1
|
Jacques C, Quiquempoix M, Sauvet F, Le Van Quyen M, Gomez-Merino D, Chennaoui M. Interest of neurofeedback training for cognitive performance and risk of brain disorders in the military context. Front Psychol 2024; 15:1412289. [PMID: 39734770 PMCID: PMC11672796 DOI: 10.3389/fpsyg.2024.1412289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 11/11/2024] [Indexed: 12/31/2024] Open
Abstract
Operational environments are characterized by a range of psycho-physiological constraints that can degrade combatants' performance and impact on their long-term health. Neurofeedback training (NFT), a non-invasive, safe and effective means of regulating brain activity, has been shown to be effective for mental disorders, as well as for cognitive and motor capacities and aiding sports performance in healthy individuals. Its value in helping soldiers in operational condition or suffering from post-traumatic stress (PTSD) is undeniable, but relatively unexplored. The aim of this narrative review is to show the applicability of NFT to enhance cognitive performance and to treat (or manage) PTSD symptoms in the military context. It provides an overview of NFT use cases before, during or after military operations, and in the treatment of soldiers suffering from PTSD. The position of NFT within the broad spectrum of performance enhancement techniques, as well as several key factors influencing the effectiveness of NFT are discussed. Finally, suggestions for the use of NFT in the military context (pre-training environments, and during and post-deployments to combat zones or field operations), future research directions, recommendations and caveats (e.g., on transfer to operational situations, inter-individual variability in responsiveness) are offered. This review is thus expected to draw clear perspectives for both researchers and armed forces regarding NFT for cognitive performance enhancement and PTSD treatment related to the military context.
Collapse
Affiliation(s)
- Clémentine Jacques
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
- Inserm U1145, Université Sorbonne UMRCR2/UMR7371 CNRS, Paris, France
- ThereSIS, THALES SIX GTS, Palaiseau, France
| | - Michael Quiquempoix
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | - Fabien Sauvet
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | | | - Danielle Gomez-Merino
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| | - Mounir Chennaoui
- URP 7330 VIFASOM, Université Paris Cité, Paris, France
- Unité Fatigue et Vigilance, Institut de Recherche Biomédicale des Armées (IRBA), Brétigny sur Orge, France
| |
Collapse
|
2
|
Chikhi S, Matton N, Sanna M, Blanchet S. Effects of one session of theta or high alpha neurofeedback on EEG activity and working memory. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2024; 24:1065-1083. [PMID: 39322825 DOI: 10.3758/s13415-024-01218-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/15/2024] [Indexed: 09/27/2024]
Abstract
Neurofeedback techniques provide participants immediate feedback on neuronal signals, enabling them to modulate their brain activity. This technique holds promise to unveil brain-behavior relationship and offers opportunities for neuroenhancement. Establishing causal relationships between modulated brain activity and behavioral improvements requires rigorous experimental designs, including appropriate control groups and large samples. Our primary objective was to examine whether a single neurofeedback session, designed to enhance working memory through the modulation of theta or high-alpha frequencies, elicits specific changes in electrophysiological and cognitive outcomes. Additionally, we explored predictors of successful neuromodulation. A total of 101 healthy adults were assigned to groups trained to increase frontal theta, parietal high alpha, or random frequencies (active control group). We measured resting-state EEG, working memory performance, and self-reported psychological states before and after one neurofeedback session. Although our analyses revealed improvements in electrophysiological and behavioral outcomes, these gains were not specific to the experimental groups. An increase in the frequency targeted by the training has been observed for the theta and high alpha groups, but training designed to increase randomly selected frequencies appears to induce more generalized neuromodulation compared with targeting a specific frequency. Among all the predictors of neuromodulation examined, resting theta and high alpha amplitudes predicted specifically the increase of those frequencies during the training. These results highlight the challenge of integrating a control group based on enhancing randomly selected frequency bands and suggest potential avenues for optimizing interventions (e.g., by including a control group trained in both up- and down-regulation).
Collapse
Affiliation(s)
- Samy Chikhi
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France.
- Integrative Neuroscience and Cognition Center, Université Paris Cité, F-75006, Paris, France.
| | - Nadine Matton
- CLLE - Cognition, Langues, Langage, Ergonomie, Université de Toulouse, Toulouse, France
- Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, Toulouse, France
| | - Marie Sanna
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| | - Sophie Blanchet
- Laboratoire Mémoire, Cerveau et Cognition, Université Paris Cité, F-92100, Boulogne-Billancourt, France
| |
Collapse
|
3
|
Zhou W, Nan W, Xiong K, Ku Y. Alpha neurofeedback training improves visual working memory in healthy individuals. NPJ SCIENCE OF LEARNING 2024; 9:32. [PMID: 38637595 PMCID: PMC11026515 DOI: 10.1038/s41539-024-00242-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 04/03/2024] [Indexed: 04/20/2024]
Abstract
Neurofeedback (NF) training is a closed-loop brain training in which participants learn to regulate their neural activation. NF training of alpha (8-12 Hz) activity has been reported to enhance working memory capacity, but whether it affects the precision in working memory has not yet been explored. Moreover, whether NF training distinctively influences performance in different types of working memory tasks remains unclear. Therefore, the present study conducted a randomized, single-blind, sham-controlled experiment to investigate how alpha NF training affected the capacity and precision of working memory, as well as the related neural change. Forty participants were randomly and equally assigned to the NF group and the sham control group. Both groups received NF training (about 30 min daily) for five consecutive days. The NF group received alpha (8-12 Hz) training, while the sham control group received sham NF training. We found a significant alpha increase within sessions but no significant difference across sessions. However, the behavioral performance and neural activity in the modified Sternberg task did not show significant change after alpha NF training. On the contrary, the alpha NF training group significantly increased visual working memory capacity measured by the Corsi-block tapping task and improved visual working memory precision in the interference condition in a color-recall task. These results suggest that alpha NF training influences performance in working memory tasks involved in the visuospatial sketchpad. Notably, we demonstrated that alpha NF training improves the quantity and quality of visual working memory.
Collapse
Affiliation(s)
- Wenbin Zhou
- School of Psychology, Shanghai Normal University, Shanghai, China
- Zhengzhou Shuqing Medical College, Zhengzhou, China
| | - Wenya Nan
- School of Psychology, Shanghai Normal University, Shanghai, China.
- The Research Base of Online Education for Shanghai Middle and Primary Schools, Shanghai, China.
| | - Kaiwen Xiong
- School of Psychology, Shanghai Normal University, Shanghai, China
| | - Yixuan Ku
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Center for Brain and Mental Wellbeing, Department of Psychology, Sun Yat-sen University, Guangzhou, Guangdong, China.
- Peng Cheng Laboratory, Shenzhen, Guangdong, China.
| |
Collapse
|
4
|
Lin YR, Hsu TW, Hsu CW, Chen PY, Tseng PT, Liang CS. Effectiveness of Electroencephalography Neurofeedback for Improving Working Memory and Episodic Memory in the Elderly: A Meta-Analysis. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:369. [PMID: 38541096 PMCID: PMC10972127 DOI: 10.3390/medicina60030369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/10/2024] [Accepted: 02/19/2024] [Indexed: 07/23/2024]
Abstract
Background and Objective: Existing evidence indicates the potential benefits of electroencephalography neurofeedback (NFB) training for cognitive function. This study aims to comprehensively review all available evidence investigating the effectiveness of NFB on working memory (WM) and episodic memory (EM) in the elderly population. Material and Methods: A systematic search was conducted across five databases to identify clinical trials examining the impact of NFB on memory function in healthy elderly individuals or those with mild cognitive impairment (MCI). The co-primary outcomes focused on changes in WM and EM. Data synthesis was performed using a random-effects meta-analysis. Results: Fourteen clinical trials (n = 284) were included in the analysis. The findings revealed that NFB was associated with improved WM (k = 11, reported as Hedges' g = 0.665, 95% confidence [CI] = 0.473 to 0.858, p < 0.001) and EM (k = 12, 0.595, 0.333 to 0.856, p < 0.001) in the elderly, with moderate effect sizes. Subgroup analyses demonstrated that NFB had a positive impact on both WM and EM, not only in the healthy population (WM: k = 7, 0.495, 0.213 to 0.778, p = 0.001; EM: k = 6, 0.729, 0.483 to 0.976, p < 0.001) but also in those with MCI (WM: k = 6, 0.812, 0.549 to 1.074, p < 0.001; EM: k = 6, 0.503, 0.088 to 0.919, p = 0.018). Additionally, sufficient training time (totaling more than 300 min) was associated with a significant improvement in WM (k = 6, 0.743, 0.510 to 0.976, p < 0.001) and EM (k = 7, 0.516, 0.156 to 0.876, p = 0.005); however, such benefits were not observed in groups with inadequate training time. Conclusions: The results suggest that NFB is associated with enhancement of both WM and EM in both healthy and MCI elderly individuals, particularly when adequate training time (exceeding 300 min) is provided. These findings underscore the potential of NFB in dementia prevention or rehabilitation.
Collapse
Affiliation(s)
- Yu-Ru Lin
- Graduate Institute of Psychology, College of Humanities and Social Science, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Tien-Wei Hsu
- Department of Psychiatry, E-DA Dachang Hospital, I-Shou University, Kaohsiung 807, Taiwan
- Department of Psychiatry, E-DA Hospital, I-Shou University, Kaohsiung 807, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Che-Wei Hsu
- Department of Psychology, Kaohsiung Kai-Suan Psychiatric Hospital, Kaohsiung 807, Taiwan;
| | - Peng-Yu Chen
- Department of Psychology, Pingtung Veterans Hospital, Pingtung 900, Taiwan;
| | - Ping-Tao Tseng
- Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 807, Taiwan
- Department of Psychology, College of Medical and Health Science, Asia University, Taichung 413, Taiwan
- Prospect Clinic for Otorhinolaryngology & Neurology, Kaohsiung 807, Taiwan
- Institute of Precision Medicine, National Sun Yat-sen University, Kaohsiung 807, Taiwan
| | - Chih-Sung Liang
- Department of Psychiatry, Tri-Service General Hospital, Beitou Branch, Taipei 114, Taiwan
- Department of Psychiatry, National Defense Medical Centre, Taipei 114, Taiwan
| |
Collapse
|
5
|
Jackson LE, Han YJ, Evans LH. The efficacy of electroencephalography neurofeedback for enhancing episodic memory in healthy and clinical participants: A systematic qualitative review and meta-analysis. Neurosci Biobehav Rev 2023; 155:105455. [PMID: 37926240 DOI: 10.1016/j.neubiorev.2023.105455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 10/09/2023] [Accepted: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Several studies have examined whether electroencephalography neurofeedback (EEG-NF), a self-regulatory technique where an individual receives real-time feedback on a pattern of brain activity that is theoretically linked to a target behaviour, can enhance episodic memory. The aim of this research was to i) provide a qualitative overview of the literature, and ii) conduct a meta-analysis of appropriately controlled studies to determine whether EEG-NF can enhance episodic memory. The literature search returned 46 studies, with 21 studies (44 effect sizes) meeting the inclusion criteria for the meta-analysis. The qualitative overview revealed that, across EEG-NF studies on both healthy and clinical populations, procedures and protocols vary considerably and many studies were insufficiently powered with inadequate design features. The meta-analysis, conducted on studies with an active control, revealed a small-size, significant positive effect of EEG-NF on episodic memory performance (g = 0.31, p = 0.003), moderated by memory modality and EEG-NF self-regulation success. These results are discussed with a view towards optimising EEG-NF training and subsequent benefits to episodic memory.
Collapse
Affiliation(s)
- Lucy E Jackson
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, Wales, UK
| | - Yi-Jhong Han
- Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RJ, England, UK
| | - Lisa H Evans
- Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, Cardiff University, Cardiff CF24 4HQ, Wales, UK.
| |
Collapse
|
6
|
Matsuzaki Y, Nouchi R, Sakaki K, Dinet J, Kawashima R. The Effect of Cognitive Training with Neurofeedback on Cognitive Function in Healthy Adults: A Systematic Review and Meta-Analysis. Healthcare (Basel) 2023; 11:healthcare11060843. [PMID: 36981504 PMCID: PMC10048721 DOI: 10.3390/healthcare11060843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/01/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Background: Cognitive training aims to improve cognitive function through cognitive tasks or training games. Neurofeedback is a technique to monitor brain signals with either visual or auditory feedback. Previous studies suggest that a combination of cognitive training and neurofeedback has a superior effect on cognitive functions compared with cognitive training alone. However, no systematic reviews and meta-analyses of the benefits of cognitive training with neurofeedback (CTNF) exist. The purpose of this study was to examine the beneficial effects of CTNF in healthy adults using a systematic review and multilevel meta-analysis. Methods: PubMed, Scopus, PsychoINFO, and MEDLINE were searched for research papers reporting the results of interventions using CTNF. Results: After an initial screening of 234 records, three studies using near-infrared spectroscopy (NIRS) and one study using electroencephalography were extracted from the database. We performed a multi-level meta-analysis with three NIRS studies including 166 participants (mean ages ranged from 21.43 to 65.96 years). A multi-level meta-analysis revealed that CTNF has a beneficial effect on the episodic, long-term, and working memory domains. Conclusions: Although three studies were included in the systematic review and meta-analysis, our results indicate that CTNF using NIRS would lead to improvements in memory functioning.
Collapse
Affiliation(s)
- Yutaka Matsuzaki
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Correspondence: (Y.M.); (R.N.); Tel.: +81-22-717-7988 (Y.M.); +81-22-717-8952 (R.N.)
| | - Rui Nouchi
- Department of Cognitive Health Science, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Sendai 980-8575, Japan
- Correspondence: (Y.M.); (R.N.); Tel.: +81-22-717-7988 (Y.M.); +81-22-717-8952 (R.N.)
| | - Kohei Sakaki
- Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| | - Jérôme Dinet
- Laboratoire Lorrain de Psychologie et Neurosciences de la Dynamique des Comportements (2LPN), Université de Lorraine, F-54000 Nancy, France
| | - Ryuta Kawashima
- Division of Developmental Cognitive Neuroscience, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Department of Cognitive Health Science, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
- Smart Aging Research Center (S.A.R.C.), Tohoku University, Sendai 980-8575, Japan
- Department of Functional Brain Imaging, Institute of Development, Aging, and Cancer (IDAC), Tohoku University, Sendai 980-8575, Japan
| |
Collapse
|
7
|
Chikhi S, Matton N, Sanna M, Blanchet S. Mental strategies and resting state EEG: Effect on high alpha amplitude modulation by neurofeedback in healthy young adults. Biol Psychol 2023; 178:108521. [PMID: 36801435 DOI: 10.1016/j.biopsycho.2023.108521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 11/30/2022] [Accepted: 02/15/2023] [Indexed: 02/19/2023]
Abstract
Neurofeedback (NFB) is a brain-computer interface which allows individuals to modulate their brain activity. Despite the self-regulatory nature of NFB, the effectiveness of strategies used during NFB training has been little investigated. In a single session of NFB training (6*3 min training blocks) with healthy young participants, we experimentally tested if providing a list of mental strategies (list group, N = 46), compared with a group receiving no strategies (no list group, N = 39), affected participants' neuromodulation ability of high alpha (10-12 Hz) amplitude. We additionally asked participants to verbally report the mental strategies used to enhance high alpha amplitude. The verbatim was then classified in pre-established categories in order to examine the effect of type of mental strategy on high alpha amplitude. First, we found that giving a list to the participants did not promote the ability to neuromodulate high alpha activity. However, our analysis of the specific strategies reported by learners during training blocks revealed that cognitive effort and recalling memories were associated with higher high alpha amplitude. Furthermore, the resting amplitude of trained high alpha frequency predicted an amplitude increase during training, a factor that may optimize inclusion in NFB protocols. The present results also corroborate the interrelation with other frequency bands during NFB training. Although these findings are based on a single NFB session, our study represents a further step towards developing effective protocols for high alpha neuromodulation by NFB.
Collapse
Affiliation(s)
- Samy Chikhi
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Nadine Matton
- CLLE, Université de Toulouse, CNRS (UMR 5263), Toulouse, France; ENAC, École Nationale d'Aviation Civile, Université de Toulouse, France
| | - Marie Sanna
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France
| | - Sophie Blanchet
- Université Paris Cité, Laboratoire Mémoire, Cerveau et Cognition, F-92100 Boulogne-Billancourt, France.
| |
Collapse
|
8
|
Hong J, Park JH. Efficacy of Neuro-Feedback Training for PTSD Symptoms: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:13096. [PMID: 36293673 PMCID: PMC9603735 DOI: 10.3390/ijerph192013096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
If the negative emotions experienced in life become trauma, they affect daily life. Neuro-feedback technology has recently been introduced as a treatment, but many different neuro-feedback protocols and methods exits. This study conducted a meta-analysis of neuro-feedback training for post-traumatic stress disorder (PTSD) symptoms to evaluate the effects of functional magnetic resonance imaging (fMRI) and electroencephalogram (EEG)-based neuro-feedback training. A search of PubMed, the Cochrane Library, Web of Science, Science Direct, and ClinicalTrials.gov was conducted from January 2011 to December 2021. The studies' quality was assessed using the Cochrane risk of bias tool and publication bias was assessed by Egger's regression test. Seven studies that met the inclusion criteria were used for the systematic review and meta-analysis. EEG was more effective than fMRI for PTSD symptoms, and the effect on PTSD symptoms was higher than on anxiety and depression. There was no difference in the effectiveness of the training sessions. Our findings showed that EEG-based neuro-feedback training was more helpful for training PTSD symptoms. Additionally, the methods were also shown to be valid for evaluating clinical PTSD diagnoses. Further research is needed to establish a gold standard protocol for the EEG-based neuro-feedback training (EEG-NFT) method for PTSD symptoms.
Collapse
Affiliation(s)
- Jian Hong
- Department of ICT Convergence, The Graduate School, Soonchunhyang University, Asan 31538, Korea
| | - Jin-Hyuck Park
- Department of Occupational Therapy, Soonchunhyang University, Asan 31538, Korea
| |
Collapse
|
9
|
Yeh WH, Ju YJ, Liu YT, Wang TY. Systematic Review and Meta-Analysis on the Effects of Neurofeedback Training of Theta Activity on Working Memory and Episodic Memory in Healthy Population. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11037. [PMID: 36078752 PMCID: PMC9517899 DOI: 10.3390/ijerph191711037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
The main purpose of this study was to investigate the effects of neurofeedback training (NFT) of theta activity on working memory (WM) and episodic memory (EM) in healthy participants via a systematic review and meta-analysis. A total of 337 articles obtained from electronic databases were assessed; however, only 11 articles met the criteria for meta-analysis after manually screening and eliminating unnecessary studies. A meta-analysis calculating the Hedges' g effect size metric with 95% confidence intervals using random effects models was employed. Heterogeneity was estimated using I2 statistics. Theta NFT is effective in improving memory outcomes, including WM with a Hedges' g of 0.56 [0.10; 1.02] (I2 = 62.9% and p = 0.02), and EM with a Hedges' g of 0.62 [0.13; 1.10] (I2 = 42.04% and p = 0.01). Overall, the results suggest that theta NFT seems to be useful as nonpharmacological/adjunct training to improve WM and EM in healthy participants.
Collapse
Affiliation(s)
- Wen-Hsiu Yeh
- Institute of Basic Medical Science, National Cheng Kung University, Tainan 701, Taiwan
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
| | - Ya-Ju Ju
- Department of Physical Therapy, Shu-Zen Junior College of Medicine and Management, Kaohsiung City 821, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Yu-Ting Liu
- Department of Medical Science Industries, Chang Jung Christian University, Tainan 711, Taiwan
| | - Ting-Yi Wang
- Department of Doctorate of Nursing Practice Program, University of Illinois, Chicago, IL 60612, USA
| |
Collapse
|
10
|
Mirifar A, Keil A, Ehrlenspiel F. Neurofeedback and neural self-regulation: a new perspective based on allostasis. Rev Neurosci 2022; 33:607-629. [PMID: 35122709 PMCID: PMC9381001 DOI: 10.1515/revneuro-2021-0133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 01/13/2022] [Indexed: 11/15/2022]
Abstract
The field of neurofeedback training (NFT) has seen growing interest and an expansion of scope, resulting in a steadily increasing number of publications addressing different aspects of NFT. This development has been accompanied by a debate about the underlying mechanisms and expected outcomes. Recent developments in the understanding of psychophysiological regulation have cast doubt on the validity of control systems theory, the principal framework traditionally used to characterize NFT. The present article reviews the theoretical and empirical aspects of NFT and proposes a predictive framework based on the concept of allostasis. Specifically, we conceptualize NFT as an adaptation to changing contingencies. In an allostasis four-stage model, NFT involves (a) perceiving relations between demands and set-points, (b) learning to apply collected patterns (experience) to predict future output, (c) determining efficient set-points, and (d) adapting brain activity to the desired ("set") state. This model also identifies boundaries for what changes can be expected from a neurofeedback intervention and outlines a time frame for such changes to occur.
Collapse
Affiliation(s)
- Arash Mirifar
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munich, Bavaria, Germany
- Institute of Sports Science, Leibniz UniversityHannover, Germany
| | - Andreas Keil
- Center for the Study of Emotion & Attention, University of Florida, Gainesville, Florida, United States of America
| | - Felix Ehrlenspiel
- Department of Sport and Health Sciences, Chair of Sport Psychology, Technische Universität München, Munich, Bavaria, Germany
| |
Collapse
|
11
|
New treatment strategy for chronic low back pain with alpha wave neurofeedback. Sci Rep 2022; 12:14532. [PMID: 36008457 PMCID: PMC9411546 DOI: 10.1038/s41598-022-18931-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
The lifetime prevalence of low back pain is 83%. Since there is a lack of evidence for therapeutic effect by cognitive behavioral therapy (CBT) or physical therapy (PT), it is necessary to develop objective physiological indexes and effective treatments. We conducted a prospective longitudinal study to evaluate the treatment effects of CBT, PT, and neurofeedback training (NFT) during alpha wave NFT. The early-chronic cases within 1 year and late-chronic cases over 1 year after the diagnosis of chronic low back pain were classified into six groups: Controls, CBTs, PTs, NFTs, CBT-NFTs, PT-NFTs. We evaluated the difference in EEG, psychosocial factors, scores of low back pain before/after the intervention. Therapeutic effect was clearly more effective in the early-chronic cases. We found that the intensity of alpha waves increased significantly after therapeutic intervention in the NFT groups, but did not have the main effect of reducing low back pain; the interaction between CBT and NFT reduced low back pain. Factors that enhance therapeutic effect are early intervention, increased alpha waves, and self-efficacy due to parallel implementation of CBT/PT and NFT. A treatment protocol in which alpha wave neurofeedback training is subsidiarily used with CBT or PT should be developed in the future.
Collapse
|
12
|
Putri F, Susnoschi Luca I, Garcia Pedro JA, Ding H, Vuckovic A. Winners and losers in brain computer interface competitive gaming: Directional connectivity analysis. J Neural Eng 2022; 19. [PMID: 35882224 DOI: 10.1088/1741-2552/ac8451] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/11/2022]
Abstract
OBJECTIVE to characterize the direction within and between brain connectivity in winning and losing players in a competitive brain-computer interface game. APPROACH ten dyads (26.9 ± 4.7 years old, eight females and 12 males) participated in the study. In a competitive game based on neurofeedback, they used their relative alpha (RA) band power from the electrode location Pz, to control a virtual seesaw. The players in each pair were separated into winners (W) and losers (L) based on their scores. Intrabrain connectivity was analyzed using multivariate Granger Causality (GC) and Directed Transfer Function, while interbrain connectivity was analyzed using bivariate GC. RESULTS linear regression analysis revealed a significant relationship (p<0.05) between RA and individual scores. During the game, W players maintained a higher RA than L players, although it was not higher than their baseline RA. The analysis of intrabrain GC indicated that both groups engaged in general social interactions, but only the W group succeeded in controlling their brain activity at Pz. Group L applied an inappropriate metal strategy, characterized by strong activity in the left frontal cortex, indicative of collaborative gaming. Interbrain GC showed a larger flow of information from the L to the W group, suggesting a higher capability of the W group to monitor the activity of their opponent. SIGNIFICANCE both innate neurological indices and gaming mental strategies contribute to game outcomes. Future studies should investigate whether there is a causal relationship between these two factors.
Collapse
Affiliation(s)
- Finda Putri
- Centre for Rehabilitation Engineering, University of Glasgow, James Watt Building (South), G12 8QQ, Glasgow, Glasgow, G12 8QQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Ioana Susnoschi Luca
- Centre for Rehabilitation Engineering, University of Glasgow, James Watt Building (South), G12 8QQ, Glasgow, Glasgow, G12 8QQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Jorge Abdullah Garcia Pedro
- Centre for Rehabilitation Engineering, University of Glasgow, James Watt Building (South), G12 8QQ, Glasgow, Glasgow, G12 8QQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Hao Ding
- Centre for Rehabilitation Engineering, University of Glasgow, James Watt Building (South), G12 8QQ, Glasgow, Glasgow, G12 8QQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Aleksandra Vuckovic
- School of Engineering, Biomedical Engineering, University of Glasgow, James Watt building (south), G12 8QQ, Glasgow, Glasgow, G12 8QQ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
13
|
Zhou Q, Cheng R, Yao L, Ye X, Xu K. Neurofeedback Training of Alpha Relative Power Improves the Performance of Motor Imagery Brain-Computer Interface. Front Hum Neurosci 2022; 16:831995. [PMID: 35463935 PMCID: PMC9026187 DOI: 10.3389/fnhum.2022.831995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 03/16/2022] [Indexed: 01/03/2023] Open
Abstract
Significant variation in performance in motor imagery (MI) tasks impedes their wide adoption for brain-computer interface (BCI) applications. Previous researchers have found that resting-state alpha-band power is positively correlated with MI-BCI performance. In this study, we designed a neurofeedback training (NFT) protocol based on the up-regulation of the alpha band relative power (RP) to investigate its effect on MI-BCI performance. The principal finding of this study is that alpha NFT could successfully help subjects increase alpha-rhythm power and improve their MI-BCI performance. An individual difference was also found in this study in that subjects who increased alpha power more had a better performance improvement. Additionally, the functional connectivity (FC) of the frontal-parietal (FP) network was found to be enhanced after alpha NFT. However, the enhancement failed to reach a significant level after multiple comparisons correction. These findings contribute to a better understanding of the neurophysiological mechanism of cognitive control through alpha regulation.
Collapse
Affiliation(s)
- Qing Zhou
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
| | - Ruidong Cheng
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
| | - Lin Yao
- MOE Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- Department of Neurobiology, Affiliated Mental Health Center and Hangzhou Seventh People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China
- The College of Computer Science, Zhejiang University, Hangzhou, China
| | - Xiangming Ye
- Center for Rehabilitation Medicine, Rehabilitation and Sports Medicine Research Institute of Zhejiang Province, Department of Rehabilitation Medicine, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Xiangming Ye,
| | - Kedi Xu
- Qiushi Academy for Advanced Studies (QAAS), Zhejiang University, Hangzhou, China
- Zhejiang Lab, Hangzhou, China
- Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Key Laboratory of Biomedical Engineering of Education Ministry, Zhejiang University, Hangzhou, China
- MOE Frontiers Science Center for Brain and Brain-Machine Integration, Zhejiang University, Hangzhou, China
- *Correspondence: Kedi Xu,
| |
Collapse
|
14
|
Vekety B, Logemann A, Takacs ZK. Mindfulness Practice with a Brain-Sensing Device Improved Cognitive Functioning of Elementary School Children: An Exploratory Pilot Study. Brain Sci 2022; 12:103. [PMID: 35053846 PMCID: PMC8774020 DOI: 10.3390/brainsci12010103] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 01/07/2022] [Accepted: 01/11/2022] [Indexed: 12/04/2022] Open
Abstract
This is the first pilot study with children that has assessed the effects of a brain-computer interface-assisted mindfulness program on neural mechanisms and associated cognitive performance. The participants were 31 children aged 9-10 years who were randomly assigned to either an eight-session mindfulness training with EEG-feedback or a passive control group. Mindfulness-related brain activity was measured during the training, while cognitive tests and resting-state brain activity were measured pre- and post-test. The within-group measurement of calm/focused brain states and mind-wandering revealed a significant linear change. Significant positive changes were detected in children's inhibition, information processing, and resting-state brain activity (alpha, theta) compared to the control group. Elevated baseline alpha activity was associated with less reactivity in reaction time on a cognitive test. Our exploratory findings show some preliminary support for a potential executive function-enhancing effect of mindfulness supplemented with EEG-feedback, which may have some important implications for children's self-regulated learning and academic achievement.
Collapse
Affiliation(s)
- Boglarka Vekety
- Doctoral School of Education, Faculty of Education and Psychology, ELTE Eötvös Loránd University, 1075 Budapest, Hungary;
- MTA-ELTE Lendület Adaptation Research Group, 1064 Budapest, Hungary
| | - Alexander Logemann
- Institute of Psychology, Faculty of Education and Psychology, ELTE Eötvös Loránd University, 1064 Budapest, Hungary;
| | - Zsofia K. Takacs
- Clinical Psychology, School of Health in Social Science, University of Edinburgh, Edinburgh EH8 9AG, UK
| |
Collapse
|
15
|
Validation of eyes-closed resting alpha amplitude predicting neurofeedback learning of upregulation alpha activity. Sci Rep 2021; 11:19615. [PMID: 34608244 PMCID: PMC8490456 DOI: 10.1038/s41598-021-99235-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 09/15/2021] [Indexed: 12/24/2022] Open
Abstract
Neurofeedback training (NFT) enables users to learn self-control of EEG activity of interest and then to create many benefits on cognitive function. A considerable number of nonresponders who fail to achieve successful NFT have often been reported in the within-session prediction. This study aimed to investigate successful EEG NFT of upregulation alpha activity in terms of trainability, independence, and between-session predictability validation. Forty-six participants completed 12 training sessions. Spectrotemporal analysis revealed the upregulation success on brain activity of 8-12 Hz exclusively to demonstrate trainability and independence of alpha NFT. Three learning indices of between-session changes exhibited significant correlations with eyes-closed resting state (ECRS) alpha amplitude before the training exclusively. Through a stepwise linear discriminant analysis, the prediction model of ECRS's alpha frequency band amplitude exhibited the best accuracy (89.1%) validation regarding the learning index of increased alpha amplitude on average. This study performed a systematic analysis on NFT success, the performance of the 3 between-session learning indices, and the validation of ECRS alpha activity for responder prediction. The findings would assist researchers in obtaining insight into the training efficacy of individuals and then attempting to adapt an efficient strategy in NFT success.
Collapse
|
16
|
Trambaiolli LR, Cassani R, Mehler DMA, Falk TH. Neurofeedback and the Aging Brain: A Systematic Review of Training Protocols for Dementia and Mild Cognitive Impairment. Front Aging Neurosci 2021; 13:682683. [PMID: 34177558 PMCID: PMC8221422 DOI: 10.3389/fnagi.2021.682683] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/03/2021] [Indexed: 11/24/2022] Open
Abstract
Dementia describes a set of symptoms that occur in neurodegenerative disorders and that is characterized by gradual loss of cognitive and behavioral functions. Recently, non-invasive neurofeedback training has been explored as a potential complementary treatment for patients suffering from dementia or mild cognitive impairment. Here we systematically reviewed studies that explored neurofeedback training protocols based on electroencephalography or functional magnetic resonance imaging for these groups of patients. From a total of 1,912 screened studies, 10 were included in our final sample (N = 208 independent participants in experimental and N = 81 in the control groups completing the primary endpoint). We compared the clinical efficacy across studies, and evaluated their experimental designs and reporting quality. In most studies, patients showed improved scores in different cognitive tests. However, data from randomized controlled trials remains scarce, and clinical evidence based on standardized metrics is still inconclusive. In light of recent meta-research developments in the neurofeedback field and beyond, quality and reporting practices of individual studies are reviewed. We conclude with recommendations on best practices for future studies that investigate the effects of neurofeedback training in dementia and cognitive impairment.
Collapse
Affiliation(s)
- Lucas R Trambaiolli
- Basic Neuroscience Division, McLean Hospital - Harvard Medical School, Boston, MA, United States
| | - Raymundo Cassani
- Institut National de la Recherche Scientifique - Energy, Materials, and Telecommunications Centre (INRS-EMT), University of Québec, Montréal, QC, Canada
| | - David M A Mehler
- Institute for Translational Psychiatry, University of Münster, Münster, Germany
| | - Tiago H Falk
- Institut National de la Recherche Scientifique - Energy, Materials, and Telecommunications Centre (INRS-EMT), University of Québec, Montréal, QC, Canada
| |
Collapse
|
17
|
Musical Auditory Alpha Wave Neurofeedback: Validation and Cognitive Perspectives. Appl Psychophysiol Biofeedback 2021; 46:323-334. [PMID: 33929674 PMCID: PMC8553721 DOI: 10.1007/s10484-021-09507-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/01/2022]
Abstract
Neurofeedback through visual, auditory, or tactile sensations improves cognitive functions and alters the activities of daily living. However, some people, such as children and the elderly, have difficulty concentrating on neurofeedback for a long time. Constant stressless neurofeedback for a long time may be achieved with auditory neurofeedback using music. The primary purpose of this study was to clarify whether music-based auditory neurofeedback increases the power of the alpha wave in healthy subjects. During neurofeedback, white noise was superimposed on classical music, with the noise level inversely correlating with normalized alpha wave power. This was a single-blind, randomized control crossover trial in which 10 healthy subjects underwent, in an assigned order, normal and random feedback (NF and RF), either of which was at least 4 weeks long. Cognitive functions were evaluated before, between, and after each neurofeedback period. The secondary purpose was to assess neurofeedback-induced changes in cognitive functions. A crossover analysis showed that normalized alpha-power was significantly higher in NF than in RF; therefore, music-based auditory neurofeedback facilitated alpha wave induction. A composite category-based analysis of cognitive functions revealed greater improvements in short-term memory in subjects whose alpha-power increased in response to NF. The present study employed a long period of auditory alpha neurofeedback and achieved successful alpha wave induction and subsequent improvements in cognitive functions. Although this was a pilot study that validated a music-based alpha neurofeedback system for healthy subjects, the results obtained are encouraging for those with difficulty in concentrating on conventional alpha neurofeedback. Trial registration: 2018077NI, date of registration: 2018/11/27
Collapse
|