1
|
He J, Ren H, Li J, Dong M, Dai L, Li Z, Miao Y, Li Y, Tan P, Gu L, Chen X, Tang J. Deficits in Sense of Body Ownership, Sensory Processing, and Temporal Perception in Schizophrenia Patients With/Without Auditory Verbal Hallucinations. Front Neurosci 2022; 16:831714. [PMID: 35495040 PMCID: PMC9046910 DOI: 10.3389/fnins.2022.831714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/15/2022] [Indexed: 11/13/2022] Open
Abstract
It has been claimed that individuals with schizophrenia have difficulty in self-recognition and, consequently, are unable to identify the sources of their sensory perceptions or thoughts, resulting in delusions, hallucinations, and unusual experiences of body ownership. The deficits also contribute to the enhanced rubber hand illusion (RHI; a body perception illusion, induced by synchronous visual and tactile stimulation). Evidence based on RHI paradigms is emerging that auditory information can make an impact on the sense of body ownership, which relies on the process of multisensory inputs and integration. Hence, we assumed that auditory verbal hallucinations (AVHs), as an abnormal auditory perception, could be linked with body ownership, and the RHI paradigm could be conducted in patients with AVHs to explore the underlying mechanisms. In this study, we investigated the performance of patients with/without AVHs in the RHI. We administered the RHI paradigm to 80 patients with schizophrenia (47 with AVHs and 33 without AVHs) and 36 healthy controls. We conducted the experiment under two conditions (synchronous and asynchronous) and evaluated the RHI effects by both objective and subjective measures. Both patient groups experienced the RHI more quickly and strongly than HCs. The RHI effects of patients with AVHs were significantly smaller than those of patients without AVHs. Another important finding was that patients with AVHs did not show a reduction in RHI under asynchronous conditions. These results emphasize the disturbances of the sense of body ownership in schizophrenia patients with/without AVHs and the associations with AVHs. Furthermore, it is suggested that patients with AVHs may have multisensory processing dysfunctions and internal timing deficits.
Collapse
Affiliation(s)
- Jingqi He
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Honghong Ren
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Jinguang Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- Affiliated Wuhan Mental Health Center, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Dong
- Guangdong Mental Health Center, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Lulin Dai
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhijun Li
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yating Miao
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Yunjin Li
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha, China
| | - Peixuan Tan
- Department of Medical Psychology and Behavioral Medicine, School of Public Health, Guangxi Medical University, Nanning, China
| | - Lin Gu
- RIKEN Center for Advanced Intelligence Project, Tokyo, Japan
- Research Center for Advanced Science and Technology (RCAST), University of Tokyo, Tokyo, Japan
| | - Xiaogang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, China
- *Correspondence: Xiaogang Chen,
| | - Jinsong Tang
- Department of Psychiatry, Sir Run-Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Zigong Mental Health Center, Zigong, China
- Jinsong Tang,
| |
Collapse
|
2
|
Buetler KA, Penalver-Andres J, Özen Ö, Ferriroli L, Müri RM, Cazzoli D, Marchal-Crespo L. "Tricking the Brain" Using Immersive Virtual Reality: Modifying the Self-Perception Over Embodied Avatar Influences Motor Cortical Excitability and Action Initiation. Front Hum Neurosci 2022; 15:787487. [PMID: 35221950 PMCID: PMC8863605 DOI: 10.3389/fnhum.2021.787487] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/13/2021] [Indexed: 02/02/2023] Open
Abstract
To offer engaging neurorehabilitation training to neurologic patients, motor tasks are often visualized in virtual reality (VR). Recently introduced head-mounted displays (HMDs) allow to realistically mimic the body of the user from a first-person perspective (i.e., avatar) in a highly immersive VR environment. In this immersive environment, users may embody avatars with different body characteristics. Importantly, body characteristics impact how people perform actions. Therefore, alternating body perceptions using immersive VR may be a powerful tool to promote motor activity in neurologic patients. However, the ability of the brain to adapt motor commands based on a perceived modified reality has not yet been fully explored. To fill this gap, we "tricked the brain" using immersive VR and investigated if multisensory feedback modulating the physical properties of an embodied avatar influences motor brain networks and control. Ten healthy participants were immersed in a virtual environment using an HMD, where they saw an avatar from first-person perspective. We slowly transformed the surface of the avatar (i.e., the "skin material") from human to stone. We enforced this visual change by repetitively touching the real arm of the participant and the arm of the avatar with a (virtual) hammer, while progressively replacing the sound of the hammer against skin with stone hitting sound via loudspeaker. We applied single-pulse transcranial magnetic simulation (TMS) to evaluate changes in motor cortical excitability associated with the illusion. Further, to investigate if the "stone illusion" affected motor control, participants performed a reaching task with the human and stone avatar. Questionnaires assessed the subjectively reported strength of embodiment and illusion. Our results show that participants experienced the "stone arm illusion." Particularly, they rated their arm as heavier, colder, stiffer, and more insensitive when immersed with the stone than human avatar, without the illusion affecting their experienced feeling of body ownership. Further, the reported illusion strength was associated with enhanced motor cortical excitability and faster movement initiations, indicating that participants may have physically mirrored and compensated for the embodied body characteristics of the stone avatar. Together, immersive VR has the potential to influence motor brain networks by subtly modifying the perception of reality, opening new perspectives for the motor recovery of patients.
Collapse
Affiliation(s)
- Karin A. Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Joaquin Penalver-Andres
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Psychosomatic Medicine, Department of Neurology, University Hospital of Bern (Inselspital), Bern, Switzerland
| | - Özhan Özen
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Luca Ferriroli
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - René M. Müri
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Dario Cazzoli
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital of Bern (Inselspital), University of Bern, Bern, Switzerland
- Neurocenter, Luzerner Kantonsspital, Lucerne, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
3
|
Liesner M, Kunde W. Environment-Related and Body-Related Components of the Minimal Self. Front Psychol 2021; 12:712559. [PMID: 34858253 PMCID: PMC8632364 DOI: 10.3389/fpsyg.2021.712559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/12/2021] [Indexed: 12/30/2022] Open
Abstract
Perceptual changes that an agent produces by efferent activity can become part of the agent’s minimal self. Yet, in human agents, efferent activities produce perceptual changes in various sensory modalities and in various temporal and spatial proximities. Some of these changes occur at the “biological” body, and they are to some extent conveyed by “private” sensory signals, whereas other changes occur in the environment of that biological body and are conveyed by “public” sensory signals. We discuss commonalties and differences of these signals for generating selfhood. We argue that despite considerable functional overlap of these sensory signals in generating self-experience, there are reasons to tell them apart in theorizing and empirical research about development of the self.
Collapse
Affiliation(s)
- Marvin Liesner
- Department of Cognitive Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | - Wilfried Kunde
- Department of Cognitive Psychology, Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| |
Collapse
|
4
|
Grechuta K, De La Torre Costa J, Ballester BR, Verschure P. Challenging the Boundaries of the Physical Self: Distal Cues Impact Body Ownership. Front Hum Neurosci 2021; 15:704414. [PMID: 34720905 PMCID: PMC8551865 DOI: 10.3389/fnhum.2021.704414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
The unique ability to identify one’s own body and experience it as one’s own is fundamental in goal-oriented behavior and survival. However, the mechanisms underlying the so-called body ownership are yet not fully understood. Evidence based on Rubber Hand Illusion (RHI) paradigms has demonstrated that body ownership is a product of reception and integration of self and externally generated multisensory information, feedforward and feedback processing of sensorimotor signals, and prior knowledge about the body. Crucially, however, these designs commonly involve the processing of proximal modalities while the contribution of distal sensory signals to the experience of ownership remains elusive. Here we propose that, like any robust percept, body ownership depends on the integration and prediction across all sensory modalities, including distal sensory signals pertaining to the environment. To test our hypothesis, we created an embodied goal-oriented Virtual Air Hockey Task, in which participants were to hit a virtual puck into a goal. In two conditions, we manipulated the congruency of distal multisensory cues (auditory and visual) while preserving proximal and action-driven signals entirely predictable. Compared to a fully congruent condition, our results revealed a significant decrease on three dimensions of ownership evaluation when distal signals were incongruent, including the subjective report as well as physiological and kinematic responses to an unexpected threat. Together, these findings support the notion that the way we represent our body is contingent upon all the sensory stimuli, including distal and action-independent signals. The present data extend the current framework of body ownership and may also find applications in rehabilitation scenarios.
Collapse
Affiliation(s)
- Klaudia Grechuta
- Synthetic, Perceptive, Emotive and Cognitive Systems Lab (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Javier De La Torre Costa
- Synthetic, Perceptive, Emotive and Cognitive Systems Lab (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Pompeu Fabra University, Barcelona, Spain
| | - Belén Rubio Ballester
- Synthetic, Perceptive, Emotive and Cognitive Systems Lab (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Paul Verschure
- Synthetic, Perceptive, Emotive and Cognitive Systems Lab (SPECS), Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de la Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
5
|
Lin JHT, Wu DY, Yang JW. Exercising With a Six Pack in Virtual Reality: Examining the Proteus Effect of Avatar Body Shape and Sex on Self-Efficacy for Core-Muscle Exercise, Self-Concept of Body Shape, and Actual Physical Activity. Front Psychol 2021; 12:693543. [PMID: 34690859 PMCID: PMC8531811 DOI: 10.3389/fpsyg.2021.693543] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/17/2021] [Indexed: 11/30/2022] Open
Abstract
This study investigates the Proteus effect from the first-person perspective and during avatar embodiment in actual exercise. In addition to the immediate measurements of the Proteus effect, prolonged effects such as next-day perception and exercise-related outcomes are also explored. We theorized the Proteus effect as altered perceived self-concept and explored the association between virtual reality (VR) avatar manipulation and self-concept in the exercise context. While existing studies have mainly investigated the Proteus effect in a non-VR environment or after VR embodiment, we aim to contribute to the literature by addressing this concern to explore how the Proteus effect works in actual VR exercise. Through a 2 (avatar body shape: with a six pack vs. normal) × 2 (sex: male vs. female) between-subject experiment, the results partially support the Proteus effect. Regarding actual physical activity, embodying an avatar with a six pack during exercise creates fewer body movements. No significant effect was found for perceived exertion. We also explored the role of sex as a potential moderator in the association of the Proteus effect on exercise outcomes. The Proteus effect was supported by immediate and next-day self-efficacy for core-muscle exercise only among female participants. The between-subject design allowed us to probe how avatar manipulation of muscular body shape with a six pack as opposed to normal body shape influences participants’ self-concept and exercise outcomes, as limited VR studies have employed within-subject comparisons. This also contributes to the literature by providing an upward comparison (e.g., muscular with a six pack vs. normal) as opposed to the previous downward comparison regarding body fitness (e.g., normal vs. obese). The overall results supported the Proteus effect in the context of core-muscle exercise when comparing normal and ideal body shape avatars. However, the Proteus effect as an altered self-concept and its effects on self-efficacy for exercise were supported among females but not males. Whereas the female participants who embodied avatars with a six pack associated themselves more with the muscular concept than other people, the male participants who embodied avatars with a six pack perceived themselves as more normal than others. Theoretical and practical implications are discussed.
Collapse
Affiliation(s)
- Jih-Hsuan Tammy Lin
- Department of Advertising, College of Communication, National Chengchi University, Taipei City, Taiwan.,Taiwan Institute for Governance and Communication Research, Taipei City, Taiwan
| | - Dai-Yun Wu
- Department of Communication and Technology, National Yang Ming Chiao Tung University, Zhubei, Taiwan
| | - Ji-Wei Yang
- Department of Advertising, College of Communication, National Chengchi University, Taipei City, Taiwan
| |
Collapse
|
6
|
Rosa N, Veltkamp RC, Hürst W, Brouwer AM, Gijsbertse K, Cocu I, Werkhoven P. Embodiment and Performance in the Supernumerary Hand Illusion in Augmented Reality. FRONTIERS IN COMPUTER SCIENCE 2021. [DOI: 10.3389/fcomp.2021.694916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In teleoperations, robots are generally used because related tasks are too dangerous, uncomfortable or impossible for humans to perform. When using augmented reality to control robotic limbs in such teleoperations, it is essential to understand how these extra virtual limbs are experienced. In particular, the relationship between the embodiment experience of the user and relevant outcomes such as task performance must be examined. In this article, we study the relationship between experienced embodiment of a supernumerary virtual arm that acts alongside a user’s two real arms, and their task performance in augmented reality. Specifically, we compare how well users can trace a virtual half ring placed just outside of personal space using their virtual arm in a condition where there is expected to be low embodiment (a floating disconnected hand) and a condition where there is expected to be high embodiment (a connected arm and hand). Embodiment is measured quantitatively through skin conductance response and qualitatively through ownership, agency, and self-location questionnaires. Performance is measured in terms of tracing precision. The results show positive correlations between subjective ownership and agency, and agency and performance, but no correlation between subjective or objective ownership and performance. Also, ownership ratings were low overall, while the agency ratings were significantly higher for the disconnected hand condition than the connected arm condition, as was performance. Notably, the presence of the virtual arm evoked incorrect expectations of the movement capabilities of the arm, which may have contributed to an overall preference for the unrealistic disconnected hand over the more realistic connected arm in this particular task. Our results imply that methods to increase performance in various teleoperations can indeed be found in the experience of embodiment: not necessarily directly through ownership, but through ownership mediated by agency.
Collapse
|
7
|
Odermatt IA, Buetler KA, Wenk N, Özen Ö, Penalver-Andres J, Nef T, Mast FW, Marchal-Crespo L. Congruency of Information Rather Than Body Ownership Enhances Motor Performance in Highly Embodied Virtual Reality. Front Neurosci 2021; 15:678909. [PMID: 34295219 PMCID: PMC8291288 DOI: 10.3389/fnins.2021.678909] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
In immersive virtual reality, the own body is often visually represented by an avatar. This may induce a feeling of body ownership over the virtual limbs. Importantly, body ownership and the motor system share neural correlates. Yet, evidence on the functionality of this neuroanatomical coupling is still inconclusive. Findings from previous studies may be confounded by the congruent vs. incongruent multisensory stimulation used to modulate body ownership. This study aimed to investigate the effect of body ownership and congruency of information on motor performance in immersive virtual reality. We aimed to modulate body ownership by providing congruent vs. incongruent visuo-tactile stimulation (i.e., participants felt a brush stroking their real fingers while seeing a virtual brush stroking the same vs. different virtual fingers). To control for congruency effects, unimodal stimulation conditions (i.e., only visual or tactile) with hypothesized low body ownership were included. Fifty healthy participants performed a decision-making (pressing a button as fast as possible) and a motor task (following a defined path). Body ownership was assessed subjectively with established questionnaires and objectively with galvanic skin response (GSR) when exposed to a virtual threat. Our results suggest that congruency of information may decrease reaction times and completion time of motor tasks in immersive virtual reality. Moreover, subjective body ownership is associated with faster reaction times, whereas its benefit on motor task performance needs further investigation. Therefore, it might be beneficial to provide congruent information in immersive virtual environments, especially during the training of motor tasks, e.g., in neurorehabilitation interventions.
Collapse
Affiliation(s)
- Ingrid A. Odermatt
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Neural Control of Movement Lab, ETH Zurich, Zürich, Switzerland
| | - Karin A. Buetler
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Nicolas Wenk
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Özhan Özen
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Joaquin Penalver-Andres
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
| | - Tobias Nef
- Gerontechnology and Rehabilitation Group, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Neurology, University Neurorehabilitation, University Hospital Bern (Inselspital), University of Bern, Bern, Switzerland
| | - Fred W. Mast
- Department of Psychology, University of Bern, Bern, Switzerland
| | - Laura Marchal-Crespo
- Motor Learning and Neurorehabilitation Laboratory, ARTORG Center for Biomedical Engineering Research, University of Bern, Bern, Switzerland
- Department of Cognitive Robotics, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
8
|
Welniarz Q, Worbe Y, Gallea C. The Forward Model: A Unifying Theory for the Role of the Cerebellum in Motor Control and Sense of Agency. Front Syst Neurosci 2021; 15:644059. [PMID: 33935660 PMCID: PMC8082178 DOI: 10.3389/fnsys.2021.644059] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
For more than two decades, there has been converging evidence for an essential role of the cerebellum in non-motor functions. The cerebellum is not only important in learning and sensorimotor processes, some growing evidences show its implication in conditional learning and reward, which allows building our expectations about behavioral outcomes. More recent work has demonstrated that the cerebellum is also required for the sense of agency, a cognitive process that allows recognizing an action as our own, suggesting that the cerebellum might serve as an interface between sensorimotor function and cognition. A unifying model that would explain the role of the cerebellum across these processes has not been fully established. Nonetheless, an important heritage was given by the field of motor control: the forward model theory. This theory stipulates that movements are controlled based on the constant interactions between our organism and its environment through feedforward and feedback loops. Feedforward loops predict what is going to happen, while feedback loops confront the prediction with what happened so that we can react accordingly. From an anatomical point of view, the cerebellum is at an ideal location at the interface between the motor and sensory systems, as it is connected to cerebral, striatal, and spinal entities via parallel loops, so that it can link sensory and motor systems with cognitive processes. Recent findings showing that the cerebellum participates in building the sense of agency as a predictive and comparator system will be reviewed together with past work on motor control within the context of the forward model theory.
Collapse
Affiliation(s)
- Quentin Welniarz
- INSERM U-1127, CNRS UMR 7225, Institut du Cerveau, Faculté de Médecine, Sorbonne Université, La Pitié Salpêtrière Hospital, Paris, France.,Movement Investigation and Therapeutics Team, ICM, Paris, France
| | - Yulia Worbe
- INSERM U-1127, CNRS UMR 7225, Institut du Cerveau, Faculté de Médecine, Sorbonne Université, La Pitié Salpêtrière Hospital, Paris, France.,Movement Investigation and Therapeutics Team, ICM, Paris, France.,Department of Neurophysiology, Saint-Antoine Hospital, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Cecile Gallea
- INSERM U-1127, CNRS UMR 7225, Institut du Cerveau, Faculté de Médecine, Sorbonne Université, La Pitié Salpêtrière Hospital, Paris, France.,Movement Investigation and Therapeutics Team, ICM, Paris, France
| |
Collapse
|
9
|
Raimo S, Boccia M, Di Vita A, Cropano M, Guariglia C, Grossi D, Palermo L. The Body Across Adulthood: On the Relation Between Interoception and Body Representations. Front Neurosci 2021; 15:586684. [PMID: 33716641 PMCID: PMC7943607 DOI: 10.3389/fnins.2021.586684] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/27/2021] [Indexed: 12/31/2022] Open
Abstract
Interoceptive information plays a pivotal role in building body representations (BR), but the association between interoception and the different types of BR in healthy individuals has never been systematically investigated. Thus, this study aimed to explore the association between BR and interoceptive sensibility (IS) throughout adulthood. One hundred thirty-seven healthy participants (50 aged from 18 to 40 years old; 50 aged from 41 to 60 years old; and 37 over 60 years old) were given a self-report tool for assessing IS (the Self-Awareness Questionnaire; SAQ), and a specific battery including tasks evaluating three different BR (i.e., the body schema, using the Hand Laterality Task; the body structural representation, using the Frontal Body Evocation task, FBE; and body semantics, using the Object-Body Part Association Task) as well as control tasks (i.e., tasks with non-body stimuli). The older age group (aged over 60 years old) showed lower performances on the tasks probing the body schema and body structural representation than younger groups (aged 18 to 40 and 41 to 60 years old). More interestingly, worse performances on a task assessing the body schema were significantly associated with higher IS with older age, suggesting that higher awareness of one's inner body sensations would decrease the plasticity of this BR. These findings are interpreted according to the neuropsychological model of BR development and the effects of aging on the brain.
Collapse
Affiliation(s)
- Simona Raimo
- Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Maddalena Boccia
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Antonella Di Vita
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Maria Cropano
- Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Cecilia Guariglia
- Department of Psychology, “Sapienza” University of Rome, Rome, Italy
- I.R.C.C.S. Santa Lucia Foundation, Rome, Italy
| | - Dario Grossi
- Department of Psychology, University of Campania “Luigi Vanvitelli”, Caserta, Italy
| | - Liana Palermo
- Department of Medical and Surgical Sciences, Magna Graecia University of Catanzaro, Catanzaro, Italy
| |
Collapse
|
10
|
Fanghella M, Era V, Candidi M. Interpersonal Motor Interactions Shape Multisensory Representations of the Peripersonal Space. Brain Sci 2021; 11:255. [PMID: 33669561 PMCID: PMC7922994 DOI: 10.3390/brainsci11020255] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 02/11/2021] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
This perspective review focuses on the proposal that predictive multisensory integration occurring in one's peripersonal space (PPS) supports individuals' ability to efficiently interact with others, and that integrating sensorimotor signals from the interacting partners leads to the emergence of a shared representation of the PPS. To support this proposal, we first introduce the features of body and PPS representations that are relevant for interpersonal motor interactions. Then, we highlight the role of action planning and execution on the dynamic expansion of the PPS. We continue by presenting evidence of PPS modulations after tool use and review studies suggesting that PPS expansions may be accounted for by Bayesian sensory filtering through predictive coding. In the central section, we describe how this conceptual framework can be used to explain the mechanisms through which the PPS may be modulated by the actions of our interaction partner, in order to facilitate interpersonal coordination. Last, we discuss how this proposal may support recent evidence concerning PPS rigidity in Autism Spectrum Disorder (ASD) and its possible relationship with ASD individuals' difficulties during interpersonal coordination. Future studies will need to clarify the mechanisms and neural underpinning of these dynamic, interpersonal modulations of the PPS.
Collapse
Affiliation(s)
- Martina Fanghella
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
- Department of Psychology, University of London, London EC1V 0HB, UK
| | - Vanessa Era
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Matteo Candidi
- Department of Psychology, Sapienza University, 00185 Rome, Italy; (M.F.); (V.E.)
- IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| |
Collapse
|
11
|
Roel Lesur M, Weijs ML, Simon C, Kannape OA, Lenggenhager B. Psychometrics of Disembodiment and Its Differential Modulation by Visuomotor and Visuotactile Mismatches. iScience 2020; 23:100901. [PMID: 32109678 PMCID: PMC7044746 DOI: 10.1016/j.isci.2020.100901] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/12/2019] [Accepted: 01/20/2020] [Indexed: 10/29/2022] Open
Abstract
Altered states of embodiment are fundamental to the scientific understanding of bodily self consciousness. The feeling of disembodiment during everyday activities is common to clinical conditions; however, the direct study of disembodiment in experimental setups is rare compared to the extensive investigation of illusory embodiment of an external object. Using mixed reality to modulate embodiment through temporally mismatching sensory signals from the own body, we assessed how such mismatches affect phenomenal and physiological aspects of embodiment and measured perceptual thresholds for these across multimodal signals. The results of a principal component analysis suggest that multimodal mismatches generally induce disembodiment by increasing the sense of disownership and deafference and decreasing embodiment; however, this was not generally reflected in physiological changes. Although visual delay decreased embodiment both during active movement and passive touch, the effect was stronger for the former. We discuss the relevance of these findings for understanding bodily self plasticity.
Collapse
Affiliation(s)
- Marte Roel Lesur
- Department of Psychology, Cognitive Neuropsychology with Focus on Body, Self, and Plasticity, University of Zurich, Zurich, Switzerland.
| | - Marieke Lieve Weijs
- Department of Psychology, Cognitive Neuropsychology with Focus on Body, Self, and Plasticity, University of Zurich, Zurich, Switzerland
| | - Colin Simon
- Department of Psychology, Cognitive Neuropsychology with Focus on Body, Self, and Plasticity, University of Zurich, Zurich, Switzerland
| | - Oliver Alan Kannape
- School of Psychology, University of Central Lancashire, Preston PR1 2HE, UK; Laboratory of Cognitive Neuroscience, Center for Neuroprosthetics and Brain Mind Institute, Swiss Federal Institute of Technology (EPFL), Geneva, Switzerland
| | - Bigna Lenggenhager
- Department of Psychology, Cognitive Neuropsychology with Focus on Body, Self, and Plasticity, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
12
|
Miller LC, Shaikh SJ, Jeong DC, Wang L, Gillig TK, Godoy CG, Appleby PR, Corsbie-Massay CL, Marsella S, Christensen JL, Read SJ. Causal Inference in Generalizable Environments: Systematic Representative Design. PSYCHOLOGICAL INQUIRY 2020; 30:173-202. [PMID: 33093760 PMCID: PMC7577318 DOI: 10.1080/1047840x.2019.1693866] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Causal inference and generalizability both matter. Historically, systematic designs emphasize causal inference, while representative designs focus on generalizability. Here, we suggest a transformative synthesis - Systematic Representative Design (SRD) - concurrently enhancing both causal inference and "built-in" generalizability by leveraging today's intelligent agent, virtual environments, and other technologies. In SRD, a "default control group" (DCG) can be created in a virtual environment by representatively sampling from real-world situations. Experimental groups can be built with systematic manipulations onto the DCG base. Applying systematic design features (e.g., random assignment to DCG versus experimental groups) in SRD affords valid causal inferences. After explicating the proposed SRD synthesis, we delineate how the approach concurrently advances generalizability and robustness, cause-effect inference and precision science, a computationally-enabled cumulative psychological science supporting both "bigger theory" and concrete implementations grappling with tough questions (e.g., what is context?) and affording rapidly-scalable interventions for real-world problems.
Collapse
|