1
|
Gozzi N, Chee L, Odermatt I, Kikkert S, Preatoni G, Valle G, Pfender N, Beuschlein F, Wenderoth N, Zipser C, Raspopovic S. Wearable non-invasive neuroprosthesis for targeted sensory restoration in neuropathy. Nat Commun 2024; 15:10840. [PMID: 39738088 DOI: 10.1038/s41467-024-55152-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025] Open
Abstract
Peripheral neuropathy (PN), the most common complication of diabetes, leads to sensory loss and associated health issues as pain and increased fall risk. However, present treatments do not counteract sensory loss, but only partially manage its consequences. Electrical neural stimulation holds promise to restore sensations, but its efficacy and benefits in PN damaged nerves are yet unknown. We designed a wearable sensory neuroprosthesis (NeuroStep) providing targeted neurostimulation of the undamaged nerve portion and assessed its functionality in 14 PN participants. Our system partially restored lost sensations in all participants through a purposely calibrated neurostimulation, despite PN nerves being less sensitive than healthy nerves (N = 22). Participants improved cadence and functional gait and reported a decrease of neuropathic pain after one day. Restored sensations activated cortical patterns resembling naturally located foot sensations. NeuroStep restores real-time intuitive sensations in PN participants, holding potential to enhance functional and health outcomes while advancing effective non-invasive neuromodulation.
Collapse
Affiliation(s)
- Noemi Gozzi
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Lauren Chee
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Ingrid Odermatt
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
| | - Greta Preatoni
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Giacomo Valle
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Nikolai Pfender
- Department of Neurology and Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
| | - Felix Beuschlein
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
- Medizinische Klinik und Poliklinik IV, Klinikum der Universität, Ludwig-Maximilians-Universität, Munich, Germany
- The LOOP Zurich - Medical Research Center, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich and ETH Zurich, Zurich, Switzerland
- Future Health Technologies, Singapore-ETH Centre, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Carl Zipser
- Department of Neurology and Neurophysiology, Balgrist University Hospital, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Stanisa Raspopovic
- Neuroengineering Laboratory, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland.
- Center for Medical Physics and Biomedical Engineering, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
2
|
Keppler J. Laying the foundations for a theory of consciousness: the significance of critical brain dynamics for the formation of conscious states. Front Hum Neurosci 2024; 18:1379191. [PMID: 38736531 PMCID: PMC11082359 DOI: 10.3389/fnhum.2024.1379191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/15/2024] [Indexed: 05/14/2024] Open
Abstract
Empirical evidence indicates that conscious states, distinguished by the presence of phenomenal qualities, are closely linked to synchronized neural activity patterns whose dynamical characteristics can be attributed to self-organized criticality and phase transitions. These findings imply that insight into the mechanism by which the brain controls phase transitions will provide a deeper understanding of the fundamental mechanism by which the brain manages to transcend the threshold of consciousness. This article aims to show that the initiation of phase transitions and the formation of synchronized activity patterns is due to the coupling of the brain to the zero-point field (ZPF), which plays a central role in quantum electrodynamics (QED). The ZPF stands for the presence of ubiquitous vacuum fluctuations of the electromagnetic field, represented by a spectrum of normal modes. With reference to QED-based model calculations, the details of the coupling mechanism are revealed, suggesting that critical brain dynamics is governed by the resonant interaction of the ZPF with the most abundant neurotransmitter glutamate. The pyramidal neurons in the cortical microcolumns turn out to be ideally suited to control this interaction. A direct consequence of resonant glutamate-ZPF coupling is the amplification of specific ZPF modes, which leads us to conclude that the ZPF is the key to the understanding of consciousness and that the distinctive feature of neurophysiological processes associated with conscious experience consists in modulating the ZPF. Postulating that the ZPF is an inherently sentient field and assuming that the spectrum of phenomenal qualities is represented by the normal modes of the ZPF, the significance of resonant glutamate-ZPF interaction for the formation of conscious states becomes apparent in that the amplification of specific ZPF modes is inextricably linked with the excitation of specific phenomenal qualities. This theory of consciousness, according to which phenomenal states arise through resonant amplification of zero-point modes, is given the acronym TRAZE. An experimental setup is specified that can be used to test a corollary of the theory, namely, the prediction that normally occurring conscious perceptions are absent under experimental conditions in which resonant glutamate-ZPF coupling is disrupted.
Collapse
|
3
|
Ordás CM, Alonso-Frech F. The neural basis of somatosensory temporal discrimination threshold as a paradigm for time processing in the sub-second range: An updated review. Neurosci Biobehav Rev 2024; 156:105486. [PMID: 38040074 DOI: 10.1016/j.neubiorev.2023.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023]
Abstract
BACKGROUND AND OBJECTIVE The temporal aspect of somesthesia is a feature of any somatosensory process and a pre-requisite for the elaboration of proper behavior. Time processing in the milliseconds range is crucial for most of behaviors in everyday life. The somatosensory temporal discrimination threshold (STDT) is the ability to perceive two successive stimuli as separate in time, and deals with time processing in this temporal range. Herein, we focus on the physiology of STDT, on a background of the anatomophysiology of somesthesia and the neurobiological substrates of timing. METHODS A review of the literature through PubMed & Cochrane databases until March 2023 was performed with inclusion and exclusion criteria following PRISMA recommendations. RESULTS 1151 abstracts were identified. 4 duplicate records were discarded before screening. 957 abstracts were excluded because of redundancy, less relevant content or not English-written. 4 were added after revision. Eventually, 194 articles were included. CONCLUSIONS STDT encoding relies on intracortical inhibitory S1 function and is modulated by the basal ganglia-thalamic-cortical interplay through circuits involving the nigrostriatal dopaminergic pathway and probably the superior colliculus.
Collapse
Affiliation(s)
- Carlos M Ordás
- Universidad Rey Juan Carlos, Móstoles, Madrid, Spain; Department of Neurology, Hospital Rey Juan Carlos, Móstoles, Madrid, Spain.
| | - Fernando Alonso-Frech
- Department of Neurology, Hospital Clínico San Carlos, Universidad Complutense de Madrid, Spain
| |
Collapse
|
4
|
Brewer AA, Barton B. Cortical field maps across human sensory cortex. Front Comput Neurosci 2023; 17:1232005. [PMID: 38164408 PMCID: PMC10758003 DOI: 10.3389/fncom.2023.1232005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 11/07/2023] [Indexed: 01/03/2024] Open
Abstract
Cortical processing pathways for sensory information in the mammalian brain tend to be organized into topographical representations that encode various fundamental sensory dimensions. Numerous laboratories have now shown how these representations are organized into numerous cortical field maps (CMFs) across visual and auditory cortex, with each CFM supporting a specialized computation or set of computations that underlie the associated perceptual behaviors. An individual CFM is defined by two orthogonal topographical gradients that reflect two essential aspects of feature space for that sense. Multiple adjacent CFMs are then organized across visual and auditory cortex into macrostructural patterns termed cloverleaf clusters. CFMs within cloverleaf clusters are thought to share properties such as receptive field distribution, cortical magnification, and processing specialization. Recent measurements point to the likely existence of CFMs in the other senses, as well, with topographical representations of at least one sensory dimension demonstrated in somatosensory, gustatory, and possibly olfactory cortical pathways. Here we discuss the evidence for CFM and cloverleaf cluster organization across human sensory cortex as well as approaches used to identify such organizational patterns. Knowledge of how these topographical representations are organized across cortex provides us with insight into how our conscious perceptions are created from our basic sensory inputs. In addition, studying how these representations change during development, trauma, and disease serves as an important tool for developing improvements in clinical therapies and rehabilitation for sensory deficits.
Collapse
Affiliation(s)
- Alyssa A. Brewer
- mindSPACE Laboratory, Departments of Cognitive Sciences and Language Science (by Courtesy), Center for Hearing Research, University of California, Irvine, Irvine, CA, United States
| | - Brian Barton
- mindSPACE Laboratory, Department of Cognitive Sciences, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
5
|
Rabe F, Kikkert S, Wenderoth N. Performing a vibrotactile discrimination task modulates finger representations in primary somatosensory cortex. J Neurophysiol 2023; 130:1015-1027. [PMID: 37671429 PMCID: PMC10649835 DOI: 10.1152/jn.00428.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/07/2023] Open
Abstract
It is well established that vibrotactile stimuli are represented in somatotopic maps. However, less is known about whether these somatotopic representations are modulated by task demands and maybe even in the absence of tactile input. Here, we used a vibrotactile discrimination task as a tool to investigate these questions in further detail. Participants were required to actively perceive and process tactile stimuli in comparison to a no-task control condition where identical stimuli were passively perceived (no-memory condition). Importantly, both vibrotactile stimuli were either applied to the right index or little finger, allowing us to investigate whether cognitive task demands shape finger representations in primary somatosensory cortex (S1). Using multivoxel pattern analysis and representational similarity analysis, we found that S1 finger representations were more distinct during the memory than the no-memory condition. Interestingly, this effect was not only observed while tactile stimuli were presented but also during the delay period (i.e., in the absence of tactile stimulation). Our findings imply that when individuals are required to focus on tactile stimuli, retain them in their memory, and engage in active processing of distinctive stimulus features, this exerts a modulatory effect on the finger representations present in S1.NEW & NOTEWORTHY Using multivoxel pattern analysis, we found that discrimination task demands shape finger representations in the contralateral primary somatosensory cortex (S1), and that somatotopic representations are modulated by task demands not only during tactile stimulation but also to a certain extent in the absence of tactile input.
Collapse
Affiliation(s)
- Finn Rabe
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
| | - Sanne Kikkert
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), ETH Zurich and University of Zurich, Zurich, Switzerland
| | - Nicole Wenderoth
- Neural Control of Movement Laboratory, Department of Health Sciences and Technology, ETH Zürich, Zurich, Switzerland
- Spinal Cord Injury Center, Balgrist University Hospital, University of Zürich, Zurich, Switzerland
| |
Collapse
|
6
|
Llobera J, Charbonnier C. Physics-based character animation and human motor control. Phys Life Rev 2023; 46:190-219. [PMID: 37480729 DOI: 10.1016/j.plrev.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 06/25/2023] [Indexed: 07/24/2023]
Abstract
Motor neuroscience and physics-based character animation (PBCA) approach human and humanoid control from different perspectives. The primary goal of PBCA is to control the movement of a ragdoll (humanoid or animal) applying forces and torques within a physical simulation. The primary goal of motor neuroscience is to understand the contribution of different parts of the nervous system to generate coordinated movements. We review the functional principles and the functional anatomy of human motor control and the main strategies used in PBCA. We then explore common research points by discussing the functional anatomy and ongoing debates in motor neuroscience from the perspective of PBCA. We also suggest there are several benefits to be found in studying sensorimotor integration and human-character coordination through closer collaboration between these two fields.
Collapse
Affiliation(s)
- Joan Llobera
- Artanim Foundation, 40, chemin du Grand-Puits, 1217 Meyrin - Geneva, Switzerland.
| | - Caecilia Charbonnier
- Artanim Foundation, 40, chemin du Grand-Puits, 1217 Meyrin - Geneva, Switzerland
| |
Collapse
|
7
|
Hwang SH, Park D, Paeng S, Lee SW, Lee SH, Kim HF. Pneumatic tactile stimulus delivery system for studying brain responses evoked by active finger touch with fMRI. J Neurosci Methods 2023; 397:109938. [PMID: 37544383 DOI: 10.1016/j.jneumeth.2023.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
BACKGROUND Primates use their hands to actively touch objects and collect information. To study tactile information processing, it is important for participants to experience tactile stimuli through active touch while monitoring brain activities. NEW METHOD Here, we developed a pneumatic tactile stimulus delivery system (pTDS) that delivers various tactile stimuli on a programmed schedule and allows voluntary finger touches during MRI scanning. The pTDS uses a pneumatic actuator to move tactile stimuli and place them in a finger hole. A photosensor detects the time when an index finger touches a tactile stimulus, enabling the analysis of the touch-elicited brain responses. RESULTS We examined brain responses while the participants actively touched braille objects presented by the pTDS. BOLD responses during tactile perception were significantly stronger in a finger touch area of the contralateral somatosensory cortex compared with that of visual perception. CONCLUSION The pTDS enables MR studies of brain mechanisms for tactile processes through natural finger touch.
Collapse
Affiliation(s)
- Seong-Hwan Hwang
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Doyoung Park
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Institute of Psychological Sciences, Institute of Social Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Somang Paeng
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Sang Wan Lee
- Department of Bio and Brain Engineering, College of Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea; Department of Brain and Cognitive Sciences, College of Life Science and Bioengineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sue-Hyun Lee
- Department of Psychology, College of Social Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| | - Hyoung F Kim
- School of Biological Sciences, College of Natural Sciences, Seoul National University (SNU), Seoul 08826, Republic of Korea.
| |
Collapse
|
8
|
Young EL, Mista CA, Jure FA, Andersen OK, Biurrun Manresa JA. An analytical method to separate modality-specific and nonspecific sensory components of event-related potentials. Eur J Neurosci 2022; 56:5090-5105. [PMID: 35983754 DOI: 10.1111/ejn.15798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/12/2022] [Accepted: 08/14/2022] [Indexed: 01/07/2023]
Abstract
Several models have been developed to analyse cortical activity in response to salient events constituted by multiple sensory modalities. In particular, additive models compare event-related potentials (ERPs) in response to stimuli from two or more concomitant sensory modalities with the ERPs evoked by unimodal stimuli, in order to study sensory interactions. In this approach, components that are not specific to a sensory modality are commonly disregarded, although they likely carry information about stimulus expectation and evaluation, attentional orientation and other cognitive processes. In this study, we present an analytical method to assess the contribution of modality-specific and nonspecific components to the ERP. We developed an experimental setup that recorded ERPs in response to four stimulus types (visual, auditory, and two somatosensory modalities to test for stimulus specificity) in three different conditions (unimodal, bimodal and trimodal stimulation) and recorded the saliency of these stimuli relative to the sensory background. Stimuli were delivered in pairs, in order to study the effects of habituation. To this end, spatiotemporal features (peak amplitudes and latencies at different scalp locations) were analysed using linear mixed models. Results showed that saliency relative to the sensory background increased with the number of concomitant stimuli. We also observed that the spatiotemporal features of modality-specific components derived from this method likely reflect the amount and type of sensory input. Furthermore, the nonspecific component reflected habituation occurring for the second stimulus in the pair. In conclusion, this method provides an alternative to study neural mechanisms of responses to multisensory stimulation.
Collapse
Affiliation(s)
- Elizabeth Loreley Young
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina.,Centre for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - Christian Ariel Mista
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina.,Centre for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - Fabricio Ariel Jure
- Neurorehabilitation Systems, Department of Health Science and Technology (HST), Aalborg University, Aalborg, Denmark
| | | | - José A Biurrun Manresa
- Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina.,Centre for Rehabilitation Engineering and Neuromuscular and Sensory Research (CIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina.,Centre for Neuroplasticity and Pain (CNAP), Aalborg University, Aalborg, Denmark
| |
Collapse
|
9
|
Khalife S, Francis ST, Schluppeck D, Sánchez-Panchuelo RM, Besle J. Fast Event-Related Mapping of Population Fingertip Tuning Properties in Human Sensorimotor Cortex at 7T. eNeuro 2022; 9:ENEURO.0069-22.2022. [PMID: 36194620 PMCID: PMC9480917 DOI: 10.1523/eneuro.0069-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 07/11/2022] [Accepted: 07/31/2022] [Indexed: 12/15/2022] Open
Abstract
fMRI studies that investigate somatotopic tactile representations in the human cortex typically use either block or phase-encoded stimulation designs. Event-related (ER) designs allow for more flexible and unpredictable stimulation sequences than the other methods, but they are less efficient. Here, we compared an efficiency-optimized fast ER design (2.8-s average intertrial interval; ITI) to a conventional slow ER design (8-s average ITI) for mapping voxelwise fingertip tactile tuning properties in the sensorimotor cortex of six participants at 7 Tesla. The fast ER design yielded more reliable responses compared with the slow ER design, but with otherwise similar tuning properties. Concatenating the fast and slow ER data, we demonstrate in each individual brain the existence of two separate somatotopically-organized tactile representations of the fingertips, one in the primary somatosensory cortex (S1) on the postcentral gyrus, and the other shared across the motor and premotor cortices on the precentral gyrus. In both S1 and motor representations, fingertip selectivity decreased progressively, from narrowly-tuned Brodmann area (BA) 3b and BA4a, respectively, toward associative parietal and frontal regions that responded equally to all fingertips, suggesting increasing information integration along these two pathways. In addition, fingertip selectivity in S1 decreased from the cortical representation of the thumb to that of the pinky.
Collapse
Affiliation(s)
- Sarah Khalife
- Department of Psychology, American University of Beirut, Beirut, 11072020, Lebanon
| | - Susan T Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, NG72RD, United Kingdom
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Denis Schluppeck
- Visual Neuroscience Group, School of Psychology, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Rosa-Maria Sánchez-Panchuelo
- National Institute for Health and Care Research Nottingham Biomedical Research Centre, Nottingham University Hospitals National Health Service Trust, University of Nottingham, Nottingham, NG72RD, United Kingdom
| | - Julien Besle
- Department of Psychology, American University of Beirut, Beirut, 11072020, Lebanon
| |
Collapse
|
10
|
Janko D, Thoenes K, Park D, Willoughby WR, Horton M, Bolding M. Somatotopic Mapping of the Fingers in the Somatosensory Cortex Using Functional Magnetic Resonance Imaging: A Review of Literature. Front Neuroanat 2022; 16:866848. [PMID: 35847829 PMCID: PMC9277538 DOI: 10.3389/fnana.2022.866848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022] Open
Abstract
Multiple studies have demonstrated finger somatotopy in humans and other primates using a variety of brain mapping techniques including functional magnetic resonance imaging (fMRI). Here, we review the literature to better understand the reliability of fMRI for mapping the somatosensory cortex. We have chosen to focus on the hand and fingers as these areas have the largest representation and have been the subject of the largest number of somatotopic mapping experiments. Regardless of the methods used, individual finger somatosensory maps were found to be organized across Brodmann areas (BAs) 3b, 1, and 2 in lateral-to-medial and inferior-to-superior fashion moving from the thumb to the pinky. However, some consistent discrepancies are found that depend principally on the method used to stimulate the hand and fingers. Therefore, we suggest that a comparative analysis of different types of stimulation be performed to address the differences described in this review.
Collapse
Affiliation(s)
- Daniel Janko
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, United States
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristina Thoenes
- Edward Via College of Osteopathic Medicine Auburn, Auburn, AL, United States
| | - Dahye Park
- School of Medicine, University of Alabama at Birmingham, Birmingham, AL, United States
| | - W. R. Willoughby
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Meredith Horton
- Department of Neurology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mark Bolding
- Department of Radiology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
11
|
Schellekens W, Bakker C, Ramsey NF, Petridou N. Moving in on human motor cortex. Characterizing the relationship between body parts with non-rigid population response fields. PLoS Comput Biol 2022; 18:e1009955. [PMID: 35377877 PMCID: PMC9009778 DOI: 10.1371/journal.pcbi.1009955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 04/14/2022] [Accepted: 02/22/2022] [Indexed: 11/18/2022] Open
Abstract
For cortical motor activity, the relationships between different body part representations is unknown. Through reciprocal body part relationships, functionality of cortical motor areas with respect to whole body motor control can be characterized. In the current study, we investigate the relationship between body part representations within individual neuronal populations in motor cortices, following a 7 Tesla fMRI 18-body-part motor experiment in combination with our newly developed non-rigid population Response Field (pRF) model and graph theory. The non-rigid pRF metrics reveal somatotopic structures in all included motor cortices covering frontal, parietal, medial and insular cortices and that neuronal populations in primary sensorimotor cortex respond to fewer body parts than secondary motor cortices. Reciprocal body part relationships are estimated in terms of uniqueness, clique-formation, and influence. We report unique response profiles for the knee, a clique of body parts surrounding the ring finger, and a central role for the shoulder and wrist. These results reveal associations among body parts from the perspective of the central nervous system, while being in agreement with intuitive notions of body part usage.
Collapse
Affiliation(s)
- Wouter Schellekens
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| | - Carlijn Bakker
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Nick F. Ramsey
- Department of Neurology and Neurosurgery, Brain Center, UMC Utrecht, Utrecht, Netherlands
| | - Natalia Petridou
- Radiology department, Center for Image Sciences, UMC Utrecht, Utrecht, Netherlands
| |
Collapse
|
12
|
The trigeminal pathways. J Neurol 2022; 269:3443-3460. [DOI: 10.1007/s00415-022-11002-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/29/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022]
|
13
|
Sexual Differences in Internet Gaming Disorder (IGD): From Psychological Features to Neuroanatomical Networks. J Clin Med 2022; 11:jcm11041018. [PMID: 35207293 PMCID: PMC8877403 DOI: 10.3390/jcm11041018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/26/2022] [Accepted: 02/13/2022] [Indexed: 01/27/2023] Open
Abstract
Internet gaming disorder (IGD) has been included in the 2013 Diagnostic and Statistical Manual of Mental Disorders (DSM-5) as a condition in need of further study, and gaming disorder was recognized by the World Health Organization as a mental disorder in the International Classification of Disease (ICD-11) of 2018. IGD has different characteristics in the two sexes and is more prevalent in males than females. However, even if the female gamer population is constantly growing, the majority of available studies analyzed only males, or the data were not analyzed by sex. To better elucidate sex differences in IGD, we selectively reviewed research publications that evaluated IGD separately for males and females collected in approximately one hundred publications over the past 20 years. The available data in this narrative review indicate that IGD is strongly dimorphic by sex for both its psychological features and the involvement of different brain areas. Impulsivity, low self-control, anxiety, emotion dysregulation, and depression are some of the psychological features associated with IGD that show a sex dimorphism. At the same time, IGD and its psychological alterations are strongly correlated to dimorphic functional characteristics in relevant brain areas, as evidenced by fMRI. More research is needed to better understand sex differences in IGD. Animal models could help to elucidate the neurological basis of this disorder.
Collapse
|
14
|
Jaatela J, Aydogan DB, Nurmi T, Vallinoja J, Piitulainen H. Identification of Proprioceptive Thalamocortical Tracts in Children: Comparison of fMRI, MEG, and Manual Seeding of Probabilistic Tractography. Cereb Cortex 2022; 32:3736-3751. [PMID: 35040948 PMCID: PMC9433422 DOI: 10.1093/cercor/bhab444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/05/2021] [Accepted: 11/06/2021] [Indexed: 11/16/2022] Open
Abstract
Studying white matter connections with tractography is a promising approach to understand the development of different brain processes, such as proprioception. An emerging method is to use functional brain imaging to select the cortical seed points for tractography, which is considered to improve the functional relevance and validity of the studied connections. However, it is unknown whether different functional seeding methods affect the spatial and microstructural properties of the given white matter connection. Here, we compared functional magnetic resonance imaging, magnetoencephalography, and manual seeding of thalamocortical proprioceptive tracts for finger and ankle joints separately. We showed that all three seeding approaches resulted in robust thalamocortical tracts, even though there were significant differences in localization of the respective proprioceptive seed areas in the sensorimotor cortex, and in the microstructural properties of the obtained tracts. Our study shows that the selected functional or manual seeding approach might cause systematic biases to the studied thalamocortical tracts. This result may indicate that the obtained tracts represent different portions and features of the somatosensory system. Our findings highlight the challenges of studying proprioception in the developing brain and illustrate the need for using multimodal imaging to obtain a comprehensive view of the studied brain process.
Collapse
Affiliation(s)
- Julia Jaatela
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
- Department of Psychiatry, Helsinki University Hospital, Helsinki FI-00029, Finland
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio FI-70211, Finland
| | - Timo Nurmi
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
- Faculty of Sport and Health Sciences, University of Jyväskylä, Jyväskylä FI-40014, Finland
| | - Jaakko Vallinoja
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo FI-02150, Finland
| | - Harri Piitulainen
- Address correspondence to Harri Piitulainen, associate professor, Harri Piitulainen, Faculty of Sport and Health Sciences, University of Jyväskylä, P.O. BOX 35, FI-40014, Finland.
| |
Collapse
|
15
|
Ylinen A, Wikman P, Leminen M, Alho K. Task-dependent cortical activations during selective attention to audiovisual speech. Brain Res 2022; 1775:147739. [PMID: 34843702 DOI: 10.1016/j.brainres.2021.147739] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/21/2021] [Accepted: 11/21/2021] [Indexed: 11/28/2022]
Abstract
Selective listening to speech depends on widespread networks of the brain, but how the involvement of different neural systems in speech processing is affected by factors such as the task performed by a listener and speech intelligibility remains poorly understood. We used functional magnetic resonance imaging to systematically examine the effects that performing different tasks has on neural activations during selective attention to continuous audiovisual speech in the presence of task-irrelevant speech. Participants viewed audiovisual dialogues and attended either to the semantic or the phonological content of speech, or ignored speech altogether and performed a visual control task. The tasks were factorially combined with good and poor auditory and visual speech qualities. Selective attention to speech engaged superior temporal regions and the left inferior frontal gyrus regardless of the task. Frontoparietal regions implicated in selective auditory attention to simple sounds (e.g., tones, syllables) were not engaged by the semantic task, suggesting that this network may not be not as crucial when attending to continuous speech. The medial orbitofrontal cortex, implicated in social cognition, was most activated by the semantic task. Activity levels during the phonological task in the left prefrontal, premotor, and secondary somatosensory regions had a distinct temporal profile as well as the highest overall activity, possibly relating to the role of the dorsal speech processing stream in sub-lexical processing. Our results demonstrate that the task type influences neural activations during selective attention to speech, and emphasize the importance of ecologically valid experimental designs.
Collapse
Affiliation(s)
- Artturi Ylinen
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland.
| | - Patrik Wikman
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Department of Neuroscience, Georgetown University, Washington D.C., USA
| | - Miika Leminen
- Analytics and Data Services, HUS Helsinki University Hospital, Helsinki, Finland
| | - Kimmo Alho
- Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland; Advanced Magnetic Imaging Centre, Aalto NeuroImaging, Aalto University, Espoo, Finland
| |
Collapse
|
16
|
Gooijers J, Chalavi S, Koster LK, Roebroeck A, Kaas A, Swinnen SP. Representational Similarity Scores of Digits in the Sensorimotor Cortex Are Associated with Behavioral Performance. Cereb Cortex 2022; 32:3848-3863. [PMID: 35029640 DOI: 10.1093/cercor/bhab452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 02/06/2023] Open
Abstract
Previous studies aimed to unravel a digit-specific somatotopy in the primary sensorimotor (SM1) cortex. However, it remains unknown whether digit somatotopy is associated with motor preparation and/or motor execution during different types of tasks. We adopted multivariate representational similarity analysis to explore digit activation patterns in response to a finger tapping task (FTT). Sixteen healthy young adults underwent magnetic resonance imaging, and additionally performed an out-of-scanner choice reaction time task (CRTT) to assess digit selection performance. During both the FTT and CRTT, force data of all digits were acquired using force transducers. This allowed us to assess execution-related interference (i.e., digit enslavement; obtained from FTT & CRTT), as well as planning-related interference (i.e., digit selection deficit; obtained from CRTT) and determine their correlation with digit representational similarity scores of SM1. Findings revealed that digit enslavement during FTT was associated with contralateral SM1 representational similarity scores. During the CRTT, digit enslavement of both hands was also associated with representational similarity scores of the contralateral SM1. In addition, right hand digit selection performance was associated with representational similarity scores of left S1. In conclusion, we demonstrate a cortical origin of digit enslavement, and uniquely reveal that digit selection is associated with digit representations in primary somatosensory cortex (S1). Significance statement In current systems neuroscience, it is of critical importance to understand the relationship between brain function and behavioral outcome. With the present work, we contribute significantly to this understanding by uniquely assessing how digit representations in the sensorimotor cortex are associated with planning- and execution-related digit interference during a continuous finger tapping and a choice reaction time task. We observe that digit enslavement (i.e., execution-related interference) finds its origin in contralateral digit representations of SM1, and that deficits in digit selection (i.e., planning-related interference) in the right hand during a choice reaction time task are associated with more overlapping digit representations in left S1. This knowledge sheds new light on the functional contribution of the sensorimotor cortex to everyday motor skills.
Collapse
Affiliation(s)
- J Gooijers
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - S Chalavi
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| | - L K Koster
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
| | - A Roebroeck
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - A Kaas
- Department of Cognitive Neuroscience, Faculty of Psychology & Neuroscience, Maastricht University, Maastricht 6229 EV, the Netherlands
| | - S P Swinnen
- Movement Control and Neuroplasticity Research Group, Department of Movement Sciences, KU Leuven, Leuven 3000, Belgium
- LBI-KU Leuven Brain Institute, Leuven 3000, Belgium
| |
Collapse
|
17
|
Ribeiro FL, Bollmann S, Puckett AM. Predicting the retinotopic organization of human visual cortex from anatomy using geometric deep learning. Neuroimage 2021; 244:118624. [PMID: 34607019 DOI: 10.1016/j.neuroimage.2021.118624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/13/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022] Open
Abstract
Whether it be in a single neuron or a more complex biological system like the human brain, form and function are often directly related. The functional organization of human visual cortex, for instance, is tightly coupled with the underlying anatomy with cortical shape having been shown to be a useful predictor of the retinotopic organization in early visual cortex. Although the current state-of-the-art in predicting retinotopic maps is able to account for gross individual differences, such models are unable to account for any idiosyncratic differences in the structure-function relationship from anatomical information alone due to their initial assumption of a template. Here we developed a geometric deep learning model capable of exploiting the actual structure of the cortex to learn the complex relationship between brain function and anatomy in human visual cortex such that more realistic and idiosyncratic maps could be predicted. We show that our neural network was not only able to predict the functional organization throughout the visual cortical hierarchy, but that it was also able to predict nuanced variations across individuals. Although we demonstrate its utility for modeling the relationship between structure and function in human visual cortex, our approach is flexible and well-suited for a range of other applications involving data structured in non-Euclidean spaces.
Collapse
Affiliation(s)
- Fernanda L Ribeiro
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Steffen Bollmann
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alexander M Puckett
- School of Psychology, The University of Queensland, Saint Lucia, Brisbane, QLD 4072, Australia; Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
18
|
Ramalho BL, Moly J, Raffin E, Bouet R, Harquel S, Farnè A, Reilly KT. Face-hand sensorimotor interactions revealed by afferent inhibition. Eur J Neurosci 2021; 55:189-200. [PMID: 34796553 DOI: 10.1111/ejn.15536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 11/12/2021] [Indexed: 11/29/2022]
Abstract
Reorganization of the sensorimotor cortex following permanent (e.g., amputation) or temporary (e.g., local anaesthesia) deafferentation of the hand has revealed large-scale plastic changes between the hand and face representations that are accompanied by perceptual correlates. The physiological mechanisms underlying this reorganization remain poorly understood. The aim of this study was to investigate sensorimotor interactions between the face and hand using an afferent inhibition transcranial magnetic stimulation protocol in which the motor evoked potential elicited by the magnetic pulse is inhibited when it is preceded by an afferent stimulus. We hypothesized that if face and hand representations in the sensorimotor cortex are functionally coupled, then electrocutaneous stimulation of the face would inhibit hand muscle motor responses. In two separate experiments, we delivered an electrocutaneous stimulus to either the skin over the right upper lip (Experiment 1) or right cheek (Experiment 2) and recorded muscular activity from the right first dorsal interosseous. Both lip and cheek stimulation inhibited right first dorsal interosseous motor evoked potentials. To investigate the specificity of this effect, we conducted two additional experiments in which electrocutaneous stimulation was applied to either the right forearm (Experiment 3) or right upper arm (Experiment 4). Forearm and upper arm stimulation also significantly inhibited the right first dorsal interosseous motor evoked potentials, but this inhibition was less robust than the inhibition associated with face stimulation. These findings provide the first evidence for face-to-hand afferent inhibition.
Collapse
Affiliation(s)
- Bia Lima Ramalho
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Laboratory of Neurobiology II, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Research Division, National Institute of Traumatology and Orthopedics Jamil Haddad, Rio de Janeiro, Brazil
| | - Julien Moly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| | - Estelle Raffin
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Romain Bouet
- University UCBL Lyon 1, University of Lyon, Lyon, France.,Brain Dynamics and Cognition Team - DyCog, Lyon Neuroscience Research Center, INSERM U1028, CRNS-UMR5292, Lyon, France
| | - Sylvain Harquel
- University Grenoble Alpes, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France.,Laboratoire de Psychologie et NeuroCognition - LPNC, University Grenoble Alpes, CNRS UMR5105, Grenoble, France.,IRMaGe, University Grenoble-Alpes, CHU Grenoble Alpes, INSERM US17, CNRS UMS3552, Grenoble, France
| | - Alessandro Farnè
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France.,Hospices Civils de Lyon, Neuro-immersion, Mouvement and Handicap, Lyon, France.,Center for Mind/Brain Sciences (CIMeC), University of Trento, Trento, Italy
| | - Karen T Reilly
- IMPACT and Trajectoires Teams, INSERM U1028, CNRS UMR5292, Lyon Neuroscience Research Center (CRNL), Lyon, France.,University UCBL Lyon 1, University of Lyon, Lyon, France
| |
Collapse
|
19
|
Schellekens W, Thio M, Badde S, Winawer J, Ramsey N, Petridou N. A touch of hierarchy: population receptive fields reveal fingertip integration in Brodmann areas in human primary somatosensory cortex. Brain Struct Funct 2021; 226:2099-2112. [PMID: 34091731 PMCID: PMC8354965 DOI: 10.1007/s00429-021-02309-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/26/2021] [Indexed: 12/03/2022]
Abstract
Several neuroimaging studies have shown the somatotopy of body part representations in primary somatosensory cortex (S1), but the functional hierarchy of distinct subregions in human S1 has not been adequately addressed. The current study investigates the functional hierarchy of cyto-architectonically distinct regions, Brodmann areas BA3, BA1, and BA2, in human S1. During functional MRI experiments, we presented participants with vibrotactile stimulation of the fingertips at three different vibration frequencies. Using population Receptive Field (pRF) modeling of the fMRI BOLD activity, we identified the hand region in S1 and the somatotopy of the fingertips. For each voxel, the pRF center indicates the finger that most effectively drives the BOLD signal, and the pRF size measures the spatial somatic pooling of fingertips. We find a systematic relationship of pRF sizes from lower-order areas to higher-order areas. Specifically, we found that pRF sizes are smallest in BA3, increase slightly towards BA1, and are largest in BA2, paralleling the increase in visual receptive field size as one ascends the visual hierarchy. Additionally, we find that the time-to-peak of the hemodynamic response in BA3 is roughly 0.5 s earlier compared to BA1 and BA2, further supporting the notion of a functional hierarchy of subregions in S1. These results were obtained during stimulation of different mechanoreceptors, suggesting that different afferent fibers leading up to S1 feed into the same cortical hierarchy.
Collapse
Affiliation(s)
- W Schellekens
- Department of Radiology, Center for Image Sciences, UMC Utrecht, Q101.132, P.O.Box 85500, 3508 GA, Utrecht, The Netherlands.
| | - M Thio
- Department of Radiology, Center for Image Sciences, UMC Utrecht, Q101.132, P.O.Box 85500, 3508 GA, Utrecht, The Netherlands
| | - S Badde
- Department of Psychology and Center of Neural Science, NYU, New York, USA
| | - J Winawer
- Department of Psychology and Center of Neural Science, NYU, New York, USA
| | - N Ramsey
- Department of Neurology and Neurosurgery, UMC Utrecht, Utrecht, The Netherlands
| | - N Petridou
- Department of Radiology, Center for Image Sciences, UMC Utrecht, Q101.132, P.O.Box 85500, 3508 GA, Utrecht, The Netherlands
| |
Collapse
|
20
|
Song Y, Su Q, Yang Q, Zhao R, Yin G, Qin W, Iannetti GD, Yu C, Liang M. Feedforward and feedback pathways of nociceptive and tactile processing in human somatosensory system: A study of dynamic causal modeling of fMRI data. Neuroimage 2021; 234:117957. [PMID: 33744457 DOI: 10.1016/j.neuroimage.2021.117957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/07/2021] [Accepted: 03/09/2021] [Indexed: 11/30/2022] Open
Abstract
Nociceptive and tactile information is processed in the somatosensory system via reciprocal (i.e., feedforward and feedback) projections between the thalamus, the primary (S1) and secondary (S2) somatosensory cortices. The exact hierarchy of nociceptive and tactile information processing within this 'thalamus-S1-S2' network and whether the processing hierarchy differs between the two somatosensory submodalities remains unclear. In particular, two questions related to the ascending and descending pathways have not been addressed. For the ascending pathways, whether tactile or nociceptive information is processed in parallel (i.e., 'thalamus-S1' and 'thalamus-S2') or in serial (i.e., 'thalamus-S1-S2') remains controversial. For the descending pathways, how corticothalamic feedback regulates nociceptive and tactile processing also remains elusive. Here, we aimed to investigate the hierarchical organization for the processing of nociceptive and tactile information in the 'thalamus-S1-S2' network using dynamic causal modeling (DCM) combined with high-temporal-resolution fMRI. We found that, for both nociceptive and tactile information processing, both S1 and S2 received inputs from thalamus, indicating a parallel structure of ascending pathways for nociceptive and tactile information processing. Furthermore, we observed distinct corticothalamic feedback regulations from S1 and S2, showing that S1 generally exerts inhibitory feedback regulation independent of external stimulation whereas S2 provides additional inhibition to the thalamic activity during nociceptive and tactile information processing in humans. These findings revealed that nociceptive and tactile information processing have similar hierarchical organization within the somatosensory system in the human brain.
Collapse
Affiliation(s)
- Yingchao Song
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Qian Su
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Qingqing Yang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China
| | - Rui Zhao
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China; Department of Orthopedics Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Guotao Yin
- Department of Molecular Imaging and Nuclear Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for China, Tianjin, China
| | - Wen Qin
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China
| | - Gian Domenico Iannetti
- Neuroscience and Behaviour Laboratory, Italian Institute of Technology, Rome, Italy; Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Chunshui Yu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin, China; Chinese Academy of Sciences (CAS) Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Meng Liang
- School of Medical Imaging and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
21
|
Sun F, Zhang G, Ren L, Yu T, Ren Z, Gao R, Zhang X. Functional organization of the human primary somatosensory cortex: A stereo-electroencephalography study. Clin Neurophysiol 2021; 132:487-497. [PMID: 33465535 DOI: 10.1016/j.clinph.2020.11.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/31/2020] [Accepted: 11/24/2020] [Indexed: 11/27/2022]
Abstract
OBJECTIVE The classical homunculus of the human primary somatosensory cortex (S1) established by Penfield has mainly portrayed the functional organization of convexial cortex, namely Brodmann area (BA) 1. However, little is known about the functions in fissural cortex including BA2 and BA3. We aim at drawing a refined and detailed somatosensory homunculus of the entire S1. METHODS We recruited 20 patients with drug-resistant focal epilepsy who underwent stereo-electroencephalography for preoperative assessments. Direct electrical stimulation was performed for functional mapping. Montreal Neurological Institute coordinates of the stimulation sites lying in S1 were acquired. RESULTS Stimulation of 177 sites in S1 yielded 149 positive sites (84%), most of which were located in the sulcal cortex. The spatial distribution of different body-part representations across the S1 surface revealed that the gross medial-to-lateral sequence of body representations within the entire S1 was consistent with the classical "homunculus". And we identified several unreported body-part representations from the sulcal cortex, such as forehead, deep elbow and wrist joints, and some dorsal body regions. CONCLUSIONS Our results reveal general somatotopical characteristics of the entire S1 cortex and differences with the previous works of Penfield. SIGNIFICANCE The classical S1 homunculus was extended by providing further refinement and additional detail.
Collapse
Affiliation(s)
- Fengqiao Sun
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Guojun Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China.
| | - Liankun Ren
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Tao Yu
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Zhiwei Ren
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Runshi Gao
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| | - Xiaohua Zhang
- Beijing Institute of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, No. 45, Changchun Street, Xicheng District, Beijing 100053, China
| |
Collapse
|
22
|
Willoughby WR, Thoenes K, Bolding M. Somatotopic Arrangement of the Human Primary Somatosensory Cortex Derived From Functional Magnetic Resonance Imaging. Front Neurosci 2021; 14:598482. [PMID: 33488347 PMCID: PMC7817621 DOI: 10.3389/fnins.2020.598482] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/08/2020] [Indexed: 11/13/2022] Open
Abstract
Functional magnetic resonance imaging (fMRI) was used to estimate neuronal activity in the primary somatosensory cortex of six participants undergoing cutaneous tactile stimulation on skin areas spread across the entire body. Differences between the accepted somatotopic maps derived from Penfield's work and those generated by this fMRI study were sought, including representational transpositions or replications across the cortex. MR-safe pneumatic devices mimicking the action of a Wartenberg wheel supplied touch stimuli in eight areas. Seven were on the left side of the body: foot, lower, and upper leg, trunk beneath ribcage, anterior forearm, middle fingertip, and neck above the collarbone. The eighth area was the glabella. Activation magnitude was estimated as the maximum cross-correlation coefficient at a certain phase shift between ideal time series and measured blood oxygen level dependent (BOLD) time courses on the cortical surface. Maximally correlated clusters associated with each cutaneous area were calculated, and cortical magnification factors were estimated. Activity correlated to lower limb stimulation was observed in the paracentral lobule and superomedial postcentral region. Correlations to upper extremity stimulation were observed in the postcentral area adjacent to the motor hand knob. Activity correlated to trunk, face and neck stimulation was localized in the superomedial one-third of the postcentral region, which differed from Penfield's cortical homunculus.
Collapse
Affiliation(s)
- W. R. Willoughby
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Kristina Thoenes
- Department of Neurobiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| | - Mark Bolding
- Department of Radiology, The University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
23
|
Cléry JC, Hori Y, Schaeffer DJ, Gati JS, Pruszynski JA, Everling S. Whole brain mapping of somatosensory responses in awake marmosets investigated with ultra-high-field fMRI. J Neurophysiol 2020; 124:1900-1913. [PMID: 33112698 DOI: 10.1152/jn.00480.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied New World primate that is becoming an important model to study brain functions. Despite several studies exploring the somatosensory system of marmosets, all results have come from anesthetized animals using invasive techniques and postmortem analyses. Here, we demonstrate the feasibility for getting high-quality and reproducible somatosensory mapping in awake marmosets with functional magnetic resonance imaging (fMRI). We acquired fMRI sequences in four animals, while they received tactile stimulation (via air-puffs), delivered to the face, arm, or leg. We found a topographic body representation with the leg representation in the most medial part, the face representation in the most lateral part, and the arm representation between leg and face representation within areas 3a, 3b, and 1/2. A similar sequence from leg to face from caudal to rostral sites was identified in areas S2 and PV. By generating functional connectivity maps of seeds defined in the primary and second somatosensory regions, we identified two clusters of tactile representation within the posterior and midcingulate cortex. However, unlike humans and macaques, no clear somatotopic maps were observed. At the subcortical level, we found a somatotopic body representation in the thalamus and, for the first time in marmosets, in the putamen. These maps have similar organizations, as those previously found in Old World macaque monkeys and humans, suggesting that these subcortical somatotopic organizations were already established before Old and New World primates diverged. Our results show the first whole brain mapping of somatosensory responses acquired in a noninvasive way in awake marmosets.NEW & NOTEWORTHY We used somatosensory stimulation combined with functional MRI (fMRI) in awake marmosets to reveal the topographic body representation in areas S1, S2, thalamus, and putamen. We showed the existence of a body representation organization within the thalamus and the cingulate cortex by computing functional connectivity maps from seeds defined in S1/S2, using resting-state fMRI data. This noninvasive approach will be essential for chronic studies by guiding invasive recording and manipulation techniques.
Collapse
Affiliation(s)
- Justine C Cléry
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Yuki Hori
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - David J Schaeffer
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada
| | - Joseph S Gati
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Medical Biophysics, The University of Western Ontario, London, Ontario, Canada
| | - J Andrew Pruszynski
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, London, Ontario, Canada.,Department of Physiology and Pharmacology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
24
|
Kaulmann D, Saveriano M, Lee D, Hermsdörfer J, Johannsen L. Stabilization of body balance with Light Touch following a mechanical perturbation: Adaption of sway and disruption of right posterior parietal cortex by cTBS. PLoS One 2020; 15:e0233988. [PMID: 32615583 PMCID: PMC7332304 DOI: 10.1371/journal.pone.0233988] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 05/16/2020] [Indexed: 11/26/2022] Open
Abstract
Light touch with an earth-fixed reference point improves balance during quite standing. In our current study, we implemented a paradigm to assess the effects of disrupting the right posterior parietal cortex on dynamic stabilization of body sway with and without Light Touch after a graded, unpredictable mechanical perturbation. We hypothesized that the benefit of Light Touch would be amplified in the more dynamic context of an external perturbation, reducing body sway and muscle activations before, at and after a perturbation. Furthermore, we expected sway stabilization would be impaired following disruption of the right Posterior Parietal Cortex as a result of increased postural stiffness. Thirteen young adults stood blindfolded in Tandem-Romberg stance on a force plate and were required either to keep light fingertip contact to an earth-fixed reference point or to stand without fingertip contact. During every trial, a robotic arm pushed a participant's right shoulder in medio-lateral direction. The testing consisted of 4 blocks before TMS stimulation and 8 blocks after, which alternated between Light Touch and No Touch conditions. In summary, we found a strong effect of Light Touch, which resulted in improved stability following a perturbation. Light Touch decreased the immediate sway response, steady state sway following re-stabilization, as well as muscle activity of the Tibialis Anterior. Furthermore, we saw gradual decrease of muscle activity over time, which indicates an adaptive process following exposure to repetitive trials of perturbations. We were not able to confirm our hypothesis that disruption of the rPPC leads to increased postural stiffness. However, after disruption of the rPPC, muscle activity of the Tibialis Anterior is decreased more compared to sham. We conclude that rPPC disruption enhanced the intra-session adaptation to the disturbing effects of the perturbation.
Collapse
Affiliation(s)
- David Kaulmann
- Department of Sport and Health Sciences, Human Movement Science, Technische Universität München, Munchen, Germany
| | - Matteo Saveriano
- Department of Computer Science, Intelligent and Interactive Systems, University of Innsbruck, Innsbruck, Austria
| | - Dongheui Lee
- Human-centered Assistive Robotics, Electro- and Information Technology, Technische Universität München, Munchen, Germany
- Institute of Robotics and Mechatronics, German Aerospace Centre, Cologne, Germany
| | - Joachim Hermsdörfer
- Department of Sport and Health Sciences, Human Movement Science, Technische Universität München, Munchen, Germany
| | - Leif Johannsen
- Institute of Psychology, Cognitive and Experimental Psychology, RWTH Aachen, Aachen, Germany
| |
Collapse
|
25
|
A probabilistic atlas of finger dominance in the primary somatosensory cortex. Neuroimage 2020; 217:116880. [PMID: 32376303 PMCID: PMC7339146 DOI: 10.1016/j.neuroimage.2020.116880] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 04/21/2020] [Accepted: 04/22/2020] [Indexed: 11/21/2022] Open
Abstract
With the advent of ultra-high field (7T), high spatial resolution functional MRI (fMRI) has allowed the differentiation of the cortical representations of each of the digits at an individual-subject level in human primary somatosensory cortex (S1). Here we generate a probabilistic atlas of the contralateral SI representations of the digits of both the left and right hand in a group of 22 right-handed individuals. The atlas is generated in both volume and surface standardised spaces from somatotopic maps obtained by delivering vibrotactile stimulation to each distal phalangeal digit using a travelling wave paradigm. Metrics quantify the likelihood of a given position being assigned to a digit (full probability map) and the most probable digit for a given spatial location (maximum probability map). The atlas is validated using a leave-one-out cross validation procedure. Anatomical variance across the somatotopic map is also assessed to investigate whether the functional variability across subjects is coupled to structural differences. This probabilistic atlas quantifies the variability in digit representations in healthy subjects, finding some quantifiable separability between digits 2, 3 and 4, a complex overlapping relationship between digits 1 and 2, and little agreement of digit 5 across subjects. The atlas and constituent subject maps are available online for use as a reference in future neuroimaging studies.
Collapse
|
26
|
Bayesian population receptive field modeling in human somatosensory cortex. Neuroimage 2020; 208:116465. [DOI: 10.1016/j.neuroimage.2019.116465] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 12/09/2019] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
|
27
|
Whole-body somatotopic maps in the cerebellum revealed with 7T fMRI. Neuroimage 2020; 211:116624. [PMID: 32058002 DOI: 10.1016/j.neuroimage.2020.116624] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/20/2019] [Accepted: 02/06/2020] [Indexed: 12/17/2022] Open
Abstract
The cerebellum is known to contain a double somatotopic body representation. While the anterior lobe body map has shown a robust somatotopic organization in previous fMRI studies, the representations in the posterior lobe have been more difficult to observe and are less precisely characterized. In this study, participants went through a simple motor task asking them to move either the eyes (left-right guided saccades), tongue (left-right movement), thumbs, little fingers or toes (flexion). Using high spatial resolution fMRI data acquired at ultra-high field (7T), with special care taken to obtain sufficient B1 over the entire cerebellum and a cerebellar surface reconstruction facilitating visual inspection of the results, we were able to precisely map the somatotopic representations of these five distal body parts on both subject- and group-specific cerebellar surfaces. The anterior lobe (including lobule VI) showed a consistent and robust somatotopic gradient. Although less robust, the presence of such a gradient in the posterior lobe, from Crus II to lobule VIIIb, was also observed. Additionally, the eyes were also strongly represented in Crus I and the oculomotor vermis. Overall, crosstalk between the different body part representations was negligible. Taken together, these results show that multiple representations of distal body parts are present in the cerebellum, across many lobules, and they are organized in an orderly manner.
Collapse
|
28
|
Friedrich J, Beste C. Passive perceptual learning modulates motor inhibitory control in superior frontal regions. Hum Brain Mapp 2019; 41:726-738. [PMID: 31652018 PMCID: PMC7267975 DOI: 10.1002/hbm.24835] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/13/2019] [Accepted: 10/09/2019] [Indexed: 02/03/2023] Open
Abstract
Response inhibition is of vital importance in the context of controlling inappropriate responses. The role of perceptual processes during inhibitory control has attracted increased interest. Yet, we are far from an understanding of the mechanisms. One candidate mechanism by which perceptual processes may affect response inhibition refers to “gain control” that is closely linked to the signal‐to‐noise ratio of incoming information. A means to modulate the signal‐to‐noise ratio and gain control mechanisms is perceptual learning. In the current study, we examine the impact of perceptual learning (i.e., passive repetitive sensory stimulation) on response inhibition combining EEG signal decomposition with source localization analyses. A tactile GO/NOGO paradigm was conducted to measure action restraint as one subcomponent of response inhibition. We show that passive perceptual learning modulates response inhibition processes. In particular, perceptual learning attenuates the detrimental effect of response automation during inhibitory control. Temporally decomposed EEG data show that stimulus‐related and not response selection processes during conflict monitoring are linked to these effects. The superior and middle frontal gyrus (BA6), as well as the motor cortex (BA4), are associated with the effects of perceptual learning on response inhibition. Reliable neurophysiological effects were not evident on the basis of standard ERPs, which has important methodological implications for perceptual learning research. The results detail how lower level sensory plasticity protocols affect higher‐order cognitive control functions in frontal cortical structures.
Collapse
Affiliation(s)
- Julia Friedrich
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Christian Beste
- Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, TU Dresden, Dresden, Germany
| |
Collapse
|
29
|
Schröder P, Schmidt TT, Blankenburg F. Neural basis of somatosensory target detection independent of uncertainty, relevance, and reports. eLife 2019; 8:43410. [PMID: 30924769 PMCID: PMC6440741 DOI: 10.7554/elife.43410] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/19/2019] [Indexed: 01/04/2023] Open
Abstract
Research on somatosensory awareness has yielded highly diverse findings with putative neural correlates ranging from activity within somatosensory cortex to activation of widely distributed frontoparietal networks. Divergent results from previous studies may reside in cognitive processes that often coincide with stimulus awareness in experimental settings. To scrutinise the specific relevance of regions implied in the target detection network, we used functional magnetic resonance imaging (n = 27) on a novel somatosensory detection task that explicitly controls for stimulus uncertainty, behavioural relevance, overt reports, and motor responses. Using Bayesian Model Selection, we show that responses reflecting target detection are restricted to secondary somatosensory cortex, whereas activity in insular, cingulate, and motor regions is best explained in terms of stimulus uncertainty and overt reports. Our results emphasise the role of sensory-specific cortex for the emergence of perceptual awareness and dissect the contribution of the frontoparietal network to classical detection tasks.
Collapse
Affiliation(s)
- Pia Schröder
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany
| | - Timo Torsten Schmidt
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany
| | - Felix Blankenburg
- Neurocomputation and Neuroimaging Unit, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|