1
|
Hartwell M, Bloom M, Elenwo C, Gooch T, Dunn K, Breslin F, Croff JM. Association of prenatal substance exposure and the development of the amygdala, hippocampus, and parahippocampus. J Osteopath Med 2024; 124:499-508. [PMID: 38915228 PMCID: PMC11499025 DOI: 10.1515/jom-2023-0277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 04/22/2024] [Indexed: 06/26/2024]
Abstract
CONTEXT Prenatal substance exposure (PSE) can lead to various harmful outcomes for the developing fetus and is linked to many emotional, behavioral, and cognitive difficulties later in life. Therefore, examination of the relationship between the development of associated brain structures and PSE is important for the development of more specific or new preventative methods. OBJECTIVES Our study's primary objective was to examine the relationship between the physical development of the amygdala, hippocampus, and parahippocampus following prenatal alcohol, tobacco, and prescription opioid exposure. METHODS We conducted a cross-sectional analysis of the Adolescent Brain and Cognitive Development (ABCD) Study, a longitudinal neuroimaging study that measures brain morphometry from childhood throughout adolescence. Data were collected from approximately 12,000 children (ages 9 and 10) and parents across 22 sites within the United States. Prenatal opioid, tobacco, and alcohol use was determined through parent self-report of use during pregnancy. We extracted variables assessing the volumetric size (mm3) of the amygdala, hippocampus, and parahippocampal gyrus as well as brain volume, poverty level, age, sex, and race/ethnicity for controls within our adjusted models. We reported sociodemographic characteristics of the sample overall and by children who had PSE. We calculated and reported the means of each of the specific brain regions by substance exposure. Finally, we constructed multivariable regression models to measure the associations between different PSE and the demographic characteristics, total brain volume, and volume of each brain structure. RESULTS Among the total sample, 24.6% had prenatal alcohol exposure, 13.6% had prenatal tobacco exposure, and 1.2% had prenatal opioid exposure. On average, those with prenatal tobacco exposure were found to have a statistically significant smaller parahippocampus. CONCLUSIONS We found a significant association between prenatal tobacco exposure and smaller parahippocampal volume, which may have profound impacts on the livelihood of individuals including motor delays, poor cognitive and behavioral outcomes, and long-term health consequences. Given the cumulative neurodevelopmental effects associated with PSE, we recommend that healthcare providers increase screening rates, detection, and referrals for cessation. Additionally, we recommend that medical associations lobby policymakers to address upstream barriers to the effective identification of at-risk pregnant individuals, specifically, eliminating or significantly reducing punitive legal consequences stemming from state laws concerning prenatal substance use.
Collapse
Affiliation(s)
- Micah Hartwell
- Department of Psychiatry and Behavioral Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA; and Director of Office of Medical Student Research, Office of Medical Student Research, Oklahoma State University College of Osteopathic Medicine at Cherokee Nation, Tahlequah, OK, USA
| | - Molly Bloom
- Oklahoma State University Center for Health Sciences, 1111 W 17th Street, Tulsa, OK 74107, USA
| | - Covenant Elenwo
- Office of Medical Student Research, Oklahoma State University College of Osteopathic Medicine at Cherokee Nation, Tahlequah, OK, USA
| | - Trey Gooch
- Office of Medical Student Research, Oklahoma State University College of Osteopathic Medicine at Cherokee Nation, Tahlequah, OK, USA
| | - Kelly Dunn
- Department of Psychiatry and Behavioral Sciences, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Florence Breslin
- Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| | - Julie M. Croff
- National Center for Wellness and Recovery, Tulsa, OK, USA; and Professor, Department of Rural Health, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA
| |
Collapse
|
2
|
Scholten C, Ghasoub M, Geeraert B, Joshi S, Wedderburn CJ, Roos A, Subramoney S, Hoffman N, Narr K, Woods R, Zar HJ, Stein DJ, Donald K, Lebel C. Prenatal tobacco and alcohol exposure, white matter microstructure, and early language skills in toddlers from a South African birth cohort. Front Integr Neurosci 2024; 18:1438888. [PMID: 39286039 PMCID: PMC11402807 DOI: 10.3389/fnint.2024.1438888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Introduction Tobacco and alcohol are the two most common substances used during pregnancy, and both can disrupt neurodevelopment, resulting in cognitive and behavioral deficits including language difficulties. Previous studies show that children with prenatal substance exposure exhibit microstructural alterations in major white matter pathways, though few studies have investigated the impact of prenatal substance exposure on white matter microstructure and language skills during the toddler years. Methods In this study, 93 children (34 exposed to alcohol and/or tobacco) aged 23 years from the Drakenstein Child Health Study, South Africa, completed Expressive and Receptive Communication assessments from the Bayley Scales of Infant and Toddler Development, Third Edition (BSID-III) and underwent diffusion MRI scans. Diffusion images were preprocessed, and 11 major white matter tracts were isolated. Fractional anisotropy (FA) and mean diffusivity (MD) were extracted for each white matter tract. Linear regression was used to examine differences between the tobacco/alcohol exposed group and unexposed controls for FA, MD, and language scores, as well as relationships between brain metrics and language. There were no significant group differences in language scores or FA. Results Children with alcohol or tobacco exposure had lower average MD in the splenium of the corpus callosum compared to unexposed controls. Significant interactions between prenatal substance exposure and language scores were seen in 7 tracts but did not survive multiple comparisons correction. Discussion Our findings show that prenatal alcohol and/or tobacco exposure appear to alter the relationship between white matter microstructure and early language skills in this population of toddlers, potentially laying the basis of language deficits observed later in older children with prenatal substance exposure, which may have implications for learning and interventions.
Collapse
Affiliation(s)
- Chloe Scholten
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Mohammad Ghasoub
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Bryce Geeraert
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
| | - Shantanu Joshi
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, United States
| | - Catherine J Wedderburn
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Annerine Roos
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit of Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Sivenesi Subramoney
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
| | - Nadia Hoffman
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Katherine Narr
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Roger Woods
- Department of Neurology, Ahmanson-Lovelace Brain Mapping Center, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Psychiatry and Biobehavioural Sciences, University of California, Los Angeles, Los Angeles, CA, United States
- The Semel Institute for Neuroscience and Human Behaviour, University of California, Los Angeles, Los Angeles, CA, United States
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Heather J Zar
- Department of Paediatrics and Child Health, Red Cross War Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Child and Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Dan J Stein
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit of Risk and Resilience in Mental Disorders, University of Cape Town, Cape Town, South Africa
| | - Kirsten Donald
- Division of Developmental Paediatrics, Department of Paediatrics and Child Health, Red Cross Memorial Children's Hospital, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Catherine Lebel
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
3
|
Das A, Duarte K, Lebel C, Bento M. Deep learning for detecting prenatal alcohol exposure in pediatric brain MRI: a transfer learning approach with explainability insights. Front Comput Neurosci 2024; 18:1434421. [PMID: 39252695 PMCID: PMC11381277 DOI: 10.3389/fncom.2024.1434421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Prenatal alcohol exposure (PAE) refers to the exposure of the developing fetus due to alcohol consumption during pregnancy and can have life-long consequences for learning, behavior, and health. Understanding the impact of PAE on the developing brain manifests challenges due to its complex structural and functional attributes, which can be addressed by leveraging machine learning (ML) and deep learning (DL) approaches. While most ML and DL models have been tailored for adult-centric problems, this work focuses on applying DL to detect PAE in the pediatric population. This study integrates the pre-trained simple fully convolutional network (SFCN) as a transfer learning approach for extracting features and a newly trained classifier to distinguish between unexposed and PAE participants based on T1-weighted structural brain magnetic resonance (MR) scans of individuals aged 2-8 years. Among several varying dataset sizes and augmentation strategy during training, the classifier secured the highest sensitivity of 88.47% with 85.04% average accuracy on testing data when considering a balanced dataset with augmentation for both classes. Moreover, we also preliminarily performed explainability analysis using the Grad-CAM method, highlighting various brain regions such as corpus callosum, cerebellum, pons, and white matter as the most important features in the model's decision-making process. Despite the challenges of constructing DL models for pediatric populations due to the brain's rapid development, motion artifacts, and insufficient data, this work highlights the potential of transfer learning in situations where data is limited. Furthermore, this study underscores the importance of preserving a balanced dataset for fair classification and clarifying the rationale behind the model's prediction using explainability analysis.
Collapse
Affiliation(s)
- Anik Das
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
| | - Kaue Duarte
- Department of Radiology, University of Calgary, Calgary, AB, Canada
| | - Catherine Lebel
- Department of Radiology, University of Calgary, Calgary, AB, Canada
- Alberta Children's Hospital Research Institute, Calgary, AB, Canada
| | - Mariana Bento
- Department of Biomedical Engineering, University of Calgary, Calgary, AB, Canada
- Department of Electrical and Software Engineering, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
4
|
Goncalves-Garcia M, Hamilton DA. Unraveling the complex relationship between prenatal alcohol exposure, hippocampal LTP, and learning and memory. Front Mol Neurosci 2024; 16:1326089. [PMID: 38283699 PMCID: PMC10811250 DOI: 10.3389/fnmol.2023.1326089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 12/13/2023] [Indexed: 01/30/2024] Open
Abstract
Prenatal alcohol exposure (PAE) has been extensively studied for its profound impact on neurodevelopment, synaptic plasticity, and cognitive outcomes. While PAE, particularly at moderate levels, has long-lasting cognitive implications for the exposed individuals, there remains a substantial gap in our understanding of the precise mechanisms underlying these deficits. This review provides a framework for comprehending the neurobiological basis of learning and memory processes that are negatively impacted by PAE. Sex differences, diverse PAE protocols, and the timing of exposure are explored as potential variables influencing the diverse outcomes of PAE on long-term potentiation (LTP). Additionally, potential interventions, both pharmacological and non-pharmacological, are reviewed, offering promising avenues for mitigating the detrimental effects of PAE on cognitive processes. While significant progress has been made, further research is required to enhance our understanding of how prenatal alcohol exposure affects neural plasticity and cognitive functions and to develop effective therapeutic interventions for those impacted. Ultimately, this work aims to advance the comprehension of the consequences of PAE on the brain and cognitive functions.
Collapse
|
5
|
Akison LK, Donald KA, Haeger PA, Valenzuela CF, Yeh HH. Editorial: Perspectives and recent advances in Fetal Alcohol Spectrum Disorders research. Front Neurosci 2023; 17:1341186. [PMID: 38161791 PMCID: PMC10757319 DOI: 10.3389/fnins.2023.1341186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/04/2023] [Indexed: 01/03/2024] Open
Affiliation(s)
- Lisa K. Akison
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Paola A. Haeger
- Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - C. Fernando Valenzuela
- Department of Neurosciences, School of Medicine, University of New Mexico Health Sciences Center, Albuquerque, NM, United States
| | - Hermes H. Yeh
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Hanover, NH, United States
| |
Collapse
|
6
|
Pfefferbaum A, Sullivan EV, Pohl KM, Bischoff-Grethe A, Stoner SA, Moore EM, Riley EP. Brain Volume in Fetal Alcohol Spectrum Disorders Over a 20-Year Span. JAMA Netw Open 2023; 6:e2343618. [PMID: 37976065 PMCID: PMC10656646 DOI: 10.1001/jamanetworkopen.2023.43618] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023] Open
Abstract
Importance Anomalous brain development and mental health problems are prevalent in fetal alcohol spectrum disorders (FASD), but there is a paucity of longitudinal brain imaging research into adulthood. This study presents long-term follow-up of brain volumetrics in a cohort of participants with FASD. Objective To test whether brain tissue declines faster with aging in individuals with FASD compared with control participants. Design, Setting, and Participants This cohort study used magnetic resonance imaging (MRI) data collected from individuals with FASD and control individuals (age 13-37 years at first magnetic resonance imaging [MRI1] acquired 1997-2000) compared with data collected 20 years later (MRI2; 2018-2021). Participants were recruited for MRI1 through the University of Washington Fetal Alcohol Syndrome (FAS) Follow-Up Study. For MRI2, former participants were recruited by the University of Washington Fetal Alcohol and Drug Unit. Data were analyzed from October 2022 to August 2023. Main Outcomes and Measures Intracranial volume (ICV) and regional cortical and cerebellar gray matter, white matter, and cerebrospinal fluid volumes were quantified automatically and analyzed, with group and sex as between-participant factors and age as a within-participant variable. Results Of 174 individuals with MRI1 data, 48 refused participation, 36 were unavailable, and 24 could not be located. The remaining 66 individuals (37.9%) were rescanned for MRI2, including 26 controls, 18 individuals with nondysmorphic heavily exposed fetal alcohol effects (FAE; diagnosed prior to MRI1), and 22 individuals with FAS. Mean (SD) age was 22.9 (5.6) years at MRI1 and 44.7 (6.5) years at MRI2, and 35 participants (53%) were male. The FAE and FAS groups exhibited enduring stepped volume deficits at MRI1 and MRI2; volumes among control participants were greater than among participants with FAE, which were greater than volumes among participants with FAS (eg, mean [SD] ICV: control, 1462.3 [119.3] cc at MRI1 and 1465.4 [129.4] cc at MRI2; FAE, 1375.6 [134.1] cc at MRI1 and 1371.7 [120.3] cc at MRI2; FAS, 1297.3 [163.0] cc at MRI1 and 1292.7 [172.1] cc at MRI2), without diagnosis-by-age interactions. Despite these persistent volume deficits, the FAE participants and FAS participants showed patterns of neurodevelopment within reference ranges: increase in white matter and decrease in gray matter of the cortex and decrease in white matter and increase in gray matter of the cerebellum. Conclusions and Relevance The findings of this cohort study support a nonaccelerating enduring, brain structural dysmorphic spectrum following prenatal alcohol exposure and a diagnostic distinction based on the degree of dysmorphia. FASD was not a progressive brain structural disorder by middle age, but whether accelerated decline occurs in later years remains to be determined.
Collapse
Affiliation(s)
- Adolf Pfefferbaum
- Center for Health Sciences, SRI International, Menlo Park, California
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Edith V. Sullivan
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | - Kilian M. Pohl
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, California
| | | | - Susan A. Stoner
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle
| | - Eileen M. Moore
- Department of Psychology, San Diego State University, San Diego, California
| | - Edward P. Riley
- Department of Psychology, San Diego State University, San Diego, California
| |
Collapse
|
7
|
Shapiro ZR, Kable JA, Grant TM, Stoner SA, Coles CD. Prenatal alcohol exposure and cognition at midlife: Evidence of fluid cognition deficits in two cohorts. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1978-1988. [PMID: 37864533 PMCID: PMC10605955 DOI: 10.1111/acer.15177] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/12/2023] [Accepted: 08/13/2023] [Indexed: 10/23/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) impacts cognition in childhood and early adulthood. Here we evaluate the cognitive abilities of middle-aged adults with and without a history of PAE. METHODS Participants (N = 200) were recruited from longitudinal cohorts in the Atlanta and Seattle metropolitan areas and completed measures comprising the National Institutes of Health Toolbox's Fluid Cognition Composite. RESULTS We found that individuals with PAE had lower Fluid Cognition Summary scores and lower Dimensional Change Card Sort and Flanker task subtest scores than non-PAE controls, after accounting for both potentially confounding demographic variables using propensity scores and the effects of study site. When we evaluated the effects of PAE with and without dysmorphic physical features, we found that middle-aged adults in both groups had lower fluid cognition scores than non-PAE controls. However, only the presence of PAE with dysmorphic features was associated with lower performance on the Dimensional Change Card Sort Test and Flanker tasks. CONCLUSION While all participants with PAE had lower fluid cognition, those with PAE and dysmorphic features also exhibited specific deficits in their performance on measures of inhibition, attention, and cognitive flexibility. Thus, PAE is associated with ongoing cognitive deficits in middle adulthood, which can be observed most clearly among individuals with dysmorphic features.
Collapse
Affiliation(s)
- Z. R. Shapiro
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - J. A. Kable
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - T. M. Grant
- Fetal Alcohol and Drug Unit, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - S. A. Stoner
- Fetal Alcohol and Drug Unit, Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington
| | - C. D. Coles
- Departments of Psychiatry and Behavioral Sciences and Pediatrics, Emory University School of Medicine, Atlanta, Georgia
| | - CIFASD
- Collaborative Initiative on Fetal Alcohol Spectrum Disorders
| |
Collapse
|
8
|
Gimbel BA, Roediger DJ, Ernst AM, Anthony ME, de Water E, Mueller BA, Rockhold MN, Schumacher MJ, Mattson SN, Jones KL, Lim KO, Wozniak JR. Delayed cortical thinning in children and adolescents with prenatal alcohol exposure. ALCOHOL, CLINICAL & EXPERIMENTAL RESEARCH 2023; 47:1312-1326. [PMID: 37132064 PMCID: PMC10851870 DOI: 10.1111/acer.15096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 03/10/2023] [Accepted: 04/26/2023] [Indexed: 05/04/2023]
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) is associated with abnormalities in cortical structure and maturation, including cortical thickness (CT), cortical volume, and surface area. This study provides a longitudinal context for the developmental trajectory and timing of abnormal cortical maturation in PAE. METHODS We studied 35 children with PAE and 30 nonexposed typically developing children (Comparisons), aged 8-17 at enrollment, who were recruited from the University of Minnesota FASD Program. Participants were matched on age and sex. They underwent a formal evaluation of growth and dysmorphic facial features associated with PAE and completed cognitive testing. MRI data were collected on a Siemens Prisma 3T scanner. Two sessions, each including MRI scans and cognitive testing, were spaced approximately 15 months apart on average. Change in CT and performance on tests of executive function (EF) were examined. RESULTS Significant age-by-group (PAE vs. Comparison) linear interaction effects in CT were observed in the parietal, temporal, occipital, and insular cortices suggesting altered developmental trajectories in the PAE vs. Comparison groups. Results suggest a pattern of delayed cortical thinning in PAE, with the Comparison group showing more rapid thinning at younger ages and those with PAE showing accelerated thinning at older ages. Overall, children in the PAE group showed reduced cortical thinning across time relative to the Comparison participants. Symmetrized percent change (SPC) in CT in several regions was significantly correlated with EF performance at 15-month follow-up for the Comparison group but not the group with PAE. CONCLUSIONS Regional differences were seen longitudinally in the trajectory and timing of CT change in children with PAE, suggesting delayed cortical maturation and an atypical pattern of development compared with typically developing individuals. In addition, exploratory correlation analyses of SPC and EF performance suggest the presence of atypical brain-behavior relationships in PAE. The findings highlight the potential role of altered developmental timing of cortical maturation in contributing to long-term functional impairment in PAE.
Collapse
|
9
|
Ruffaner-Hanson CD, Fernandez-Oropeza AK, Sun MS, Caldwell KK, Allan AM, Savage DD, Valenzuela CF, Noor S, Milligan ED. Prenatal alcohol exposure alters mRNA expression for stress peptides, glucocorticoid receptor function and immune factors in acutely stressed neonatal brain. Front Neurosci 2023; 17:1203557. [PMID: 37425005 PMCID: PMC10326286 DOI: 10.3389/fnins.2023.1203557] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 05/24/2023] [Indexed: 07/11/2023] Open
Abstract
Background The amygdala, hippocampus and hypothalamus are critical stress regulatory areas that undergo functional maturation for stress responding initially established during gestational and early postnatal brain development. Fetal alcohol spectrum disorder (FASD), a consequence of prenatal alcohol exposure (PAE), results in cognitive, mood and behavioral disorders. Prenatal alcohol exposure negatively impacts components of the brain stress response system, including stress-associated brain neuropeptides and glucocorticoid receptors in the amygdala, hippocampus and hypothalamus. While PAE generates a unique brain cytokine expression pattern, little is known about the role of Toll-like receptor 4 (TLR4) and related proinflammatory signaling factors, as well as anti-inflammatory cytokines in PAE brain stress-responsive regions. We hypothesized that PAE sensitizes the early brain stress response system resulting in dysregulated neuroendocrine and neuroimmune activation. Methods A single, 4-h exposure of maternal separation stress in male and female postnatal day 10 (PND10) C57Bl/6 offspring was utilized. Offspring were from either prenatal control exposure (saccharin) or a limited access (4 h) drinking-in-the-dark model of PAE. Immediately after stress on PND10, the hippocampus, amygdala and hypothalamus were collected, and mRNA expression was analyzed for stress-associated factors (CRH and AVP), glucocorticoid receptor signaling regulators (GAS5, FKBP51 and FKBP52), astrocyte and microglial activation, and factors associated with TLR4 activation including proinflammatory interleukin-1β (IL-1β), along with additional pro- and anti-inflammatory cytokines. Select protein expression analysis of CRH, FKBP and factors associated with the TLR4 signaling cascade from male and female amygdala was conducted. Results The female amygdala revealed increased mRNA expression in stress-associated factors, glucocorticoid receptor signaling regulators and all of the factors critical in the TLR4 activation cascade, while the hypothalamus revealed blunted mRNA expression of all of these factors in PAE following stress. Conversely, far fewer mRNA changes were observed in males, notably in the hippocampus and hypothalamus, but not the amygdala. Statistically significant increases in CRH protein, and a strong trend in increased IL-1β were observed in male offspring with PAE independent of stressor exposure. Conclusion Prenatal alcohol exposure creates stress-related factors and TLR-4 neuroimmune pathway sensitization observed predominantly in females, that is unmasked in early postnatal life by a stress challenge.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Erin D. Milligan
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
10
|
Fraize J, Convert G, Leprince Y, Sylvestre-Marconville F, Kerdreux E, Auzias G, Lefèvre J, Delorme R, Elmaleh-Bergès M, Hertz-Pannier L, Germanaud D. Mapping corpus callosum surface reduction in fetal alcohol spectrum disorders with sulci and connectivity-based parcellation. Front Neurosci 2023; 17:1188367. [PMID: 37360177 PMCID: PMC10288872 DOI: 10.3389/fnins.2023.1188367] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 06/28/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorders (FASD) range from fetal alcohol syndrome (FAS) to non-syndromic non-specific forms (NS-FASD) that are still underdiagnosed and could benefit from new neuroanatomical markers. The main neuroanatomical manifestation of prenatal alcohol exposure on developmental toxicity is the reduction in brain size, but repeated imaging observations have long driven the attention on the corpus callosum (CC), without being all convergent. Our study proposed a new segmentation of the CC that relies on both a sulci-based cortical segmentation and the "hemispherotopic" organization of the transcallosal fibers. Methods We collected a monocentric series of 37 subjects with FAS, 28 with NS-FASD, and 38 with typical development (6 to 25 years old) using brain MRI (1.5T). Associating T1- and diffusion-weighted imaging, we projected a sulci-based cortical segmentation of the hemispheres on the midsagittal section of the CC, resulting in seven homologous anterior-posterior parcels (frontopolar, anterior and posterior prefrontal, precentral, postcentral, parietal, and occipital). We measured the effect of FASD on the area of callosal and cortical parcels by considering age, sex, and brain size as linear covariates. The surface proportion of the corresponding cortical parcel was introduced as an additional covariate. We performed a normative analysis to identify subjects with an abnormally small parcel. Results All callosal and cortical parcels were smaller in the FASD group compared with controls. When accounting for age, sex, and brain size, only the postcentral (η2 = 6.5%, pFDR = 0.032) callosal parcel and % of the cortical parcel (η2 = 8.9%, pFDR = 0.007) were still smaller. Adding the surface proportion (%) of the corresponding cortical parcel to the model, only the occipital parcel was persistently reduced in the FASD group (η2 = 5.7%, pFDR = 0.014). In the normative analysis, we found an excess of subjects with FASD with abnormally small precentral and postcentral (peri-isthmic) and posterior-splenial parcels (pFDR < 0.05). Conclusion The objective sulcal and connectivity-based method of CC parcellation proved to be useful not only in confirming posterior-splenial damage in FASD but also in the narrowing of the peri-isthmic region strongly associated with a specific size reduction in the corresponding postcentral cortical region (postcentral gyrus). The normative analysis showed that this type of callosal segmentation could provide a clinically relevant neuroanatomical endophenotype, even in NS-FASD.
Collapse
Affiliation(s)
- Justine Fraize
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - Gabrielle Convert
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - Yann Leprince
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
| | - Florent Sylvestre-Marconville
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - Eliot Kerdreux
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - Guillaume Auzias
- Institut de Neurosciences de La Timone, CNRS, Aix-Marseille Université, Marseille, France
| | - Julien Lefèvre
- Institut de Neurosciences de La Timone, CNRS, Aix-Marseille Université, Marseille, France
| | - Richard Delorme
- Department of Child and Adolescent Psychiatry, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Monique Elmaleh-Bergès
- Department of Pediatric Radiologic, Robert-Debré Hospital, AP-HP, Centre of Excellence InovAND, Paris, France
| | - Lucie Hertz-Pannier
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
| | - David Germanaud
- UNIACT, NeuroSpin, Frederic Joliot Institute, Centre d'études de Saclay, CEA Paris-Saclay, Gif-sur-Yvette, France
- InDEV, NeuroDiderot, Inserm, Université Paris Cité, Paris, France
- Department of Genetics, Robert-Debré Hospital, AP-HP, Centre de Référence Déficiences Intellectuelles de Causes Rares, Centre of Excellence InovAND, Paris, France
| |
Collapse
|
11
|
Glass L, Moore EM, Mattson SN. Current considerations for fetal alcohol spectrum disorders: identification to intervention. Curr Opin Psychiatry 2023; 36:249-256. [PMID: 36939372 PMCID: PMC10079626 DOI: 10.1097/yco.0000000000000862] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
PURPOSE OF REVIEW This review highlights recent findings regarding the prevalence, public health impact, clinical presentation, intervention access and conceptualization of fetal alcohol spectrum disorders (FASDs). Despite ongoing work in prevention and identification of this population, the rates of drinking during pregnancy have increased and significant gaps remain in diagnosis and intervention. RECENT FINDINGS Prenatal alcohol exposure is the most common preventable cause of developmental disability in the world. Research has focused on improving diagnostic clarity, utilizing technology and neuroimaging to facilitate identification, engaging broader stakeholders (including self-advocates) to inform understanding and needs, and increasing access to effective interventions. There is an emerging focus on developmental trajectories and experiences in young and middle adulthood. Public policy advocacy has also made great strides in recent years. SUMMARY Increases in public awareness, greater concordance of diagnostic schema, leveraged use of novel technology, and the development of targeted interventions within a holistic, strengths-based conceptualization are important considerations for this population.
Collapse
Affiliation(s)
- Leila Glass
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
- University of California, Los Angeles Semel Institute for Neuroscience and Human Behavior, Los Angeles, CA 90095, USA
| | - Eileen M. Moore
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| | - Sarah N. Mattson
- Center for Behavioral Teratology, Department of Psychology, San Diego State University, San Diego, CA 92120, USA
| |
Collapse
|
12
|
Bierce L, Tabachnick AR, Eiden RD, Dozier M, Labella MH. A 12-month follow-up of infant neurodevelopmental outcomes of prenatal opioid exposure and polysubstance use. Neurotoxicol Teratol 2023; 97:107176. [PMID: 37054901 PMCID: PMC10198960 DOI: 10.1016/j.ntt.2023.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 04/07/2023] [Accepted: 04/10/2023] [Indexed: 04/15/2023]
Abstract
BACKGROUND Prenatal opioid exposure has been associated with developmental deficits during infancy, but the literature is limited by simple group comparisons and lack of appropriate controls. Previously published research with the current sample documented unique associations between prenatal opioid exposure and developmental outcomes at three and six months, but less is known about associations later in infancy. METHOD The current study examined pre- and postnatal opioid and polysubstance exposure as predictors of parent-reported developmental status at 12 months of age. Participants were 85 mother-child dyads, oversampled for mothers taking opioid treatment medications during pregnancy. Maternal opioid and polysubstance use were reported using the Timeline Follow-Back Interview during the third trimester of pregnancy or up to one month postpartum and updated through the child's first year of life. Seventy-eight dyads participated in a 12-month assessment, including 68 with parent-reported developmental status on Ages and Stages Questionnaire. RESULTS At 12 months, average developmental scores fell within normal ranges and prenatal opioid exposure was not significantly related to any developmental outcomes. However, more prenatal alcohol exposure was significantly related to worse problem-solving scores, and this relationship remained after controlling for adjusted age and other substance exposure. CONCLUSION Although findings await replication with larger samples and more comprehensive measures, results suggest that unique developmental risks of prenatal opioid exposure may not persist through the first year of life. Effects of prenatal exposure to co-occurring teratogens, such as alcohol, may become apparent as children exposed to opioids develop.
Collapse
Affiliation(s)
- Lydia Bierce
- Department of Psychological Sciences, William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, United States.
| | - Alexandra R Tabachnick
- Department of Medicine, University of Illinois at Chicago, 1200 W Harrison Street, Chicago, IL, 60607, United States
| | - Rina D Eiden
- Department of Psychology and the Social Science Research Institute, The Pennsylvania State University, 140 Moore Building, University Park, PA 16801, United States
| | - Mary Dozier
- Department of Psychological & Brain Sciences, University of Delaware, 108 Wolf Hall, Newark, DE 19717, United States
| | - Madelyn H Labella
- Department of Psychological Sciences, William and Mary, 540 Landrum Drive, Williamsburg, VA 23185, United States.
| |
Collapse
|
13
|
Gimbel BA, Roediger DJ, Ernst AM, Anthony ME, de Water E, Rockhold MN, Mueller BA, Mattson SN, Jones KL, Riley EP, Lim KO, Wozniak JR. Atypical developmental trajectories of white matter microstructure in prenatal alcohol exposure: Preliminary evidence from neurite orientation dispersion and density imaging. Front Neurosci 2023; 17:1172010. [PMID: 37168930 PMCID: PMC10165006 DOI: 10.3389/fnins.2023.1172010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023] Open
Abstract
Introduction Fetal alcohol spectrum disorder (FASD), a life-long condition resulting from prenatal alcohol exposure (PAE), is associated with structural brain anomalies and neurobehavioral differences. Evidence from longitudinal neuroimaging suggest trajectories of white matter microstructure maturation are atypical in PAE. We aimed to further characterize longitudinal trajectories of developmental white matter microstructure change in children and adolescents with PAE compared to typically-developing Controls using diffusion-weighted Neurite Orientation Dispersion and Density Imaging (NODDI). Materials and methods Participants: Youth with PAE (n = 34) and typically-developing Controls (n = 31) ages 8-17 years at enrollment. Participants underwent formal evaluation of growth and facial dysmorphology. Participants also completed two study visits (17 months apart on average), both of which involved cognitive testing and an MRI scan (data collected on a Siemens Prisma 3 T scanner). Age-related changes in the orientation dispersion index (ODI) and the neurite density index (NDI) were examined across five corpus callosum (CC) regions defined by tractography. Results While linear trajectories suggested similar overall microstructural integrity in PAE and Controls, analyses of symmetrized percent change (SPC) indicated group differences in the timing and magnitude of age-related increases in ODI (indexing the bending and fanning of axons) in the central region of the CC, with PAE participants demonstrating atypically steep increases in dispersion with age compared to Controls. Participants with PAE also demonstrated greater increases in ODI in the mid posterior CC (trend-level group difference). In addition, SPC in ODI and NDI was differentially correlated with executive function performance for PAE participants and Controls, suggesting an atypical relationship between white matter microstructure maturation and cognitive function in PAE. Discussion Preliminary findings suggest subtle atypicality in the timing and magnitude of age-related white matter microstructure maturation in PAE compared to typically-developing Controls. These findings add to the existing literature on neurodevelopmental trajectories in PAE and suggest that advanced biophysical diffusion modeling (NODDI) may be sensitive to biologically-meaningful microstructural changes in the CC that are disrupted by PAE. Findings of atypical brain maturation-behavior relationships in PAE highlight the need for further study. Further longitudinal research aimed at characterizing white matter neurodevelopmental trajectories in PAE will be important.
Collapse
Affiliation(s)
- Blake A. Gimbel
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Donovan J. Roediger
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Abigail M. Ernst
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Mary E. Anthony
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Erik de Water
- Great Lakes Neurobehavioral Center, Edina, MN, United States
| | | | - Bryon A. Mueller
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | - Sarah N. Mattson
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Kenneth L. Jones
- Department of Pediatrics, University of California, San Diego, San Diego, CA, United States
| | - Edward P. Riley
- Department of Psychology, San Diego State University, San Diego, CA, United States
| | - Kelvin O. Lim
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| | | | - Jeffrey R. Wozniak
- Department of Psychiatry and Behavioral Sciences, University of Minnesota Twin Cities, Minneapolis, MN, United States
| |
Collapse
|
14
|
Mishra NK, Shrinath P, Rao R, Shukla PK. Sex-Specific Whole-Transcriptome Analysis in the Cerebral Cortex of FAE Offspring. Cells 2023; 12:328. [PMID: 36672262 PMCID: PMC9856965 DOI: 10.3390/cells12020328] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/05/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fetal alcohol spectrum disorders (FASDs) are associated with systemic inflammation and neurodevelopmental abnormalities. Several candidate genes were found to be associated with fetal alcohol exposure (FAE)-associated behaviors, but a sex-specific complete transcriptomic analysis was not performed at the adult stage. Recent studies have shown that they are regulated at the developmental stage. However, the sex-specific role of RNA in FAE offspring brain development and function has not been studied yet. Here, we carried out the first systematic RNA profiling by utilizing a high-throughput transcriptomic (RNA-seq) approach in response to FAE in the brain cortex of male and female offspring at adulthood (P60). Our RNA-seq data analysis suggests that the changes in RNA expression in response to FAE are marked sex-specific. We show that the genes Muc3a, Pttg1, Rec8, Clcnka, Capn11, and pnp2 exhibit significantly higher expression in the male offspring than in the female offspring at P60. FAE female mouse brain sequencing data also show an increased expression of Eno1, Tpm3, and Pcdhb2 compared to male offspring. We performed a pathway analysis using a commercial software package (Ingenuity Pathway Analysis). We found that the sex-specific top regulator genes (Rictor, Gaba, Fmri, Mlxipl) are highly associated with eIF2 (translation initiation), synaptogenesis (the formation of synapses between neurons in the nervous system), sirtuin (metabolic regulation), and estrogen receptor (involved in obesity, aging, and cancer) signaling. Taken together, our transcriptomic results demonstrate that FAE differentially alters RNA expression in the adult brain in a sex-specific manner.
Collapse
Affiliation(s)
- Nitish K. Mishra
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105, USA
| | - Pulastya Shrinath
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Radhakrishna Rao
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Pradeep K. Shukla
- Department of Physiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
15
|
Pu Y, An J, Mo X. Liquid Biopsy in Adverse Neurodevelopment of Children: Problems and Prospects. Methods Mol Biol 2023; 2695:337-349. [PMID: 37450130 DOI: 10.1007/978-1-0716-3346-5_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Neurodevelopmental disorders in children have an important impact on the quality of life in the whole life cycle. Severe neurodevelopmental disorders will become a serious social and family burden and an important social and economic problem. The early and middle childhood is the critical period of children's neurodevelopment. Early diagnosis of neurological disorders plays an important role in guiding children's neurological development. Existing monitoring tools lack prenatal and even early assessment of children's neurodevelopment, so reliable biomarkers are conducive to personalized care at an earlier stage. In this review, we will discuss different methods of neurodevelopmental monitoring at different times and the role and evaluation of liquid biopsy in neurodevelopmental monitoring.
Collapse
Affiliation(s)
- Yiwei Pu
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jia An
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xuming Mo
- Department of Cardiothoracic Surgery, Children's Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
16
|
Gimbel BA, Anthony ME, Ernst AM, Roediger DJ, de Water E, Eckerle JK, Boys CJ, Radke JP, Mueller BA, Fuglestad AJ, Zeisel SH, Georgieff MK, Wozniak JR. Long-term follow-up of a randomized controlled trial of choline for neurodevelopment in fetal alcohol spectrum disorder: corpus callosum white matter microstructure and neurocognitive outcomes. J Neurodev Disord 2022; 14:59. [PMID: 36526961 PMCID: PMC9756672 DOI: 10.1186/s11689-022-09470-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Fetal alcohol spectrum disorder (FASD) is a lifelong condition. Early interventions targeting core neurocognitive deficits have the potential to confer long-term neurodevelopmental benefits. Time-targeted choline supplementation is one such intervention that has been shown to provide neurodevelopmental benefits that emerge with age during childhood. We present a long-term follow-up study evaluating the neurodevelopmental effects of early choline supplementation in children with FASD approximately 7 years on average after an initial efficacy trial. METHODS The initial study was a randomized, double-blind, placebo-controlled trial of choline vs. placebo in 2.5 to 5 year olds with FASD. Participants in this long-term follow-up study include 18 children (9 placebo; 9 choline) seen 7 years on average following initial trial completion. The mean age at follow-up was 11.0 years old. Diagnoses were 28% fetal alcohol syndrome (FAS), 28% partial FAS, and 44% alcohol-related neurodevelopmental disorder. The follow-up included measures of executive functioning and an MRI scan. RESULTS Children who received choline had better performance on several tasks of lower-order executive function (e.g., processing speed) and showed higher white matter microstructure organization (i.e., greater axon coherence) in the splenium of the corpus callosum compared to the placebo group. CONCLUSIONS These preliminary findings, although exploratory at this stage, highlight potential long-term benefits of choline as a neurodevelopmental intervention for FASD and suggest that choline may affect white matter development, representing a potential target of choline in this population. TRIAL REGISTRATION Prior to enrollment, this trial was registered with clinicaltrials.gov ( NCT01149538 ) on June 23, 2010.
Collapse
Affiliation(s)
- Blake A. Gimbel
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| | - Mary E. Anthony
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| | - Abigail M. Ernst
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| | - Donovan J. Roediger
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| | | | - Judith K. Eckerle
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| | | | | | - Bryon A. Mueller
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| | - Anita J. Fuglestad
- grid.266865.90000 0001 2109 4358University of North Florida, Jacksonville, USA
| | - Steven H. Zeisel
- grid.410711.20000 0001 1034 1720University of North Carolina, Chapel Hill, USA
| | - Michael K. Georgieff
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| | - Jeffrey R. Wozniak
- grid.17635.360000000419368657University of Minnesota Twin Cities, 2025 E. River Parkway, Minneapolis, MN 55414 USA
| |
Collapse
|
17
|
Marshall AT, Bodison SC, Uban KA, Adise S, Jonker D, Charles W, Donald KA, Kan E, Ipser JC, Butler-Kruger L, Steigelmann B, Narr KL, Joshi SH, Brink LT, Odendaal HJ, Scheffler F, Stein DJ, Sowell ER. The impact of prenatal alcohol and/or tobacco exposure on brain structure in a large sample of children from a South African birth cohort. Alcohol Clin Exp Res 2022; 46:1980-1992. [PMID: 36117382 PMCID: PMC11334753 DOI: 10.1111/acer.14945] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/30/2022] [Accepted: 09/13/2022] [Indexed: 02/01/2023]
Abstract
BACKGROUND Neuroimaging studies have emphasized the impact of prenatal alcohol exposure (PAE) on brain development, traditionally in heavily exposed participants. However, less is known about how naturally occurring community patterns of PAE (including light to moderate exposure) affect brain development, particularly in consideration of commonly occurring concurrent impacts of prenatal tobacco exposure (PTE). METHODS Three hundred thirty-two children (ages 8 to 12) living in South Africa's Cape Flats townships underwent structural magnetic resonance imaging. During pregnancy, their mothers reported alcohol and tobacco use, which was used to evaluate PAE and PTE effects on their children's brain structure. Analyses involved the main effects of PAE and PTE (and their interaction) and the effects of PAE and PTE quantity on cortical thickness, surface area, and volume. RESULTS After false-discovery rate (FDR) correction, PAE was associated with thinner left parahippocampal cortices, while PTE was associated with smaller cortical surface area in the bilateral pericalcarine, left lateral orbitofrontal, right posterior cingulate, right rostral anterior cingulate, left caudal middle frontal, and right caudal anterior cingulate gyri. There were no PAE × PTE interactions nor any associations of PAE and PTE exposure on volumetrics that survived FDR correction. CONCLUSION PAE was associated with reduction in the structure of the medial temporal lobe, a brain region critical for learning and memory. PTE had stronger and broader associations, including with regions associated with executive function, reward processing, and emotional regulation, potentially reflecting continued postnatal exposure to tobacco (i.e., second-hand smoke exposure). These differential effects are discussed with respect to reduced PAE quantity in our exposed group versus prior studies within this geographical location, the deep poverty in which participants live, and the consequences of apartheid and racially and economically driven payment practices that contributed to heavy drinking in the region. Longer-term follow-up is needed to determine potential environmental and other moderators of the brain findings here and assess the extent to which they endure over time.
Collapse
Affiliation(s)
- Andrew T. Marshall
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Stefanie C. Bodison
- Department of Occupational Therapy, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Kristina A. Uban
- Department of Public Health, University of California, Irvine, CA, United States
| | - Shana Adise
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Deborah Jonker
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Weslin Charles
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | - Kirsten A. Donald
- Department of Paediatrics and Child Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Eric Kan
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| | - Jonathan C. Ipser
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Letitia Butler-Kruger
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
| | | | - Katherine L. Narr
- UCLA Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Shantanu H. Joshi
- UCLA Brain Mapping Center, Department of Neurology, Geffen School of Medicine, University of California, Los Angeles
- Department of Bioengineering, University of California, Los Angeles
| | - Lucy T. Brink
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles
| | - Hein J. Odendaal
- Department of Obstetrics and Gynaecology, Stellenbosch University, Cape Town, South Africa
| | - Freda Scheffler
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Dan J. Stein
- Department of Psychiatry & Mental Health, University of Cape Town, Cape Town, South Africa
- Neuroscience Institute, University of Cape Town, Cape Town, South Africa
- South African Medical Research Council (SAMRC), Unit on Risk and Resilience in Mental Disorders, Cape Town, South Africa
| | - Elizabeth R. Sowell
- Department of Pediatrics, Keck School of Medicine, Children’s Hospital Los Angeles, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
18
|
Vishnubhotla RV, Zhao Y, Wen Q, Dietrich J, Sokol GM, Sadhasivam S, Radhakrishnan R. Brain structural connectome in neonates with prenatal opioid exposure. Front Neurosci 2022; 16:952322. [PMID: 36188457 PMCID: PMC9523134 DOI: 10.3389/fnins.2022.952322] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 09/01/2022] [Indexed: 11/13/2022] Open
Abstract
IntroductionInfants with prenatal opioid exposure (POE) are shown to be at risk for poor long-term neurobehavioral and cognitive outcomes. Early detection of brain developmental alterations on neuroimaging could help in understanding the effect of opioids on the developing brain. Recent studies have shown altered brain functional network connectivity through the application of graph theoretical modeling, in infants with POE. In this study, we assess global brain structural connectivity through diffusion tensor imaging (DTI) metrics and apply graph theoretical modeling to brain structural connectivity in infants with POE.MethodsIn this prospective observational study in infants with POE and control infants, brain MRI including DTI was performed before completion of 3 months corrected postmenstrual age. Tractography was performed on the whole brain using a deterministic fiber tracking algorithm. Pairwise connectivity and network measure were calculated based on fiber count and fractional anisotropy (FA) values. Graph theoretical metrics were also derived.ResultsThere were 11 POE and 18 unexposed infants included in the analysis. Pairwise connectivity based on fiber count showed alterations in 32 connections. Pairwise connectivity based on FA values showed alterations in 24 connections. Connections between the right superior frontal gyrus and right paracentral lobule and between the right superior occipital gyrus and right fusiform gyrus were significantly different after adjusting for multiple comparisons between POE infants and unexposed controls. Additionally, alterations in graph theoretical network metrics were identified with fiber count and FA value derived tracts.ConclusionComparisons show significant differences in fiber count in two structural connections. The long-term clinical outcomes related to these findings may be assessed in longitudinal follow-up studies.
Collapse
Affiliation(s)
- Ramana V. Vishnubhotla
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Yi Zhao
- Department of Biostatistics and Health Data Science, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Qiuting Wen
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Jonathan Dietrich
- Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gregory M. Sokol
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Senthilkumar Sadhasivam
- Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh Medical Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Rupa Radhakrishnan
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, United States
- *Correspondence: Rupa Radhakrishnan,
| |
Collapse
|
19
|
Tong M, Ziplow JL, Mark P, de la Monte SM. Dietary Soy Prevents Alcohol-Mediated Neurocognitive Dysfunction and Associated Impairments in Brain Insulin Pathway Signaling in an Adolescent Rat Model. Biomolecules 2022; 12:676. [PMID: 35625605 PMCID: PMC9139005 DOI: 10.3390/biom12050676] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Alcohol-related brain degeneration is linked to cognitive-motor deficits and impaired signaling through insulin/insulin-like growth factor type 1 (IGF-1)-Akt pathways that regulate cell survival, plasticity, metabolism, and homeostasis. In addition, ethanol inhibits Aspartyl-asparaginyl-β-hydroxylase (ASPH), a downstream target of insulin/IGF-1-Akt signaling and an activator of Notch networks. Previous studies have suggested that early treatment with insulin sensitizers or dietary soy could reduce or prevent the long-term adverse effects of chronic ethanol feeding. OBJECTIVE The goal of this study was to assess the effects of substituting soy isolate for casein to prevent or reduce ethanol's adverse effects on brain structure and function. METHODS Young adolescent male and female Long Evans were used in a 4-way model as follows: Control + Casein; Ethanol + Casein; Control + Soy; Ethanol + Soy; Control = 0% ethanol; Ethanol = 26% ethanol (caloric). Rats were fed isocaloric diets from 4 to 11 weeks of age. During the final experimental week, the Morris Water maze test was used to assess spatial learning (4 consecutive days), after which the brains were harvested to measure the temporal lobe expression of the total phospho-Akt pathway and downstream target proteins using multiplex bead-based enzyme-linked immunosorbent assays (ELISAs) and duplex ELISAs. RESULTS Ethanol inhibited spatial learning and reduced brain weight, insulin signaling through Akt, and the expression of ASPH when standard casein was provided as the protein source. The substitution of soy isolate for casein largely abrogated the adverse effects of chronic ethanol feeding. In contrast, Notch signaling protein expression was minimally altered by ethanol or soy isolate. CONCLUSIONS These novel findings suggest that the insulin sensitizer properties of soy isolate may prevent some of the adverse effects that chronic ethanol exposure has on neurobehavioral function and insulin-regulated metabolic pathways in adolescent brains.
Collapse
Affiliation(s)
- Ming Tong
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Jason L. Ziplow
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Princess Mark
- Liver Research Center, Division of Gastroenterology, Department of Medicine, Rhode Island Hospital, Alpert Medical School of Brown University, Providence, RI 02808, USA; (M.T.); (J.L.Z.); (P.M.)
| | - Suzanne M. de la Monte
- Liver Research Center, Division of Gastroenterology, Departments of Medicine, Neurology and Pathology and Laboratory Medicine, Rhode Island Hospital, Providence, RI 02808, USA
- Women and Infants Hospital of Rhode Island, Alpert Medical School of Brown University, Providence VA Medical Center, Providence, RI 02808, USA
| |
Collapse
|