1
|
Patel J, Schöttner M, Tarun A, Tourbier S, Alemán-Gómez Y, Hagmann P, Bolton TAW. Modeling the impact of MRI acquisition bias on structural connectomes: Harmonizing structural connectomes. Netw Neurosci 2024; 8:623-652. [PMID: 39355442 PMCID: PMC11340995 DOI: 10.1162/netn_a_00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/26/2024] [Indexed: 10/03/2024] Open
Abstract
One way to increase the statistical power and generalizability of neuroimaging studies is to collect data at multiple sites or merge multiple cohorts. However, this usually comes with site-related biases due to the heterogeneity of scanners and acquisition parameters, negatively impacting sensitivity. Brain structural connectomes are not an exception: Being derived from T1-weighted and diffusion-weighted magnetic resonance images, structural connectivity is impacted by differences in imaging protocol. Beyond minimizing acquisition parameter differences, removing bias with postprocessing is essential. In this work we create, from the exhaustive Human Connectome Project Young Adult dataset, a resampled dataset of different b-values and spatial resolutions, modeling a cohort scanned across multiple sites. After demonstrating the statistical impact of acquisition parameters on connectivity, we propose a linear regression with explicit modeling of b-value and spatial resolution, and validate its performance on separate datasets. We show that b-value and spatial resolution affect connectivity in different ways and that acquisition bias can be reduced using a linear regression informed by the acquisition parameters while retaining interindividual differences and hence boosting fingerprinting performance. We also demonstrate the generative potential of our model, and its generalization capability in an independent dataset reflective of typical acquisition practices in clinical settings.
Collapse
Affiliation(s)
- Jagruti Patel
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Mikkel Schöttner
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Anjali Tarun
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Sebastien Tourbier
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Yasser Alemán-Gómez
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Patric Hagmann
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| | - Thomas A W Bolton
- Department of Radiology, Lausanne University Hospital and University of Lausanne (CHUV-UNIL), Lausanne, Switzerland
| |
Collapse
|
2
|
Dimitriadis SI. ℛSCZ: A Riemannian schizophrenia diagnosis framework based on the multiplexity of EEG-based dynamic functional connectivity patterns. Comput Biol Med 2024; 180:108862. [PMID: 39068901 DOI: 10.1016/j.compbiomed.2024.108862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/30/2024] [Accepted: 07/06/2024] [Indexed: 07/30/2024]
Abstract
Abnormal electrophysiological (EEG) activity has been largely reported in schizophrenia (SCZ). In the last decade, research has focused to the automatic diagnosis of SCZ via the investigation of an EEG aberrant activity and connectivity linked to this mental disorder. These studies followed various preprocessing steps of EEG activity focusing on frequency-dependent functional connectivity brain network (FCBN) construction disregarding the topological dependency among edges. FCBN belongs to a family of symmetric positive definite (SPD) matrices forming the Riemannian manifold. Due to its unique geometric properties, the whole analysis of FCBN can be performed on the Riemannian geometry of the SPD space. The advantage of the analysis of FCBN on the SPD space is that it takes into account all the pairwise interdependencies as a whole. However, only a few studies have adopted a FCBN analysis on the SPD manifold, while no study exists on the analysis of dynamic FCBN (dFCBN) tailored to SCZ. In the present study, I analyzed two open EEG-SCZ datasets under a Riemannian geometry of SPD matrices for the dFCBN analysis proposing also a multiplexity index that quantifies the associations of multi-frequency brainwave patterns. I adopted a machine learning procedure employing a leave-one-subject-out cross-validation (LOSO-CV) using snapshots of dFCBN from (N-1) subjects to train a battery of classifiers. Each classifier operated in the inter-subject dFCBN distances of sample covariance matrices (SCMs) following a rhythm-dependent decision and a multiplex-dependent one. The proposed ℛSCZ decoder supported both the Riemannian geometry of SPD and the multiplexity index DC reaching an absolute accuracy (100 %) in both datasets in the virtual default mode network (DMN) source space.
Collapse
Affiliation(s)
- Stavros I Dimitriadis
- Department of Clinical Psychology and Psychobiology, University of Barcelona, Passeig Vall D'Hebron 171, 08035, Barcelona, Spain; Institut de Neurociencies, University of Barcelona, Municipality of Horta-Guinardó, 08035, Barcelona, Spain; Integrative Neuroimaging Lab, Thessaloniki, 55133, Makedonia, Greece; Neuroinformatics Group, Cardiff University Brain Research Imaging Centre (CUBRIC), School of Psychology, College of Biomedical and Life Sciences, Cardiff University, Maindy Rd, CF24 4HQ, Cardiff, Wales, United Kingdom.
| |
Collapse
|
3
|
Moghaddam M, Dzemidzic M, Guerrero D, Liu M, Alessi J, Plawecki MH, Harezlak J, Kareken DA, Goñi J. Tangent space functional reconfigurations in individuals at risk for alcohol use disorder. ARXIV 2024:arXiv:2405.15905v2. [PMID: 38827458 PMCID: PMC11142326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Human brain function dynamically adjusts to ever-changing stimuli from the external environment. Studies characterizing brain functional reconfiguration are nevertheless scarce. Here we present a principled mathematical framework to quantify brain functional reconfiguration when engaging and disengaging from a stop signal task (SST). We apply tangent space projection (a Riemannian geometry mapping technique) to transform functional connectomes (FCs) of 54 participants and quantify functional reconfiguration using the correlation distance of the resulting tangent-FCs. Our goal was to compare functional reconfigurations in individuals at risk for alcohol use disorder (AUD). We hypothesized that functional reconfigurations when transitioning to/from a task would be influenced by family history of alcohol use disorder (FHA) and other AUD risk factors. Multilinear regression models showed that engaging and disengaging functional reconfiguration were associated with FHA and recent drinking. When engaging in the SST after a rest condition, functional reconfiguration was negatively associated with recent drinking, while functional reconfiguration when disengaging from the SST was negatively associated with FHA. In both models, several other factors contributed to the functional reconfiguration. This study demonstrates that tangent-FCs can characterize task-induced functional reconfiguration, and that it is related to AUD risk.
Collapse
Affiliation(s)
- Mahdi Moghaddam
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Daniel Guerrero
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Mintao Liu
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
| | - Jonathan Alessi
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Martin H Plawecki
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Jaroslaw Harezlak
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David A Kareken
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN USA
| | - Joaquín Goñi
- School of Industrial Engineering, Purdue University, West-Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West-Lafayette, IN, USA
- Indiana Alcohol Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West-Lafayette, IN, USA
| |
Collapse
|
4
|
Papo D, Buldú JM. Does the brain behave like a (complex) network? I. Dynamics. Phys Life Rev 2024; 48:47-98. [PMID: 38145591 DOI: 10.1016/j.plrev.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/27/2023]
Abstract
Graph theory is now becoming a standard tool in system-level neuroscience. However, endowing observed brain anatomy and dynamics with a complex network structure does not entail that the brain actually works as a network. Asking whether the brain behaves as a network means asking whether network properties count. From the viewpoint of neurophysiology and, possibly, of brain physics, the most substantial issues a network structure may be instrumental in addressing relate to the influence of network properties on brain dynamics and to whether these properties ultimately explain some aspects of brain function. Here, we address the dynamical implications of complex network, examining which aspects and scales of brain activity may be understood to genuinely behave as a network. To do so, we first define the meaning of networkness, and analyse some of its implications. We then examine ways in which brain anatomy and dynamics can be endowed with a network structure and discuss possible ways in which network structure may be shown to represent a genuine organisational principle of brain activity, rather than just a convenient description of its anatomy and dynamics.
Collapse
Affiliation(s)
- D Papo
- Department of Neuroscience and Rehabilitation, Section of Physiology, University of Ferrara, Ferrara, Italy; Center for Translational Neurophysiology, Fondazione Istituto Italiano di Tecnologia, Ferrara, Italy.
| | - J M Buldú
- Complex Systems Group & G.I.S.C., Universidad Rey Juan Carlos, Madrid, Spain
| |
Collapse
|
5
|
Honnorat N, Seshadri S, Killiany R, Blangero J, Glahn DC, Fox P, Habes M. Riemannian frameworks for the harmonization of resting-state functional MRI scans. Med Image Anal 2024; 91:103043. [PMID: 38029722 PMCID: PMC11157681 DOI: 10.1016/j.media.2023.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 11/03/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
Magnetic Resonance Imaging provides unprecedented images of the brain. Unfortunately, scanners and acquisition protocols can significantly impact MRI scans. The development of statistical methods able to reduce this variability without altering the relevant information in the scans, often coined harmonization methods, has been the topic of an increasing research effort supported by the recent growth of publicly available neuroimaging data sets and new possibilities for combining them to achieve greater statistical power. In this work, we focus on the challenges specifically raised by the harmonization of resting-state functional MRI scans. We propose to harmonize resting-state fMRI scans by reducing the impact of covariates such as scanner differences and scanning protocols on their associated functional connectomes and then propagating the changes back to the rs-fMRI time series. We use Riemannian geometric frameworks to preserve the mathematical properties of functional connectomes during their harmonization, and we demonstrate how state-of-the-art harmonization methods can be embedded within these frameworks to reduce covariates effects while preserving the relevant clinical information associated with aging or brain disorders. During our experiments, a large set of synthetic data was generated and processed to compare eighty variants of the proposed approach. The framework achieving the best harmonization was then applied to three low-dimensional data sets made of 712 sets of fMRI time series provided by the ABIDE consortium and two high-dimensional data sets obtained by processing 1527 rs-fMRI scans provided by the Human Connectome Project, the Framingham Heart Study and the Genetics of Brain Structure and Function study. These experiments established that our new framework could successfully harmonize low-dimensional connectomes and voxelwise functional time series and confirmed the need for preserving connectomes properties during their harmonization.
Collapse
Affiliation(s)
- Nicolas Honnorat
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - Sudha Seshadri
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ron Killiany
- Center for Biomedical Imaging, Boston University Medical School, Boston, MA, USA
| | - John Blangero
- South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley, Brownsville, TX, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Peter Fox
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mohamad Habes
- Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
6
|
Abbas K, Liu M, Wang M, Duong-Tran D, Tipnis U, Amico E, Kaplan AD, Dzemidzic M, Kareken D, Ances BM, Harezlak J, Goñi J. Tangent functional connectomes uncover more unique phenotypic traits. iScience 2023; 26:107624. [PMID: 37694156 PMCID: PMC10483051 DOI: 10.1016/j.isci.2023.107624] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 07/31/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Functional connectomes (FCs) containing pairwise estimations of functional couplings between pairs of brain regions are commonly represented by correlation matrices. As symmetric positive definite matrices, FCs can be transformed via tangent space projections, resulting into tangent-FCs. Tangent-FCs have led to more accurate models predicting brain conditions or aging. Motivated by the fact that tangent-FCs seem to be better biomarkers than FCs, we hypothesized that tangent-FCs have also a higher fingerprint. We explored the effects of six factors: fMRI condition, scan length, parcellation granularity, reference matrix, main-diagonal regularization, and distance metric. Our results showed that identification rates are systematically higher when using tangent-FCs across the "fingerprint gradient" (here including test-retest, monozygotic and dizygotic twins). Highest identification rates were achieved when minimally (0.01) regularizing FCs while performing tangent space projection using Riemann reference matrix and using correlation distance to compare the resulting tangent-FCs. Such configuration was validated in a second dataset (resting-state).
Collapse
Affiliation(s)
- Kausar Abbas
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Mintao Liu
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Michael Wang
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
| | - Duy Duong-Tran
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Mathematics, United States Naval Academy, Annapolis, MD, USA
| | - Uttara Tipnis
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Enrico Amico
- Institute of Bioengineering, Center for Neuroprosthetics, Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva (UNIGE), Geneva, Switzerland
| | - Alan D. Kaplan
- Lawrence Livermore National Laboratory, Livermore, CA, USA
| | - Mario Dzemidzic
- Department of Neurology, Indiana University School of Medicine, Indiana Alcohol Research Center, Indianapolis, IN, USA
| | - David Kareken
- Department of Neurology, Indiana University School of Medicine, Indiana Alcohol Research Center, Indianapolis, IN, USA
| | - Beau M. Ances
- Department of Neurology, Washington University in Saint Louis, School of Medicine, St Louis, MO, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University, Bloomington, IN, USA
| | - Joaquín Goñi
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|