1
|
Rhodes N, Sato J, Safar K, Amorim K, Taylor MJ, Brookes MJ. Paediatric magnetoencephalography and its role in neurodevelopmental disorders. Br J Radiol 2024; 97:1591-1601. [PMID: 38976633 PMCID: PMC11417392 DOI: 10.1093/bjr/tqae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/30/2024] [Indexed: 07/10/2024] Open
Abstract
Magnetoencephalography (MEG) is a non-invasive neuroimaging technique that assesses neurophysiology through the detection of the magnetic fields generated by neural currents. In this way, it is sensitive to brain activity, both in individual regions and brain-wide networks. Conventional MEG systems employ an array of sensors that must be cryogenically cooled to low temperature, in a rigid one-size-fits-all helmet. Systems are typically designed to fit adults and are therefore challenging to use for paediatric measurements. Despite this, MEG has been employed successfully in research to investigate neurodevelopmental disorders, and clinically for presurgical planning for paediatric epilepsy. Here, we review the applications of MEG in children, specifically focussing on autism spectrum disorder and attention-deficit hyperactivity disorder. Our review demonstrates the significance of MEG in furthering our understanding of these neurodevelopmental disorders, while also highlighting the limitations of current instrumentation. We also consider the future of paediatric MEG, with a focus on newly developed instrumentation based on optically pumped magnetometers (OPM-MEG). We provide a brief overview of the development of OPM-MEG systems, and how this new technology might enable investigation of brain function in very young children and infants.
Collapse
Affiliation(s)
- Natalie Rhodes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2QX, United Kingdom
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Julie Sato
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kristina Safar
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Kaela Amorim
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Margot J Taylor
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Diagnostic & Interventional Radiology, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Psychology, University of Toronto, Toronto, ON M5S 2E5, Canada
- Department of Medical Imaging, University of Toronto, Toronto, ON M5T 1W7, Canada
| | - Matthew J Brookes
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, University Park, Nottingham NG7 2QX, United Kingdom
- Cerca Magnetics Limited, Nottingham NG7 1LD, United Kingdom
| |
Collapse
|
2
|
Marsack-Topolewski CN, Samuel PS. Experiences of Parental Caregivers of Adults with Autism in Navigating the World of Employment. J Autism Dev Disord 2024:10.1007/s10803-024-06381-8. [PMID: 38764071 DOI: 10.1007/s10803-024-06381-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2024] [Indexed: 05/21/2024]
Abstract
PURPOSE Caregiving often presents challenges for parents, particularly for parents of loved ones with disabilities or health challenges, who need and/or want to be employed. This study describes the employment experiences of aging parents as they continue to balance engagement in the paid workforce with the ongoing provision of care for their adult children with autism spectrum disorder (ASD). The purpose of this study was to examine the lived experiences of parents of adult children with ASD in the context of balancing career and caregiving responsibilities. METHODS The current study uses a qualitative phenomenological research approach to describe the lived experiences of 51 parents who were caring for an adult child with ASD. The parents participated in telephone interviews to obtain information about their career experiences while providing care and support to their adult children with ASD. RESULTS Three caregiving themes emerged including: (a) difficulty balancing caregiving with work responsibilities, (b) reasons for working, not working, or working intermittently, and (c) work as an escape or wanting to work more. CONCLUSION As more individuals with ASD reach adulthood, often relying to varying extents on their families for daily support, parental employment will continue to be impacted as they juggle their career with caregiving responsibilities. Economically, one or more family members typically need to work to sustain the family's needs and employment support should be considered. As a society, families often need to make choices even with an adult child with ASD of who will work, how, and when.
Collapse
Affiliation(s)
- Christina N Marsack-Topolewski
- School of Social Work, Eastern Michigan University, 206H Everett L. Marshall Building, Ypsilanti, Ypsilanti, MI, 48197, USA.
| | - Preethy S Samuel
- College of Pharmacy and Health Sciences, Wayne State University, 259 Mack Avenue, Detroit, MI, 48201, USA
| |
Collapse
|
3
|
Karjalainen S, Aro T, Parviainen T. Coactivation of Autonomic and Central Nervous Systems During Processing of Socially Relevant Information in Autism Spectrum Disorder: A Systematic Review. Neuropsychol Rev 2024; 34:214-231. [PMID: 36849624 PMCID: PMC10920494 DOI: 10.1007/s11065-023-09579-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 11/29/2022] [Indexed: 03/01/2023]
Abstract
Body-brain interaction provides a novel approach to understand neurodevelopmental conditions such as autism spectrum disorder (ASD). In this systematic review, we analyse the empirical evidence regarding coexisting differences in autonomic (ANS) and central nervous system (CNS) responses to social stimuli between individuals with ASD and typically developing individuals. Moreover, we review evidence of deviations in body-brain interaction during processing of socially relevant information in ASD. We conducted systematic literature searches in PubMed, Medline, PsychInfo, PsychArticles, and Cinahl databases (until 12.1.2022). Studies were included if individuals with ASD were compared with typically developing individuals, study design included processing of social information, and ANS and CNS activity were measured simultaneously. Out of 1892 studies identified based on the titles and abstracts, only six fulfilled the eligibility criteria to be included in synthesis. The quality of these studies was assessed using a quality assessment checklist. The results indicated that individuals with ASD demonstrate atypicalities in ANS and CNS signalling which, however, are context dependent. There were also indications for altered contribution of ANS-CNS interaction in processing of social information in ASD. However, the findings must be considered in the context of several limitations, such as small sample sizes and high variability in (neuro)physiological measures. Indeed, the methodological choices varied considerably, calling for a need for unified guidelines to improve the interpretability of results. We summarize the current experimentally supported understanding of the role of socially relevant body-brain interaction in ASD. Furthermore, we propose developments for future studies to improve incremental knowledge building across studies of ANS-CNS interaction involving individuals with ASD.
Collapse
Affiliation(s)
- Suvi Karjalainen
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland.
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland.
| | - Tuija Aro
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland
| | - Tiina Parviainen
- Department of Psychology, University of Jyväskylä, PO Box 35, FI-40014, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
4
|
Blanco B, Lloyd-Fox S, Begum-Ali J, Pirazzoli L, Goodwin A, Mason L, Pasco G, Charman T, Jones EJH, Johnson MH. Cortical responses to social stimuli in infants at elevated likelihood of ASD and/or ADHD: A prospective cross-condition fNIRS study. Cortex 2023; 169:18-34. [PMID: 37847979 DOI: 10.1016/j.cortex.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 10/19/2023]
Abstract
Autism spectrum disorders (ASD) and attention-deficit hyperactivity disorder (ADHD) are highly prevalent neurodevelopmental conditions that often co-occur and present both common and distinct neurodevelopmental profiles. Studying the developmental pathways leading to the emergence of ASD and/or ADHD symptomatology is crucial in understanding neurodiversity and discovering the mechanisms that underpin it. This study used functional near-infrared spectroscopy (fNIRS) to investigate differences in cortical specialization to social stimuli between 4- to 6-month-old infants at typical and elevated likelihood of ASD and/or ADHD. Results showed that infants at both elevated likelihood of ASD and ADHD had reduced selectivity to vocal sounds in left middle and superior temporal gyrus. Furthermore, infants at elevated likelihood of ASD showed attenuated responses to visual social stimuli in several cortical regions compared to infants at typical likelihood. Individual brain responses to visual social stimuli were associated with later autism traits, but not ADHD traits. These outcomes support our previous observations showing atypical social brain responses in infants at elevated likelihood of ASD and align with later atypical brain responses to social stimuli observed in children and adults with ASD. These findings highlight the importance of characterizing antecedent biomarkers of atypicalities in processing socially relevant information that might contribute to both phenotypic overlap and divergence across ASD and ADHD conditions and their association with the later emergence of behavioural symptoms.
Collapse
Affiliation(s)
- Borja Blanco
- Department of Psychology, University of Cambridge, UK.
| | | | - Jannath Begum-Ali
- Centre for Brain & Cognitive Development, Birkbeck, University of London, UK
| | - Laura Pirazzoli
- Laboratories of Cognitive Neuroscience, Division of Developmental Medicine, Department of Medicine, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Amy Goodwin
- Institute of Psychiatry, Psychology & Neuroscience, Kings College London, UK
| | - Luke Mason
- Centre for Brain & Cognitive Development, Birkbeck, University of London, UK; Institute of Psychiatry, Psychology & Neuroscience, Kings College London, UK
| | - Greg Pasco
- Institute of Psychiatry, Psychology & Neuroscience, Kings College London, UK
| | - Tony Charman
- Institute of Psychiatry, Psychology & Neuroscience, Kings College London, UK
| | - Emily J H Jones
- Centre for Brain & Cognitive Development, Birkbeck, University of London, UK
| | - Mark H Johnson
- Department of Psychology, University of Cambridge, UK; Centre for Brain & Cognitive Development, Birkbeck, University of London, UK
| |
Collapse
|
5
|
Safar K, Pang EW, Vandewouw MM, de Villa K, Arnold PD, Iaboni A, Ayub M, Kelley E, Lerch JP, Anagnostou E, Taylor MJ. Atypical oscillatory dynamics during emotional face processing in paediatric obsessive-compulsive disorder with MEG. Neuroimage Clin 2023; 38:103408. [PMID: 37087819 PMCID: PMC10149418 DOI: 10.1016/j.nicl.2023.103408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/21/2023] [Accepted: 04/14/2023] [Indexed: 04/25/2023]
Abstract
Children and youth with obsessive-compulsive disorder (OCD) demonstrate difficulties with social, emotional and cognitive functions in addition to the core diagnosis of obsessions and compulsions. This is the first magnetoencephalography (MEG) study to examine whole-brain neurophysiological functional connectivity of emotional face processing networks in paediatric OCD. Seventy-two participants (OCD: n = 36; age 8-17 yrs; typically developing controls: n = 36, age 8-17 yrs) completed an implicit emotional face processing task in the MEG. Functional connectivity networks in canonical frequency bands were compared between groups, and within OCD and control groups between emotions (angry vs. happy). Between groups, participants with OCD showed increased functional connectivity in the gamma band to angry faces, suggesting atypical perception of angry faces in OCD. Within groups, the OCD group showed greater engagement of the beta band, suggesting the over-use of top-down processing when perceiving happy versus angry emotions, while controls engaged in bottom-up gamma processing, also greater to happy faces. Over-activation of top-down processing has been linked to difficulties modifying one's cognitive set. Findings establish altered patterns of neurophysiological connectivity in children with OCD, and are striking in their oscillatory specificity. Our results contribute to a greater understanding of the neurobiology of the disorder, and are foundational for the possibility of alternative targets for intervention.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada.
| | - Elizabeth W Pang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Division of Neurology, The Hospital for Sick Children, Toronto, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Kathrina de Villa
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada
| | - Paul D Arnold
- The Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Canada; Departments of Psychiatry and Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada
| | - Muhammed Ayub
- Department of Psychology, Queen's University, Kingston, Canada
| | - Elizabeth Kelley
- Department of Psychology, Queen's University, Kingston, Canada; Department of Psychiatry, Queen's University, Kingston, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom; Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, Canada; Department of Paediatrics, University of Toronto, Toronto, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Canada; Department of Medical Imaging, University of Toronto, Toronto, Canada; Department of Psychology, University of Toronto, Toronto, Canada
| |
Collapse
|
6
|
Hasegawa C, Ikeda T, Yoshimura Y, Kumazaki H, Saito DN, Yaoi K, An K, Takahashi T, Hirata M, Asada M, Kikuchi M. Reduced gamma oscillation during visual processing of the mother's face in children with autism spectrum disorder: A pilot study. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2023; 2:e68. [PMID: 38868414 PMCID: PMC11114405 DOI: 10.1002/pcn5.68] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 11/28/2022] [Accepted: 12/13/2022] [Indexed: 06/14/2024]
Abstract
Aim This study aimed to investigate gamma oscillations related to face processing of children with autism spectrum disorders and typically developed children using magnetoencephalography. Methods We developed stimuli that included naturalistic real-time eye-gaze situations between participants and their mothers. Eighteen young children with autism spectrum disorders (62-97 months) and 24 typically developed children (61-79 months) were included. The magnetoencephalography data were analyzed in the bilateral banks of the superior temporal sulcus, fusiform gyrus, and pericalcarine cortex for frequency ranges 30-59 and 61-90 Hz. The gamma oscillation normalized values were calculated to compare the face condition (children gazing at mother's face) and control measurements (baseline) using the following formula: (face - control)/(face + control). Results The results revealed significant differences in gamma oscillation normalized values in the low gamma band (30-59 Hz) in the right banks of the superior temporal sulcus, right fusiform gyrus, and right pericalcarine cortex between children with autism spectrum disorders and typically developed children. Furthermore, there were significant differences in gamma oscillation normalized values in the high gamma band (61-90 Hz) in the right banks of the superior temporal sulcus, bilateral fusiform gyrus, and bilateral pericalcarine cortex between the groups. Conclusion This report is the first magnetoencephalography study revealing atypical face processing in young children with autism spectrum disorders using relevant stimuli between participants and their mothers. Our naturalistic paradigm provides a useful assessment of social communication traits and a valuable insight into the underlying neural mechanisms in children with autism spectrum disorders.
Collapse
Affiliation(s)
- Chiaki Hasegawa
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- Japan Society for the Promotion of ScienceChiyoda‐kuTokyoJapan
- School of Psychological SciencesMacquarie UniversitySydneyAustralia
| | - Takashi Ikeda
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
- University of FukuiFukuiJapan
| | - Yuko Yoshimura
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
- Institute of Human and Social SciencesKanazawa UniversityKanazawaJapan
| | - Hirokazu Kumazaki
- Department of Future Psychiatric Medicine, Graduate School of Biomedical SciencesNagasaki UniversityNagasakiJapan
| | - Daisuke N. Saito
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
- Department of Psychology, Faculty of PsychologyYasuda Woman's UniversityHiroshimaJapan
| | - Ken Yaoi
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
| | - Kyung‐Min An
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
- School of PsychologyUniversity of BirminghamBirminghamUK
- Centre for Human Brain Health, School of PsychologyUniversity of BirminghamBirminghamUK
| | - Tetsuya Takahashi
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- Uozu Shinkei SanatoriumUozuJapan
- Department of NeuropsychiatryUniversity of FukuiFukuiJapan
| | - Masayuki Hirata
- Department of Neurological Diagnosis and Restoration, Graduate School of MedicineOsaka UniversitySuitaJapan
- Department of Neurosurgery Osaka University Medical SchoolSuitaJapan
- Center for Information and Neural NetworksNational Institute of Information and Communications TechnologySuitaJapan
- Open and Transdisciplinary Research Initiatives, Symbiotic Intelligent System Research CenterOsaka UniversitySuitaJapan
| | - Minoru Asada
- Center for Information and Neural NetworksNational Institute of Information and Communications TechnologySuitaJapan
- Open and Transdisciplinary Research Initiatives, Symbiotic Intelligent System Research CenterOsaka UniversitySuitaJapan
- International Professional University of Technology in OsakaOsakaJapan
- Chubu University Academy of Emerging SciencesKasugaiJapan
| | - Mitsuru Kikuchi
- Research Center for Child Mental DevelopmentKanazawa UniversityKanazawaJapan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of MedicineChiba University, and University of FukuiOsaka/Kanazawa/Hamamatsu/Chiba/FukuiJapan
- Department of Psychiatry and NeurobiologyKanazawa UniversityKanazawaJapan
| |
Collapse
|
7
|
Harada Y, Ohyama J, Wada M. Effects of temporal properties of facial expressions on the perceived intensity of emotion. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220585. [PMID: 36686551 PMCID: PMC9832291 DOI: 10.1098/rsos.220585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
A series of multiple facial expressions can be temporally perceived as an averaged facial expression in a process known as ensemble perception. This study examined the effect of temporal parameters on the perceived intensity of facial expression in each emotion, and how the effect varies with autistic traits in typically developing people. In the experiment, we presented facial expressions that switched from emotional to neutral expressions, and vice versa, for 3 s. Participants rated the overall perceived intensity of the facial emotions as a whole rather than rating individual items within the set. For the two tasks, a ratio of duration of emotional faces to duration of neutral faces (emotional ratio) and the timing for transitions were manipulated individually. The results showed that the intensity of facial emotion was perceived more strongly when the presentation ratio increased and when the emotional expression was presented last. The effects were different among the emotions (e.g. relatively weak in the anger expression). Moreover, the perceived intensity of angry expressions decreased with autistic traits. These results suggest that the properties and individual differences in the facial ensemble of each emotion affect emotional perceptions.
Collapse
Affiliation(s)
- Yuki Harada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
- Faculty of Humanities, Kyoto University of Advanced Science, Kyoto, Japan
| | - Junji Ohyama
- Human Augmentation Research Center, National Institute of Advanced Industrial Science and Technology, Kashiwa, Japan
| | - Makoto Wada
- Developmental Disorders Section, Department of Rehabilitation for Brain Functions, Research Institute of National Rehabilitation Center for Persons with Disabilities, Tokorozawa, Japan
| |
Collapse
|
8
|
Shirwaikar RD, Sarwari I, Najam M, M SH. Has Machine Learning Enhanced the Diagnosis of Autism Spectrum Disorder? Crit Rev Biomed Eng 2023; 51:1-14. [PMID: 37522537 DOI: 10.1615/critrevbiomedeng.v51.i1.10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Autism spectrum disorder (ASD) is a complex neurological condition that limits an individual's capacity for communication and learning throughout their life. Although symptoms of Autism can be diagnosed in individuals of different ages, it is labeled as a developmental disorder because symptoms typically start to show up in the initial 2 years of childhood. Autism has no single known cause but multiple factors contribute to its etiology in children. Because symptoms and severity of ASD vary in every individual, there could be many causes. Detection of ASD in the early stages is crucial for providing a path for rehabilitation that enhances the quality of life and integrates the ASD person into the social, family, and professional spheres. Assessment of ASD includes experienced observers in neutral environments, which brings constraints and biases to a lack of credibility and fails to accurately reflect performance in terms of real-world scenarios. To get around these limitations, the conducted review offers a thorough analysis of the impact on the individual and the ones living around them and most recent research on how these techniques are implemented in the diagnosis of ASD. As a result of improvements in technology, assessments now include processing unconventional data than can be collected from measurements arising out of laboratory chemistry or of electrophysiological origin. Examples of these technologies include virtual reality and sensors including eye-tracking imaging. Studies have been conducted towards recognition of emotion and brain networks to identify functional connectivity and discriminate between people with ASD and people who are thought to be typically developing. Diagnosis of Autism has recently made substantial use of long short term memory (LSTM), convolutional neural network (CNN) and its variants, the random forest (RF) and naive Bayes (NB) machine learning techniques. It is hoped that researchers will develop methodologies that increase the probability of identification of ASD in its varied forms and contribute towards improved lifestyle for patients with ASD and those affected by the pathology.
Collapse
Affiliation(s)
- Rudresh Deepak Shirwaikar
- Department of Computer Engineering, Agnel Institute of Technology and Design (AITD), Goa University, Assagao, Goa, India, 403507
| | - Iram Sarwari
- Department of Information Science and Engineering, Ramaiah Institute of Technology (RIT), Bangalore, Karnataka, India 560064
| | - Mehwish Najam
- Department of Information Science and Engineering, Ramaiah Institute of Technology (RIT), Bangalore, Karnataka, India 560064
| | - Shama H M
- BMS Institute of Technology and Management (BMSIT), Bangalore, Karnataka, India 560064
| |
Collapse
|
9
|
Liu L, Ren J, Li Z, Yang C. A review of MEG dynamic brain network research. Proc Inst Mech Eng H 2022; 236:763-774. [PMID: 35465768 DOI: 10.1177/09544119221092503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The dynamic description of neural networks has attracted the attention of researchers for dynamic networks may carry more information compared with resting-state networks. As a non-invasive electrophysiological data with high temporal and spatial resolution, magnetoencephalogram (MEG) can provide rich information for the analysis of dynamic functional brain networks. In this review, the development of MEG brain network was summarized. Several analysis methods such as sliding window, Hidden Markov model, and time-frequency based methods used in MEG dynamic brain network studies were discussed. Finally, the current research about multi-modal brain network analysis and their applications with MEG neurophysiology, which are prospected to be one of the research directions in the future, were concluded.
Collapse
Affiliation(s)
- Lu Liu
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| | - Jiechuan Ren
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhimei Li
- Department of Internal Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chunlan Yang
- Faculty of Environment and Life, Beijing University of Technology, Beijing, China
| |
Collapse
|
10
|
Freitas C, Hunt BAE, Wong SM, Ristic L, Fragiadakis S, Chow S, Iaboni A, Brian J, Soorya L, Chen JL, Schachar R, Dunkley BT, Taylor MJ, Lerch JP, Anagnostou E. Atypical Functional Connectivity During Unfamiliar Music Listening in Children With Autism. Front Neurosci 2022; 16:829415. [PMID: 35516796 PMCID: PMC9063167 DOI: 10.3389/fnins.2022.829415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
Background Atypical processing of unfamiliar, but less so familiar, stimuli has been described in Autism Spectrum Disorder (ASD), in particular in relation to face processing. We examined the construct of familiarity in ASD using familiar and unfamiliar songs, to investigate the link between familiarity and autism symptoms, such as repetitive behavior. Methods Forty-eight children, 24 with ASD (21 males, mean age = 9.96 years ± 1.54) and 24 typically developing (TD) controls (21 males, mean age = 10.17 ± 1.90) completed a music familiarity task using individually identified familiar compared to unfamiliar songs, while magnetoencephalography (MEG) was recorded. Each song was presented for 30 s. We used both amplitude envelope correlation (AEC) and the weighted phase lag index (wPLI) to assess functional connectivity between specific regions of interest (ROI) and non-ROI parcels, as well as at the whole brain level, to understand what is preserved and what is impaired in familiar music listening in this population. Results Increased wPLI synchronization for familiar vs. unfamiliar music was found for typically developing children in the gamma frequency. There were no significant differences within the ASD group for this comparison. During the processing of unfamiliar music, we demonstrated left lateralized increased theta and beta band connectivity in children with ASD compared to controls. An interaction effect found greater alpha band connectivity in the TD group compared to ASD to unfamiliar music only, anchored in the left insula. Conclusion Our results revealed atypical processing of unfamiliar songs in children with ASD, consistent with previous studies in other modalities reporting that processing novelty is a challenge for ASD. Relatively typical processing of familiar stimuli may represent a strength and may be of interest to strength-based intervention planning.
Collapse
Affiliation(s)
- Carina Freitas
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Benjamin A. E. Hunt
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Simeon M. Wong
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Leanne Ristic
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Susan Fragiadakis
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stephanie Chow
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Alana Iaboni
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Jessica Brian
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Latha Soorya
- Department of Psychiatry, Rush University Medical Center, Chicago, IL, United States
| | - Joyce L. Chen
- Faculty of Kinesiology and Physical Education and Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry Research, Hospital for Sick Children, Toronto, ON, Canada
| | - Benjamin T. Dunkley
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Margot J. Taylor
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Departments of Psychology and Medical Imaging, University of Toronto, Toronto, ON, Canada
| | - Jason P. Lerch
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
- Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, United Kingdom
| | - Evdokia Anagnostou
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
- Neuroscience and Mental Health Program, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Safar K, Vandewouw MM, Pang EW, de Villa K, Crosbie J, Schachar R, Iaboni A, Georgiades S, Nicolson R, Kelley E, Ayub M, Lerch JP, Anagnostou E, Taylor MJ. Shared and Distinct Patterns of Functional Connectivity to Emotional Faces in Autism Spectrum Disorder and Attention-Deficit/Hyperactivity Disorder Children. Front Psychol 2022; 13:826527. [PMID: 35356352 PMCID: PMC8959934 DOI: 10.3389/fpsyg.2022.826527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Impairments in emotional face processing are demonstrated by individuals with neurodevelopmental disorders (NDDs), including autism spectrum disorder (ASD) and attention-deficit/hyperactivity disorder (ADHD), which is associated with altered emotion processing networks. Despite accumulating evidence of high rates of diagnostic overlap and shared symptoms between ASD and ADHD, functional connectivity underpinning emotion processing across these two neurodevelopmental disorders, compared to typical developing peers, has rarely been examined. The current study used magnetoencephalography to investigate whole-brain functional connectivity during the presentation of happy and angry faces in 258 children (5–19 years), including ASD, ADHD and typically developing (TD) groups to determine possible differences in emotion processing. Data-driven clustering was also applied to determine whether the patterns of connectivity differed among diagnostic groups. We found reduced functional connectivity in the beta band in ASD compared to TD, and a further reduction in the ADHD group compared to the ASD and the TD groups, across emotions. A group-by-emotion interaction in the gamma frequency band was also observed. Greater connectivity to happy compared to angry faces was found in the ADHD and TD groups, while the opposite pattern was seen in ASD. Data-driven subgrouping identified two distinct subgroups: NDD-dominant and TD-dominant; these subgroups demonstrated emotion- and frequency-specific differences in connectivity. Atypicalities in specific brain networks were strongly correlated with the severity of diagnosis-specific symptoms. Functional connectivity strength in the beta network was negatively correlated with difficulties in attention; in the gamma network, functional connectivity strength to happy faces was positively correlated with adaptive behavioural functioning, but in contrast, negatively correlated to angry faces. Our findings establish atypical frequency- and emotion-specific patterns of functional connectivity between NDD and TD children. Data-driven clustering further highlights a high degree of comorbidity and symptom overlap between the ASD and ADHD children.
Collapse
Affiliation(s)
- Kristina Safar
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Elizabeth W Pang
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Division of Neurology, The Hospital for Sick Children, Toronto, ON, Canada
| | - Kathrina de Villa
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada
| | - Jennifer Crosbie
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Russell Schachar
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.,Department of Psychiatry, The Hospital for Sick Children, Toronto, ON, Canada
| | - Alana Iaboni
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Stelios Georgiades
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Robert Nicolson
- Department of Psychiatry, Western University, London, ON, Canada
| | - Elizabeth Kelley
- Department of Psychology and Centre for Neuroscience Studies, Queen's University, Kingston, ON, Canada.,Department of Psychiatry,Queen's University, Kingston, ON, Canada
| | - Muhammed Ayub
- Department of Psychiatry,Queen's University, Kingston, ON, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.,Mouse Imaging Centre, The Hospital for Sick Children, Toronto, ON, Canada
| | - Evdokia Anagnostou
- Autism Research Centre, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada.,Department of Paediatrics, University of Toronto, Toronto, ON, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON, Canada.,Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, ON, Canada.,Department of Medical Imaging, University of Toronto, Toronto, ON, Canada.,Department of Psychology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
12
|
Chernikova MA, Flores GD, Kilroy E, Labus JS, Mayer EA, Aziz-Zadeh L. The Brain-Gut-Microbiome System: Pathways and Implications for Autism Spectrum Disorder. Nutrients 2021; 13:nu13124497. [PMID: 34960049 PMCID: PMC8704412 DOI: 10.3390/nu13124497] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022] Open
Abstract
Gastrointestinal dysfunction is one of the most prevalent physiological symptoms of autism spectrum disorder (ASD). A growing body of largely preclinical research suggests that dysbiotic gut microbiota may modulate brain function and social behavior, yet little is known about the mechanisms that underlie these relationships and how they may influence the pathogenesis or severity of ASD. While various genetic and environmental risk factors have been implicated in ASD, this review aims to provide an overview of studies elucidating the mechanisms by which gut microbiota, associated metabolites, and the brain interact to influence behavior and ASD development, in at least a subgroup of individuals with gastrointestinal problems. Specifically, we review the brain-gut-microbiome system and discuss findings from current animal and human studies as they relate to social-behavioral and neurological impairments in ASD, microbiota-targeted therapies (i.e., probiotics, fecal microbiota transplantation) in ASD, and how microbiota may influence the brain at molecular, structural, and functional levels, with a particular interest in social and emotion-related brain networks. A deeper understanding of microbiome-brain-behavior interactions has the potential to inform new therapies aimed at modulating this system and alleviating both behavioral and physiological symptomatology in individuals with ASD.
Collapse
Affiliation(s)
- Michelle A. Chernikova
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, Loyola Marymount University, Los Angeles, CA 90045, USA
| | - Genesis D. Flores
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Psychology Department, California State Polytechnic University, Pomona, CA 91768, USA
| | - Emily Kilroy
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
| | - Jennifer S. Labus
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Gonda (Goldschmied) Neuroscience and Genetics Research Center, Brain Research Institute UCLA, Los Angeles, CA 90095, USA
| | - Emeran A. Mayer
- G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California Los Angeles, Los Angeles, CA 90095, USA;
- Vatche and Tamar Manoukian Division of Digestive Diseases, University of California Los Angeles, Los Angeles, CA 90095, USA
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| | - Lisa Aziz-Zadeh
- USC Chan Division of Occupational Science and Occupational Therapy, University of Southern California, Los Angeles, CA 90033, USA; (M.A.C.); (G.D.F.); (E.K.)
- Brain and Creativity Institute, University of Southern California, Los Angeles, CA 90089, USA
- Correspondence: (E.A.M.); (L.A.-Z.)
| |
Collapse
|
13
|
Argento O, Spanò B, Serra L, Incerti CC, Bozzali M, Caltagirone C, Francia A, Fratino M, Nocentini U, Piacentini C, Quartuccio ME, Pisani V. Relapsing-remitting and secondary-progressive multiple sclerosis patients differ in decoding others' emotions by their eyes. Eur J Neurol 2021; 29:505-514. [PMID: 34687120 DOI: 10.1111/ene.15155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 09/17/2021] [Accepted: 10/14/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND AND PURPOSE Difficulties in emotion processing and social cognition identified in multiple sclerosis (MS) patients have a potential impact on their adaptation to the social environment. We aimed to explore the neural correlates of emotion recognition in MS and possible differences between relapsing-remitting MS (RRMS) and secondary progressive MS (SPMS) patients by the Reading the Mind in the Eyes test (RMEt). METHODS A total of 43 MS patients (27 RRMS, 16 SPMS) and 25 matched healthy controls (HC) underwent clinical assessments, RMEt, and a high-resolution T1-weighted 3-T magnetic resonance imaging (MRI) scan. The number of correct answers on the RMEt was compared between groups. T1-weighted volumes were processed according to an optimized voxel-based morphometry (VBM) protocol to obtain gray matter (GM) maps. Voxelwise analyses were run to assess potential associations between RMEt performance and regional GM volumes. RESULTS Taken altogether, MS patients reported significantly lower performance on the RMEt compared to HC. When dividing the patients into those with RRMS and those with SPMS, only the latter group was found to perform significantly worse than HC on the RMEt. VBM analysis revealed significant association between RMEt scores and GM volumes in several cortical (temporoparieto-occipital cortex) and subcortical (hippocampus, parahippocampus, and basal ganglia) brain regions, and in the cerebellum in SPMS patients only. CONCLUSIONS Results suggest that, in addition to other clinical differences between RRMS and SPMS, the ability to recognize others' emotional states may be affected in SPMS more significantly than RRMS patients. This is supported by both behavioral and MRI data.
Collapse
Affiliation(s)
- Ornella Argento
- Neurology and Neurorehabilitation Unit, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Barbara Spanò
- Neuroimaging Unit, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Laura Serra
- Neuroimaging Unit, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Chiara Concetta Incerti
- Neurology and Neurorehabilitation Unit, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Marco Bozzali
- Rita Levi Montalcini Department of Neuroscience,, University of Turin, Turin, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Carlo Caltagirone
- Scientific Direction, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | - Ada Francia
- Department of Neurological Sciences, Sapienza University of Rome, Rome, Italy
| | - Mariangela Fratino
- Department of Neurological Sciences, Sapienza University of Rome, Rome, Italy
| | - Ugo Nocentini
- Neurology and Neurorehabilitation Unit, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy.,Department of Clinical Sciences and Translational Medicine, Tor Vergata University of Rome, Rome, Italy
| | - Chiara Piacentini
- Neurology and Neurorehabilitation Unit, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| | | | - Valerio Pisani
- Neurology and Neurorehabilitation Unit, Santa Lucia Foundation, Scientific Institute for Research and Health Care, Rome, Italy
| |
Collapse
|
14
|
Atypical development of emotional face processing networks in autism spectrum disorder from childhood through to adulthood. Dev Cogn Neurosci 2021; 51:101003. [PMID: 34416703 PMCID: PMC8377538 DOI: 10.1016/j.dcn.2021.101003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 07/29/2021] [Accepted: 08/08/2021] [Indexed: 11/12/2022] Open
Abstract
MEG connectivity to emotional faces in ASD and typical controls 6–39 years of age was investigated. Distinct age-related changes in connectivity were observed in the groups to happy and angry faces. Age-related between-group differences in functional connectivity were found in gamma band. Emotion-specific age-related between-group differences were seen in beta. Findings highlight specific neurodevelopmental trajectories to emotional faces in ASD vs. TD.
Impairments in social functioning are hallmarks of autism spectrum disorder (ASD) and atypical functional connectivity may underlie these difficulties. Emotion processing networks typically undergo protracted maturational changes, however, those with ASD show either hyper- or hypo-connectivity with little consensus on the functional connectivity underpinning emotion processing. Magnetoencephalography was used to investigate age-related changes in whole-brain functional connectivity of eight regions of interest during happy and angry face processing in 190 children, adolescents and adults (6–39 years) with and without ASD. Findings revealed age-related changes from child- through to mid-adulthood in functional connectivity in controls and in ASD in theta, as well as age-related between-group differences across emotions, with connectivity decreasing in ASD, but increasing for controls, in gamma. Greater connectivity to angry faces was observed across groups in gamma. Emotion-specific age-related between-group differences in beta were also found, that showed opposite trends with age for happy and angry in ASD. Our results establish altered, frequency-specific developmental trajectories of functional connectivity in ASD, across distributed networks and a broad age range, which may finally help explain the heterogeneity in the literature.
Collapse
|
15
|
Styliadis C, Leung R, Özcan S, Moulton EA, Pang E, Taylor MJ, Papadelis C. Atypical spatiotemporal activation of cerebellar lobules during emotional face processing in adolescents with autism. Hum Brain Mapp 2021; 42:2099-2114. [PMID: 33528852 PMCID: PMC8046060 DOI: 10.1002/hbm.25349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/07/2020] [Accepted: 01/09/2021] [Indexed: 01/17/2023] Open
Abstract
Autism spectrum disorder (ASD) is characterized by social deficits and atypical facial processing of emotional expressions. The underlying neuropathology of these abnormalities is still unclear. Recent studies implicate cerebellum in emotional processing; other studies show cerebellar abnormalities in ASD. Here, we elucidate the spatiotemporal activation of cerebellar lobules in ASD during emotional processing of happy and angry faces in adolescents with ASD and typically developing (TD) controls. Using magnetoencephalography, we calculated dynamic statistical parametric maps across a period of 500 ms after emotional stimuli onset and determined differences between group activity to happy and angry emotions. Following happy face presentation, adolescents with ASD exhibited only left‐hemispheric cerebellar activation in a cluster extending from lobule VI to lobule V (compared to TD controls). Following angry face presentation, adolescents with ASD exhibited only midline cerebellar activation (posterior IX vermis). Our findings indicate an early (125–175 ms) overactivation in cerebellar activity only for happy faces and a later overactivation for both happy (250–450 ms) and angry (250–350 ms) faces in adolescents with ASD. The prioritized hemispheric activity (happy faces) could reflect the promotion of a more flexible and adaptive social behavior, while the latter midline activity (angry faces) may guide conforming behavior.
Collapse
Affiliation(s)
- Charis Styliadis
- Laboratory of Medical Physics, School of Medicine, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | | - Selin Özcan
- Laboratory of Children's Brain Dynamics, Division of Newborn Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Eric A Moulton
- Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.,Department of Ophthalmology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Elizabeth Pang
- University of Toronto, Toronto, Canada.,Division of Neurology, Hospital for Sick Children, Toronto, Ontario, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada
| | - Margot J Taylor
- University of Toronto, Toronto, Canada.,Neurosciences and Mental Health Program, Research Institute, Hospital for Sick Children, Toronto, Canada.,Diagnostic Imaging, Hospital for Sick Children, Toronto, Canada.,Autism Research Unit, Hospital for Sick Children, Toronto, Canada
| | - Christos Papadelis
- Jane and John Justin Neurosciences Center, Cook Children's Health Care System, Fort Worth, Texas, USA.,Department of Bioengineering, University of Texas at Arlington, Arlington, Texas, USA.,Department of Pediatrics, TCU and UNTHSC School of Medicine, Fort Worth, Texas, USA
| |
Collapse
|
16
|
Vandewouw MM, Choi EJ, Hammill C, Lerch JP, Anagnostou E, Taylor MJ. Changing Faces: Dynamic Emotional Face Processing in Autism Spectrum Disorder Across Childhood and Adulthood. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2020; 6:825-836. [PMID: 33279458 DOI: 10.1016/j.bpsc.2020.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is classically associated with poor emotional face processing. Few studies, however, have used more ecological dynamic stimuli. We contrasted functional magnetic resonance imaging measures of dynamic emotional face processing in ASD and typically developing (TD) cohorts across a wide age range to determine if the processing and age-related trajectories differed between participants with and without ASD. METHODS Functional magnetic resonance imaging data collected from 200 participants (5-42 years old; 107 in ASD cohort, 93 in TD cohort) during the presentation of dynamic emotional faces (neutral-to-happy, neutral-to-angry) and dynamic flowers (closed-to-open) were analyzed. Group differences and group-by-age interactions in the faces versus flowers and between emotion contrasts were investigated. RESULTS Differences in activation between dynamic faces and flowers in occipital regions, including the fusiform gyri, were reduced in the ASD group. Contrasting the two emotions, ASD compared with TD participants showed increased engagement of the precentral, postcentral, and superior temporal gyri to happy faces and increased activation to angry faces occipitally. Emotion processing regions, such as insula, temporal pole, and frontal regions, showed increased recruitment with age to happy faces compared with both angry faces and flowers in the TD group, but decreased recruitment with age in the ASD group. CONCLUSIONS Using dynamic stimuli, we demonstrated that participants with ASD processed faces similarly to nonface stimuli, and age-related atypicalities were more pronounced to happy faces in participants with ASD. We demonstrated emotion-specific atypicalities in a large group of participants with ASD that underscore persistent difficulties from childhood into mid-adulthood.
Collapse
Affiliation(s)
- Marlee M Vandewouw
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabiliation Hospital, Toronto, Ontario, Canada; Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.
| | - Eun Jung Choi
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabiliation Hospital, Toronto, Ontario, Canada
| | - Christopher Hammill
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Jason P Lerch
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, Oxford Centre for Functional MRI of the Brain, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Evdokia Anagnostou
- Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Autism Research Center, Bloorview Research Institute, Holland Bloorview Kids Rehabiliation Hospital, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Margot J Taylor
- Department of Diagnostic Imaging, Hospital for Sick Children, Toronto, Ontario, Canada; Program in Neurosciences & Mental Health, Hospital for Sick Children, Toronto, Ontario, Canada; Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Department of Medical Imaging, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
17
|
Marsack-Topolewski CN. A Snapshot of Social Support Networks Among Parental Caregivers of Adults with Autism. J Autism Dev Disord 2020; 50:1111-1122. [PMID: 31848797 DOI: 10.1007/s10803-019-04285-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This study provided a description of types and dimensions of informal and formal social support among aging parental caregivers of adult children diagnosed with autism spectrum disorder (ASD). Parents participated in a web-based survey regarding use of and satisfaction with social support services for parents or their adult children. Results indicated that many parents participated in autism support groups (27.5%), with psychiatric services (48.8%), counseling (40.6%), and financial assistance (39.7%) the most commonly used formal social supports. Emotional support (88.8%) and informational support (67.5%) were the most common informal social supports used. Professionals who are working with parental caregivers and their adult children diagnosed with ASD should be aware of available social support services to help them find needed services.
Collapse
|
18
|
Association of self-regulation with white matter correlates in boys with and without autism spectrum disorder. Sci Rep 2020; 10:13811. [PMID: 32796900 PMCID: PMC7429820 DOI: 10.1038/s41598-020-70836-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 07/24/2020] [Indexed: 12/27/2022] Open
Abstract
Previous studies demonstrated distinct neural correlates underpinning impaired self-regulation (dysregulation) between individuals with autism spectrum disorder (ASD) and typically developing controls (TDC). However, the impacts of dysregulation on white matter (WM) microstructural property in ASD and TDC remain unclear. Diffusion spectrum imaging was acquired in 59 ASD and 62 TDC boys. We investigated the relationship between participants’ dysregulation levels and microstructural property of 76 WM tracts in a multivariate analysis (canonical correlation analysis), across diagnostic groups. A single mode of brain-behavior co-variation was identified: participants were spread along a single axis linking diagnosis, dysregulation, diagnosis-by-dysregulation interaction, and intelligence to a specific WM property pattern. This mode corresponds to diagnosis-distinct correlates underpinning dysregulation, which showed higher generalized fractional anisotropy (GFA) associated with less dysregulation in ASD but greater dysregulation in TDC, in the tracts connecting limbic and emotion regulation systems. Moreover, higher GFA of the tracts implicated in memory, attention, sensorimotor processing, and perception associated with less dysregulation in TDC but worse dysregulation in ASD. No shared WM correlates of dysregulation between ASD and TDC were identified. Corresponding to previous studies, we demonstrated that ASD and TDC have broad distinct white matter microstructural property underpinning self-regulation.
Collapse
|
19
|
Marsack CN, Hopp FP. Informal Support, Health, and Burden Among Parents of Adult Children With Autism. THE GERONTOLOGIST 2020; 59:1112-1121. [PMID: 29982655 DOI: 10.1093/geront/gny082] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Many adults with autism spectrum disorders require lifelong reliance on caregiver support. As these caregivers age and experience health challenges, social support can be critical. This study seeks to understand if caregiver health moderates the relationship between informal social support and caregiver burden. RESEARCH DESIGN AND METHODS A total of 320 parents (age 50+ years) of adult children diagnosed with ASD were recruited from autism organizations and support groups and completed a web-based survey. Separate moderation analyses were used to determine if caregiver health was moderating the relationship between informal social support and composite caregiver burden, as well as the separate domains of developmental, time dependence, emotional burden, and impact of caregiving on finances. For each analysis, perceptions of available informal social support were the independent variable, composite and domains of caregiver burden were dependent variables, and parents' self-reported general health was the moderating variable. RESULTS Caregiver health had a statistically significant moderating effect when predicting the relationships between informal social support and composite caregiver burden, as well as time dependence burden and impact of caregiving on finances. DISCUSSION AND IMPLICATIONS Increased attention should be focused on supporting the current and future needs of both aging caregivers and their adult children with ASD. Future research on the dynamics of social support, health, and burden is also urgently needed to address the growing number of aging caregivers of adults diagnosed with ASD.
Collapse
Affiliation(s)
| | - Faith P Hopp
- School of Social Work, Wayne State University, Detroit, Michigan
| |
Collapse
|
20
|
Susac A. Neuromagnetic Measurements of Emotional Face Processing in Children With Autism Spectrum Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2019; 4:1014-1015. [PMID: 31812221 DOI: 10.1016/j.bpsc.2019.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Affiliation(s)
- Ana Susac
- Department of Applied Physics, Faculty of Electrical Engineering and Computing, University of Zagreb, Zagreb, Croatia.
| |
Collapse
|
21
|
Interoceptive awareness mitigates deficits in emotional prosody recognition in Autism. Biol Psychol 2019; 146:107711. [DOI: 10.1016/j.biopsycho.2019.05.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 04/04/2019] [Accepted: 05/31/2019] [Indexed: 12/13/2022]
|