to the late dystonia and rigidity.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
- Department of OphthalmologyThe University of Tennessee Health Science CenterMemphisTNUSA
| | - Yun‐Ping Deng
- Department of Anatomy & NeurobiologyThe University of Tennessee Health Science CenterMemphisTNUSA
| |
Collapse
|
41
|
López-Hurtado A, Burgos DF, González P, Dopazo XM, González V, Rábano A, Mellström B, Naranjo JR. Inhibition of DREAM-ATF6 interaction delays onset of cognition deficit in a mouse model of Huntington's disease. Mol Brain 2018. [PMID: 29523177 PMCID: PMC5845147 DOI: 10.1186/s13041-018-0359-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The transcriptional repressor DREAM (downstream regulatory element antagonist modulator) is a multifunctional neuronal calcium sensor (NCS) that controls Ca2+ and protein homeostasis through gene regulation and protein-protein interactions. Downregulation of DREAM is part of an endogenous neuroprotective mechanism that improves ATF6 (activating transcription factor 6) processing, neuronal survival in the striatum, and motor coordination in R6/2 mice, a model of Huntington’s disease (HD). Whether modulation of DREAM activity can also ameliorate cognition deficits in HD mice has not been studied. Moreover, it is not known whether DREAM downregulation in HD is unique, or also occurs for other NCS family members. Using the novel object recognition test, we show that chronic administration of the DREAM-binding molecule repaglinide, or induced DREAM haplodeficiency delays onset of cognitive impairment in R6/1 mice, another HD model. The mechanism involves a notable rise in the levels of transcriptionally active ATF6 protein in the hippocampus after repaglinide administration. In addition, we show that reduction in DREAM protein in the hippocampus of HD patients was not accompanied by downregulation of other NCS family members. Our results indicate that DREAM inhibition markedly improves ATF6 processing in the hippocampus and that it might contribute to a delay in memory decline in HD mice. The mechanism of neuroprotection through DREAM silencing in HD does not apply to other NCS family members.
Collapse
Affiliation(s)
- Alejandro López-Hurtado
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Daniel F Burgos
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Paz González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Xose M Dopazo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Valentina González
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Alberto Rábano
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Fundación CIEN, Instituto de Salud Carlos III, Madrid, Spain
| | - Britt Mellström
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain.,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain
| | - Jose R Naranjo
- Spanish Network for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain. .,Centro Nacional de Biotecnología, CNB-CSIC, Darwin 3, E-28049, Madrid, Spain.
| |
Collapse
|
42
|
Zhang X, Wan JQ, Tong XP. Potassium channel dysfunction in neurons and astrocytes in Huntington's disease. CNS Neurosci Ther 2018; 24:311-318. [PMID: 29377621 DOI: 10.1111/cns.12804] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2017] [Revised: 12/24/2017] [Accepted: 12/25/2017] [Indexed: 01/09/2023] Open
Abstract
Huntington's disease (HD) is a late-onset fatal neurodegenerative disease, characterized by progressive movement disorders, psychiatric symptoms, and cognitive impairment. The cytosine-adenine-guanine (CAG) triplet expansion encoding glutamine present in the protein huntingtin (Htt), produces widespread neuronal and glial pathology. Mutant huntingtin (mHtt) nuclear aggregates are the primary cause of cortical and striatal neuron degeneration, neuronal inflammation, apoptosis and eventual cell loss. The precise mechanisms underlying the pathogenesis of neurodegeneration in HD remain poorly understood and HD patients have no current cure. Potassium channels are widely expressed in most cell types. In neurons, they play a crucial role in setting the resting membrane potential, mediating the rapid repolarization phase of the action potential and controlling sub-threshold oscillations of membrane potentials. In glial cells, their major contributions are maintaining the resting membrane potential and buffering extracellular K+ . Thus, potassium channels have an essential function in both physiological and pathological brain conditions. This review summarizes recent progress on potassium channels involved in the pathology of HD by using different HD mouse models. Exploring the dysfunction of potassium channels in the brain illustrates new approaches for targeting this channel for the treatment of HD.
Collapse
Affiliation(s)
- Xiao Zhang
- Discipline of Neuroscience and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie-Qing Wan
- Department of Neurological Surgery, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Ping Tong
- Discipline of Neuroscience and Department of Anatomy and Physiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
43
|
Wu J, Ryskamp D, Birnbaumer L, Bezprozvanny I. Inhibition of TRPC1-Dependent Store-Operated Calcium Entry Improves Synaptic Stability and Motor Performance in a Mouse Model of Huntington's Disease. J Huntingtons Dis 2018; 7:35-50. [PMID: 29480205 PMCID: PMC6309623 DOI: 10.3233/jhd-170266] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene. We previously discovered that mutant Huntingtin sensitizes type 1 inositol 1,4,5-trisphosphate receptor (InsP3R1) to InsP3. This causes calcium leakage from the endoplasmic reticulum (ER) and a compensatory increase in neuronal store-operated calcium (nSOC) entry. We previously demonstrated that supranormal nSOC leads to synaptic loss in striatal medium spiny neurons (MSNs) in YAC128 HD mice. OBJECTIVE We sought to identify calcium channels supporting supranormal nSOC in HD MSNs and to validate these channels as potential therapeutic targets for HD. METHODS Cortico-striatal cultures were established from wild type and YAC128 HD mice and the density of MSN spines was quantified. The expression of candidate nSOC components was suppressed by RNAi knockdown and by CRISPR/Cas9 knockout. TRPC1 knockout mice were crossed with YAC128 HD mice for evaluation of motor performance in a beamwalk assay. RESULTS RNAi-mediated knockdown of TRPC1, TRPC6, Orai1, or Orai2, but not other TRPC isoforms or Orai3, rescued the density of YAC128 MSN spines. Knockdown of stromal interaction molecule 1 (STIM1), an ER calcium sensor and nSOC activator, also rescued YAC128 MSN spines. Knockdown of the same targets suppressed supranormal nSOC in YAC128 MSN spines. These channel subunits co-immunoprecipitated with STIM1 and STIM2 in synaptosomal lysates from mouse striata. Crossing YAC128 mice with TRPC1 knockout mice improved motor performance and rescued MSN spines in vitro and in vivo, indicating that inhibition of TRPC1 may serve as a neuroprotective strategy for HD treatment. CONCLUSIONS TRPC1 channels constitute a potential therapeutic target for treatment of HD.
Collapse
Affiliation(s)
- Jun Wu
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Daniel Ryskamp
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lutz Birnbaumer
- Neurobiology Laboratory, NIEHS, Research Triangle Park, NC, USA
- Institute of Biomedical Research (BIOMED), Catholic University of Argentina, C1107AFF Buenos Aires, Argentina
| | - Ilya Bezprozvanny
- Department of Physiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
44
|
Winland CD, Welsh N, Sepulveda-Rodriguez A, Vicini S, Maguire-Zeiss KA. Inflammation alters AMPA-stimulated calcium responses in dorsal striatal D2 but not D1 spiny projection neurons. Eur J Neurosci 2017; 46:2519-2533. [PMID: 28921719 PMCID: PMC5673553 DOI: 10.1111/ejn.13711] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/23/2017] [Accepted: 08/24/2017] [Indexed: 12/22/2022]
Abstract
Neuroinflammation precedes neuronal loss in striatal neurodegenerative diseases and can be exacerbated by the release of proinflammatory molecules by microglia. These molecules can affect trafficking of AMPARs. The preferential trafficking of calcium-permeable versus impermeable AMPARs can result in disruptions of [Ca2+ ]i and alter cellular functions. In striatal neurodegenerative diseases, changes in [Ca2+ ]i and L-type voltage-gated calcium channels (VGCCs) have been reported. Therefore, this study sought to determine whether a proinflammatory environment alters AMPA-stimulated [Ca2+ ]i through calcium-permeable AMPARs and/or L-type VGCCs in dopamine-2- and dopamine-1-expressing striatal spiny projection neurons (D2 and D1 SPNs) in the dorsal striatum. Mice expressing the calcium indicator protein, GCaMP in D2 or D1 SPNs, were utilized for calcium imaging. Microglial activation was assessed by morphology analyses. To induce inflammation, acute mouse striatal slices were incubated with lipopolysaccharide (LPS). Here we report that LPS treatment potentiated AMPA responses only in D2 SPNs. When a nonspecific VGCC blocker was included, we observed a decrease of AMPA-stimulated calcium fluorescence in D2 but not D1 SPNs. The remaining agonist-induced [Ca2+ ]i was mediated by calcium-permeable AMPARs because the responses were completely blocked by a selective calcium-permeable AMPAR antagonist. We used isradipine, the highly selective L-type VGCC antagonist to determine the role of L-type VGCCs in SPNs treated with LPS. Isradipine decreased AMPA-stimulated responses selectively in D2 SPNs after LPS treatment. Our findings suggest that dorsal striatal D2 SPNs are specifically targeted in proinflammatory conditions and that L-type VGCCs and calcium-permeable AMPARs are important mediators of this effect.
Collapse
MESH Headings
- Animals
- CX3C Chemokine Receptor 1/genetics
- CX3C Chemokine Receptor 1/metabolism
- Calcium/metabolism
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/metabolism
- Cations, Divalent/metabolism
- Corpus Striatum/drug effects
- Corpus Striatum/metabolism
- Corpus Striatum/pathology
- Dopaminergic Neurons/drug effects
- Dopaminergic Neurons/metabolism
- Dopaminergic Neurons/pathology
- Female
- Inflammation/metabolism
- Inflammation/pathology
- Lipopolysaccharides
- Male
- Mice, Inbred C57BL
- Mice, Transgenic
- Microglia/drug effects
- Microglia/metabolism
- Microglia/pathology
- Receptors, AMPA/antagonists & inhibitors
- Receptors, AMPA/metabolism
- Receptors, Dopamine D1/genetics
- Receptors, Dopamine D1/metabolism
- Receptors, Dopamine D2/genetics
- Receptors, Dopamine D2/metabolism
- Tissue Culture Techniques
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid/metabolism
Collapse
Affiliation(s)
- Carissa D. Winland
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Nora Welsh
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| | - Alberto Sepulveda-Rodriguez
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Stefano Vicini
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Pharmacology & Physiology, Georgetown University Medical Center, Washington, D.C. 20007 USA
| | - Kathleen A. Maguire-Zeiss
- Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Neuroscience, Georgetown University Medical Center, Washington, D.C. 20007 USA
- Department of Biology, Georgetown University, Washington, D.C. 20007 USA
| |
Collapse
|
45
|
RNA-binding proteins with prion-like domains in health and disease. Biochem J 2017; 474:1417-1438. [PMID: 28389532 DOI: 10.1042/bcj20160499] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/06/2017] [Accepted: 02/09/2017] [Indexed: 02/07/2023]
Abstract
Approximately 70 human RNA-binding proteins (RBPs) contain a prion-like domain (PrLD). PrLDs are low-complexity domains that possess a similar amino acid composition to prion domains in yeast, which enable several proteins, including Sup35 and Rnq1, to form infectious conformers, termed prions. In humans, PrLDs contribute to RBP function and enable RBPs to undergo liquid-liquid phase transitions that underlie the biogenesis of various membraneless organelles. However, this activity appears to render RBPs prone to misfolding and aggregation connected to neurodegenerative disease. Indeed, numerous RBPs with PrLDs, including TDP-43 (transactivation response element DNA-binding protein 43), FUS (fused in sarcoma), TAF15 (TATA-binding protein-associated factor 15), EWSR1 (Ewing sarcoma breakpoint region 1), and heterogeneous nuclear ribonucleoproteins A1 and A2 (hnRNPA1 and hnRNPA2), have now been connected via pathology and genetics to the etiology of several neurodegenerative diseases, including amyotrophic lateral sclerosis, frontotemporal dementia, and multisystem proteinopathy. Here, we review the physiological and pathological roles of the most prominent RBPs with PrLDs. We also highlight the potential of protein disaggregases, including Hsp104, as a therapeutic strategy to combat the aberrant phase transitions of RBPs with PrLDs that likely underpin neurodegeneration.
Collapse
|