1
|
Zhao D, Wang W, Xia X, Ju P, Shen L, Nan W. Effects of Frontal-Midline Theta Neurofeedback with Different Training Directions on Goal-Directed Attentional Control. Appl Psychophysiol Biofeedback 2024:10.1007/s10484-024-09673-y. [PMID: 39499345 DOI: 10.1007/s10484-024-09673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/14/2024] [Indexed: 11/07/2024]
Abstract
As a significant component of executive function, goal-directed attentional control is crucial for cognitive processing and is closely linked to frontal-midline theta (FMT) rhythms. However, how up-regulation and down-regulation of FMT through neurofeedback training (NFT) impact goal-directed attention control remains unclear, especially for both short-term and long-lasting effects. Therefore, this study employed a single-blind sham-controlled between-subject design to answer this question. Forty-seven healthy adults were randomly assigned to the up-regulation, down-regulation, or sham control groups. Each group underwent one NFT session per day at the Fz electrode site for four consecutive days. All participants completed a visual search task before, immediately after the first, after the final, and one week following the last NFT session. The down-regulation group significantly reduced FMT activity during NFT and in the resting state (p < = 0.038), while the up-regulation group only showed an upward trend during the training phase (r = 0.721, p = 0.002). The behavioral performance showed no significant improvement in any group (p > 0.05). Importantly, the FMT learning efficacy in the up-regulation group revealed a significantly negative correlation with the change in switch cost (r = -0.602, p = 0.046). These findings suggest a close link between the up-regulation efficacy of FMT rhythms and goal-directed attentional control. In educational or clinical settings, it would be desirable to improve goal-directed attention through enhancement of FMT up-regulation efficacy of NFT in future work.
Collapse
Affiliation(s)
- Di Zhao
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Wenyi Wang
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Xiaoyu Xia
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Ping Ju
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Lu Shen
- Faculty of Science and Technology, University of Macau, Macau, China
| | - Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China.
- The Research Base of Online Education for Shanghai Middle and Primary Schools, Shanghai, China.
| |
Collapse
|
2
|
Himmelmeier L, Werheid K. Neurofeedback Training in Children with ADHD: A Systematic Review of Personalization and Methodological Features Facilitating Training Conditions. Clin EEG Neurosci 2024; 55:625-635. [PMID: 39211991 DOI: 10.1177/15500594241279580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Objective. Current research on the effectiveness of neurofeedback (NFB) in children with attention-deficit/hyperactivity disorder (ADHD) is divided. Personalized NFB (pNFB), using pre-recorded individual electroencephalogram (EEG) features, is hypothesized to provide more reliable results. Our paper reviews available evidence on pNFB effectiveness and its methodological quality. Additionally, it explores whether other methodological features implying personalization are related to successful NFB. Methods. We conducted a systematic literature review on PubMed, PSYNDEX, PsycInfo and PsycArticles until November, 30, 2023. Studies that focused on pNFB in children with ADHD were selected, deviant studies excluded. Quality ratings by independent raters using Loney's1 criteria were conducted. Pooled effect sizes for NFB effects and methodological features were calculated. Results. Three of 109 studies included personalization and were reviewed in the full-text. In two studies, theta/beta-NFB was personalized using individual alpha peak frequencies (iAPF), whereas in one study, individual beta rhythms were trained. All three studies demonstrated significant short- and long-term improvements in ADHD symptoms, as assessed by questionnaires and objective performance tests, when compared to standard protocols (SP), sham-NFB, and control conditions. Twelve of 111 studies reported methodological features consistently related to NFB effectiveness. These features, including self-control instructions, feedback animations, timing of feedback presentation, behavioral performance, pre-recorded individual ERP-components and stimulant medication dosage, can be used to personalize NFB and enhance training success. Conclusion. Personalizing NFB with iAPF appears promising based on the existing -albeit small- body of research. Future NFB studies should include iAPF and other personalized features facilitating implementation consistently associated with treatment success.
Collapse
Affiliation(s)
- Luisa Himmelmeier
- Clinical Neuropsychology and Psychotherapy of the Department of Psychology, Bielefeld University, Bielefeld, Germany
| | - Katja Werheid
- Clinical Neuropsychology and Psychotherapy of the Department of Psychology, Bielefeld University, Bielefeld, Germany
| |
Collapse
|
3
|
Aggensteiner PM, Böttinger B, Baumeister S, Hohmann S, Heintz S, Kaiser A, Häge A, Werhahn J, Hofstetter C, Walitza S, Franke B, Buitelaar J, Banaschewski T, Brandeis D, Holz NE. Randomized controlled trial of individualized arousal-biofeedback for children and adolescents with disruptive behavior disorders (DBD). Eur Child Adolesc Psychiatry 2024; 33:3055-3066. [PMID: 38329535 PMCID: PMC11424738 DOI: 10.1007/s00787-023-02368-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 12/21/2023] [Indexed: 02/09/2024]
Abstract
Disruptive behavior disorders [including conduct disorder (CD) and oppositional defiant disorder (ODD)] are common childhood and adolescent psychiatric conditions often linked to altered arousal. The recommended first-line treatment is multi-modal therapy and includes psychosocial and behavioral interventions. Their modest effect sizes along with clinically and biologically heterogeneous phenotypes emphasize the need for innovative personalized treatment targeting impaired functions such as arousal dysregulation. A total of 37 children aged 8-14 years diagnosed with ODD/CD were randomized to 20 sessions of individualized arousal biofeedback using skin conductance levels (SCL-BF) or active treatment as usual (TAU) including psychoeducation and cognitive-behavioral elements. The primary outcome was the change in parents´ ratings of aggressive behavior measured by the Modified Overt Aggression Scale. Secondary outcome measures were subscales from the Child Behavior Checklist, the Inventory of Callous-Unemotional traits, and the Reactive-Proactive Aggression Questionnaire. The SCL-BF treatment was neither superior nor inferior to the active TAU. Both groups showed reduced aggression after treatment with small effects for the primary outcome and large effects for some secondary outcomes. Importantly, successful learning of SCL self-regulation was related to reduced aggression at post-assessment. Individualized SCL-BF was not inferior to active TAU for any treatment outcome with improvements in aggression. Further, participants were on average able to self-regulate their SCL, and those who best learned self-regulation showed the highest clinical improvement, pointing to specificity of SCL-BF regulation for improving aggression. Further studies with larger samples and improved methods, for example by developing BF for mobile use in ecologically more valid settings are warranted.
Collapse
Affiliation(s)
- Pascal-M Aggensteiner
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany.
| | - Boris Böttinger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah Baumeister
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy and Psychosomatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Stefan Heintz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Anna Kaiser
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Alexander Häge
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Julia Werhahn
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Christoph Hofstetter
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Susanne Walitza
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Barbara Franke
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Jan Buitelaar
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
| | - Daniel Brandeis
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Hospital of Psychiatry Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University and ETH Zurich, Zurich, Switzerland
| | - Nathalie E Holz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty, Mannheim/Heidelberg University, Mannheim, Germany
- Donders Institute for Brain, Cognition and Behavior, Radboud University Nijmegen, Nijmegen, The Netherlands
- Department for Cognitive Neuroscience, Radboud University Medical Center Nijmegen, Nijmegen, The Netherlands
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| |
Collapse
|
4
|
Boxum M, Voetterl H, van Dijk H, Gordon E, DeBeus R, Arnold LE, Arns M. Challenging the Diagnostic Value of Theta/Beta Ratio: Insights From an EEG Subtyping Meta-Analytical Approach in ADHD. Appl Psychophysiol Biofeedback 2024:10.1007/s10484-024-09649-y. [PMID: 38858282 DOI: 10.1007/s10484-024-09649-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
The frequently reported high theta/beta ratio (TBR) in the electroencephalograms (EEGs) of children with attention-deficit/hyperactivity disorder (ADHD) has been suggested to include at least two distinct neurophysiological subgroups, a subgroup with high TBR and one with slow alpha peak frequency, overlapping the theta range. We combined three large ADHD cohorts recorded under standardized procedures and used a meta-analytical approach to leverage the large sample size (N = 417; age range: 6-18 years), classify these EEG subtypes and investigate their behavioral correlates to clarify their brain-behavior relationships. To control for the fact that slow alpha might contribute to theta power, three distinct EEG subgroups (non-slow-alpha TBR (NSAT) subgroup, slow alpha peak frequency (SAF) subgroup, not applicable (NA) subgroup) were determined, based on a halfway cut-off in age- and sex-normalized theta and alpha, informed by previous literature. For the meta-analysis, Cohen's d was calculated to assess the differences between EEG subgroups for baseline effects, using means and standard deviations of baseline inattention and hyperactivity-impulsivity scores. Non-significant, small Grand Mean effect sizes (-0.212 < d < 0.218) were obtained when comparing baseline behavioral scores between the EEG subgroups. This study could not confirm any association of EEG subtype with behavioral traits. This confirms previous findings suggesting that TBR has no diagnostic value for ADHD. TBR could, however, serve as an aid to stratify patients between neurofeedback protocols based on baseline TBR. A free online tool was made available for clinicians to calculate age- and sex-corrected TBR decile scores (Brainmarker-IV) for stratification of neurofeedback protocols.
Collapse
Affiliation(s)
- Marit Boxum
- Radboud University, Nijmegen, The Netherlands
- Research Institute Brainclinics, Brainclinics Foundation, Bijleveldsingel 32, 6524 AD, Nijmegen, The Netherlands
| | - Helena Voetterl
- Research Institute Brainclinics, Brainclinics Foundation, Bijleveldsingel 32, 6524 AD, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Hanneke van Dijk
- Research Institute Brainclinics, Brainclinics Foundation, Bijleveldsingel 32, 6524 AD, Nijmegen, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
- Synaeda Psycho Medisch Centrum, Leeuwarden, The Netherlands
| | | | - Roger DeBeus
- The University of North Carolina at Asheville, Asheville, NC, USA
| | - L Eugene Arnold
- Department of Psychiatry &, Behavioral Health, Nisonger Center, Ohio State University, Columbus, OH, USA
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Bijleveldsingel 32, 6524 AD, Nijmegen, The Netherlands.
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
5
|
Tosti B, Corrado S, Mancone S, Di Libero T, Rodio A, Andrade A, Diotaiuti P. Integrated use of biofeedback and neurofeedback techniques in treating pathological conditions and improving performance: a narrative review. Front Neurosci 2024; 18:1358481. [PMID: 38567285 PMCID: PMC10985214 DOI: 10.3389/fnins.2024.1358481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/01/2024] [Indexed: 04/04/2024] Open
Abstract
In recent years, the scientific community has begun tо explore the efficacy оf an integrated neurofeedback + biofeedback approach іn various conditions, both pathological and non-pathological. Although several studies have contributed valuable insights into its potential benefits, this review aims tо further investigate its effectiveness by synthesizing current findings and identifying areas for future research. Our goal іs tо provide a comprehensive overview that may highlight gaps іn the existing literature and propose directions for subsequent studies. The search for articles was conducted on the digital databases PubMed, Scopus, and Web of Science. Studies to have used the integrated neurofeedback + biofeedback approach published between 2014 and 2023 and reviews to have analyzed the efficacy of neurofeedback and biofeedback, separately, related to the same time interval and topics were selected. The search identified five studies compatible with the objectives of the review, related to several conditions: nicotine addiction, sports performance, Autism Spectrum Disorder (ASD), and Attention Deficit Hyperactivity Disorder (ADHD). The integrated neurofeedback + biofeedback approach has been shown to be effective in improving several aspects of these conditions, such as a reduction in the presence of psychiatric symptoms, anxiety, depression, and withdrawal symptoms and an increase in self-esteem in smokers; improvements in communication, imitation, social/cognitive awareness, and social behavior in ASD subjects; improvements in attention, alertness, and reaction time in sports champions; and improvements in attention and inhibitory control in ADHD subjects. Further research, characterized by greater methodological rigor, is therefore needed to determine the effectiveness of this method and the superiority, if any, of this type of training over the single administration of either. This review іs intended tо serve as a catalyst for future research, signaling promising directions for the advancement оf biofeedback and neurofeedback methodologies.
Collapse
Affiliation(s)
- Beatrice Tosti
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Stefano Corrado
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Stefania Mancone
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Tommaso Di Libero
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Angelo Rodio
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| | - Alexandro Andrade
- Department of Physical Education, CEFID, Santa Catarina State University, Florianopolis, Santa Catarina, Brazil
| | - Pierluigi Diotaiuti
- Department of Human Sciences, Society and Health, University of Cassino, Cassino, Lazio, Italy
| |
Collapse
|
6
|
Wilens TE, Stone M, Lanni S, Berger A, Wilson RLH, Lydston M, Surman CB. Treating Executive Function in Youth With Attention Deficit Hyperactivity Disorder: A Review of Pharmacological and Non-Pharmacological Interventions. J Atten Disord 2024; 28:751-790. [PMID: 38178649 DOI: 10.1177/10870547231218925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
INTRODUCTION Executive function (EF) deficits are common in youth with ADHD and pose significant functional impairments. The extent and effect of interventions addressing EF in youth with ADHD remain unclear. METHODS We conducted a systematic literature review using PRISMA guidelines. Included studies were randomized controlled trials of interventions to treat EF in youth with ADHD. RESULTS Our search returned 136 studies representing 11,443 study participants. We identified six intervention categories: nonstimulant pharmacological (N = 3,576 participants), neurological (N = 1,935), psychological (N = 2,387), digital (N = 2,416), physiological (N = 680), and combination (N = 366). The bulk of the evidence supported pharmacological interventions as most effective in mitigating EF, followed by psychological and digital interventions. CONCLUSION A breadth of treatments exists for EF in youth with ADHD. Pharmacological, psychotherapeutic, and digital interventions had the most favorable, replicable outcomes. A lack of outcome standardization across studies limited treatment comparison. More data on the persistence of intervention effects are necessary.
Collapse
Affiliation(s)
- Timothy E Wilens
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mira Stone
- Massachusetts General Hospital, Boston, MA, USA
| | | | - Amy Berger
- Massachusetts General Hospital, Boston, MA, USA
| | | | | | - Craig B Surman
- Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
7
|
Verişezan Roşu O, Chira D, Chelaru VF, Chertic Dăbală D, Livinț Popa L, Buruiană AM, Mureşanu FD. QEEG indices in traumatic brain injury - insights from the CAPTAIN RTMS trial. J Med Life 2024; 17:318-325. [PMID: 39044922 PMCID: PMC11262599 DOI: 10.25122/jml-2024-0187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/09/2024] [Indexed: 07/25/2024] Open
Abstract
This secondary analysis of the CAPTAIN-RTMS trial data focused on the significance of quantitative electroencephalography (qEEG) indices as indicators of recovery in patients with traumatic brain injury (TBI). By focusing on the delta alpha ratio (DAR), delta theta/alpha beta ratio (DTABR), and theta beta ratio (TBR), this study explored the shifts in brainwave activity as a response to an integrative treatment regimen of repetitive transcranial magnetic stimulation (rTMS) combined with the neurotrophic agent Cerebrolysin. Findings revealed significant increases in DAR and DTABR, suggesting changes in neurophysiological dynamics after treatment. However, variations in TBR were inconclusive in providing clear electrophysiological insights. These results indicate that further research is necessary to describe and understand the underlying mechanisms of brain recovery and to develop refined treatment frameworks for patients with TBI.
Collapse
Affiliation(s)
- Olivia Verişezan Roşu
- Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Diana Chira
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Vlad-Florin Chelaru
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
- Faculty of Medicine, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Chertic Dăbală
- Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Livia Livinț Popa
- Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
- Neurology Clinic, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania
| | - Ana-Maria Buruiană
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
| | - Fior Dafin Mureşanu
- Department of Neurosciences, Iuliu Hațieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- RoNeuro Institute for Neurological Research and Diagnostic, Cluj-Napoca, Romania
- Neurology Clinic, Cluj County Emergency Clinical Hospital, Cluj-Napoca, Romania
| |
Collapse
|
8
|
Xiong K, Wan M, Cai D, Nan W. Down-regulation of theta amplitude through neurofeedback improves executive control network efficiency in healthy children. Int J Psychophysiol 2024; 197:112301. [PMID: 38218562 DOI: 10.1016/j.ijpsycho.2024.112301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/21/2023] [Accepted: 01/08/2024] [Indexed: 01/15/2024]
Abstract
Despite extensive clinical research on neurofeedback (NF) in attention-deficit/hyperactivity disorder (ADHD), few studies targeted the optimization of attention performance in healthy children. As a crucial component of attention networks, the executive control network, involved in resolving response conflicts and allocating cognitive resources, is closely linked to theta activity. Here, we aimed to answer whether theta down-regulating NF can enhance healthy children's attention performance, especially the executive control network. Sixty children aged 6-12 years were randomly assigned to the NF and waitlist control groups. The NF group received theta down-regulation NF training for five days (a total of 100 mins), and the attention performance of both groups was measured by the attention network test (ANT) in the pre, post-NF, and 7-day follow-up. The electroencephalographic (EEG) results demonstrated a significant decrease in resting-state theta amplitude within sessions. For the behavioral results, the NF group exhibited significant improvements in overall attention performance and the efficiency of the executive control network relative to the control group in the post-NF and follow-up assessment, whereas the alerting and orienting networks remained unchanged. These findings proved the feasibility of theta down-regulating NF and its positive effect on attention in the healthy children population. In particular, the facilitation of the efficiency of the executive control network and the unaltered performance of the other two attention networks in the NF group may support the causality between theta rhythm and the executive control network.
Collapse
Affiliation(s)
- Kaiwen Xiong
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Mengqi Wan
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Dan Cai
- School of Psychology, Shanghai Normal University, Shanghai, China.
| | - Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
9
|
Dornowski M, Wilczyńska D, Lachowicz M, Sokolowska I, Szot T, Urbański R, Maznychenko A, Szwarc A, Gotner K, Duda D, Sawicki P, Hinca J. The effect of EEG neurofeedback on lowering the stress reaction level depending on various stressors on the biochemical, muscular and psychomotor sphere: A preliminary randomized study. Medicine (Baltimore) 2024; 103:e37042. [PMID: 38306574 PMCID: PMC10843594 DOI: 10.1097/md.0000000000037042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND The human body is exposed to stressors on a daily basis. Short-term exposure to a particular stressor can cause the release of inflammatory markers - including c-reactive protein (CRP). EEG neurofeedback is a noninvasive form of therapy that aims to improve brain function. Neurofeedback is a type of feedback based on brain activity. METHODS The research process was performed by a group of 80 men who were divided into 2 research groups and 2 control groups. In the first research group and the first control group, the stressor of high temperature was applied, while in the second research group and the second control group, the stressor was physical exertion to refusal. Meanwhile, blood samples were taken to visualize inflammatory markers. These were taken before and after the stressor, as well as before and after the application of EEG neurofeedback. RESULTS In research group after EEG neurofeedback intervention, the level of CRP significantly dropped in the measurement after stressor implementation. Analysis of the SMK test revealed a significant influence of both factors (time F = 13.525, P = .035; state F = 10.658, P = .047) and their interaction (F = 16.709, P = .026). Same statically significant decrease was observed in the level of rect. abdom. EMG was after physical work after neurofeedback. In all tests, a decrease in the EMG amplitude of upper trap. was observed after physical work before neurofeedback with its further increase after neurofeedback. After neurofeedback training, the results of the 3 tested parameters of the sensorimotor coordination test performed after the second heat stressor improved statistically insignificantly compared to the values obtained before. CONCLUSION This article shows the effect of EGG neurofeedback on reducing the negative effects of stress exposure in humans. The study showed that the level and a pattern of EEG neurofeedback influence and significance is different depending on the applied stressor. Furthermore, the level of EEG neurofeedback influence and significance in decreasing the stressor effect is different depending on the examined sphere.
Collapse
Affiliation(s)
- Marcin Dornowski
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Milena Lachowicz
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Inna Sokolowska
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Tomasz Szot
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Robert Urbański
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | | | - Andrzej Szwarc
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Kacper Gotner
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Dominik Duda
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Piotr Sawicki
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| | - Jakub Hinca
- Gdansk University of Physical Education and Sport, Gdansk, Poland
| |
Collapse
|
10
|
Kannen K, Rasbach J, Fantazi A, Wiebe A, Selaskowski B, Asché L, Aslan B, Lux S, Herrmann CS, Philipsen A, Braun N. Alpha modulation via transcranial alternating current stimulation in adults with attention-deficit hyperactivity disorder. Front Psychol 2024; 14:1280397. [PMID: 38282845 PMCID: PMC10812111 DOI: 10.3389/fpsyg.2023.1280397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/23/2023] [Indexed: 01/30/2024] Open
Abstract
Background One potential therapy treating attention-deficit/hyperactivity disorder (ADHD) is to modulate dysfunctional brain activations using brain stimulation techniques. While the number of studies investigating the effect of transcranial direct current stimulation on ADHD symptoms continues to increase, transcranial alternating current stimulation (tACS) is poorly examined. Previous studies reported impaired alpha brain oscillation (8-12 Hz) that may be associated with increased attention deficits in ADHD. Our aim was to enhance alpha power in adult ADHD patients via tACS, using different methods to explore potential therapeutic effects. Methods Undergoing a crossover design, adults with ADHD received active and sham stimulation on distinct days. Before and after each intervention, mean alpha power, attention performance, subjective symptom ratings, as well as head and gaze movement were examined. Results Frequency analyses revealed a significant power increase in the alpha band after both interventions. Despite a trend toward an interaction effect, this alpha power increase was, however, not significantly higher after active stimulation compared to sham stimulation. For the other measures, some additional pre-post effects were found, which were not intervention-related. Conclusion Our study cannot provide clear evidence for a tACS-induced increase in alpha power in adult ADHD patients, and thus no stimulation related improvement of attention parameters. We provide further recommendations for the future investigation of tACS as a potential ADHD treatment.
Collapse
Affiliation(s)
- Kyra Kannen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Johanna Rasbach
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Amin Fantazi
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Annika Wiebe
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Benjamin Selaskowski
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Laura Asché
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Behrem Aslan
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Silke Lux
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Christoph S. Herrmann
- Experimental Psychology Lab, Department of Psychology, University of Oldenburg, Oldenburg, Germany
| | - Alexandra Philipsen
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| | - Niclas Braun
- Department of Psychiatry and Psychotherapy, University Hospital Bonn, Bonn, Germany
| |
Collapse
|
11
|
Loo SK, Lenartowicz A, Norman LJ, Michelini G. Translating Decades of Neuroscience Research into Diagnostic and Treatment Biomarkers for ADHD. ADVANCES IN NEUROBIOLOGY 2024; 40:579-616. [PMID: 39562458 DOI: 10.1007/978-3-031-69491-2_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
In this chapter, we review scientific findings that form the basis for neuroimaging and neurophysiological biomarkers for ADHD diagnosis and treatment. We then highlight the different challenges in translating mechanistic findings into biomarkers for ADHD diagnosis and treatment. Population heterogeneity is a primary barrier for identifying biomarkers of ADHD diagnosis, which requires shifts toward dimensional approaches that identify clinically useful subgroups or prospective biomarkers that can identify trajectories of illness, function, or treatment response. Methodological limitations, including emphasis on group level analyses of treatment effects in small sample sizes, are the primary barriers to biomarker discovery in ADHD treatment. Modifications to clinical trials, including shifting towards testing biomarkers of a priori prediction of functionally related brain targets, treatment response, and side effects, are suggested. Finally, future directions for biomarker work are discussed.
Collapse
Affiliation(s)
- Sandra K Loo
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| | - Agatha Lenartowicz
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Luke J Norman
- National Institute of Mental Health, Bethesda, MD, USA
| | - Giorgia Michelini
- Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
- School of Biological & Behavioural Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
12
|
Ayoubipour S, Sho'ouri N. A Comparative Investigation of Wavelet Families for Classification of EOG Signals Related to Healthy and ADHD Children. Clin EEG Neurosci 2024; 55:11-21. [PMID: 37605610 DOI: 10.1177/15500594231192817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Based on previous research, there are differences between eye movements of people with attention-deficit hyperactivity disorder (ADHD) and of healthy people, as a result, the existence of differences regarding the electrooculogram (EOG) signals of the 2 groups exists. Thus, this study aimed to examine the recorded EOG signals of 30 ADHD children and 30 healthy children while performing an attention-related task. For this purpose, the EOG signals of these 2 groups were decomposed utilizing various wavelet functions. Afterward, features, including mean, energy, and standard deviation (SD) of approximation and detail wavelet coefficients were calculated. The Davies-Bouldin (DB) index was used for the evaluation of the feature space quality. Finally, the 2 groups were classified using one-dimensional feature vector and support vector machine (SVM). The SD of detail coefficients (db4) was selected as the most effective feature for separating the 2 groups. Statistical analysis revealed that the values of energy and SD of EOG signals' detail coefficients were significantly lower in the ADHD group in comparison with the healthy group (P<.001). These results showed that the speed of the ADHD group's eye movements was slower due to the fact that the high-frequency band activity of EOG signals in the healthy group was higher. In addition, the EOG signals were classified with a detection accuracy of 83.42 ± 3.8%. The results of this study can be applied in designing an EOG biofeedback protocol to treat or mitigate the symptoms of ADHD patients.
Collapse
Affiliation(s)
- Shahrzad Ayoubipour
- Department of Technology and Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Nasrin Sho'ouri
- Department of Technology and Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
13
|
Lee CSC, Chen TT, Gao Q, Hua C, Song R, Huang XP. The Effects of Theta/Beta-based Neurofeedback Training on Attention in Children with Attention Deficit Hyperactivity Disorder: A Systematic Review and Meta-analysis. Child Psychiatry Hum Dev 2023; 54:1577-1606. [PMID: 35471754 DOI: 10.1007/s10578-022-01361-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/01/2022] [Indexed: 11/25/2022]
Abstract
Neurofeedback training is a common treatment option for attention deficit hyperactivity disorder (ADHD). Given theta/beta-based neurofeedback (T/B NF) training targets at the electrophysiological characteristics of children with ADHD, benefits for attention may be expected. PsycINFO, PubMed, ScienceDirect, Scopus, and Web of Science were searched through December 31, 2020. Studies were evaluated with Risk of Bias tools. Within-group effects based on Pre- and Post-treatment comparisons of the Intervention Group, and Between-group effects based on the between-group differences from Pre-treatment to Post-treatment were calculated. Nineteen studies met selection criteria for systematic review, 12 of them were included in meta-analysis. Within-group effects were medium at Post-treatment and large at Follow-up. Between-group analyses revealed that T/B NF was superior to waitlist control and physical activities, but not stimulant medication. Results showed that T/B NF has benefits for attention in children with ADHD, however, cautions should be taken when interpreting the findings.
Collapse
Affiliation(s)
- Clara S C Lee
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| | - Ting-Ting Chen
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Qingwen Gao
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Chunzhuo Hua
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Rui Song
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiu-Ping Huang
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
14
|
Wang H, Hou Y, Zhan S, Li N, Liu J, Song P, Wang Y, Wang H. EEG Biofeedback Decreases Theta and Beta Power While Increasing Alpha Power in Insomniacs: An Open-Label Study. Brain Sci 2023; 13:1542. [PMID: 38002502 PMCID: PMC10670123 DOI: 10.3390/brainsci13111542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
Insomnia, often associated with anxiety and depression, is a prevalent sleep disorder. Biofeedback (BFB) treatment can help patients gain voluntary control over physiological events such as by utilizing electroencephalography (EEG) and electromyography (EMG) power. Previous studies have rarely predicted biofeedback efficacy by measuring the changes in relative EEG power; therefore, we investigated the clinical efficacy of biofeedback for insomnia and its potential neural mechanisms. We administered biofeedback to 82 patients with insomnia, of whom 68 completed 10 sessions and 14 completed 20 sessions. The average age of the participants was 49.38 ± 12.78 years, with 26 men and 56 women. Each biofeedback session consisted of 5 min of EMG and 30 min of EEG feedback, with 2 min of data recorded before and after the session. Sessions were conducted every other day, and four scale measures were taken before the first, fifth, and tenth sessions and after the twentieth session. After 20 sessions of biofeedback treatment, scores on the Pittsburgh Sleep Quality Index (PSQI) were significantly reduced compared with those before treatment (-5.5 ± 1.43,t = -3.85, p = 0.006), and scores on the Beck Depression Inventory (BDI-II) (-7.15 ± 2.43, t = -2.94, p = 0.012) and the State-Trait Anxiety Inventory (STAI) (STAI-S: -12.36 ± 3.40, t = -3.63, p = 0.003; and STAI-T: -9.86 ± 2.38, t = -4.41, p = 0.001) were significantly lower after treatment than before treatment. Beta and theta power were significantly reduced after treatment, compared with before treatment (F = 6.25, p = 0.014; and F = 11.91, p = 0.001). Alpha power was increased after treatment, compared with before treatment, but the difference was not prominently significant (p > 0.05). EMG activity was significantly decreased after treatment, compared with before treatment (F = 2.11, p = 0.015). Our findings suggest that BFB treatment based on alpha power and prefrontal EMG relieves insomnia as well as anxiety and depression and may be associated with increased alpha power, decreased beta and theta power, and decreased EMG power.
Collapse
Affiliation(s)
- Huicong Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yue Hou
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
- Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang 050030, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang 050030, China
| | - Shuqin Zhan
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Ning Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Jianghong Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Penghui Song
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| | - Yuping Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
- Hebei Hospital of Xuanwu Hospital, Capital Medical University, Shijiazhuang 050030, China
- Neuromedical Technology Innovation Center of Hebei Province, Shijiazhuang 050030, China
| | - Hongxing Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China; (H.W.); (Y.H.); (S.Z.); (N.L.); (J.L.); (P.S.)
- Beijing Key Laboratory of Neuromodulation, Beijing 100053, China
- Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100053, China
- Center for Sleep and Consciousness Disorders, Beijing Institute for Brain Disorders, Beijing 100053, China
- Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing 100053, China
| |
Collapse
|
15
|
Pandria N, Athanasiou A, Styliadis C, Terzopoulos N, Mitsopoulos K, Paraskevopoulos E, Karagianni M, Pataka A, Kourtidou-Papadeli C, Makedou K, Iliadis S, Lymperaki E, Nimatoudis I, Argyropoulou-Pataka P, Bamidis PD. Does combined training of biofeedback and neurofeedback affect smoking status, behavior, and longitudinal brain plasticity? Front Behav Neurosci 2023; 17:1096122. [PMID: 36778131 PMCID: PMC9911884 DOI: 10.3389/fnbeh.2023.1096122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 01/02/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction: Investigations of biofeedback (BF) and neurofeedback (NF) training for nicotine addiction have been long documented to lead to positive gains in smoking status, behavior and to changes in brain activity. We aimed to: (a) evaluate a multi-visit combined BF/NF intervention as an alternative smoking cessation approach, (b) validate training-induced feedback learning, and (c) document effects on resting-state functional connectivity networks (rsFCN); considering gender and degree of nicotine dependence in a longitudinal design. Methods: We analyzed clinical, behavioral, and electrophysiological data from 17 smokers who completed five BF and 20 NF sessions and three evaluation stages. Possible neuroplastic effects were explored comparing whole-brain rsFCN by phase-lag index (PLI) for different brain rhythms. PLI connections with significant change across time were investigated according to different resting-state networks (RSNs). Results: Improvements in smoking status were observed as exhaled carbon monoxide levels, Total Oxidative Stress, and Fageström scores decreased while Vitamin E levels increased across time. BF/NF promoted gains in anxiety, self-esteem, and several aspects of cognitive performance. BF learning in temperature enhancement was observed within sessions. NF learning in theta/alpha ratio increase was achieved across baselines and within sessions. PLI network connections significantly changed across time mainly between or within visual, default mode and frontoparietal networks in theta and alpha rhythms, while beta band RSNs mostly changed significantly after BF sessions. Discussion: Combined BF/NF training positively affects the clinical and behavioral status of smokers, displays benefit in smoking harm reduction, plays a neuroprotective role, leads to learning effects and to positive reorganization of RSNs across time. Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02991781.
Collapse
Affiliation(s)
- Niki Pandria
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Alkinoos Athanasiou
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Charis Styliadis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Nikos Terzopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Konstantinos Mitsopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Evangelos Paraskevopoulos
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,Department of Psychology, University of Cyprus, Nicosia, Cyprus
| | - Maria Karagianni
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece
| | - Athanasia Pataka
- Pulmonary Department-Oncology Unit, “G. Papanikolaou” General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Kali Makedou
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Stavros Iliadis
- Laboratory of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Evgenia Lymperaki
- Department of Biomedical Sciences, International Hellenic University, Thessaloniki, Greece
| | - Ioannis Nimatoudis
- Third Department of Psychiatry, AHEPA University General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Panagiotis D. Bamidis
- Laboratory of Medical Physics and Digital Innovation, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki (AUTH), Thessaloniki, Greece,*Correspondence: Panagiotis D. Bamidis
| |
Collapse
|
16
|
Voetterl H, van Wingen G, Michelini G, Griffiths KR, Gordon E, DeBeus R, Korgaonkar MS, Loo SK, Palmer D, Breteler R, Denys D, Arnold LE, du Jour P, van Ruth R, Jansen J, van Dijk H, Arns M. Brainmarker-I Differentially Predicts Remission to Various Attention-Deficit/Hyperactivity Disorder Treatments: A Discovery, Transfer, and Blinded Validation Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2023; 8:52-60. [PMID: 35240343 DOI: 10.1016/j.bpsc.2022.02.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/11/2022] [Accepted: 02/18/2022] [Indexed: 01/11/2023]
Abstract
BACKGROUND Attention-deficit/hyperactivity disorder is characterized by neurobiological heterogeneity, possibly explaining why not all patients benefit from a given treatment. As a means to select the right treatment (stratification), biomarkers may aid in personalizing treatment prescription, thereby increasing remission rates. METHODS The biomarker in this study was developed in a heterogeneous clinical sample (N = 4249) and first applied to two large transfer datasets, a priori stratifying young males (<18 years) with a higher individual alpha peak frequency (iAPF) to methylphenidate (N = 336) and those with a lower iAPF to multimodal neurofeedback complemented with sleep coaching (N = 136). Blinded, out-of-sample validations were conducted in two independent samples. In addition, the association between iAPF and response to guanfacine and atomoxetine was explored. RESULTS Retrospective stratification in the transfer datasets resulted in a predicted gain in normalized remission of 17% to 30%. Blinded out-of-sample validations for methylphenidate (n = 41) and multimodal neurofeedback (n = 71) corroborated these findings, yielding a predicted gain in stratified normalized remission of 36% and 29%, respectively. CONCLUSIONS This study introduces a clinically interpretable and actionable biomarker based on the iAPF assessed during resting-state electroencephalography. Our findings suggest that acknowledging neurobiological heterogeneity can inform stratification of patients to their individual best treatment and enhance remission rates.
Collapse
Affiliation(s)
- Helena Voetterl
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| | - Guido van Wingen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Giorgia Michelini
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California; Department of Biological & Experimental Psychology, Queen Mary University of London, London, United Kingdom
| | - Kristi R Griffiths
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Roger DeBeus
- Department of Psychology, University of North Carolina at Asheville, Asheville, North Carolina
| | - Mayuresh S Korgaonkar
- Brain Dynamics Centre, Westmead Institute for Medical Research, The University of Sydney, Sydney, New South Wales, Australia; School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, New South Wales, Australia
| | - Sandra K Loo
- Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, Semel Institute for Neuroscience & Human Behavior, University of California Los Angeles, Los Angeles, California
| | | | - Rien Breteler
- Department of Clinical Psychology, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Damiaan Denys
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - L Eugene Arnold
- Department of Psychiatry & Behavioral Health, Nisonger Center, Ohio State University, Columbus, Ohio
| | | | | | - Jeanine Jansen
- Open Mind Neuroscience, Eindhoven, the Netherlands; Eindhovens Psychologisch Instituut, Eindhoven, the Netherlands
| | - Hanneke van Dijk
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, the Netherlands; Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, the Netherlands.
| |
Collapse
|
17
|
Michelini G, Norman LJ, Shaw P, Loo SK. Treatment biomarkers for ADHD: Taking stock and moving forward. Transl Psychiatry 2022; 12:444. [PMID: 36224169 PMCID: PMC9556670 DOI: 10.1038/s41398-022-02207-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 09/20/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022] Open
Abstract
The development of treatment biomarkers for psychiatric disorders has been challenging, particularly for heterogeneous neurodevelopmental conditions such as attention-deficit/hyperactivity disorder (ADHD). Promising findings are also rarely translated into clinical practice, especially with regard to treatment decisions and development of novel treatments. Despite this slow progress, the available neuroimaging, electrophysiological (EEG) and genetic literature provides a solid foundation for biomarker discovery. This article gives an updated review of promising treatment biomarkers for ADHD which may enhance personalized medicine and novel treatment development. The available literature points to promising pre-treatment profiles predicting efficacy of various pharmacological and non-pharmacological treatments for ADHD. These candidate predictive biomarkers, particularly those based on low-cost and non-invasive EEG assessments, show promise for the future stratification of patients to specific treatments. Studies with repeated biomarker assessments further show that different treatments produce distinct changes in brain profiles, which track treatment-related clinical improvements. These candidate monitoring/response biomarkers may aid future monitoring of treatment effects and point to mechanistic targets for novel treatments, such as neurotherapies. Nevertheless, existing research does not support any immediate clinical applications of treatment biomarkers for ADHD. Key barriers are the paucity of replications and external validations, the use of small and homogeneous samples of predominantly White children, and practical limitations, including the cost and technical requirements of biomarker assessments and their unknown feasibility and acceptability for people with ADHD. We conclude with a discussion of future directions and methodological changes to promote clinical translation and enhance personalized treatment decisions for diverse groups of individuals with ADHD.
Collapse
Affiliation(s)
- Giorgia Michelini
- grid.4868.20000 0001 2171 1133Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK ,grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA USA
| | - Luke J. Norman
- grid.416868.50000 0004 0464 0574Office of the Clinical Director, NIMH, Bethesda, MD USA
| | - Philip Shaw
- grid.416868.50000 0004 0464 0574Office of the Clinical Director, NIMH, Bethesda, MD USA ,grid.280128.10000 0001 2233 9230Section on Neurobehavioral and Clinical Research, Social and Behavioral Research Branch, National Human Genome Research Institute, NIH, Bethesda, MD USA
| | - Sandra K. Loo
- grid.19006.3e0000 0000 9632 6718Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, Los Angeles, CA USA
| |
Collapse
|
18
|
Oda K, Colman R, Koshiba M. Simplified Attachable EEG Revealed Child Development Dependent Neurofeedback Brain Acute Activities in Comparison with Visual Numerical Discrimination Task and Resting. SENSORS (BASEL, SWITZERLAND) 2022; 22:7207. [PMID: 36236305 PMCID: PMC9572555 DOI: 10.3390/s22197207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/16/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The development of an easy-to-attach electroencephalograph (EEG) would enable its frequent use for the assessment of neurodevelopment and clinical monitoring. In this study, we designed a two-channel EEG headband measurement device that could be used safely and was easily attachable and removable without the need for restraint or electrode paste or gel. Next, we explored the use of this device for neurofeedback applications relevant to education or neurocognitive development. We developed a prototype visual neurofeedback game in which the size of a familiar local mascot changes in the PC display depending on the user's brain wave activity. We tested this application at a local children's play event. Children at the event were invited to experience the game and, upon agreement, were provided with an explanation of the game and support in attaching the EEG device. The game began with a consecutive number visual discrimination task which was followed by an open-eye resting condition and then a neurofeedback task. Preliminary linear regression analyses by the least-squares method of the acquired EEG and age data in 30 participants from 5 to 20 years old suggested an age-dependent left brain lateralization of beta waves at the neurofeedback stage (p = 0.052) and of alpha waves at the open-eye resting stage (p = 0.044) with potential involvement of other wave bands. These results require further validation.
Collapse
Affiliation(s)
- Kazuyuki Oda
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
| | - Ricki Colman
- Department of Cell and Regenerative Biology, University of Wisconsin, Madison, Madison, WI 53706, USA
| | - Mamiko Koshiba
- Engineering Department, Graduate School of Sciences and Technology for Innovation Yamaguchi University, Yamaguchi 755-8611, Japan
- Department of Pediatrics, Saitama Medical University, Saitama 350-0495, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai 980-8579, Japan
| |
Collapse
|
19
|
Arpaia P, Covino A, Cristaldi L, Frosolone M, Gargiulo L, Mancino F, Mantile F, Moccaldi N. A Systematic Review on Feature Extraction in Electroencephalography-Based Diagnostics and Therapy in Attention Deficit Hyperactivity Disorder. SENSORS 2022; 22:s22134934. [PMID: 35808424 PMCID: PMC9269717 DOI: 10.3390/s22134934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 02/01/2023]
Abstract
A systematic review on electroencephalographic (EEG)-based feature extraction strategies to diagnosis and therapy of attention deficit hyperactivity disorder (ADHD) in children is presented. The analysis is realized at an executive function level to improve the research of neurocorrelates of heterogeneous disorders such as ADHD. The Quality Assessment Tool for Quantitative Studies (QATQS) and field-weighted citation impact metric (Scopus) were used to assess the methodological rigor of the studies and their impact on the scientific community, respectively. One hundred and one articles, concerning the diagnostics and therapy of ADHD children aged from 8 to 14, were collected. Event-related potential components were mainly exploited for executive functions related to the cluster inhibition, whereas band power spectral density is the most considered EEG feature for executive functions related to the cluster working memory. This review identifies the most used (also by rigorous and relevant articles) EEG signal processing strategies for executive function assessment in ADHD.
Collapse
Affiliation(s)
- Pasquale Arpaia
- Department of Electrical Engineering and Information Technologies (DIETI), University of Naples “Federico II”, 80121 Naples, Italy; (M.F.); (L.G.); (F.M.); (N.M.)
- Interdepartmental Research Center on Management and Innovation in Healthcare (CIRMIS), University of Naples “Federico II”, 80121 Naples, Italy
- Correspondence:
| | - Attilio Covino
- Villa delle Ginestre, Rehabilitation Center, 80040 Naples, Italy; (A.C.); (F.M.)
| | - Loredana Cristaldi
- Department of Electronics, Information e Bioengineering, Milan Polytechnic, 20133 Milan, Italy;
| | - Mirco Frosolone
- Department of Electrical Engineering and Information Technologies (DIETI), University of Naples “Federico II”, 80121 Naples, Italy; (M.F.); (L.G.); (F.M.); (N.M.)
| | - Ludovica Gargiulo
- Department of Electrical Engineering and Information Technologies (DIETI), University of Naples “Federico II”, 80121 Naples, Italy; (M.F.); (L.G.); (F.M.); (N.M.)
| | - Francesca Mancino
- Department of Electrical Engineering and Information Technologies (DIETI), University of Naples “Federico II”, 80121 Naples, Italy; (M.F.); (L.G.); (F.M.); (N.M.)
| | - Federico Mantile
- Villa delle Ginestre, Rehabilitation Center, 80040 Naples, Italy; (A.C.); (F.M.)
| | - Nicola Moccaldi
- Department of Electrical Engineering and Information Technologies (DIETI), University of Naples “Federico II”, 80121 Naples, Italy; (M.F.); (L.G.); (F.M.); (N.M.)
| |
Collapse
|
20
|
Investigating the Potential Use of EEG for the Objective Measurement of Auditory Presence. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12052647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Presence is the sense of being in a virtual environment when physically situated in another place. It is one of the key components of the overall virtual reality (VR) experience, as well as other immersive audio applications. However, there is no standardized method for measuring presence. In our previous study, we explored the possibility of using electroencephalography (EEG) to measure presence by using questionnaires as a reference. It was found that an increase in the subjective presence level was correlated with an increase in the theta/beta ratio (an index derived from EEG). In the present study, we re-analyzed the original data and found that the peak alpha frequency (PAF), another EEG index, may also have the potential to reflect the change in the subjective presence level. Specifically, an increase in the subjective presence level was found to be correlated with a decrease in PAF. Together with our previous study, these results indicate the potential use of EEG for the objective measurement of presence in the future.
Collapse
|
21
|
Sho'ouri N. A new neurofeedback training method based on feature space clustering to control EEG features within target clusters. J Neurosci Methods 2021; 362:109304. [PMID: 34363925 DOI: 10.1016/j.jneumeth.2021.109304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND Within the most commonly used neurofeedback training methods, a threshold has been defined for each EEG feature wherein subjects' status during training can be assessed according to the given value. In the present study, a neurofeedback training method based on feature-space clustering was proposed in order to assess subjects' status more accurately. NEW METHOD Neural gas algorithm was employed for feature space clustering. Then, the clusters were labeled as initial clusters (where the EEG features were placed prior to training) and target (where the EEG features should be shifted towards during training) ones. A scoring index was defined whose value was determined according to subjects' brain activity. This method was simulated in two versions: soft-boundary and hard-boundary based methods. RESULTS The results of the present simulation showed that the proposed hard-boundary based version could guide the subjects towards the boundaries of the target clusters and even their status would be stabilized in case of too many changes in subjects' EEG features. In the proposed soft-boundary based version, in case of too many changes in training features, the subjects would not be encouraged and they could be guided towards the target boundaries. CONCLUSION The proposed hard-boundary based version could be effective in guiding a subject towards being placed within the boundaries of target clusters and even beyond them if no specific limits exited for EEG features. As well, the soft-boundary based version could be useful when controlling EEG features within a limit.
Collapse
Affiliation(s)
- Nasrin Sho'ouri
- Faculty of Technology and Engineering, Central Tehran Branch, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
22
|
EOG biofeedback protocol based on selecting distinctive features to treat or reduce ADHD symptoms. Biomed Signal Process Control 2021. [DOI: 10.1016/j.bspc.2021.102748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
23
|
Riha C, Güntensperger D, Oschwald J, Kleinjung T, Meyer M. Application of Latent Growth Curve modeling to predict individual trajectories during neurofeedback treatment for tinnitus. PROGRESS IN BRAIN RESEARCH 2021; 263:109-136. [PMID: 34243885 DOI: 10.1016/bs.pbr.2021.04.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tinnitus is a heterogeneous phenomenon indexed by various EEG oscillatory profiles. Applying neurofeedback (NFB) with the aim of changing these oscillatory patterns not only provides help for those who suffer from the phantom percept, but a promising foundation from which to probe influential factors. The reliable attribution of influential factors that potentially predict oscillatory changes during the course of NFB training may lead to the identification of subgroups of individuals that are more or less responsive to NFB training. The present study investigated oscillatory trajectories of delta (3-4Hz) and individual alpha (8.5-12Hz) during 15 NFB training sessions, based on a Latent Growth Curve framework. First, we found the desired enhancement of alpha, while delta was stable throughout the NFB training. Individual differences in tinnitus-specific variables and general-, as well as health-related quality of life predictors were largely unrelated to oscillatory change prior to and across the training. Only the predictors age and sex at baseline were clearly related to slow-wave delta, particularly so for older female individuals who showed higher delta power values from the start. Second, we confirmed a hierarchical cross-frequency association between the two frequency bands; however, in opposing directions to those anticipated in tinnitus. The establishment of individually tailored NFB protocols would boost this therapy's effectiveness in the treatment of tinnitus. In our analysis, we propose a conceptual groundwork toward this goal of developing more targeted treatment.
Collapse
Affiliation(s)
- Constanze Riha
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland; Research Priority Program "ESIT-European School of Interdisciplinary Tinnitus Research", Zurich, Switzerland
| | - Dominik Güntensperger
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| | - Jessica Oschwald
- University Research Priority Program "Dynamics of Healthy Aging", University of Zurich, Zurich, Switzerland
| | - Tobias Kleinjung
- Department of Otorhinolaryngology, University Hospital Zurich, Zurich, Switzerland
| | - Martin Meyer
- Chair of Neuropsychology, Department of Psychology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
24
|
Pérez-Elvira R, Oltra-Cucarella J, Carrobles JA, Moltó J, Flórez M, Parra S, Agudo M, Saez C, Guarino S, Costea RM, Neamtu B. Enhancing the Effects of Neurofeedback Training: The Motivational Value of the Reinforcers. Brain Sci 2021; 11:brainsci11040457. [PMID: 33916676 PMCID: PMC8067059 DOI: 10.3390/brainsci11040457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/01/2021] [Accepted: 04/02/2021] [Indexed: 11/16/2022] Open
Abstract
The brain activity that is measured by electroencephalography (EEG) can be modified through operant conditioning, specifically using neurofeedback (NF). NF has been applied to several disorders claiming that a change in the erratic brain activity would be accompanied by a reduction of the symptoms. However, the expected results are not always achieved. Some authors have suggested that the lack of an adequate response may be due to an incorrect application of the operant conditioning principles. A key factor in operant conditioning is the use of reinforcers and their value in modifying behavior, something that is not always sufficiently taken into account. This work aims to clarify the relevance of the motivational value versus the purely informational value of the reinforcer. In this study, 113 subjects were randomly assigned two different reinforcer conditions: a selected reinforcer—the subjects subjectively selected the reinforcers—or an imposed reinforcer—the reinforcers were assigned by the experimenter—and both groups undertook NF sessions to enhance the sensorimotor rhythm (SMR). In addition, the selected reinforcer group was divided into two subgroups: one receiving real NF and the other one sham NF. There were no significant differences between the groups at baseline in terms of SMR amplitude. After the intervention, only those subjects belonging to the selected reinforcer group and receiving real NF increased their SMR. Our results provide evidence for the importance of the motivational value of the reinforcer in Neurofeedback success.
Collapse
Affiliation(s)
- Rubén Pérez-Elvira
- Neuropsychophysiology Laboratory, NEPSA Rehabilitación Neurológica, 3003 Salamanca, Spain; (R.P.-E.); (M.A.); (C.S.)
| | - Javier Oltra-Cucarella
- Department of Health Psychology, Universidad Miguel Hernández de Elche, 03202 Elche, Spain
- Correspondence:
| | - José Antonio Carrobles
- Biological and Health Psychology Department, Universidad Autónoma de Madrid, 28049 Madrid, Spain;
| | - Jorge Moltó
- PSYD-Neurofeedback, 46022 Valencia, Spain; (J.M.); (M.F.)
| | | | | | - María Agudo
- Neuropsychophysiology Laboratory, NEPSA Rehabilitación Neurológica, 3003 Salamanca, Spain; (R.P.-E.); (M.A.); (C.S.)
| | - Clara Saez
- Neuropsychophysiology Laboratory, NEPSA Rehabilitación Neurológica, 3003 Salamanca, Spain; (R.P.-E.); (M.A.); (C.S.)
| | - Sergio Guarino
- NEPSA Rehabilitación Neurológica, 47001 Valladolid, Spain;
| | - Raluca Maria Costea
- Research Department (Ceforaten), Sibiu Pediatric Hospital, 550178 Sibiu, Romania; (R.M.C.); (B.N.)
- Faculty of Medicine Lucian Blaga, University from Sibiu, 550169 Sibiu, Romania
| | - Bogdan Neamtu
- Research Department (Ceforaten), Sibiu Pediatric Hospital, 550178 Sibiu, Romania; (R.M.C.); (B.N.)
- Faculty of Medicine Lucian Blaga, University from Sibiu, 550169 Sibiu, Romania
- Faculty of Engineering, Lucian Blaga, University from Sibiu, 550025 Sibiu, Romania
| |
Collapse
|
25
|
Electrophysiological Frequency Band Ratio Measures Conflate Periodic and Aperiodic Neural Activity. eNeuro 2020; 7:ENEURO.0192-20.2020. [PMID: 32978216 PMCID: PMC7768281 DOI: 10.1523/eneuro.0192-20.2020] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 12/11/2022] Open
Abstract
Band ratio measures, computed as the ratio of power between two frequency bands, are a common analysis measure in neuroelectrophysiological recordings. Band ratio measures are typically interpreted as reflecting quantitative measures of periodic, or oscillatory, activity. This assumes that the measure reflects relative powers of distinct periodic components that are well captured by predefined frequency ranges. However, electrophysiological signals contain periodic components and a 1/f-like aperiodic component, the latter of which contributes power across all frequencies. Here, we investigate whether band ratio measures truly reflect oscillatory power differences, and/or to what extent ratios may instead reflect other periodic changes, such as in center frequency or bandwidth, and/or aperiodic activity. In simulation, we investigate how band ratio measures relate to changes in multiple spectral features, and show how multiple periodic and aperiodic features influence band ratio measures. We validate these findings in human electroencephalography (EEG) data, comparing band ratio measures to parameterizations of power spectral features and find that multiple disparate features influence ratio measures. For example, the commonly applied θ/β ratio is most reflective of differences in aperiodic activity, and not oscillatory θ or β power. Collectively, we show that periodic and aperiodic features can create the same observed changes in band ratio measures, and that this is inconsistent with their typical interpretations as measures of periodic power. We conclude that band ratio measures are a non-specific measure, conflating multiple possible underlying spectral changes, and recommend explicit parameterization of neural power spectra as a more specific approach.
Collapse
|
26
|
Weber LA, Ethofer T, Ehlis AC. Predictors of neurofeedback training outcome: A systematic review. NEUROIMAGE-CLINICAL 2020; 27:102301. [PMID: 32604020 PMCID: PMC7327249 DOI: 10.1016/j.nicl.2020.102301] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/30/2020] [Accepted: 05/26/2020] [Indexed: 11/21/2022]
Abstract
Best available evidence exists for neurophysiological baseline parameters. No substantial effect of age and intelligence on training outcome in most cases. Neurofeedback learning success predicts treatment outcome. To date, a reliable selection of participants based on predictors is not possible.
Neurofeedback (NF), a training tool aimed at enhancing neural self-regulation, has been suggested as a complementary treatment option for neuropsychiatric disorders. Despite its potential as a neurobiological intervention directly targeting neural alterations underlying clinical symptoms, the efficacy of NF for the treatment of mental disorders has been questioned recently by negative findings obtained in randomized controlled trials (e.g., Cortese et al., 2016). A possible reason for insufficient group effects of NF trainings vs. placebo could be related to the high rate of participants who fail to self-regulate brain activity by NF (“non-learners”). Another reason could be the application of standardized NF protocols not adjusted to individual differences in pathophysiology. Against this background, we have summarized information on factors determining training and treatment success to provide a basis for the development of individualized training protocols and/or clinical indications. The present systematic review included 25 reports investigating predictors for the outcome of NF trainings in healthy individuals as well as patients affected by mental disorders or epilepsy. We selected these studies based on searches in EBSCOhost using combinations of the keywords “neurofeedback” and “predictor/predictors”. As “NF training” we defined all NF applications with at least two sessions. The best available evidence exists for neurophysiological baseline parameters. Among them, the target parameters of the respective training seem to be of particular importance. However, particularities of the different experimental designs and outcome criteria restrict the interpretability of some of the information we extracted. Therefore, further research is needed to gain more profound knowledge about predictors of NF outcome.
Collapse
Affiliation(s)
- Lydia Anna Weber
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Calwerstr.14, D-72076 Tuebingen, Germany.
| | - Thomas Ethofer
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Calwerstr.14, D-72076 Tuebingen, Germany; Department for Biomedical Resonance, University Hospital Tuebingen, Otfried-Müller-Str.51, D-72076 Tuebingen, Germany.
| | - Ann-Christine Ehlis
- Department of Psychiatry and Psychotherapy, University Hospital Tuebingen, Calwerstr.14, D-72076 Tuebingen, Germany; LEAD Graduate School & Research Network, University of Tuebingen, Walter-Simon-Straße 12, D-72074 Tuebingen, Germany.
| |
Collapse
|
27
|
Dobrakowski P, Łebecka G. Individualized Neurofeedback Training May Help Achieve Long-Term Improvement of Working Memory in Children With ADHD. Clin EEG Neurosci 2020; 51:94-101. [PMID: 31578889 DOI: 10.1177/1550059419879020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Children with attention deficit hyperactivity disorder (ADHD) may suffer from working memory deficits, which can adversely affect their academic performance. Neurofeedback training may enhance working memory and provide a solution to this problem. Aim. To investigate the effect of frequency-neurofeedback on working memory in children with ADHD and to check if the effect is long-lasting. Method. Forty-eight children with ADHD (aged 6-12 years) were randomly assigned either to a neurofeedback with training parameters chosen to take into account each child's peak alpha frequency (PAF) or to a waiting list control group. Each trained child underwent 19-channel electroencephalography (EEG). All children had average intelligence and none were receiving treatment, such as medications, for ADHD. Prior to the training, MOXO and n-back tests were performed. Next, neurofeedback training sessions with frequency bands for theta and beta ranges determined using each child's PAF were carried out for 10 weeks. Training parameters were set to increase amplitudes in the low beta range and to decrease amplitudes in the theta and high beta frequency ranges. The n-back test was performed again right after the training and then a year later. Results. During the first n-back test, children from both groups responded correctly to more than 43% of the stimuli. During the second test, children from the waiting list responded correctly to an average of 49% of the stimuli, while children who underwent the neurofeedback training were correct, on average, 69% of the time (significant difference, P < .001). During the third n-back test a year later, children from the waiting list responded correctly to 53% of the stimuli, while those who underwent the neurofeedback training responded correctly to nearly 71%. Conclusion. This study found a statistically significant improvement in a measure of working memory in children who did 10 to 12 sessions of neurofeedback training with training frequency ranges for theta and beta defined according to each child's PAF. The beneficial effects were still present a year after training.
Collapse
Affiliation(s)
- Paweł Dobrakowski
- Humanitas University in Sosnowiec, Psychology Institute, Sosnowiec, Poland
| | - Grażyna Łebecka
- Humanitas University in Sosnowiec, Psychology Institute, Sosnowiec, Poland
| |
Collapse
|
28
|
Yıldırım E, Güntekin B, Hanoğlu L, Algun C. EEG alpha activity increased in response to transcutaneous electrical nervous stimulation in young healthy subjects but not in the healthy elderly. PeerJ 2020; 8:e8330. [PMID: 31938578 PMCID: PMC6953335 DOI: 10.7717/peerj.8330] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 12/02/2019] [Indexed: 11/20/2022] Open
Abstract
Transcutaneous Electrical Nerve Stimulation (TENS) is used not only in the treatment of pain but also in the examination of sensory functions. With aging, there is decreased sensitivity to somatosensory stimuli. It is essential to examine the effect of TENS application on the sensory functions in the brain by recording the spontaneous electroencephalogram (EEG) activity and the effect of aging on the sensory functions of the brain during the application. The present study aimed to investigate the effect of the application of TENS on the brain’s electrical activity and the effect of aging on the sensory functions of the brain during application of TENS. A total of 15 young (24.2 ± 3.59) and 14 elderly (65.64 ± 4.92) subjects were included in the study. Spontaneous EEG was recorded from 32 channels during TENS application. Power spectrum analysis was performed by Fast Fourier Transform in the alpha frequency band (8–13 Hz) for all subjects. Repeated measures of analysis of variance was used for statistical analysis (p < 0.05). Young subjects had increased alpha power during the TENS application and had gradually increased alpha power by increasing the current intensity of TENS (p = 0.035). Young subjects had higher alpha power than elderly subjects in the occipital and parietal locations (p = 0.073). We can, therefore, conclude that TENS indicated increased alpha activity in young subjects. Young subjects had higher alpha activity than elderly subjects in the occipital and somatosensory areas. To our knowledge, the present study is one of the first studies examining the effect of TENS on spontaneous EEG in healthy subjects. Based on the results of the present study, TENS may be used as an objective method for the examination of sensory impairments, and in the evaluative efficiency of the treatment of pain conditions.
Collapse
Affiliation(s)
- Ebru Yıldırım
- Department of Physical Therapy and Rehabilitation/Graduate School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Biophysics/School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Bahar Güntekin
- Department of Biophysics/School of Medicine, Istanbul Medipol University, Istanbul, Turkey.,REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey
| | - Lütfü Hanoğlu
- REMER, Clinical Electrophysiology, Neuroimaging, and Neuromodulation Lab., Istanbul Medipol University, Istanbul, Turkey.,Department of Neurology/School of Medicine, Istanbul Medipol University, Istanbul, Turkey
| | - Candan Algun
- Department of Physical Therapy and Rehabilitation/School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey.,Department of Orthesis-Prosthesis/School of Health Sciences, Istanbul Medipol University, Istanbul, Turkey
| |
Collapse
|
29
|
Jouzizadeh M, Khanbabaie R, Ghaderi AH. A spatial profile difference in electrical distribution of resting-state EEG in ADHD children using sLORETA. Int J Neurosci 2020; 130:917-925. [DOI: 10.1080/00207454.2019.1709843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Mojtaba Jouzizadeh
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran
| | - Reza Khanbabaie
- Department of Physics, Babol Noshirvani University of Technology, Babol, Iran
- Department of Physics, University of Ottawa, Ottawa, ON, Canada
| | - Amir Hossein Ghaderi
- Center for Vision Research, Lassonde Building, Toronto, ON, Canada
- Vision: Science to Applications (VISTA) Program, York University, Toronto, ON, Canada
| |
Collapse
|
30
|
Investigation of the effects of transcranial direct current stimulation and neurofeedback by continuous performance test. Neurosci Lett 2019; 716:134648. [PMID: 31765731 DOI: 10.1016/j.neulet.2019.134648] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 11/11/2019] [Accepted: 11/21/2019] [Indexed: 11/20/2022]
Abstract
Transcranial direct current stimulation (tDCS) is a noninvasive neuromodulation technique based on weak direct current stimulation through the scalp. Neurofeedback (NFB) is a learning strategy that may help alter to brain wave parameters, by monitoring electroencephalography (EEG) feedback via special programs. We aimed to investigate the supportive effects of tDCS in addition to NFB training. 16 healthy volunteers were divided equally into two groups. One of the groups was trained by NFB with the sensorimotor rhythm (SMR) protocol; 2 days per week, 10 sessions of 30 min, the other group received 10 min of tDCS before each NFB sessions. Continuous Performance Test (CPT) was used to measure, response time and suppression and to determine selective attention condition. Also, Beck Depression and Anxiety Inventories were used to exclude people with depression and anxiety. Depression scores of NFB + tDCS group were decreased significantly. CPT scores were better at last sessions for both groups compared to the first sessions. Sessions were analyzed by comparing 1st, 2nd, 5th and 10th sessions. While the NFB + tDCS group had statistically significant changes at theta/beta ratios with SMR and alpha band amplitudes, NFB group statistics had changed at theta/SMR ratios. NFB training shows its effects at the end of 10 sessions. Despite an increase in the latencies of correct and commission responses on the task of CPT, additional use of tDCS improves cognitive performance. Also, tDCS has a supportive effect on the healthy participants who have mild anxiety and depression; also inhibition deficits of subjects were clear.
Collapse
|
31
|
Bussalb A, Congedo M, Barthélemy Q, Ojeda D, Acquaviva E, Delorme R, Mayaud L. Clinical and Experimental Factors Influencing the Efficacy of Neurofeedback in ADHD: A Meta-Analysis. Front Psychiatry 2019; 10:35. [PMID: 30833909 PMCID: PMC6388544 DOI: 10.3389/fpsyt.2019.00035] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/21/2019] [Indexed: 11/13/2022] Open
Abstract
Meta-analyses have been extensively used to evaluate the efficacy of neurofeedback (NFB) treatment for Attention Deficit/Hyperactivity Disorder (ADHD) in children and adolescents. However, each meta-analysis published in the past decade has contradicted the methods and results from the previous one, thus making it difficult to determine a consensus of opinion on the effectiveness of NFB. This works brings continuity to the field by extending and discussing the last and much controversial meta-analysis by Cortese et al. (1). The extension comprises an update of that work including the latest control trials, which have since been published and, most importantly, offers a novel methodology. Specifically, NFB literature is characterized by a high technical and methodological heterogeneity, which partly explains the current lack of consensus on the efficacy of NFB. This work takes advantage of this by performing a Systematic Analysis of Biases (SAOB) in studies included in the previous meta-analysis. Our extended meta-analysis (k = 16 studies) confirmed the previously obtained results of effect sizes in favor of NFB efficacy as being significant when clinical scales of ADHD are rated by parents (non-blind, p-value = 0.0014), but not when they are rated by teachers (probably blind, p-value = 0.27). The effect size is significant according to both raters for the subset of studies meeting the definition of "standard NFB protocols" (parents' p-value = 0.0054; teachers' p-value = 0.043, k = 4). Following this, the SAOB performed on k = 33 trials identified three main factors that have an impact on NFB efficacy: first, a more intensive treatment, but not treatment duration, is associated with higher efficacy; second, teachers report a lower improvement compared to parents; third, using high-quality EEG equipment improves the effectiveness of the NFB treatment. The identification of biases relating to an appropriate technical implementation of NFB certainly supports the efficacy of NFB as an intervention. The data presented also suggest that the probably blind assessment of teachers may not be considered a good proxy for blind assessments, therefore stressing the need for studies with placebo-controlled intervention as well as carefully reported neuromarker changes in relation to clinical response.
Collapse
Affiliation(s)
- Aurore Bussalb
- Mensia Technologies SA, Paris, France.,Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - Marco Congedo
- GIPSA-Lab, Université Grenoble Alpes, CNRS, Grenoble-INP, Grenoble, France
| | | | | | - Eric Acquaviva
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | - Richard Delorme
- Child and Adolescent Psychiatry Department, Robert Debré Hospital, Paris, France
| | | |
Collapse
|
32
|
Campos da Paz VK, Garcia A, Campos da Paz Neto A, Tomaz C. SMR Neurofeedback Training Facilitates Working Memory Performance in Healthy Older Adults: A Behavioral and EEG Study. Front Behav Neurosci 2018; 12:321. [PMID: 30618671 PMCID: PMC6306463 DOI: 10.3389/fnbeh.2018.00321] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/07/2018] [Indexed: 11/13/2022] Open
Abstract
Cognitive aging has become a major concern because life expectancy has increased and elderly populations are socially and economically active. Neurofeedback is a technique of neuromodulation through operant conditioning paradigm that uses a computer interface to provide real-time information about brain activity to increase individual self-perception and assist in modulation. The sensorimotor rhythm (SMR) training protocol is known to enhance attention and has been applied to improve cognitive performance, primarily for attention and memory gains. The aim of this study is to test if the SMR protocol can improve working memory performance in an aging population and consequently favor cognitive reserve. Seventeen older adults (12 females) took part in a randomized placebo-controlled study. They completed a visual working memory test, Delayed Matching to Sample Task (DMTS), before and after the SMR neurofeedback protocol in order to compare their visual working memory performance. Moreover, a 19-channels EEG was collected while they perform the DMTS pre- and post-training. The experimental group showed an improvement in their working memory performance after the training with similar activation power, mainly in theta and beta frequency band at frontal and alpha at temporal regions. The sham group showed some variations in the score of working memory after the training, but were not statistically significant and their power spectrum demonstrate enhancement in alpha and beta band frontal and temporal. The group that did not receive neurofeedback training did not show a change in their working memory performance, neither in their EEG spectrum. The results suggest that neurofeedback can benefit brain reserve in an aging population because individuals enhanced their working memory performance after training and have their EEG activation changed according to expected in working memory tasks.
Collapse
Affiliation(s)
| | - Ana Garcia
- Department of Psychology, Euro-American University Center (UNIEURO), Brasília, Brazil
| | | | - Carlos Tomaz
- Laboratory of Neuroscience and Behavior, CEUMA University, São Luis, Brazil
| |
Collapse
|
33
|
Effectiveness of Neurofeedback on Executive Functions and Tendency Toward High-Risk Behaviors in Adolescents with Attention Deficit Hyperactivity Disorder. INTERNATIONAL JOURNAL OF HIGH RISK BEHAVIORS AND ADDICTION 2018. [DOI: 10.5812/ijhrba.82012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|