1
|
Ciaramidaro A, Toppi J, Vogel P, Freitag CM, Siniatchkin M, Astolfi L. Synergy of the mirror neuron system and the mentalizing system in a single brain and between brains during joint actions. Neuroimage 2024; 299:120783. [PMID: 39187218 DOI: 10.1016/j.neuroimage.2024.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 08/28/2024] Open
Abstract
Cooperative action involves the simulation of actions and their co-representation by two or more people. This requires the involvement of two complex brain systems: the mirror neuron system (MNS) and the mentalizing system (MENT), both of critical importance for successful social interaction. However, their internal organization and the potential synergy of both systems during joint actions (JA) are yet to be determined. The aim of this study was to examine the role and interaction of these two fundamental systems-MENT and MNS-during continuous interaction. To this hand, we conducted a multiple-brain connectivity analysis in the source domain during a motor cooperation task using high-density EEG dual-recordings providing relevant insights into the roles of MNS and MENT at the intra- and interbrain levels. In particular, the intra-brain analysis demonstrated the essential function of both systems during JA, as well as the crucial role played by single brain regions of both neural mechanisms during cooperative activities. Specifically, our intra-brain analysis revealed that both neural mechanisms are essential during Joint Action (JA), showing a solid connection between MNS and MENT and a central role of the single brain regions of both mechanisms during cooperative actions. Additionally, our inter-brain study revealed increased inter-subject connections involving the motor system, MENT and MNS. Thus, our findings show a mutual influence between two interacting agents, based on synchronization of MNS and MENT systems. Our results actually encourage more research into the still-largely unknown realm of inter-brain dynamics and contribute to expand the body of knowledge in social neuroscience.
Collapse
Affiliation(s)
- Angela Ciaramidaro
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Viale Allegri 9, 42121 Reggio Emilia, Italy; Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany.
| | - Jlenia Toppi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| | - Pascal Vogel
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Institute of Neurophysiology, Neuroscience Center, Goethe University, Heinrich-Hoffmann-Str. 7, 60528 Frankfurt/M, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany
| | - Michael Siniatchkin
- Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, University Hospital, Goethe-University, Deutschordenstraße 50, 60528 Frankfurt/Main, Germany; Clinic of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, University Hospital Aachen, RWTH Aachen University, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Laura Astolfi
- Department of Computer, Control, and Management Engineering, Univ. of Rome "Sapienza", Via Ariosto 25, 00185 Rome, Italy; Neuroelectrical Imaging and Brain Computer Interface Laboratory, Fondazione Santa Lucia IRCCS, Via Ardeatina 306/354, 00179 Rome, Italy
| |
Collapse
|
2
|
Cheng S, Wang J, Luo R, Hao N. Brain to brain musical interaction: A systematic review of neural synchrony in musical activities. Neurosci Biobehav Rev 2024; 164:105812. [PMID: 39029879 DOI: 10.1016/j.neubiorev.2024.105812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/02/2024] [Accepted: 07/13/2024] [Indexed: 07/21/2024]
Abstract
The use of hyperscanning technology has revealed the neural mechanisms underlying multi-person interaction in musical activities. However, there is currently a lack of integration among various research findings. This systematic review aims to provide a comprehensive understanding of the social dynamics and brain synchronization in music activities through the analysis of 32 studies. The findings illustrate a strong correlation between inter-brain synchronization (IBS) and various musical activities, with the frontal, central, parietal, and temporal lobes as the primary regions involved. The application of hyperscanning not only advances theoretical research but also holds practical significance in enhancing the effectiveness of music-based interventions in therapy and education. The review also utilizes Predictive Coding Models (PCM) to provide a new perspective for interpreting neural synchronization in music activities. To address the limitations of current research, future studies could integrate multimodal data, adopt novel technologies, use non-invasive techniques, and explore additional research directions.
Collapse
Affiliation(s)
- Shate Cheng
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Jiayi Wang
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ruiyi Luo
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| | - Ning Hao
- Shanghai Key Laboratory of Mental Health and Psychological Crisis Intervention, School of Psychology and Cognitive Science, East China Normal University, Shanghai 200062, China; Key Laboratory of Philosophy and Social Science of Anhui Province on Adolescent Mental Health and Crisis Intelligence Intervention, Hefei Normal University, Hefei 200062, China.
| |
Collapse
|
3
|
Glass D, Yuill N. Moving Together: Social Motor Synchrony in Autistic Peer Partners Depends on Partner and Activity Type. J Autism Dev Disord 2024; 54:2874-2890. [PMID: 37310543 PMCID: PMC11300670 DOI: 10.1007/s10803-023-05917-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/28/2023] [Indexed: 06/14/2023]
Abstract
Some suggest autistic people display impaired Interpersonal Synchrony. However, partners of different neurotypes can struggle to connect and empathise with one another. We used Motion Energy Analysis to examine Social Motor Synchrony (SMS) in familiar partners of the same neurotype: pairs of autistic and of neurotypical children. Partners played two shared tablet activities, one to support collaboration by facilitating engagement and other-awareness (Connect), and one with no additional design features to facilitate collaboration (Colours). The neurotypical group showed similar SMS to the autistic group in Colours but lower SMS in Connect. The autistic group displayed similar levels of SMS in each activity. Autistic children can synchronise to a similar, or greater, degree than neurotypical children when the social context and type of task are considered.
Collapse
Affiliation(s)
- Devyn Glass
- University of Sussex, Brighton, BN1 9QJ, England, UK.
| | - Nicola Yuill
- University of Sussex, Brighton, BN1 9QJ, England, UK
| |
Collapse
|
4
|
Varlet M, Grootswagers T. Measuring information alignment in hyperscanning research with representational analyses: moving beyond interbrain synchrony. Front Hum Neurosci 2024; 18:1385624. [PMID: 39118818 PMCID: PMC11306121 DOI: 10.3389/fnhum.2024.1385624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 07/16/2024] [Indexed: 08/10/2024] Open
Abstract
Hyperscanning, which enables the recording of brain activity from multiple individuals simultaneously, has been increasingly used to investigate the neuropsychological processes underpinning social interaction. Previous hyperscanning research has primarily focused on interbrain synchrony, demonstrating an enhanced alignment of brain waves across individuals during social interaction. However, using EEG hyperscanning simulations, we here show that interbrain synchrony has low sensitivity to information alignment across people. Surprisingly, interbrain synchrony remains largely unchanged despite manipulating whether two individuals are seeing same or different things at the same time. Furthermore, we show that hyperscanning recordings do contain indices of interpersonal information alignment and that they can be captured using representational analyses. These findings highlight major limitations of current hyperscanning research and offer a promising alternative for investigating interactive minds.
Collapse
Affiliation(s)
- Manuel Varlet
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
- School of Psychology, Western Sydney University, Sydney, NSW, Australia
| | - Tijl Grootswagers
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW, Australia
- School of Computer, Data and Mathematical Sciences, Western Sydney University, Sydney, NSW, Australia
| |
Collapse
|
5
|
Mohd Rashid MH, Ab Rani NS, Kannan M, Abdullah MW, Ab Ghani MA, Kamel N, Mustapha M. Emotion brain network topology in healthy subjects following passive listening to different auditory stimuli. PeerJ 2024; 12:e17721. [PMID: 39040935 PMCID: PMC11262303 DOI: 10.7717/peerj.17721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 06/19/2024] [Indexed: 07/24/2024] Open
Abstract
A large body of research establishes the efficacy of musical intervention in many aspects of physical, cognitive, communication, social, and emotional rehabilitation. However, the underlying neural mechanisms for musical therapy remain elusive. This study aimed to investigate the potential neural correlates of musical therapy, focusing on the changes in the topology of emotion brain network. To this end, a Bayesian statistical approach and a cross-over experimental design were employed together with two resting-state magnetoencephalography (MEG) as controls. MEG recordings of 30 healthy subjects were acquired while listening to five auditory stimuli in random order. Two resting-state MEG recordings of each subject were obtained, one prior to the first stimulus (pre) and one after the final stimulus (post). Time series at the level of brain regions were estimated using depth-weighted minimum norm estimation (wMNE) source reconstruction method and the functional connectivity between these regions were computed. The resultant connectivity matrices were used to derive two topological network measures: transitivity and global efficiency which are important in gauging the functional segregation and integration of brain network respectively. The differences in these measures between pre- and post-stimuli resting MEG were set as the equivalence regions. We found that the network measures under all auditory stimuli were equivalent to the resting state network measures in all frequency bands, indicating that the topology of the functional brain network associated with emotional regulation in healthy subjects remains unchanged following these auditory stimuli. This suggests that changes in the emotion network topology may not be the underlying neural mechanism of musical therapy. Nonetheless, further studies are required to explore the neural mechanisms of musical interventions especially in the populations with neuropsychiatric disorders.
Collapse
Affiliation(s)
- Muhammad Hakimi Mohd Rashid
- Department of Basic Medical Sciences, Kulliyyah of Pharmacy, International Islamic University, Kuantan, Pahang, Malaysia
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Nur Syairah Ab Rani
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Mohammed Kannan
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
- Department of Anatomy, Faculty of Medicine, Al Neelain University, Khartoum, Khartoum, Sudan
| | - Mohd Waqiyuddin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| | - Muhammad Amiri Ab Ghani
- Jabatan Al-Quran & Hadis, Kolej Islam Antarabangsa Sultan Ismail Petra, Nilam Puri, Kota Bharu, Kelantan, Malaysia
| | - Nidal Kamel
- Centre for Intelligent Signal & Imaging Research (CISIR), Electrical & Electronic Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak, Malaysia
| | - Muzaimi Mustapha
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian, Kota Bharu, Kelantan, Malaysia
| |
Collapse
|
6
|
Abalde SF, Rigby A, Keller PE, Novembre G. A framework for joint music making: Behavioral findings, neural processes, and computational models. Neurosci Biobehav Rev 2024; 167:105816. [PMID: 39032841 DOI: 10.1016/j.neubiorev.2024.105816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 07/15/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Across different epochs and societies, humans occasionally gather to jointly make music. This universal form of collective behavior is as fascinating as it is fragmentedly understood. As the interest in joint music making (JMM) rapidly grows, we review the state-of-the-art of this emerging science, blending behavioral, neural, and computational contributions. We present a conceptual framework synthesizing research on JMM within four components. The framework is centered upon interpersonal coordination, a crucial requirement for JMM. The other components imply the influence of individuals' (past) experience, (current) social factors, and (future) goals on real-time coordination. Our aim is to promote the development of JMM research by organizing existing work, inspiring new questions, and fostering accessibility for researchers belonging to other research communities.
Collapse
Affiliation(s)
- Sara F Abalde
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy; The Open University Affiliated Research Centre at the Istituto Italiano di Tecnologia, Italy.
| | - Alison Rigby
- Neurosciences Graduate Program, University of California, San Diego, USA
| | - Peter E Keller
- Center for Music in the Brain, Aarhus University, Denmark; Department of Clinical Medicine, Center for Music in the Brain, Department of Clinical Medicine, Aarhus University, Denmark; The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Australia
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology, Rome, Italy
| |
Collapse
|
7
|
Wang H, Li L. Effects of two-person synchronized cycling exercise on interpersonal cooperation: A near-infrared spectroscopy hyperscanning study. Int J Clin Health Psychol 2024; 24:100492. [PMID: 39308780 PMCID: PMC11416475 DOI: 10.1016/j.ijchp.2024.100492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/04/2024] [Indexed: 09/25/2024] Open
Abstract
Objective Although psychological research indicating the synchronous activities can promote interpersonal cooperation, thus far there is no direct evidence that two-person synchronous exercise effectively enhances interpersonal cooperative behaviors in Physical exercise field. This suggests that, although synchronization phenomenon is widespread in sports and is considered a potential tool for enhancing teamwork, its specific effects and functioning mechanisms still need to be clarified by further scientific research. This study intends to use two-person synchronized cycling exercise to investigate the synchronized exercise effect on interpersonal cooperative behavior and its underlying neural mechanisms. Methods Eighty college students without regular exercise habits will be randomly assigned to the experimental group (10 male dyads and 10 female dyads) and the control group (10 male dyads and 10 female dyads). During the experiment, dyads in the experimental group performed a 30-minute synchronized cycling exercise with synchronized pedaling movements; dyads in the control group rested sedentary in the same environment for 30 minutes. Interpersonal cooperative behavior was assessed with the Prisoner's Dilemma task, and the interpersonal neural synchronization(INS) data were collected in the prefrontal cortex using near-infrared hyperscanning. Results This study compared behavior and brain activity before and after synchronous exercise. Behavioral results revealed that, compared to pre-exercise, dyads in the post-exercise had higher average cooperation rates, higher cooperation efficiency and shorter cooperation response times. Compared to post-sedentary, dyads in the post-exercise had shorter cooperation response times and higher cooperation efficiency. Furthermore, brain data showed that,compared to pre-exercise, dyads in the post-exercise had stronger INS in the dorsolateral prefrontal cortex(DLPFC), whereas the dyads in the post-exercise had stronge INS in the DLPFC compared to post-sedentary. After controlling for dyads' anxiety and mood states, this study also found a marginally significant negative correlation between INS differences in the left DLPFC and cooperation response time differences. Conclusions This research confirms, from both behavioral and neuroscience perspectives, that one synchronization cycle can significantly enhance interpersonal cooperative behavior, and this positive effect is closely associated with increased INS in the left DLPFC. This study provides new insights into understanding how positive interactive exercises promote interpersonal cooperation through specific neural mechanisms.
Collapse
Affiliation(s)
- Huiling Wang
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| | - Lin Li
- Key Laboratory of Adolescent Health Assessment and Exercise Intervention, Ministry of Education, East China Normal University, Shanghai, 200241, China
- College of Physical Education and Health, East China Normal University, Shanghai, 200241, China
| |
Collapse
|
8
|
Zamm A, Loehr JD, Vesper C, Konvalinka I, Kappel SL, Heggli OA, Vuust P, Keller PE. A practical guide to EEG hyperscanning in joint action research: from motivation to implementation. Soc Cogn Affect Neurosci 2024; 19:nsae026. [PMID: 38584414 PMCID: PMC11086947 DOI: 10.1093/scan/nsae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/31/2023] [Accepted: 03/15/2024] [Indexed: 04/09/2024] Open
Abstract
Developments in cognitive neuroscience have led to the emergence of hyperscanning, the simultaneous measurement of brain activity from multiple people. Hyperscanning is useful for investigating social cognition, including joint action, because of its ability to capture neural processes that occur within and between people as they coordinate actions toward a shared goal. Here, we provide a practical guide for researchers considering using hyperscanning to study joint action and seeking to avoid frequently raised concerns from hyperscanning skeptics. We focus specifically on Electroencephalography (EEG) hyperscanning, which is widely available and optimally suited for capturing fine-grained temporal dynamics of action coordination. Our guidelines cover questions that are likely to arise when planning a hyperscanning project, ranging from whether hyperscanning is appropriate for answering one's research questions to considerations for study design, dependent variable selection, data analysis and visualization. By following clear guidelines that facilitate careful consideration of the theoretical implications of research design choices and other methodological decisions, joint action researchers can mitigate interpretability issues and maximize the benefits of hyperscanning paradigms.
Collapse
Affiliation(s)
- Anna Zamm
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Janeen D Loehr
- Department of Psychology and Health Studies, University of Saskatchewan, Saskatoon, SK S7N 5A5, Canada
| | - Cordula Vesper
- Department of Linguistics, Cognitive Science and Semiotics, Aarhus University, Aarhus 8000, Denmark
- Interacting Minds Center, Aarhus University, Aarhus 8000, Denmark
| | - Ivana Konvalinka
- Section for Cognitive Systems, DTU Compute, Technical University of Denmark, Kongens Lyngby DK-2800, Denmark
| | - Simon L Kappel
- Department of Electrical and Computer Engineering, Aarhus University, Aarhus N 8200, Denmark
| | - Ole A Heggli
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
| | - Peter E Keller
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music Aarhus/Aalborg, Aarhus 8000, Denmark
- MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Penrith, New South Wales 2751, Australia
| |
Collapse
|
9
|
Bánki A, Köster M, Cichy RM, Hoehl S. Communicative signals during joint attention promote neural processes of infants and caregivers. Dev Cogn Neurosci 2024; 65:101321. [PMID: 38061133 PMCID: PMC10754706 DOI: 10.1016/j.dcn.2023.101321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/13/2023] [Accepted: 11/04/2023] [Indexed: 01/01/2024] Open
Abstract
Communicative signals such as eye contact increase infants' brain activation to visual stimuli and promote joint attention. Our study assessed whether communicative signals during joint attention enhance infant-caregiver dyads' neural responses to objects, and their neural synchrony. To track mutual attention processes, we applied rhythmic visual stimulation (RVS), presenting images of objects to 12-month-old infants and their mothers (n = 37 dyads), while we recorded dyads' brain activity (i.e., steady-state visual evoked potentials, SSVEPs) with electroencephalography (EEG) hyperscanning. Within dyads, mothers either communicatively showed the images to their infant or watched the images without communicative engagement. Communicative cues increased infants' and mothers' SSVEPs at central-occipital-parietal, and central electrode sites, respectively. Infants showed significantly more gaze behaviour to images during communicative engagement. Dyadic neural synchrony (SSVEP amplitude envelope correlations, AECs) was not modulated by communicative cues. Taken together, maternal communicative cues in joint attention increase infants' neural responses to objects, and shape mothers' own attention processes. We show that communicative cues enhance cortical visual processing, thus play an essential role in social learning. Future studies need to elucidate the effect of communicative cues on neural synchrony during joint attention. Finally, our study introduces RVS to study infant-caregiver neural dynamics in social contexts.
Collapse
Affiliation(s)
- Anna Bánki
- University of Vienna, Faculty of Psychology, Vienna, Austria.
| | - Moritz Köster
- University of Regensburg, Institute for Psychology, Regensburg, Germany; Freie Universität Berlin, Faculty of Education and Psychology, Berlin, Germany
| | | | - Stefanie Hoehl
- University of Vienna, Faculty of Psychology, Vienna, Austria
| |
Collapse
|
10
|
Høffding S, Bishop L. Tightness and looseness: Where to find it and how to measure it? Phys Life Rev 2023; 47:84-86. [PMID: 37742437 DOI: 10.1016/j.plrev.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/26/2023]
Affiliation(s)
- Simon Høffding
- Department of Sports and Biomechanics, University of Southern Denmark, Denmark; RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, Norway.
| | - Laura Bishop
- RITMO Centre for Interdisciplinary Studies in Rhythm, Time, and Motion, University of Oslo, Norway; Department of Musicology, University of Oslo, Norway
| |
Collapse
|
11
|
Hakim U, De Felice S, Pinti P, Zhang X, Noah JA, Ono Y, Burgess PW, Hamilton A, Hirsch J, Tachtsidis I. Quantification of inter-brain coupling: A review of current methods used in haemodynamic and electrophysiological hyperscanning studies. Neuroimage 2023; 280:120354. [PMID: 37666393 DOI: 10.1016/j.neuroimage.2023.120354] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/06/2023] Open
Abstract
Hyperscanning is a form of neuroimaging experiment where the brains of two or more participants are imaged simultaneously whilst they interact. Within the domain of social neuroscience, hyperscanning is increasingly used to measure inter-brain coupling (IBC) and explore how brain responses change in tandem during social interaction. In addition to cognitive research, some have suggested that quantification of the interplay between interacting participants can be used as a biomarker for a variety of cognitive mechanisms aswell as to investigate mental health and developmental conditions including schizophrenia, social anxiety and autism. However, many different methods have been used to quantify brain coupling and this can lead to questions about comparability across studies and reduce research reproducibility. Here, we review methods for quantifying IBC, and suggest some ways moving forward. Following the PRISMA guidelines, we reviewed 215 hyperscanning studies, across four different brain imaging modalities: functional near-infrared spectroscopy (fNIRS), functional magnetic resonance (fMRI), electroencephalography (EEG) and magnetoencephalography (MEG). Overall, the review identified a total of 27 different methods used to compute IBC. The most common hyperscanning modality is fNIRS, used by 119 studies, 89 of which adopted wavelet coherence. Based on the results of this literature survey, we first report summary statistics of the hyperscanning field, followed by a brief overview of each signal that is obtained from each neuroimaging modality used in hyperscanning. We then discuss the rationale, assumptions and suitability of each method to different modalities which can be used to investigate IBC. Finally, we discuss issues surrounding the interpretation of each method.
Collapse
Affiliation(s)
- U Hakim
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom.
| | - S De Felice
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom; Department of Psychology, University of Cambridge, United Kingdom
| | - P Pinti
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Centre for Brain and Cognitive Development, Birkbeck, University of London, London, United Kingdom
| | - X Zhang
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - J A Noah
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States
| | - Y Ono
- Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, Kawasaki, Kanagawa, Japan
| | - P W Burgess
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - A Hamilton
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - J Hirsch
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom; Department of Psychiatry, Yale School of Medicine, New Haven, CT, United States; Departments of Neuroscience and Comparative Medicine, Yale School of Medicine, New Haven, CT, United States; Yale University, Wu Tsai Institute, New Haven, CT, United States
| | - I Tachtsidis
- Department of Medical Physics and Biomedical Engineering, University College London, Malet Place Engineering Building, Gower Street, London WC1E 6BT, United Kingdom
| |
Collapse
|
12
|
Izen SC, Cassano-Coleman RY, Piazza EA. Music as a window into real-world communication. Front Psychol 2023; 14:1012839. [PMID: 37496799 PMCID: PMC10368476 DOI: 10.3389/fpsyg.2023.1012839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/06/2023] [Indexed: 07/28/2023] Open
Abstract
Communication has been studied extensively in the context of speech and language. While speech is tremendously effective at transferring ideas between people, music is another communicative mode that has a unique power to bring people together and transmit a rich tapestry of emotions, through joint music-making and listening in a variety of everyday contexts. Research has begun to examine the behavioral and neural correlates of the joint action required for successful musical interactions, but it has yet to fully account for the rich, dynamic, multimodal nature of musical communication. We review the current literature in this area and propose that naturalistic musical paradigms will open up new ways to study communication more broadly.
Collapse
|
13
|
Farrell S, Valdes AL. 'The Mind' promotes brain synchronization: an ecological evaluation of brain synchronization in co-operative tasks. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082864 DOI: 10.1109/embc40787.2023.10340212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
This paper presents an ecologically valid approach for using EEG hyperscanning methods to assess levels of interbrain synchrony (IBS) in teams during co-operative tasks. We employ a card-based task in an out-of-the-lab setting to evaluate levels of neural synchrony between team members completing a co-operative task. We also examine the interplay between the recorded synchronization levels and the collective performance of the team.Clinical Relevance- This study provides a simplistic and ecologically valid setup with potential to bring a better understanding of brain synchronization in clinical settings where co-operation would improve outcomes, such as home care facilities and memory clinics.
Collapse
|
14
|
Gugnowska K, Novembre G, Kohler N, Villringer A, Keller PE, Sammler D. Endogenous sources of interbrain synchrony in duetting pianists. Cereb Cortex 2022; 32:4110-4127. [PMID: 35029645 PMCID: PMC9476614 DOI: 10.1093/cercor/bhab469] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 11/12/2022] Open
Abstract
When people interact with each other, their brains synchronize. However, it remains unclear whether interbrain synchrony (IBS) is functionally relevant for social interaction or stems from exposure of individual brains to identical sensorimotor information. To disentangle these views, the current dual-EEG study investigated amplitude-based IBS in pianists jointly performing duets containing a silent pause followed by a tempo change. First, we manipulated the similarity of the anticipated tempo change and measured IBS during the pause, hence, capturing the alignment of purely endogenous, temporal plans without sound or movement. Notably, right posterior gamma IBS was higher when partners planned similar tempi, it predicted whether partners' tempi matched after the pause, and it was modulated only in real, not in surrogate pairs. Second, we manipulated the familiarity with the partner's actions and measured IBS during joint performance with sound. Although sensorimotor information was similar across conditions, gamma IBS was higher when partners were unfamiliar with each other's part and had to attend more closely to the sound of the performance. These combined findings demonstrate that IBS is not merely an epiphenomenon of shared sensorimotor information but can also hinge on endogenous, cognitive processes crucial for behavioral synchrony and successful social interaction.
Collapse
Affiliation(s)
- Katarzyna Gugnowska
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Giacomo Novembre
- Neuroscience of Perception and Action Lab, Italian Institute of Technology (IIT), Rome 00161, Italy
| | - Natalie Kohler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
| | - Peter E Keller
- Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark
- The MARCS Institute for Brain, Behaviour and Development, Western Sydney University, Sydney, NSW 2751, Australia
| | - Daniela Sammler
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany
- Research Group Neurocognition of Music and Language, Max Planck Institute for Empirical Aesthetics, Frankfurt am Main 60322, Germany
| |
Collapse
|