1
|
Saxena A, Shovestul BJ, Dudek EM, Reda S, Venkataraman A, Lamberti JS, Dodell-Feder D. Training volitional control of the theory of mind network with real-time fMRI neurofeedback. Neuroimage 2023; 279:120334. [PMID: 37591479 DOI: 10.1016/j.neuroimage.2023.120334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/12/2023] [Accepted: 08/14/2023] [Indexed: 08/19/2023] Open
Abstract
Is there a way improve our ability to understand the minds of others? Towards addressing this question, here, we conducted a single-arm, proof-of-concept study to evaluate whether real-time fMRI neurofeedback (rtfMRI-NF) from the temporo-parietal junction (TPJ) leads to volitional control of the neural network subserving theory of mind (ToM; the process by which we attribute and reason about the mental states of others). As additional aims, we evaluated the strategies used to self-regulate the network and whether volitional control of the ToM network was moderated by participant characteristics and associated with improved performance on behavioral measures. Sixteen participants underwent fMRI while completing a task designed to individually-localize the TPJ, and then three separate rtfMRI-NF scans during which they completed multiple runs of a training task while receiving intermittent, activation-based feedback from the TPJ, and one run of a transfer task in which no neurofeedback was provided. Region-of-interest analyses demonstrated volitional control in most regions during the training tasks and during the transfer task, although the effects were smaller in magnitude and not observed in one of the neurofeedback targets for the transfer task. Text analysis demonstrated that volitional control was most strongly associated with thinking about prior social experiences when up-regulating the neural signal. Analysis of behavioral performance and brain-behavior associations largely did not reveal behavior changes except for a positive association between volitional control in RTPJ and changes in performance on one ToM task. Exploratory analysis suggested neurofeedback-related learning occurred, although some degree of volitional control appeared to be conferred with the initial self-regulation strategy provided to participants (i.e., without the neurofeedback signal). Critical study limitations include the lack of a control group and pre-rtfMRI transfer scan, which prevents a more direct assessment of neurofeedback-induced volitional control, and a small sample size, which may have led to an overestimate and/or unreliable estimate of study effects. Nonetheless, together, this study demonstrates the feasibility of training volitional control of a social cognitive brain network, which may have important clinical applications. Given the study's limitations, findings from this study should be replicated with more robust experimental designs.
Collapse
Affiliation(s)
- Abhishek Saxena
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA
| | - Bridget J Shovestul
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA
| | - Emily M Dudek
- Department of Psychology, University of Houston, 3695 Cullen Boulevard Houston, TX 77204 USA
| | - Stephanie Reda
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA
| | - Arun Venkataraman
- School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - J Steven Lamberti
- Department of Psychiatry, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA
| | - David Dodell-Feder
- Department of Psychology, University of Rochester, 500 Wilson Blvd Rochester, NY 14627 USA; Department of Neuroscience, University of Rochester Medical Center, 601 Elmwood Avenue, Rochester, NY 14642 USA.
| |
Collapse
|
2
|
Haugg A, Frei N, Menghini M, Stutz F, Steinegger S, Röthlisberger M, Brem S. Self-regulation of visual word form area activation with real-time fMRI neurofeedback. Sci Rep 2023; 13:9195. [PMID: 37280217 DOI: 10.1038/s41598-023-35932-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
The Visual Word Form Area (VWFA) is a key region of the brain's reading network and its activation has been shown to be strongly associated with reading skills. Here, for the first time, we investigated whether voluntary regulation of VWFA activation is feasible using real-time fMRI neurofeedback. 40 adults with typical reading skills were instructed to either upregulate (UP group, N = 20) or downregulate (DOWN group, N = 20) their own VWFA activation during six neurofeedback training runs. The VWFA target region was individually defined based on a functional localizer task. Before and after training, also regulation runs without feedback ("no-feedback runs") were performed. When comparing the two groups, we found stronger activation across the reading network for the UP than the DOWN group. Further, activation in the VWFA was significantly stronger in the UP group than the DOWN group. Crucially, we observed a significant interaction of group and time (pre, post) for the no-feedback runs: The two groups did not differ significantly in their VWFA activation before neurofeedback training, but the UP group showed significantly stronger activation than the DOWN group after neurofeedback training. Our results indicate that upregulation of VWFA activation is feasible and that, once learned, successful upregulation can even be performed in the absence of feedback. These results are a crucial first step toward the development of a potential therapeutic support to improve reading skills in individuals with reading impairments.
Collapse
Affiliation(s)
- Amelie Haugg
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Nada Frei
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Milena Menghini
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Felizia Stutz
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Sara Steinegger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martina Röthlisberger
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Silvia Brem
- Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
| |
Collapse
|
3
|
Pereira DJ, Sayal A, Pereira J, Morais S, Macedo A, Direito B, Castelo-Branco M. Neurofeedback-dependent influence of the ventral striatum using a working memory paradigm targeting the dorsolateral prefrontal cortex. Front Behav Neurosci 2023; 17:1014223. [PMID: 36844653 PMCID: PMC9947361 DOI: 10.3389/fnbeh.2023.1014223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/18/2023] [Indexed: 02/11/2023] Open
Abstract
Executive functions and motivation have been established as key aspects for neurofeedback success. However, task-specific influence of cognitive strategies is scarcely explored. In this study, we test the ability to modulate the dorsolateral prefrontal cortex, a strong candidate for clinical application of neurofeedback in several disorders with dysexecutive syndrome, and investigate how feedback contributes to better performance in a single session. Participants of both neurofeedback (n = 17) and sham-control (n = 10) groups were able to modulate DLPFC in most runs (with or without feedback) while performing a working memory imagery task. However, activity in the target area was higher and more sustained in the active group when receiving feedback. Furthermore, we found increased activity in the nucleus accumbens in the active group, compared with a predominantly negative response along the block in participants receiving sham feedback. Moreover, they acknowledged the non-contingency between imagery and feedback, reflecting the impact on motivation. This study reinforces DLPFC as a robust target for neurofeedback clinical implementations and enhances the critical influence of the ventral striatum, both poised to achieve success in the self-regulation of brain activity.
Collapse
Affiliation(s)
- Daniela Jardim Pereira
- Neurorradiology Functional Area, Imaging Department, Coimbra Hospital and University Center, Coimbra, Portugal,Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Alexandre Sayal
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Siemens Healthineers Portugal, Lisboa, Portugal
| | - João Pereira
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal
| | - Sofia Morais
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - António Macedo
- Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Psychiatry Department, Coimbra Hospital and University Center, Coimbra, Portugal
| | - Bruno Direito
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,IATV—Instituto do Ambiente, Tecnologia e Vida (IATV), Coimbra, Portugal
| | - Miguel Castelo-Branco
- Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), University of Coimbra, Coimbra, Portugal,Faculty of Medicine, University of Coimbra, Coimbra, Portugal,Institute of Nuclear Sciences Applied to Health (ICNAS), University of Coimbra, Coimbra, Portugal,*Correspondence: Miguel Castelo-Branco
| |
Collapse
|
4
|
Previously Marzena Szkodo MOR, Micai M, Caruso A, Fulceri F, Fazio M, Scattoni ML. Technologies to support the diagnosis and/or treatment of neurodevelopmental disorders: A systematic review. Neurosci Biobehav Rev 2023; 145:105021. [PMID: 36581169 DOI: 10.1016/j.neubiorev.2022.105021] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
In recent years, there has been a great interest in utilizing technology in mental health research. The rapid technological development has encouraged researchers to apply technology as a part of a diagnostic process or treatment of Neurodevelopmental Disorders (NDDs). With the large number of studies being published comes an urgent need to inform clinicians and researchers about the latest advances in this field. Here, we methodically explore and summarize findings from studies published between August 2019 and February 2022. A search strategy led to the identification of 4108 records from PubMed and APA PsycInfo databases. 221 quantitative studies were included, covering a wide range of technologies used for diagnosis and/or treatment of NDDs, with the biggest focus on Autism Spectrum Disorder (ASD). The most popular technologies included machine learning, functional magnetic resonance imaging, electroencephalogram, magnetic resonance imaging, and neurofeedback. The results of the review indicate that technology-based diagnosis and intervention for NDD population is promising. However, given a high risk of bias of many studies, more high-quality research is needed.
Collapse
Affiliation(s)
| | - Martina Micai
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Angela Caruso
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Francesca Fulceri
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| | - Maria Fazio
- Department of Mathematics, Computer Science, Physics and Earth Sciences (MIFT), University of Messina, Viale F. Stagno d'Alcontres, 31, 98166 Messina, Italy.
| | - Maria Luisa Scattoni
- Research Coordination and Support Service, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy.
| |
Collapse
|
5
|
Pereira JA, Ray A, Rana M, Silva C, Salinas C, Zamorano F, Irani M, Opazo P, Sitaram R, Ruiz S. A real-time fMRI neurofeedback system for the clinical alleviation of depression with a subject-independent classification of brain states: A proof of principle study. Front Hum Neurosci 2022; 16:933559. [PMID: 36092645 PMCID: PMC9452730 DOI: 10.3389/fnhum.2022.933559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Most clinical neurofeedback studies based on functional magnetic resonance imaging use the patient's own neural activity as feedback. The objective of this study was to create a subject-independent brain state classifier as part of a real-time fMRI neurofeedback (rt-fMRI NF) system that can guide patients with depression in achieving a healthy brain state, and then to examine subsequent clinical changes. In a first step, a brain classifier based on a support vector machine (SVM) was trained from the neural information of happy autobiographical imagery and motor imagery blocks received from a healthy female participant during an MRI session. In the second step, 7 right-handed female patients with mild or moderate depressive symptoms were trained to match their own neural activity with the neural activity corresponding to the “happiness emotional brain state” of the healthy participant. The training (4 training sessions over 2 weeks) was carried out using the rt-fMRI NF system guided by the brain-state classifier we had created. Thus, the informative voxels previously obtained in the first step, using SVM classification and Effect Mapping, were used to classify the Blood-Oxygen-Level Dependent (BOLD) activity of the patients and converted into real-time visual feedback during the neurofeedback training runs. Improvements in the classifier accuracy toward the end of the training were observed in all the patients [Session 4–1 Median = 6.563%; Range = 4.10–27.34; Wilcoxon Test (0), 2-tailed p = 0.031]. Clinical improvement also was observed in a blind standardized clinical evaluation [HDRS CE2-1 Median = 7; Range 2 to 15; Wilcoxon Test (0), 2-tailed p = 0.016], and in self-report assessments [BDI-II CE2-1 Median = 8; Range 1–15; Wilcoxon Test (0), 2-tailed p = 0.031]. In addition, the clinical improvement was still present 10 days after the intervention [BDI-II CE3-2_Median = 0; Range −1 to 2; Wilcoxon Test (0), 2-tailed p = 0.50/ HDRS CE3-2 Median = 0; Range −1 to 2; Wilcoxon Test (0), 2-tailed p = 0.625]. Although the number of participants needs to be increased and a control group included to confirm these findings, the results suggest a novel option for neural modulation and clinical alleviation in depression using noninvasive stimulation technologies.
Collapse
Affiliation(s)
- Jaime A. Pereira
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andreas Ray
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Mohit Rana
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Claudio Silva
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Cesar Salinas
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
| | - Francisco Zamorano
- Unidad de Imágenes Cuantitativas Avanzadas, Departamento de Imágenes, Facultad de Medicina, Clínica Alemana- Universidad del Desarrollo, Santiago, Chile
- Laboratorio de Neurociencia Social y Neuromodulación, Centro de Investigación en Complejidad Social (neuroCICS), Facultad de Gobierno, Universidad del Desarrollo, Santiago, Chile
| | - Martin Irani
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Patricia Opazo
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ranganatha Sitaram
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, United States
- *Correspondence: Ranganatha Sitaram
| | - Sergio Ruiz
- Departamento de Psiquiatría, Facultad de Medicina, Centro Interdisciplinario de Neurociencias, Pontificia Universidad Católica de Chile, Santiago, Chile
- Laboratory for Brain-Machine Interfaces and Neuromodulation, Pontificia Universidad Católica de Chile, Santiago, Chile
- Sergio Ruiz
| |
Collapse
|
6
|
Du Y, He X, Kochunov P, Pearlson G, Hong LE, van Erp TGM, Belger A, Calhoun VD. A new multimodality fusion classification approach to explore the uniqueness of schizophrenia and autism spectrum disorder. Hum Brain Mapp 2022; 43:3887-3903. [PMID: 35484969 PMCID: PMC9294304 DOI: 10.1002/hbm.25890] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 03/24/2022] [Accepted: 04/08/2022] [Indexed: 11/13/2022] Open
Abstract
Schizophrenia (SZ) and autism spectrum disorder (ASD) sharing overlapping symptoms have a long history of diagnostic confusion. It is unclear what their differences at a brain level are. Here, we propose a multimodality fusion classification approach to investigate their divergence in brain function and structure. Using brain functional network connectivity (FNC) calculated from resting-state fMRI data and gray matter volume (GMV) estimated from sMRI data, we classify the two disorders using the main data (335 SZ and 380 ASD patients) via an unbiased 10-fold cross-validation pipeline, and also validate the classification generalization ability on an independent cohort (120 SZ and 349 ASD patients). The classification accuracy reached up to 83.08% for the testing data and 72.10% for the independent data, significantly better than the results from using the single-modality features. The discriminative FNCs that were automatically selected primarily involved the sub-cortical, default mode, and visual domains. Interestingly, all discriminative FNCs relating to the default mode network showed an intermediate strength in healthy controls (HCs) between SZ and ASD patients. Their GMV differences were mainly driven by the frontal gyrus, temporal gyrus, and insula. Regarding these regions, the mean GMV of HC fell intermediate between that of SZ and ASD, and ASD showed the highest GMV. The middle frontal gyrus was associated with both functional and structural differences. In summary, our work reveals the unique neuroimaging characteristics of SZ and ASD that can achieve high and generalizable classification accuracy, supporting their potential as disorder-specific neural substrates of the two entwined disorders.
Collapse
Affiliation(s)
- Yuhui Du
- School of Computer and Information TechnologyShanxi UniversityTaiyuanShanxiChina
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| | - Xingyu He
- School of Computer and Information TechnologyShanxi UniversityTaiyuanShanxiChina
| | - Peter Kochunov
- Center for Brain Imaging ResearchUniversity of MarylandBaltimoreMarylandUSA
| | | | - L. Elliot Hong
- Center for Brain Imaging ResearchUniversity of MarylandBaltimoreMarylandUSA
| | - Theo G. M. van Erp
- Department of Psychiatry and Human BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Center for the Neurobiology of Learning and MemoryUniversity of CaliforniaIrvineCaliforniaUSA
| | - Aysenil Belger
- Department of PsychiatryUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Vince D. Calhoun
- Tri‐Institutional Center for Translational Research in Neuroimaging and Data ScienceGeorgia State University, Georgia Institute of Technology, Emory UniversityAtlantaGeorgiaUSA
| |
Collapse
|
7
|
Ciarlo A, Russo AG, Ponticorvo S, Di Salle F, Lührs M, Goebel R, Esposito F. Semantic fMRI neurofeedback: A Multi-Subject Study at 3 Tesla. J Neural Eng 2022; 19. [PMID: 35561669 DOI: 10.1088/1741-2552/ac6f81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 05/13/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Real-time fMRI neurofeedback is a non-invasive procedure allowing the self-regulation of brain functions via enhanced self-control of fMRI based neural activation. In semantic real-time fMRI neurofeedback, an estimated relation between multivariate fMRI activation patterns and abstract mental states is exploited for a multi-dimensional feedback stimulus via real-time representational similarity analysis (rt-RSA). Here, we assessed the performances of this framework in a multi-subject multi-session study on a 3T MRI clinical scanner. APPROACH Eighteen healthy volunteers underwent two semantic real-time fMRI neurofeedback sessions on two different days. In each session, participants were first requested to engage in specific mental states while local fMRI patterns of brain activity were recorded during stimulated mental imagery of concrete objects (pattern generation). The obtained neural representations were to be replicated and modulated by the participants in subsequent runs of the same session under the guidance of a rt-RSA generated visual feedback (pattern modulation). Performance indicators were derived from the rt-RSA output to assess individual abilities in replicating (and maintaining over time) a target pattern. Simulations were carried out to assess the impact of the geometric distortions implied by the low-dimensional representation of patterns' dissimilarities in the visual feedback. MAIN RESULTS Sixteen subjects successfully completed both semantic real-time fMRI neurofeedback sessions. Considering some performance indicators, a significant improvement between the first and the second runs, and within run increasing modulation performances were observed, whereas no improvements were found between sessions. Simulations confirmed that in a small percentage of cases visual feedback could be affected by metric distortions due to dimensionality reduction implicit to the rt-RSA approach. SIGNIFICANCE Our results proved the feasibility of the semantic real-time fMRI neurofeedback at 3T, showing that subjects can successfully modulate and maintain a target mental state, guided by rt-RSA derived feedback. Further development is needed to encourage future clinical applications.
Collapse
Affiliation(s)
- Assunta Ciarlo
- University of Salerno - Baronissi Campus, Via S. Allende, Baronissi, Campania, 84081, ITALY
| | | | - Sara Ponticorvo
- University of Salerno - Baronissi Campus, Via S. Allende, Baronissi, Campania, 84081, ITALY
| | - Francesco Di Salle
- Department of Medicine, Surgery and Dentistry, Scuola Medica Salernitana, University of Salerno - Baronissi Campus, Via S. Allende, Baronissi, Campania, 84081, ITALY
| | - Michael Lührs
- Department of Cognitive Neuroscience, Maastricht University, P.O. Box 616, Maastricht, Limburg, 6200 MD, NETHERLANDS
| | - Rainer Goebel
- Faculty of Psychology, University of Maastricht, P.O. Box 616, 6200 MD Maastricht, The Netherlands, Maastricht, 6200 MD, NETHERLANDS
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical Sciences, University of Campania Luigi Vanvitelli School of Medicine and Surgery, Piazza L. Miraglia, Napoli, 80138, ITALY
| |
Collapse
|
8
|
Cohen AL. Using causal methods to map symptoms to brain circuits in neurodevelopment disorders: moving from identifying correlates to developing treatments. J Neurodev Disord 2022; 14:19. [PMID: 35279095 PMCID: PMC8918299 DOI: 10.1186/s11689-022-09433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/03/2022] [Indexed: 11/20/2022] Open
Abstract
A wide variety of model systems and experimental techniques can provide insight into the structure and function of the human brain in typical development and in neurodevelopmental disorders. Unfortunately, this work, whether based on manipulation of animal models or observational and correlational methods in humans, has a high attrition rate in translating scientific discovery into practicable treatments and therapies for neurodevelopmental disorders.With new computational and neuromodulatory approaches to interrogating brain networks, opportunities exist for "bedside-to bedside-translation" with a potentially shorter path to therapeutic options. Specifically, methods like lesion network mapping can identify brain networks involved in the generation of complex symptomatology, both from acute onset lesion-related symptoms and from focal developmental anomalies. Traditional neuroimaging can examine the generalizability of these findings to idiopathic populations, while non-invasive neuromodulation techniques such as transcranial magnetic stimulation provide the ability to do targeted activation or inhibition of these specific brain regions and networks. In parallel, real-time functional MRI neurofeedback also allow for endogenous neuromodulation of specific targets that may be out of reach for transcranial exogenous methods.Discovery of novel neuroanatomical circuits for transdiagnostic symptoms and neuroimaging-based endophenotypes may now be feasible for neurodevelopmental disorders using data from cohorts with focal brain anomalies. These novel circuits, after validation in large-scale highly characterized research cohorts and tested prospectively using noninvasive neuromodulation and neurofeedback techniques, may represent a new pathway for symptom-based targeted therapy.
Collapse
Affiliation(s)
- Alexander Li Cohen
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA, 02115, USA. .,Computational Radiology Laboratory, Department of Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA. .,Laboratory for Brain Network Imaging and Modulation, Center for Brain Circuit Therapeutics, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
9
|
Dias C, Costa D, Sousa T, Castelhano J, Figueiredo V, Pereira AC, Castelo-Branco M. A neuronal theta band signature of error monitoring during integration of facial expression cues. PeerJ 2022; 10:e12627. [PMID: 35194525 PMCID: PMC8858578 DOI: 10.7717/peerj.12627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 11/21/2021] [Indexed: 01/07/2023] Open
Abstract
Error monitoring is the metacognitive process by which we are able to detect and signal our errors once a response has been made. Monitoring when the outcome of our actions deviates from the intended goal is crucial for behavior, learning, and the development of higher-order social skills. Here, we explored the neuronal substrates of error monitoring during the integration of facial expression cues using electroencephalography (EEG). Our goal was to investigate the signatures of error monitoring before and after a response execution dependent on the integration of facial cues. We followed the hypothesis of midfrontal theta as a robust neuronal marker of error monitoring since it has been consistently described as a mechanism to signal the need for cognitive control. Also, we hypothesized that EEG frequency-domain components might bring advantage to study error monitoring in complex scenarios as it carries information from locked and non-phase-locked signals. A challenging go/no-go saccadic paradigm was applied to elicit errors: integration of facial emotional signals and gaze direction was required to solve it. EEG data were acquired from twenty healthy participants and analyzed at the level of theta band activity during response preparation and execution. Although theta modulation has been consistently demonstrated during error monitoring, it is still unclear how early it starts to occur. We found theta power differences at midfrontal channels between correct and error trials. Theta was higher immediately after erroneous responses. Moreover, before response initiation we observed the opposite: lower theta preceding errors. These results suggest theta band activity not only as an index of error monitoring, which is needed to enhance cognitive control, but also as a requisite for success. This study adds to previous evidence for the role of theta band in error monitoring processes by revealing error-related patterns even before response execution in complex tasks, and using a paradigm requiring the integration of facial expression cues.
Collapse
Affiliation(s)
- Camila Dias
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,ICNAS - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Diana Costa
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,ICNAS - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Teresa Sousa
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,ICNAS - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - João Castelhano
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,ICNAS - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Verónica Figueiredo
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,ICNAS - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Andreia C. Pereira
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,ICNAS - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal
| | - Miguel Castelo-Branco
- CIBIT - Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal,ICNAS - Institute for Nuclear Sciences Applied to Health, University of Coimbra, Coimbra, Portugal,FMUC - Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
10
|
Takahashi E, Allan N, Peres R, Ortug A, van der Kouwe AJW, Valli B, Ethier E, Levman J, Baumer N, Tsujimura K, Vargas-Maya NI, McCracken TA, Lee R, Maunakea AK. Integration of structural MRI and epigenetic analyses hint at linked cellular defects of the subventricular zone and insular cortex in autism: Findings from a case study. Front Neurosci 2022; 16:1023665. [PMID: 36817099 PMCID: PMC9935943 DOI: 10.3389/fnins.2022.1023665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.
Collapse
Affiliation(s)
- Emi Takahashi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nina Allan
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Rafael Peres
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Alpen Ortug
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andre J W van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Briana Valli
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Elizabeth Ethier
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Jacob Levman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States.,Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children's Hospital and Harvard Medical School, Boston, MA, United States
| | - Keita Tsujimura
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States.,Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nauru Idalia Vargas-Maya
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Trevor A McCracken
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Rosa Lee
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Alika K Maunakea
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
11
|
Carmona-Serrano N, Moreno-Guerrero AJ, Marín-Marín JA, López-Belmonte J. Evolution of the Autism Literature and the Influence of Parents: A Scientific Mapping in Web of Science. Brain Sci 2021; 11:74. [PMID: 33429923 PMCID: PMC7827242 DOI: 10.3390/brainsci11010074] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 01/01/2023] Open
Abstract
Parents interventions are relevant to address autism spectrum disorder (ASD). The objective of this study is to analyze the importance and evolution of ASD and its relationship with the parents (ASD-PAR) in the publications indexed in Web of Science. For this, a bibliometric methodology has been used, based on a scientific mapping of the reported documents. We have worked with an analysis unit of 1381 documents. The results show that the beginnings of scientific production date back to 1971. There are two clearly differentiated moments in scientific production. A first moment (1971-2004), where the production volume is low. A second moment (2005-2019), where the volume of production increases considerably. Therefore, it can be said that the subject began to be relevant for the scientific community from 2005 to the present. The keyword match rate between set periods marks a high level of match between periods. It is concluded that the main focus of the research on ASD-PAR is on the stress that is generated in families with children with ASD, in addition to the family problems that the fact that these children also have behavior problems can cause.
Collapse
Affiliation(s)
| | | | | | - Jesús López-Belmonte
- Department of Didactics and School Organization, University of Granada, 51001 Ceuta, Spain;
| |
Collapse
|
12
|
Carmona-Serrano N, López-Belmonte J, López-Núñez JA, Moreno-Guerrero AJ. Trends in Autism Research in the Field of Education in Web of Science: A Bibliometric Study. Brain Sci 2020; 10:E1018. [PMID: 33371289 PMCID: PMC7767165 DOI: 10.3390/brainsci10121018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022] Open
Abstract
Autism spectrum disorder (ASD) is conceived as a neurodevelopmental disorder. The scientific literature welcomes studies that reflect the possible singularities that people with ASD may present both in their daily lives and at an educational level. The main objective of this study is to analyze the scientific production on the term autism in Web of Science, focused on the educational field, in order to identify the research trends in this field of study. The intention is to offer researchers who study autism in the educational field some clear research directions. A bibliometric-type methodology was developed using the scientific mapping technique. For this purpose, a performance analysis and a co-word analysis were carried out. Work was conducted with an analysis unit of 5512 documents. The results show that the volume of production has been irregular from the beginning to the present. The collection of documents on the subject began to be relevant, in terms of the volume of production, from 2007, and this has persisted to the present. It is concluded that there are two lines of research. The first is the line focused on mothers of children with ASD and the second is the line of research focused on young people with ASD. In addition, since 2012, new lines of research have been generated, focused on the diagnosis and inclusion of these students in educational centers.
Collapse
Affiliation(s)
| | - Jesús López-Belmonte
- Department of Didactics and School Organization, University of Granada, 51001 Ceuta, Spain;
| | | | | |
Collapse
|
13
|
Carmona-Serrano N, López-Belmonte J, Cuesta-Gómez JL, Moreno-Guerrero AJ. Documentary Analysis of the Scientific Literature on Autism and Technology in Web of Science. Brain Sci 2020; 10:E985. [PMID: 33327633 PMCID: PMC7765105 DOI: 10.3390/brainsci10120985] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/29/2020] [Accepted: 12/11/2020] [Indexed: 12/26/2022] Open
Abstract
The objective of the study is to track the progression of the scientific literature on autism and the technology applied to this disorder. A bibliometric methodology has been used, based on a co-word analysis. The Web of Science database was chosen to perform the analysis of the literature. A unit of analysis of 1048 publications was configured. SciMAT software was used mainly for document analysis. The results indicate that the first studies appeared in 1992, but it was not until 2009 that the research volume increased considerably. The area of knowledge where these studies were compiled was rehabilitation, which marks the truly therapeutic nature of this type of study. One of the authors with the most studies, as well as the most relevant research, was Sarkar, N. Manuscripts were usually research articles written in English. It could be concluded that research in this field of study focused mainly on interventions carried out through the use of technological resources, with students or young people who present with ASD. This line of research, although not the only one, was the most relevant and the one that had aroused the most interest among the scientific community.
Collapse
Affiliation(s)
| | - Jesús López-Belmonte
- Department of Didactics and School Organization, University of Granada, 51001 Ceuta, Spain;
| | | | | |
Collapse
|