1
|
Lokossou HA, Rabuffo G, Bernard M, Bernard C, Viola A, Perles-Barbacaru TA. Impact of the day/night cycle on functional connectome in ageing male and female mice. Neuroimage 2024; 290:120576. [PMID: 38490583 DOI: 10.1016/j.neuroimage.2024.120576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/17/2024] Open
Abstract
To elucidate how time of day, sex, and age affect functional connectivity (FC) in mice, we aimed to examine whether the mouse functional connectome varied with the day/night cycle and whether it depended on sex and age. We explored C57Bl6/J mice (6♀ and 6♂) at mature age (5 ± 1 months) and middle-age (14 ± 1 months). Each mouse underwent Blood Oxygen-Level-Dependent (BOLD) resting-state functional MRI (rs-fMRI) on a 7T scanner at four different times of the day, two under the light condition and two under the dark condition. Data processing consisted of group independent component analysis (ICA) and region-level analysis using resting-state networks (RSNs) derived from literature. Linear mixed-effect models (LMEM) were used to assess the effects of sex, lighting condition and their interactions for each RSN obtained with group-ICA (RSNs-GICA) and six bilateral RSNs adapted from literature (RSNs-LIT). Our study highlighted new RSNs in mice related to day/night alternation in addition to other networks already reported in the literature. In mature mice, we found sex-related differences in brain activation only in one RSNs-GICA comprising the cortical, hippocampal, midbrain and cerebellar regions of the right hemisphere. In males, brain activity was significantly higher in the left hippocampus, the retrosplenial cortex, the superior colliculus, and the cerebellum regardless of lighting condition; consistent with the role of these structures in memory formation and integration, sleep, and sex-differences in memory processing. Experimental constraints limited the analysis to the impact of light/dark cycle on the RSNs for middle-aged females. We detected significant activation in the pineal gland during the dark condition, a finding in line with the nocturnal activity of this gland. For the analysis of RSNs-LIT, new variables "sexage" (sex and age combined) and "edges" (pairs of RSNs) were introduced. FC was calculated as the Pearson correlation between two RSNs. LMEM revealed no effect of sexage or lighting condition. The FC depended on the edges, but there were no interaction effects between sexage, lighting condition and edges. Interaction effects were detected between i) sex and lighting condition, with higher FC in males under the dark condition, ii) sexage and edges with higher FC in male brain regions related to vision, memory, and motor action. We conclude that time of day and sex should be taken into account when designing, analyzing, and interpreting functional imaging studies in rodents.
Collapse
Affiliation(s)
- Houéfa Armelle Lokossou
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France; Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Giovanni Rabuffo
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France
| | - Monique Bernard
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | - Christophe Bernard
- Institute of Systems Neuroscience, INS UMR 1106, Aix-Marseille University-INSERM, Marseille, France.
| | - Angèle Viola
- Centre for Magnetic Resonance in Biology and Medicine, CRMBM UMR 7339, Aix-Marseille University-CNRS, Marseille, France
| | | |
Collapse
|
2
|
Zareba MR, Fafrowicz M, Marek T, Oginska H, Beldzik E, Domagalik A. Tracing diurnal differences in brain anatomy with voxel-based morphometry - associations with sleep characteristics. Chronobiol Int 2024; 41:201-212. [PMID: 38192011 DOI: 10.1080/07420528.2024.2301944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 12/23/2023] [Indexed: 01/10/2024]
Abstract
Multiple aspects of brain functioning, including arousal, motivation, and cognitive performance, are governed by circadian rhythmicity. Although the recent rise in the use of magnetic resonance imaging (MRI) has enabled investigations into the macroscopic correlates of the diurnal brain processes, neuroanatomical studies are scarce. The current work investigated how time-of-day (TOD) impacts white (WM) and grey matter (GM) volumes using voxel-based morphometry (VBM) in a large dataset (N = 72) divided into two equal, comparable subsamples to assess the replicability of effects. Furthermore, we aimed to assess how the magnitude of these diurnal differences was related to actigraphy-derived indices of sleep health. The results extend the current knowledge by reporting that TOD is predominantly associated with regional WM volume decreases. Additionally, alongside corroborating previously observed volumetric GM decreases, we provide the first evidence for positive TOD effects. Higher replicability was observed for WM, with the only two replicated GM clusters being volumetric increases in the amygdala and hippocampus, and decreases in the retrosplenial cortex, with the latter more pronounced in individuals with shorter sleep times. These findings implicate the existence of region-specific mechanisms behind GM effects, which might be related to cognitive processes taking place during wakefulness and homeostatic sleep pressure.
Collapse
Affiliation(s)
- Michal Rafal Zareba
- Department of Basic and Clinical Psychology and Psychobiology, Jaume I University, Castellon de la Plana, Spain
- Centre for Brain Research, Jagiellonian University, Kraków, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Tadeusz Marek
- Faculty of Psychology, SWPS University, Katowice, Poland
| | - Halszka Oginska
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | - Ewa Beldzik
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Kraków, Poland
| | | |
Collapse
|
3
|
Li S, Xing X, Hua X, Zhang Y, Wu J, Shan C, Zheng M, Wang H, Xu J. Effects of electroacupuncture on imaging and behavior in rats with ischemic stroke through miR-212-5p. BMC Neurosci 2023; 24:63. [PMID: 38057703 PMCID: PMC10699053 DOI: 10.1186/s12868-023-00827-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/16/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Ischemic stroke is a serious disease leading to significant disability in humans worldwide. Increasing evidence suggests that some microRNAs (miRNAs) participate in the pathophysiology of ischemic stroke. A key role for MiR-212 has been found in neuronal function and synaptic plasticity. Ischemic stroke can be effectively treated with electroacupuncture (EA); however, there is a lack of understanding of the relevant mechanisms. In this study, we employed behavioral test and resting-state functional magnetic resonance imaging (rs-fMRI) to detect behavioral and brain function alterations in rats suffering from ischemic stroke. The efficacy of EA therapy and miR-212-5p's role in this process were also evaluated. METHODS AND RESULTS Forty rats were randomly divided into the following groups: Sham, middle cerebral artery occlusion/reperfusion (MCAO/R), MCAO/R + EA, MCAO/R + EA + antagomir-negative control and MCAO/R + EA + antagomir-212-5p groups. Behavioral changes were assessed by Catwalk gait analysis prior to and after modeling. Rs-fMRI was performed at one week after EA treatment, amplitude of low-frequency fluctuations (ALFF) and regional homogeneity (ReHo) were calculated to reveal neural activity. Furthermore, neuronal apoptosis in the ischemic penumbra was analyzed using a TUNEL assay. Treatment with EA significantly improved the performance of rats in the behavioral test. The motor and cognition-related brain regions showed decreased ALFF and ReHo following focal cerebral ischemia-reperfusion, and EA treatment could reactivate these brain regions. Moreover, EA treatment significantly decreased MCAO/R-induced cell death. However, the transfection of antagomir-212-5p attenuated the therapeutic effect of EA. CONCLUSIONS In conclusion, the results suggested that EA improved the behavioral and imaging outcomes of ischemic stroke through miR-212-5p.
Collapse
Grants
- 82172554, 81802249, 81871836, and 81902301 National Natural Science Foundation of China
- 82172554, 81802249, 81871836, and 81902301 National Natural Science Foundation of China
- 82172554, 81802249, 81871836, and 81902301 National Natural Science Foundation of China
- 2018YFC2001600, and 2018YFC2001604 National Key R&D Program of China
- 2018YFC2001600, and 2018YFC2001604 National Key R&D Program of China
- 19QA1409000 Shanghai Rising-Star Program
- RY411.19.01.10 Shanghai Youth Top Talent Development Plan and Shanghai "Rising Stars of Medical Talent" Youth Development Program
- 2018YQ02 Shanghai Municipal Commission of Health and Family Planning
Collapse
Affiliation(s)
- Sisi Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China
- Department of Physical Medicine and Rehabilitation, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, 325027, China
| | - Xiangxin Xing
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Xuyun Hua
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Yuwen Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 201203, China
| | - Jiajia Wu
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
| | - Chunlei Shan
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China
- Center of Rehabilitation Medicine, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China
| | - Mouxiong Zheng
- Department of Traumatology and Orthopedics, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200437, China.
| | - He Wang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, 201203, China.
| | - Jianguang Xu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, NO. 1200, Cailun Road, Shanghai, 201203, Shanghai, China.
- Engineering Research Center of Traditional Chinese Medicine Intelligent Rehabilitation, Ministry of Education, Shanghai, 201203, China.
| |
Collapse
|
4
|
Antonacci Y, Barà C, Zaccaro A, Ferri F, Pernice R, Faes L. Time-varying information measures: an adaptive estimation of information storage with application to brain-heart interactions. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1242505. [PMID: 37920446 PMCID: PMC10619917 DOI: 10.3389/fnetp.2023.1242505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/02/2023] [Indexed: 11/04/2023]
Abstract
Network Physiology is a rapidly growing field of study that aims to understand how physiological systems interact to maintain health. Within the information theory framework the information storage (IS) allows to measure the regularity and predictability of a dynamic process under stationarity assumption. However, this assumption does not allow to track over time the transient pathways occurring in the dynamical activity of a physiological system. To address this limitation, we propose a time-varying approach based on the recursive least squares algorithm (RLS) for estimating IS at each time instant, in non-stationary conditions. We tested this approach in simulated time-varying dynamics and in the analysis of electroencephalographic (EEG) signals recorded from healthy volunteers and timed with the heartbeat to investigate brain-heart interactions. In simulations, we show that the proposed approach allows to track both abrupt and slow changes in the information stored in a physiological system. These changes are reflected in its evolution and variability over time. The analysis of brain-heart interactions reveals marked differences across the cardiac cycle phases of the variability of the time-varying IS. On the other hand, the average IS values exhibit a weak modulation over parieto-occiptal areas of the scalp. Our study highlights the importance of developing more advanced methods for measuring IS that account for non-stationarity in physiological systems. The proposed time-varying approach based on RLS represents a useful tool for identifying spatio-temporal dynamics within the neurocardiac system and can contribute to the understanding of brain-heart interactions.
Collapse
Affiliation(s)
- Yuri Antonacci
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Chiara Barà
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Andrea Zaccaro
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Francesca Ferri
- Department of Neuroscience, Imaging and Clinical Sciences, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Institute for Advanced Biomedical Technologies (ITAB), “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Riccardo Pernice
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Luca Faes
- Department of Engineering, University of Palermo, Palermo, Italy
| |
Collapse
|
5
|
Dadario NB, Sughrue ME. The functional role of the precuneus. Brain 2023; 146:3598-3607. [PMID: 37254740 DOI: 10.1093/brain/awad181] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/01/2023] Open
Abstract
Recent advancements in computational approaches and neuroimaging techniques have refined our understanding of the precuneus. While previously believed to be largely a visual processing region, the importance of the precuneus in complex cognitive functions has been previously less familiar due to a lack of focal lesions in this deeply seated region, but also a poor understanding of its true underlying anatomy. Fortunately, recent studies have revealed significant information on the structural and functional connectivity of this region, and this data has provided a more detailed mechanistic understanding of the importance of the precuneus in healthy and pathologic states. Through improved resting-state functional MRI analyses, it has become clear that the function of the precuneus can be better understood based on its functional association with large scale brain networks. Dual default mode network systems have been well explained in recent years in supporting episodic memory and theory of mind; however, a novel 'para-cingulate' network, which is a subnetwork of the larger central executive network, with likely significant roles in self-referential processes and related psychiatric symptoms is introduced here and requires further clarification. Importantly, detailed anatomic studies on the precuneus structural connectivity inside and beyond the cingulate cortex has demonstrated the presence of large structural white matter connections, which provide an additional layer of meaning to the structural-functional significance of this region and its association with large scale brain networks. Together, the structural-functional connectivity of the precuneus has provided central elements which can model various neurodegenerative diseases and psychiatric disorders, such as Alzheimer's disease and depression.
Collapse
Affiliation(s)
- Nicholas B Dadario
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ 07102, USA
| | | |
Collapse
|
6
|
Vaisvilaite L, Andersson M, Salami A, Specht K. Time of day dependent longitudinal changes in resting-state fMRI. Front Neurol 2023; 14:1166200. [PMID: 37475742 PMCID: PMC10354550 DOI: 10.3389/fneur.2023.1166200] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/13/2023] [Indexed: 07/22/2023] Open
Abstract
Longitudinal studies have become more common in the past years due to their superiority over cross-sectional samples. In light of the ongoing replication crisis, the factors that may introduce variability in resting-state networks have been widely debated. This publication aimed to address the potential sources of variability, namely, time of day, sex, and age, in longitudinal studies within individual resting-state fMRI data. DCM was used to analyze the fMRI time series, extracting EC connectivity measures and parameters that define the BOLD signal. In addition, a two-way ANOVA was used to assess the change in EC and parameters that define the BOLD signal between data collection waves. The results indicate that time of day and gender have significant model evidence for the parameters that define the BOLD signal but not EC. From the ANOVA analysis, findings indicate that there was a significant change in the two nodes of the DMN and their connections with the fronto-parietal network. Overall, these findings suggest that in addition to age and gender, which are commonly accounted for in the fMRI data collection, studies should note the time of day, possibly treating it as a covariate in longitudinal samples.
Collapse
Affiliation(s)
- Liucija Vaisvilaite
- ReState Research Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical and Imaging Visualization Centre, Haukel and University Hospital, Bergen, Norway
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Alireza Salami
- Umeå Center for Functional Brain Imaging, Umeå University, Umeå, Sweden
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
- Ageing Research Center, Karolinska Institute, Stockholm, Sweden
| | - Karsten Specht
- ReState Research Group, Department of Biological and Medical Psychology, University of Bergen, Bergen, Norway
- Mohn Medical and Imaging Visualization Centre, Haukel and University Hospital, Bergen, Norway
- Department of Education, UiT/The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
7
|
Mason SL, Junges L, Woldman W, Facer-Childs ER, de Campos BM, Bagshaw AP, Terry JR. Classification of human chronotype based on fMRI network-based statistics. Front Neurosci 2023; 17:1147219. [PMID: 37342462 PMCID: PMC10277557 DOI: 10.3389/fnins.2023.1147219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/17/2023] [Indexed: 06/23/2023] Open
Abstract
Chronotype-the relationship between the internal circadian physiology of an individual and the external 24-h light-dark cycle-is increasingly implicated in mental health and cognition. Individuals presenting with a late chronotype have an increased likelihood of developing depression, and can display reduced cognitive performance during the societal 9-5 day. However, the interplay between physiological rhythms and the brain networks that underpin cognition and mental health is not well-understood. To address this issue, we use rs-fMRI collected from 16 people with an early chronotype and 22 people with a late chronotype over three scanning sessions. We develop a classification framework utilizing the Network Based-Statistic methodology, to understand if differentiable information about chronotype is embedded in functional brain networks and how this changes throughout the day. We find evidence of subnetworks throughout the day that differ between extreme chronotypes such that high accuracy can occur, describe rigorous threshold criteria for achieving 97.3% accuracy in the Evening and investigate how the same conditions hinder accuracy for other scanning sessions. Revealing differences in functional brain networks based on extreme chronotype suggests future avenues of research that may ultimately better characterize the relationship between internal physiology, external perturbations, brain networks, and disease.
Collapse
Affiliation(s)
- Sophie L. Mason
- School of Mathematics, College of Engineering and Physical Sciences, University of Birmingham, Birmingham, United Kingdom
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Leandro Junges
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Wessel Woldman
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| | - Elise R. Facer-Childs
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
- Danny Frawley Centre for Health and Wellbeing, Melbourne, VIC, Australia
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
- Faculty of Health and Medical Sciences, University of Surrey, Surrey, United Kingdom
| | | | - Andrew P. Bagshaw
- Centre for Human Brain Health, College of Life and Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - John R. Terry
- Centre for Systems Modelling and Quantitative Biomedicine, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
8
|
Rajasilta O, Häkkinen S, Björnsdotter M, Scheinin NM, Lehtola SJ, Saunavaara J, Parkkola R, Lähdesmäki T, Karlsson L, Karlsson H, Tuulari JJ. Maternal psychological distress associates with alterations in resting-state low-frequency fluctuations and distal functional connectivity of the neonate medial prefrontal cortex. Eur J Neurosci 2023; 57:242-257. [PMID: 36458867 PMCID: PMC10108202 DOI: 10.1111/ejn.15882] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 11/21/2022] [Indexed: 12/03/2022]
Abstract
Prenatal stress exposure (PSE) has been observed to exert a programming effect on the developing infant brain, possibly with long-lasting consequences on temperament, cognitive functions and the risk for developing psychiatric disorders. Several prior studies have revealed that PSE associates with alterations in neonate functional connectivity in the prefrontal regions and amygdala. In this study, we explored whether maternal psychological symptoms measured during the 24th gestational week had associations with neonate resting-state network metrics. Twenty-one neonates (nine female) underwent resting-state fMRI scanning (mean gestation-corrected age at scan 26.95 days) to assess fractional amplitude of low-frequency fluctuation (fALFF) and regional homogeneity (ReHo). The ReHo/fALFF maps were used in multiple regression analysis to investigate whether maternal self-reported anxiety and/or depressive symptoms associate with neonate functional brain features. Maternal psychological distress (composite score of depressive and anxiety symptoms) was positively associated with fALFF in the neonate medial prefrontal cortex (mPFC). Anxiety and depressive symptoms, assessed separately, exhibited similar but weaker associations. Post hoc seed-based connectivity analyses further showed that distal connectivity of mPFC covaried with PSE. No associations were found between neonate ReHo and PSE. These results offer preliminary evidence that PSE may affect functional features of the developing brain during gestation.
Collapse
Affiliation(s)
- Olli Rajasilta
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Suvi Häkkinen
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Malin Björnsdotter
- The Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Noora M Scheinin
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
| | - Satu J Lehtola
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
| | - Jani Saunavaara
- Department of Medical Physics, University of Turku and Turku University Hospital, Turku, Finland
| | - Riitta Parkkola
- Department of Radiology, University of Turku and Turku University Hospital, Turku, Finland
| | - Tuire Lähdesmäki
- Department of Pediatric Neurology, University of Turku and Turku University Hospital, Turku, Finland
| | - Linnea Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
- Department of Paediatrics and Adolescent Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Hasse Karlsson
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Center for Population Health Research, University of Turku and Turku University Hospital, Finland
| | - Jetro J Tuulari
- FinnBrain Birth Cohort Study, Turku Brain and Mind Center, Institute of Clinical Medicine, University of Turku, Turku, Finland
- Department of Psychiatry, University of Turku and Turku University Hospital, Turku, Finland
- Department of Psychiatry, University of Oxford (Sigrid Juselius Fellowship), Oxford, UK
- Turku Collegium for Science and Medicine, University of Turku, Turku, Finland
| |
Collapse
|
9
|
Task-dependent fractal patterns of information processing in working memory. Sci Rep 2022; 12:17866. [PMID: 36284105 PMCID: PMC9596406 DOI: 10.1038/s41598-022-21375-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/27/2022] [Indexed: 01/20/2023] Open
Abstract
We applied detrended fluctuation analysis, power spectral density, and eigenanalysis of detrended cross-correlations to investigate fMRI data representing a diurnal variation of working memory in four visual tasks: two verbal and two nonverbal. We show that the degree of fractal scaling is regionally dependent on the engagement in cognitive tasks. A particularly apparent difference was found between memorisation in verbal and nonverbal tasks. Furthermore, the detrended cross-correlations between brain areas were predominantly indicative of differences between resting state and other tasks, between memorisation and retrieval, and between verbal and nonverbal tasks. The fractal and spectral analyses presented in our study are consistent with previous research related to visuospatial and verbal information processing, working memory (encoding and retrieval), and executive functions, but they were found to be more sensitive than Pearson correlations and showed the potential to obtain other subtler results. We conclude that regionally dependent cognitive task engagement can be distinguished based on the fractal characteristics of BOLD signals and their detrended cross-correlation structure.
Collapse
|
10
|
Farahani FV, Karwowski W, D’Esposito M, Betzel RF, Douglas PK, Sobczak AM, Bohaterewicz B, Marek T, Fafrowicz M. Diurnal variations of resting-state fMRI data: A graph-based analysis. Neuroimage 2022; 256:119246. [PMID: 35477020 PMCID: PMC9799965 DOI: 10.1016/j.neuroimage.2022.119246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 02/18/2022] [Accepted: 04/22/2022] [Indexed: 12/31/2022] Open
Abstract
Circadian rhythms (lasting approximately 24 h) control and entrain various physiological processes, ranging from neural activity and hormone secretion to sleep cycles and eating habits. Several studies have shown that time of day (TOD) is associated with human cognition and brain functions. In this study, utilizing a chronotype-based paradigm, we applied a graph theory approach on resting-state functional MRI (rs-fMRI) data to compare whole-brain functional network topology between morning and evening sessions and between morning-type (MT) and evening-type (ET) participants. Sixty-two individuals (31 MT and 31 ET) underwent two fMRI sessions, approximately 1 hour (morning) and 10 h (evening) after their wake-up time, according to their declared habitual sleep-wake pattern on a regular working day. In the global analysis, the findings revealed the effect of TOD on functional connectivity (FC) patterns, including increased small-worldness, assortativity, and synchronization across the day. However, we identified no significant differences based on chronotype categories. The study of the modular structure of the brain at mesoscale showed that functional networks tended to be more integrated with one another in the evening session than in the morning session. Local/regional changes were affected by both factors (i.e., TOD and chronotype), mostly in areas associated with somatomotor, attention, frontoparietal, and default networks. Furthermore, connectivity and hub analyses revealed that the somatomotor, ventral attention, and visual networks covered the most highly connected areas in the morning and evening sessions: the latter two were more active in the morning sessions, and the first was identified as being more active in the evening. Finally, we performed a correlation analysis to determine whether global and nodal measures were associated with subjective assessments across participants. Collectively, these findings contribute to an increased understanding of diurnal fluctuations in resting brain activity and highlight the role of TOD in future studies on brain function and the design of fMRI experiments.
Collapse
Affiliation(s)
- Farzad V. Farahani
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA,Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA,Corresponding author: Department of Biostatistics, Johns Hopkins University, Baltimore, MD, USA. (F.V. Farahani)
| | - Waldemar Karwowski
- Computational Neuroergonomics Laboratory, Department of Industrial Engineering and Management Systems, University of Central Florida, Orlando, FL, USA
| | - Mark D’Esposito
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA,Department of Psychology, University of California, Berkeley, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Pamela K. Douglas
- Institute for Simulation and Training, University of Central Florida, Orlando, FL, USA,Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anna Maria Sobczak
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Bartosz Bohaterewicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Department of Psychology of Individual Differences, Psychological Diagnosis, and Psychometrics, Institute of Psychology, University of Social Sciences and Humanities, Warsaw, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland
| | - Magdalena Fafrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland,Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland,Corresponding author. Department of Cognitive Neuroscience and Neuroergonomics, Institute of Applied Psychology, Jagiellonian University, Krakow, Poland. (M. Fafrowicz)
| |
Collapse
|
11
|
Rapuano KM, Conley MI, Juliano AC, Conan GM, Maza MT, Woodman K, Martinez SA, Earl E, Perrone A, Feczko E, Fair DA, Watts R, Casey BJ, Rosenberg MD. An open-access accelerated adult equivalent of the ABCD Study neuroimaging dataset (a-ABCD). Neuroimage 2022; 255:119215. [PMID: 35436615 DOI: 10.1016/j.neuroimage.2022.119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/19/2022] Open
Abstract
As public access to longitudinal developmental datasets like the Adolescent Brain Cognitive Development StudySM (ABCD Study®) increases, so too does the need for resources to benchmark time-dependent effects. Scan-to-scan changes observed with repeated imaging may reflect development but may also reflect practice effects, day-to-day variability in psychological states, and/or measurement noise. Resources that allow disentangling these time-dependent effects will be useful in quantifying actual developmental change. We present an accelerated adult equivalent of the ABCD Study dataset (a-ABCD) using an identical imaging protocol to acquire magnetic resonance imaging (MRI) structural, diffusion-weighted, resting-state and task-based data from eight adults scanned five times over five weeks. We report on the task-based imaging data (n = 7). In-scanner stop-signal (SST), monetary incentive delay (MID), and emotional n-back (EN-back) task behavioral performance did not change across sessions. Post-scan recognition memory for emotional n-back stimuli, however, did improve as participants became more familiar with the stimuli. Functional MRI analyses revealed that patterns of task-based activation reflecting inhibitory control in the SST, reward success in the MID task, and working memory in the EN-back task were more similar within individuals across repeated scan sessions than between individuals. Within-subject, activity was more consistent across sessions during the EN-back task than in the SST and MID task, demonstrating differences in fMRI data reliability as a function of task. The a-ABCD dataset provides a unique testbed for characterizing the reliability of brain function, structure, and behavior across imaging modalities in adulthood and benchmarking neurodevelopmental change observed in the open-access ABCD Study.
Collapse
Affiliation(s)
| | | | | | - Gregory M Conan
- Masonic Institute for the Developing Brain, University of Minnesota Medical School
| | - Maria T Maza
- Department of Psychology, Yale University; Department of Psychology, University of North Carolina, Chapel Hill
| | - Kylie Woodman
- Department of Psychology, Yale University; Department of Communication, University of California, Santa Barbara
| | - Steven A Martinez
- Department of Psychology, Yale University; Department of Psychology, Temple University
| | - Eric Earl
- Department of Psychiatry, Oregon Health and Science University
| | - Anders Perrone
- Department of Psychiatry, Oregon Health and Science University; Masonic Institute for the Developing Brain, University of Minnesota Medical School
| | - Eric Feczko
- Masonic Institute for the Developing Brain, University of Minnesota Medical School; Department of Pediatrics, University of Minnesota Medical School
| | - Damien A Fair
- Masonic Institute for the Developing Brain, University of Minnesota Medical School
| | | | - B J Casey
- Department of Psychology, Yale University.
| | - Monica D Rosenberg
- Department of Psychology, Yale University; Department of Psychology, University of Chicago, United States.
| |
Collapse
|
12
|
Baksa D, Szabo E, Kocsel N, Galambos A, Edes AE, Pap D, Zsombok T, Magyar M, Gecse K, Dobos D, Kozak LR, Bagdy G, Kokonyei G, Juhasz G. Circadian Variation of Migraine Attack Onset Affects fMRI Brain Response to Fearful Faces. Front Hum Neurosci 2022; 16:842426. [PMID: 35355585 PMCID: PMC8959375 DOI: 10.3389/fnhum.2022.842426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 02/10/2022] [Indexed: 11/29/2022] Open
Abstract
Background Previous studies suggested a circadian variation of migraine attack onset, although, with contradictory results – possibly because of the existence of migraine subgroups with different circadian attack onset peaks. Migraine is primarily a brain disorder, and if the diversity in daily distribution of migraine attack onset reflects an important aspect of migraine, it may also associate with interictal brain activity. Our goal was to assess brain activity differences in episodic migraine subgroups who were classified according to their typical circadian peak of attack onset. Methods Two fMRI studies were conducted with migraine without aura patients (n = 31 in Study 1, n = 48 in Study 2). Among them, three subgroups emerged with typical Morning, Evening, and Varying start of attack onset. Whole brain activity was compared between the groups in an implicit emotional processing fMRI task, comparing fearful, sad, and happy facial stimuli to neutral ones. Results In both studies, significantly increased neural activation was detected to fearful (but not sad or happy) faces. In Study 1, the Evening start group showed increased activation compared to the Morning start group in regions involved in emotional, self-referential (left posterior cingulate gyrus, right precuneus), pain (including left middle cingulate, left postcentral, left supramarginal gyri, right Rolandic operculum) and sensory (including bilateral superior temporal gyrus, right Heschl’s gyrus) processing. While in Study 2, the Morning start group showed increased activation compared to the Varying start group at a nominally significant level in regions with pain (right precentral gyrus, right supplementary motor area) and sensory processing (bilateral paracentral lobule) functions. Conclusion Our fMRI studies suggest that different circadian attack onset peaks are associated with interictal brain activity differences indicating heterogeneity within migraine patients and alterations in sensitivity to threatening fearful stimuli. Circadian variation of migraine attack onset may be an important characteristic to address in future studies and migraine prophylaxis.
Collapse
Affiliation(s)
- Daniel Baksa
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Department of Personality and Clinical Psychology, Institute of Psychology, Faculty of Humanities and Social Sciences, Pázmány Péter Catholic University, Budapest, Hungary
| | - Edina Szabo
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Center for Pain and the Brain (PAIN Research Group), Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Natalia Kocsel
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Attila Galambos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Andrea Edit Edes
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dorottya Pap
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Terezia Zsombok
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Mate Magyar
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Kinga Gecse
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Dora Dobos
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Lajos Rudolf Kozak
- Department of Neuroradiology, Medical Imaging Centre, Semmelweis University, Budapest, Hungary
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
| | - Gyongyi Kokonyei
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Gabriella Juhasz
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- Department of Pharmacodynamics, Faculty of Pharmacy, Semmelweis University, Budapest, Hungary
- NAP-2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- *Correspondence: Gabriella Juhasz,
| |
Collapse
|
13
|
Li M, Danyeli LV, Colic L, Wagner G, Smesny S, Chand T, Di X, Biswal BB, Kaufmann J, Reichenbach JR, Speck O, Walter M, Sen ZD. The differential association between local neurotransmitter levels and whole-brain resting-state functional connectivity in two distinct cingulate cortex subregions. Hum Brain Mapp 2022; 43:2833-2844. [PMID: 35234321 PMCID: PMC9120566 DOI: 10.1002/hbm.25819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Lena Vera Danyeli
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| | - Lejla Colic
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Gerd Wagner
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany
| | - Stefan Smesny
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
| | - Tara Chand
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Xin Di
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, New Jersey, USA
| | - Jörn Kaufmann
- Department of Neurology, Otto von Guericke University Magdeburg, Magdeburg, Germany
| | - Jürgen R Reichenbach
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Medical Physics Group, Department of Diagnostic and Interventional Radiology, Jena University Hospital, Jena, Germany.,Michael Stifel Center Jena for Data-Driven & Simulation Science (MSCJ), Jena, Germany.,Center of Medical Optics and Photonics (CeMOP), Jena, Germany
| | - Oliver Speck
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Department of Biomedical Magnetic Resonance, Otto von Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany.,German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Martin Walter
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany.,Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Center for Behavioral Brain Sciences, Magdeburg, Germany
| | - Zümrüt Duygu Sen
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.,Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health, DZP, Germany.,Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany.,Department of Psychiatry and Psychotherapy, University Tübingen, Tübingen, Germany
| |
Collapse
|
14
|
Martins D, Lockwood P, Cutler J, Moran R, Paloyelis Y. Oxytocin modulates neurocomputational mechanisms underlying prosocial reinforcement learning. Prog Neurobiol 2022; 213:102253. [DOI: 10.1016/j.pneurobio.2022.102253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 12/18/2022]
|
15
|
Singh P, Wa Torek M, Ceglarek A, Fąfrowicz M, Lewandowska K, Marek T, Sikora-Wachowicz B, Oświȩcimka P. Analysis of fMRI Signals from Working Memory Tasks and Resting-State of Brain: Neutrosophic-Entropy-Based Clustering Algorithm. Int J Neural Syst 2022; 32:2250012. [PMID: 35179104 DOI: 10.1142/s0129065722500125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study applies a neutrosophic-entropy-based clustering algorithm (NEBCA) to analyze the fMRI signals. We consider the data obtained from four different working memory tasks and the brain's resting state for the experimental purpose. Three non-overlapping clusters of data related to temporal brain activity are determined and statistically analyzed. Moreover, we used the Uniform Manifold Approximation and Projection (UMAP) method to reduce system dimensionality and present the effectiveness of NEBCA. The results show that using NEBCA, we are able to distinguish between different working memory tasks and resting-state and identify subtle differences in the related activity of brain regions. By analyzing the statistical properties of the entropy inside the clusters, the various regions of interest (ROIs), according to Automated Anatomical Labeling (AAL) atlas crucial for clustering procedure, are determined. The inferior occipital gyrus is established as an important brain region in distinguishing the resting state from the tasks. Moreover, the inferior occipital gyrus and superior parietal lobule are identified as necessary to correct the data discrimination related to the different memory tasks. We verified the statistical significance of the results through the two-sample t-test and analysis of surrogates performed by randomization of the cluster elements. The presented methodology is also appropriate to determine the influence of time of day on brain activity patterns. The differences between working memory tasks and resting-state in the morning are related to a lower index of small-worldness and sleep inertia in the first hours after waking. We also compared the performance of NEBCA to two existing algorithms, KMCA and FKMCA. We showed the advantage of the NEBCA over these algorithms that could not effectively accumulate fMRI signals with higher variability.
Collapse
Affiliation(s)
- Pritpal Singh
- Institute of Theoretical Physics, Jagiellonian University, Kraków 30-348, Poland
| | - Marcin Wa Torek
- Institute of Theoretical Physics, Jagiellonian University, Kraków 30-348, Poland.,Faculty of Computer Science and Telecommunications, Cracow University of Technology, Kraków 31-155, Poland
| | - Anna Ceglarek
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Magdalena Fąfrowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Koryna Lewandowska
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Tadeusz Marek
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Barbara Sikora-Wachowicz
- Department of Cognitive Neuroscience and Neuroergonomics, Jagiellonian University, Kraków 30-348, Poland
| | - Paweł Oświȩcimka
- Institute of Theoretical Physics, Jagiellonian University, Kraków 30-348, Poland.,Complex Systems Theory Department, Institute of Nuclear Physics, Polish Academy of Sciences, Kraków 31-342, Poland
| |
Collapse
|
16
|
Martins D, Brodmann K, Veronese M, Dipasquale O, Mazibuko N, Schuschnig U, Zelaya F, Fotopoulou A, Paloyelis Y. "Less is more": a dose-response account of intranasal oxytocin pharmacodynamics in the human brain. Prog Neurobiol 2022; 211:102239. [PMID: 35122880 DOI: 10.1016/j.pneurobio.2022.102239] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 12/27/2022]
Abstract
Intranasal oxytocin is attracting attention as a potential treatment for several brain disorders due to promising preclinical results. However, translating findings to humans has been hampered by remaining uncertainties about its pharmacodynamics and the methods used to probe its effects in the human brain. Using a dose-response design (9, 18 and 36 IU), we demonstrate that intranasal oxytocin-induced changes in local regional cerebral blood flow (rCBF) in the amygdala at rest, and in the covariance between rCBF in the amygdala and other key hubs of the brain oxytocin system, follow a dose-response curve with maximal effects for lower doses. Yet, the effects on local rCBF might vary by amygdala subdivision, highlighting the need to qualify dose-response curves within subregion. We further link physiological changes with the density of the oxytocin receptor gene mRNA across brain regions, strengthening our confidence in intranasal oxytocin as a valid approach to engage central targets. Finally, we demonstrate that intranasal oxytocin does not disrupt cerebrovascular reactivity, which corroborates the validity of haemodynamic neuroimaging to probe the effects of intranasal oxytocin in the human brain. DATA AVAILABILITY: Participants did not consent for open sharing of the data. Therefore, data can only be accessed from the corresponding author upon reasonable request.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Katja Brodmann
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Ndaba Mazibuko
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | | | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK
| | - Aikaterini Fotopoulou
- Department of Clinical, Educational and Health Psychology, University College London, London, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London SE5 8AF, UK.
| |
Collapse
|
17
|
Wu X, Bai F, Wang Y, Zhang L, Liu L, Chen Y, Li H, Zhang T. Circadian Rhythm Disorders and Corresponding Functional Brain Abnormalities in Young Female Nurses: A Preliminary Study. Front Neurol 2021; 12:664610. [PMID: 33995261 PMCID: PMC8120025 DOI: 10.3389/fneur.2021.664610] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 04/08/2021] [Indexed: 11/13/2022] Open
Abstract
Objective: Shift work is associated with a decrease in melatonin level and perturbation of the circadian rhythm; however, it is unknown if these lead to functional brain changes. In this study, we investigated whether circadian rhythm disorders caused by shift work are related to changes in brain functional connectivity (FC) and regional homogeneity (ReHo) using whole-brain resting-state functional magnetic resonance imaging (fMRI). Methods: This prospective case-control study included nine female night shift nurses and nine age-matched female day work nurses with normal sleep rhythms. To assess sleep quality and mood, participants were asked to complete questionnaires. Serum melatonin and cortisol levels were measured. ReHo of whole-brain resting-state function and seed-based FC of the bilateral hypothalamus were compared between groups. Variables that differed significantly between groups were used to examine the association between questionnaire scores and hormone levels and fMRI data. Results: The night shift nurses had significantly lower sleep quality and melatonin levels; lower ReHo activation in the bilateral cerebellar hemisphere and higher ReHo in the bilateral occipital lobe and left parietal lobe; and higher FC from the hypothalamus to the right cingulate gyrus, right putamen, and vermis than did the day shift nurses. Activation of the right cerebellar hemisphere left superior parietal gyrus, and the right superior occipital gyrus was correlated with sleep quality scores. Moreover, activation of the right cerebellar hemisphere (r = 0.583, P = 0.011) was correlated with melatonin levels, and higher sleepiness scores were associated with stronger FC between the hypothalamus and vermis (r = 0.501, P = 0.034). Conclusions: Circadian rhythm disorder caused by night shift work can lead to a decrease in sleep quality and melatonin level, as well as a series of changes in brain FC and ReHo.
Collapse
Affiliation(s)
- Xiaoli Wu
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Fan Bai
- China Rehabilitation Science Institute of China Rehabilitation Research Centre, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Yunlei Wang
- China Rehabilitation Science Institute of China Rehabilitation Research Centre, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| | - Lu Zhang
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Lixu Liu
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Yudong Chen
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Hanzhi Li
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China
| | - Tong Zhang
- Department of Neurorehabilitation, Rehabilitation Medicine of Capital Medical University, China Rehabilitation Research Centre, Beijing, China.,China Rehabilitation Science Institute of China Rehabilitation Research Centre, Beijing, China.,Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, China
| |
Collapse
|
18
|
Monteiro F, Rodrigues P, Nascimento CS, Simões F, Miguel M. The daily rhythms of working memory and their methodological constraints: a critical overview. BIOL RHYTHM RES 2021. [DOI: 10.1080/09291016.2021.1907511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Fábio Monteiro
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
| | - Paulo Rodrigues
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
| | | | - Fátima Simões
- Department of Psychology and Education, University of Beira Interior, Covilhã, Portugal
- Research Center in Education and Psychology of the University of Évora, University of Évora, Évora, Portugal
| | - Mário Miguel
- Department of Physiology and Behavior, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
19
|
Identifying Diurnal Variability of Brain Connectivity Patterns Using Graph Theory. Brain Sci 2021; 11:brainsci11010111. [PMID: 33467070 PMCID: PMC7830976 DOI: 10.3390/brainsci11010111] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/11/2021] [Accepted: 01/13/2021] [Indexed: 11/18/2022] Open
Abstract
Significant differences exist in human brain functions affected by time of day and by people’s diurnal preferences (chronotypes) that are rarely considered in brain studies. In the current study, using network neuroscience and resting-state functional MRI (rs-fMRI) data, we examined the effect of both time of day and the individual’s chronotype on whole-brain network organization. In this regard, 62 participants (39 women; mean age: 23.97 ± 3.26 years; half morning- versus half evening-type) were scanned about 1 and 10 h after wake-up time for morning and evening sessions, respectively. We found evidence for a time-of-day effect on connectivity profiles but not for the effect of chronotype. Compared with the morning session, we found relatively higher small-worldness (an index that represents more efficient network organization) in the evening session, which suggests the dominance of sleep inertia over the circadian and homeostatic processes in the first hours after waking. Furthermore, local graph measures were changed, predominantly across the left hemisphere, in areas such as the precentral gyrus, putamen, inferior frontal gyrus (orbital part), inferior temporal gyrus, as well as the bilateral cerebellum. These findings show the variability of the functional neural network architecture during the day and improve our understanding of the role of time of day in resting-state functional networks.
Collapse
|
20
|
Martins D, Dipasquale O, Paloyelis Y. Oxytocin modulates local topography of human functional connectome in healthy men at rest. Commun Biol 2021; 4:68. [PMID: 33452496 PMCID: PMC7811009 DOI: 10.1038/s42003-020-01610-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/16/2020] [Indexed: 01/08/2023] Open
Abstract
Oxytocin has recently received remarkable attention for its role as a modulator of human behaviour. Here, we aimed to expand our knowledge of the neural circuits engaged by oxytocin by investigating the effects of intranasal and intravenous oxytocin on the functional connectome at rest in 16 healthy men. Oxytocin modulates the functional connectome within discrete neural systems, but does not affect the global capacity for information transfer. These local effects encompass key hubs of the oxytocin system (e.g. amygdala) but also regions overlooked in previous hypothesis-driven research (i.e. the visual circuits, temporal lobe and cerebellum). Increases in levels of oxytocin in systemic circulation induce broad effects on the functional connectome, yet we provide indirect evidence supporting the involvement of nose-to-brain pathways in at least some of the observed changes after intranasal oxytocin. Together, our results suggest that oxytocin effects on human behaviour entail modulation of multiple levels of brain processing distributed across different systems.
Collapse
Affiliation(s)
- Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK
| | - Yannis Paloyelis
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, De Crespigny Park, London, SE5 8AF, UK.
| |
Collapse
|
21
|
Venkataraman A, Zhuang Y, Marsella J, Tivarus ME, Qiu X, Wang L, Zhong J, Schifitto G. Functional MRI Correlates of Sleep Quality in HIV. Nat Sci Sleep 2021; 13:291-301. [PMID: 33688288 PMCID: PMC7936696 DOI: 10.2147/nss.s291544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 01/19/2021] [Indexed: 12/23/2022] Open
Abstract
OBJECTIVE To examine resting-state functional MRI (rs-fMRI) networks related to sleep in the context of HIV infection. METHODS rs-fMRI data were collected in 40 HIV-infected (HIV+) individuals at baseline (treatment-naive), 12 week (post-treatment) and one year timepoints. A group of 50 age-matched HIV-negative (HIV-) individuals were also imaged at baseline and one year timepoints. The Pittsburgh Sleep Quality Index (PSQI) questionnaire was administered at all timepoints. Using group independent component analysis (ICA), maps of functional networks were generated from fMRI data; from these, sleep-related networks were selected. A generalized linear model (GLM) was used to analyze if these networks were significantly associated with the PSQI score, and if this relationship was influenced by HIV status/treatment or timepoint. RESULTS HIV+ individuals had significantly lower PSQI score after treatment (p=0.022). Networks extracted from group ICA analysis included the anterior and posterior default mode network (DMN), central executive network (CEN), bilateral frontoparietal networks (FPNs), and the anterior cingulate cortex salience network (ACC SN). We found the posterior DMN, right FPN, and ACC SN GLMs showed significantly higher goodness-of-fit after incorporating PSQI data (p = 0.0204, 0.044, 0.044, respectively). Furthermore, the correlation between ACC SN and posterior DMN connectivity was significantly decreased in the HIV+ cohort. CONCLUSION Functional networks such as the DMN, FPN, CEN, and ACC SN are altered in poor sleep, as measured by the PSQI score. Furthermore, the relationship between these networks and PSQI is different in the HIV+ and HIV- populations.
Collapse
Affiliation(s)
- Arun Venkataraman
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA
| | - Yuchuan Zhuang
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY, USA
| | - Jennifer Marsella
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA
| | - Madalina E Tivarus
- Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA.,Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - Xing Qiu
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Lu Wang
- Department of Biostatistics and Computational Biology, University of Rochester, Rochester, NY, USA
| | - Jianhui Zhong
- Department of Physics and Astronomy, University of Rochester, Rochester, NY, USA.,Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| | - Giovanni Schifitto
- Department of Neurology, University of Rochester Medical Center, Rochester, NY, USA.,Department of Imaging Sciences, University of Rochester Medical Center, Rochester, NY, USA
| |
Collapse
|
22
|
Dipasquale O, Martins D, Sethi A, Veronese M, Hesse S, Rullmann M, Sabri O, Turkheimer F, Harrison NA, Mehta MA, Cercignani M. Unravelling the effects of methylphenidate on the dopaminergic and noradrenergic functional circuits. Neuropsychopharmacology 2020; 45:1482-1489. [PMID: 32473593 PMCID: PMC7360745 DOI: 10.1038/s41386-020-0724-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/30/2020] [Accepted: 05/15/2020] [Indexed: 11/08/2022]
Abstract
Functional magnetic resonance imaging (fMRI) can be combined with drugs to investigate the system-level functional responses in the brain to such challenges. However, most psychoactive agents act on multiple neurotransmitters, limiting the ability of fMRI to identify functional effects related to actions on discrete pharmacological targets. We recently introduced a multimodal approach, REACT (Receptor-Enriched Analysis of functional Connectivity by Targets), which offers the opportunity to disentangle effects of drugs on different neurotransmitters and clarify the biological mechanisms driving clinical efficacy and side effects of a compound. Here, we focus on methylphenidate (MPH), which binds to the dopamine transporter (DAT) and the norepinephrine transporter (NET), to unravel its effects on dopaminergic and noradrenergic functional circuits in the healthy brain at rest. We then explored the relationship between these target-enriched resting state functional connectivity (FC) maps and inter-individual variability in behavioural responses to a reinforcement-learning task encompassing a novelty manipulation to disentangle the molecular systems underlying specific cognitive/behavioural effects. Our main analysis showed a significant MPH-induced FC increase in sensorimotor areas in the functional circuit associated with DAT. In our exploratory analysis, we found that MPH-induced regional variations in the DAT and NET-enriched FC maps were significantly correlated with some of the inter-individual differences on key behavioural responses associated with the reinforcement-learning task. Our findings show that main MPH-related FC changes at rest can be understood through the distribution of DAT in the brain. Furthermore, they suggest that when compounds have mixed pharmacological profiles, REACT may be able to capture regional functional effects that are underpinned by the same cognitive mechanism but are related to engagement of distinct molecular targets.
Collapse
Affiliation(s)
- Ottavia Dipasquale
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Daniel Martins
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arjun Sethi
- Forensic & Neurodevelopmental Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mattia Veronese
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Swen Hesse
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Michael Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
- Integrated Research and Treatment Center (IFB) Adiposity Diseases, Leipzig University Medical Center, Leipzig, Germany
| | - Osama Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - Federico Turkheimer
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Neil A Harrison
- Cardiff University Brain Research Imaging Centre, Cardiff University, Cardiff, UK
| | - Mitul A Mehta
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Mara Cercignani
- Clinical Imaging Sciences Centre, Brighton and Sussex Medical School, Brighton, UK
| |
Collapse
|
23
|
Investigating resting brain perfusion abnormalities and disease target-engagement by intranasal oxytocin in women with bulimia nervosa and binge-eating disorder and healthy controls. Transl Psychiatry 2020; 10:180. [PMID: 32513936 PMCID: PMC7280271 DOI: 10.1038/s41398-020-00871-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/19/2020] [Accepted: 05/26/2020] [Indexed: 12/25/2022] Open
Abstract
Advances in the treatment of bulimia nervosa and binge-eating disorder (BN/BED) have been marred by our limited understanding of the underpinning neurobiology. Here we measured regional cerebral blood flow (rCBF) to map resting perfusion abnormalities in women with BN/BED compared with healthy controls and investigate whether intranasal oxytocin (OT), proposed as a potential treatment, can restore perfusion in disorder-related brain circuits. Twenty-four women with BN/BED and 23 healthy women participated in a randomized, double-blind, crossover, placebo-controlled study. We used arterial spin labelling MRI to measure rCBF and the effects of an acute dose of intranasal OT (40 IU) or placebo over 18-26 min post dosing, as we have previously shown robust OT-induced changes in resting rCBF in men in a similar time-window (15-36 min post dosing). We tested for effects of treatment, diagnosis and their interaction on extracted rCBF values in anatomical regions-of-interest previously implicated in BN/BED by other neuroimaging modalities, and conducted exploratory whole-brain analyses to investigate previously unidentified brain regions. We demonstrated that women with BN/BED presented increased resting rCBF in the medial prefrontal and orbitofrontal cortices, anterior cingulate gyrus, posterior insula and middle/inferior temporal gyri bilaterally. Hyperperfusion in these areas specifically correlated with eating symptoms severity in patients. Our data did not support a normalizing effect of intranasal OT on perfusion abnormalities in these patients, at least for the specific dose (40 IU) and post-dosing interval (18-26 min) examined. Our findings enhance our understanding of resting brain abnormalities in BN/BED and identify resting rCBF as a non-invasive potential biomarker for disease-related changes and treatment monitoring. They also highlight the need for a comprehensive investigation of intranasal OT pharmacodynamics in women before we can fully ascertain its therapeutic value in disorders affecting predominantly this gender, such as BN/BED.
Collapse
|
24
|
Diurnal Preference and Grey Matter Volume in a Large Population of Older Adults: Data from the UK Biobank. J Circadian Rhythms 2020; 18:3. [PMID: 32405316 PMCID: PMC7207247 DOI: 10.5334/jcr.193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eveningness (a diurnal preference for evening time) is associated with a number of negative health outcomes and risk and prevalence for psychiatric disorder. Our understanding of the anatomical substrates of diurnal preference, however, is limited. The current study used Voxel-Based Morphometry to compare grey matter volume in a large sample (N = 3730) of healthy adults determined by questionnaire to be either definite morning-type or definite evening-type. Eveningness was associated with increased grey matter volume in precuneus, brain regions implicated in risk and reward processing (bilateral nucleus accumbens, caudate, putamen and thalamus) and orbitofrontal cortex. These results indicate an anatomical-basis for diurnal preference which may underlie reported differences in behaviour and brain function observed in these individuals.
Collapse
|
25
|
Higgins J, Barbieri E, Wang X, Mack J, Caplan D, Kiran S, Rapp B, Thompson C, Zinbarg R, Parrish T. Reliability of BOLD signals in chronic stroke-induced aphasia. Eur J Neurosci 2020; 52:3963-3978. [PMID: 32282965 DOI: 10.1111/ejn.14739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 04/01/2020] [Accepted: 04/02/2020] [Indexed: 11/30/2022]
Abstract
Investigating the neurobiology of language impairment and treatment in chronic stroke aphasia using fMRI requires an understanding of measurement variability within and between participants. In this multicenter study, we evaluated the scan-rescan reliability of an auditory and visual (written) story comprehension paradigm in stroke participants with aphasia (N = 65) and healthy controls (N = 22). The multi-modal task was conducted twice (~1 week apart) on separate visits upon study enrolment and twice again at completion three months later. A non-language visuomotor task was studied in the aphasia group only, which was conducted once per time point (3 months apart). While participants were asked to make responses during the comprehension task, these in-scanner responses were not recorded. Reliability was assessed using intraclass correlation coefficient (ICC) at both group and individual participant levels. The visual story comprehension condition had higher reliability than the auditory condition in both groups, with participants with aphasia exhibiting lower reliability than controls in both conditions (stroke ICC = .43, healthy ICC = .81). Differences in reliability within the group of participants with aphasia were found to be partially explained by overall language impairment as well as greater head motion. In the participants with aphasia, the visuomotor paradigm was found to have greater reliability than the story comprehension task at equivalent interscan intervals (visuomotor = 0.50, comprehension = 0.34), and its reliability was not associated with language impairment. This work highlights the importance of considering the reliability of fMRI tasks in aphasia research, provides strategies to improve reliability and has potential implications for the field of clinical neuroimaging in general.
Collapse
Affiliation(s)
- James Higgins
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Elena Barbieri
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - Xue Wang
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jennifer Mack
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA
| | - David Caplan
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Swathi Kiran
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Speech, Language, and Hearing, College of Health & Rehabilitation, Boston University, Boston, MA, USA
| | - Brenda Rapp
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Cognitive Science, Krieger School of Arts & Sciences, Johns Hopkins University, Baltimore, MD, USA
| | - Cynthia Thompson
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Communication Sciences and Disorders, School of Communication, Northwestern University, Evanston, IL, USA.,Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Richard Zinbarg
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Psychology, Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA.,The Family Institute at Northwestern University, Evanston, IL, USA
| | - Todd Parrish
- Center for the Neurobiology of Language Recovery, Northwestern University, Evanston, IL, USA.,Department of Radiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|