1
|
Francesconi W, Olivera-Pasilio V, Berton F, Olson SL, Chudoba R, Monroy LM, Krabichler Q, Grinevich V, Dabrowska J. Like sisters but not twins - vasopressin and oxytocin excite BNST neurons via cell type-specific expression of oxytocin receptor to reduce anxious arousal. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611656. [PMID: 39282380 PMCID: PMC11398521 DOI: 10.1101/2024.09.06.611656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Interoceptive signals dynamically interact with the environment to shape appropriate defensive behaviors. Hypothalamic hormones arginine-vasopressin (AVP) and oxytocin (OT) regulate physiological states, including water and electrolyte balance, circadian rhythmicity, and defensive behaviors. Both AVP and OT neurons project to dorsolateral bed nucleus of stria terminalis (BNSTDL), which expresses oxytocin receptors (OTR) and vasopressin receptors and mediates fear responses. However, understanding the integrated role of neurohypophysial hormones is complicated by the cross-reactivity of AVP and OT and their mutual receptor promiscuity. Here, we provide evidence that the effects of neurohypophysial hormones on BNST excitability are driven by input specificity and cell type-specific receptor selectivity. We show that OTR-expressing BNSTDL neurons, excited by hypothalamic OT and AVP inputs via OTR, play a major role in regulating BNSTDL excitability, overcoming threat avoidance, and reducing threat-elicited anxious arousal. Therefore, OTR-BNSTDL neurons are perfectly suited to drive the dynamic interactions balancing external threat risk and physiological needs.
Collapse
Affiliation(s)
- Walter Francesconi
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Valentina Olivera-Pasilio
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Center for Psychiatric Neuroscience, Department of Psychiatry and Behavioral Sciences, Northwestern University, Chicago, IL, 60611, USA
| | - Fulvia Berton
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Susan L. Olson
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Rachel Chudoba
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| | - Lorena M. Monroy
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- Neuroscience Program, Lake Forest College, Lake Forest, IL, 60045, USA
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, German Center for Mental Health (DZPG), Medical Faculty Mannheim, Heidelberg University, 68159 Mannheim, Germany
| | - Joanna Dabrowska
- Center for Neurobiology of Stress Resilience and Psychiatric Disorders, Discipline of Cellular and Molecular Pharmacology, The Chicago Medical School, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
- School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064, USA
| |
Collapse
|
2
|
Giovanniello JR, Paredes N, Wiener A, Ramírez-Armenta K, Oragwam C, Uwadia HO, Yu AL, Lim K, Pimenta JS, Vilchez GE, Nnamdi G, Wang A, Sehgal M, Reis FM, Sias AC, Silva AJ, Adhikari A, Malvaez M, Wassum KM. A dual-pathway architecture enables chronic stress to disrupt agency and promote habit formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.03.560731. [PMID: 37873076 PMCID: PMC10592885 DOI: 10.1101/2023.10.03.560731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Chronic stress can change how we learn and, thus, how we make decisions. Here we investigated the neuronal circuit mechanisms that enable this. Using a multifaceted systems neuroscience approach in male and female mice, we reveal a dual pathway, amygdala-striatal neuronal circuit architecture by which a recent history of chronic stress disrupts the action-outcome learning underlying adaptive agency and promotes the formation of inflexible habits. We found that the basolateral amygdala projection to the dorsomedial striatum is activated by rewarding events to support the action-outcome learning needed for flexible, goal-directed decision making. Chronic stress attenuates this to disrupt action-outcome learning and, therefore, agency. Conversely, the central amygdala projection to the dorsomedial striatum mediates habit formation. Following stress this pathway is progressively recruited to learning to promote the premature formation of inflexible habits. Thus, stress exerts opposing effects on two amygdala-striatal pathways to disrupt agency and promote habit. These data provide neuronal circuit insights into how chronic stress shapes learning and decision making, and help understand how stress can lead to the disrupted decision making and pathological habits that characterize substance use disorders and mental health conditions.
Collapse
Affiliation(s)
| | | | - Anna Wiener
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | | | | | - Abigail L Yu
- Dept. of Physiology, UCLA, Los Angeles, CA 90095
| | - Kayla Lim
- Dept. of Biological Chemistry, UCLA, Los Angeles, CA 90095
| | | | | | - Gift Nnamdi
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alicia Wang
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Megha Sehgal
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | | | - Ana C Sias
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
| | - Alcino J Silva
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | - Avishek Adhikari
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Kate M Wassum
- Dept. of Psychology, UCLA, Los Angeles, CA 90095
- Brain Research Institute, UCLA, Los Angeles, CA 90095, USA
- Integrative Center for Learning and Memory, University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Kiritoshi T, Yakhnitsa V, Singh S, Wilson TD, Chaudhry S, Neugebauer B, Torres-Rodriguez JM, Lin JL, Carrasquillo Y, Neugebauer V. Cells and circuits for amygdala neuroplasticity in the transition to chronic pain. Cell Rep 2024; 43:114669. [PMID: 39178115 PMCID: PMC11473139 DOI: 10.1016/j.celrep.2024.114669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/04/2024] [Accepted: 08/06/2024] [Indexed: 08/25/2024] Open
Abstract
Maladaptive plasticity is linked to the chronification of diseases such as pain, but the transition from acute to chronic pain is not well understood mechanistically. Neuroplasticity in the central nucleus of the amygdala (CeA) has emerged as a mechanism for sensory and emotional-affective aspects of injury-induced pain, although evidence comes from studies conducted almost exclusively in acute pain conditions and agnostic to cell type specificity. Here, we report time-dependent changes in genetically distinct and projection-specific CeA neurons in neuropathic pain. Hyperexcitability of CRF projection neurons and synaptic plasticity of parabrachial (PB) input at the acute stage shifted to hyperexcitability without synaptic plasticity in non-CRF neurons at the chronic phase. Accordingly, chemogenetic inhibition of the PB→CeA pathway mitigated pain-related behaviors in acute, but not chronic, neuropathic pain. Cell-type-specific temporal changes in neuroplasticity provide neurobiological evidence for the clinical observation that chronic pain is not simply the prolonged persistence of acute pain.
Collapse
Affiliation(s)
- Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA
| | - Sudhuman Singh
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Torri D Wilson
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Sarah Chaudhry
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Benjamin Neugebauer
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jeitzel M Torres-Rodriguez
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jenny L Lin
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yarimar Carrasquillo
- National Center for Complementary and Integrative Health, National Institutes of Health, Bethesda, MD 20892, USA; National Institute on Drug Abuse, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, School of Medicine, Lubbock, TX 79430, USA.
| |
Collapse
|
4
|
Cruz B, Vozella V, Borgonetti V, Bullard R, Bianchi PC, Kirson D, Bertotto LB, Bajo M, Vlkolinsky R, Messing RO, Zorrilla EP, Roberto M. Chemogenetic inhibition of central amygdala CRF-expressing neurons decreases alcohol intake but not trauma-related behaviors in a rat model of post-traumatic stress and alcohol use disorder. Mol Psychiatry 2024; 29:2611-2621. [PMID: 38509197 PMCID: PMC11415545 DOI: 10.1038/s41380-024-02514-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/27/2024] [Accepted: 03/01/2024] [Indexed: 03/22/2024]
Abstract
Post-traumatic stress disorder (PTSD) and alcohol use disorder (AUD) are often comorbid. Few treatments exist to reduce comorbid PTSD/AUD. Elucidating the mechanisms underlying their comorbidity could reveal new avenues for therapy. Here, we employed a model of comorbid PTSD/AUD, in which rats were subjected to a stressful shock in a familiar context followed by alcohol drinking. We then examined fear overgeneralization and irritability in these rats. Familiar context stress elevated drinking, increased fear overgeneralization, increased alcohol-related aggressive signs, and elevated peripheral stress hormones. We then examined transcripts of stress- and fear-relevant genes in the central amygdala (CeA), a locus that regulates stress-mediated alcohol drinking. Compared with unstressed rats, stressed rats exhibited increases in CeA transcripts for Crh and Fkbp5 and decreases in transcripts for Bdnf and Il18. Levels of Nr3c1 mRNA, which encodes the glucocorticoid receptor, increased in stressed males but decreased in stressed females. Transcripts of Il18 binding protein (Il18bp), Glp-1r, and genes associated with calcitonin gene-related peptide signaling (Calca, Ramp1, Crlr-1, and Iapp) were unaltered. Crh, but not Crhr1, mRNA was increased by stress; thus, we tested whether inhibiting CeA neurons that express corticotropin-releasing factor (CRF) suppress PTSD/AUD-like behaviors. We used Crh-Cre rats that had received a Cre-dependent vector encoding hM4D(Gi), an inhibitory Designer Receptors Exclusively Activated by Designer Drugs. Chemogenetic inhibition of CeA CRF neurons reduced alcohol intake but not fear overgeneralization or irritability-like behaviors. Our findings suggest that CeA CRF modulates PTSD/AUD comorbidity, and inhibiting CRF neural activity is primarily associated with reducing alcohol drinking but not trauma-related behaviors that are associated with PTSD/AUD.
Collapse
Affiliation(s)
- Bryan Cruz
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Valentina Vozella
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Vittoria Borgonetti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Ryan Bullard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Paula C Bianchi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Dean Kirson
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Luisa B Bertotto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Robert O Messing
- Waggoner Center for Alcohol and Addiction Research, Department of Neuroscience, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Eric P Zorrilla
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92073, USA.
| |
Collapse
|
5
|
Demaestri C, Pisciotta M, Altunkeser N, Berry G, Hyland H, Breton J, Darling A, Williams B, Bath KG. Central amygdala CRF+ neurons promote heightened threat reactivity following early life adversity in mice. Nat Commun 2024; 15:5522. [PMID: 38951506 PMCID: PMC11217353 DOI: 10.1038/s41467-024-49828-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024] Open
Abstract
Failure to appropriately predict and titrate reactivity to threat is a core feature of fear and anxiety-related disorders and is common following early life adversity (ELA). A population of neurons in the lateral central amygdala (CeAL) expressing corticotropin releasing factor (CRF) have been proposed to be key in processing threat of different intensities to mediate active fear expression. Here, we use in vivo fiber photometry to show that ELA results in sex-specific changes in the activity of CeAL CRF+ neurons, yielding divergent mechanisms underlying the augmented startle in ELA mice, a translationally relevant behavior indicative of heightened threat reactivity and hypervigilance. Further, chemogenic inhibition of CeAL CRF+ neurons selectively diminishes startle and produces a long-lasting suppression of threat reactivity. These findings identify a mechanism for sex-differences in susceptibility for anxiety following ELA and have broad implications for understanding the neural circuitry that encodes and gates the behavioral expression of fear.
Collapse
Affiliation(s)
- Camila Demaestri
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, USA
| | - Margaux Pisciotta
- Department of Neuroscience and Behavior, Barnard College of Columbia University, New York, NY, USA
| | - Naira Altunkeser
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Georgia Berry
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Hannah Hyland
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
| | - Jocelyn Breton
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Anna Darling
- Department of Neuroscience, Columbia University, New York, NY, USA
| | - Brenna Williams
- Doctoral Program in Cellular and Molecular Physiology & Biophysics, Columbia University, New York, NY, USA
| | - Kevin G Bath
- Division of Developmental Neuroscience, Research Foundation for Mental Hygiene, New York State Psychiatric Institute, New York, NY, USA.
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
6
|
Zuloaga DG, Lafrican JJ, Zuloaga KL. Androgen regulation of behavioral stress responses and the hypothalamic-pituitary-adrenal axis. Horm Behav 2024; 162:105528. [PMID: 38503191 PMCID: PMC11144109 DOI: 10.1016/j.yhbeh.2024.105528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/02/2024] [Accepted: 03/06/2024] [Indexed: 03/21/2024]
Abstract
Testosterone is a powerful steroid hormone that can impact the brain and behavior in various ways, including regulating behavioral and neuroendocrine (hypothalamic-pituitary-adrenal (HPA) axis) stress responses. Early in life androgens can act to alter development of brain regions associated with stress regulation, which ultimately impacts the display of stress responses later in life. Adult circulating androgens can also influence the expression of distinct genes and proteins that regulate stress responses. These changes in the brain are hypothesized to underlie the potent effects of androgens in regulating behaviors related to stress and stress-induced activation of the HPA axis. Androgens can induce alterations in these functions through direct binding to the androgen receptor (AR) or following conversion to estrogens and subsequent binding to estrogen receptors including estrogen receptor alpha (ERα), beta (ERβ), and G protein-coupled estrogen receptor 1 (GPER1). In this review, we focus on the role of androgens in regulating behavioral and neuroendocrine stress responses at different stages of the lifespan and the sex hormone receptors involved in regulating these effects. We also review the specific brain regions and cell phenotypes upon which androgens are proposed to act to regulate stress responses with an emphasis on hypothalamic and extended amygdala subregions. This knowledge of androgen effects on these neural systems is critical for understanding how sex hormones regulate stress responses.
Collapse
Affiliation(s)
- Damian G Zuloaga
- Department of Psychology, University at Albany, Albany, NY, USA.
| | | | - Kristen L Zuloaga
- Department of Neuroscience and Experimental Therapeutics, Albany Medical College, Albany, NY, USA
| |
Collapse
|
7
|
Ji G, Presto P, Kiritoshi T, Chen Y, Navratilova E, Porreca F, Neugebauer V. Chemogenetic Manipulation of Amygdala Kappa Opioid Receptor Neurons Modulates Amygdala Neuronal Activity and Neuropathic Pain Behaviors. Cells 2024; 13:705. [PMID: 38667320 PMCID: PMC11049235 DOI: 10.3390/cells13080705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Neuroplasticity in the central nucleus of the amygdala (CeA) plays a key role in the modulation of pain and its aversive component. The dynorphin/kappa opioid receptor (KOR) system in the amygdala is critical for averse-affective behaviors in pain conditions, but its mechanisms are not well understood. Here, we used chemogenetic manipulations of amygdala KOR-expressing neurons to analyze the behavioral consequences in a chronic neuropathic pain model. For the chemogenetic inhibition or activation of KOR neurons in the CeA, a Cre-inducible viral vector encoding Gi-DREADD (hM4Di) or Gq-DREADD (hM3Dq) was injected stereotaxically into the right CeA of transgenic KOR-Cre mice. The chemogenetic inhibition of KOR neurons expressing hM4Di with a selective DREADD actuator (deschloroclozapine, DCZ) in sham control mice significantly decreased inhibitory transmission, resulting in a shift of inhibition/excitation balance to promote excitation and induced pain behaviors. The chemogenetic activation of KOR neurons expressing hM3Dq with DCZ in neuropathic mice significantly increased inhibitory transmission, decreased excitability, and decreased neuropathic pain behaviors. These data suggest that amygdala KOR neurons modulate pain behaviors by exerting an inhibitory tone on downstream CeA neurons. Therefore, activation of these interneurons or blockade of inhibitory KOR signaling in these neurons could restore control of amygdala output and mitigate pain.
Collapse
Affiliation(s)
- Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
| | - Yong Chen
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ 85721, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, 3601 4th St., Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
8
|
Li HQ, Jiang W, Ling L, Pratelli M, Chen C, Gupta V, Godavarthi SK, Spitzer NC. Generalized fear after acute stress is caused by change in neuronal cotransmitter identity. Science 2024; 383:1252-1259. [PMID: 38484078 DOI: 10.1126/science.adj5996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 01/22/2024] [Indexed: 03/19/2024]
Abstract
Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. In this study, we show that generalized fear in mice results from a transmitter switch from glutamate to γ-aminobutyric acid (GABA) in serotonergic neurons of the lateral wings of the dorsal raphe. Similar change in transmitter identity was found in the postmortem brains of individuals with posttraumatic stress disorder (PTSD). Overriding the transmitter switch in mice prevented the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors mediated the switch, and prompt antidepressant treatment blocked the cotransmitter switch and generalized fear. Our results provide important insight into the mechanisms involved in fear generalization.
Collapse
Affiliation(s)
- Hui-Quan Li
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| | - Wuji Jiang
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| | - Li Ling
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| | - Marta Pratelli
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| | - Cong Chen
- Department of Cellular and Molecular Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Vaidehi Gupta
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| | - Swetha K Godavarthi
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| | - Nicholas C Spitzer
- Neurobiology Department, School of Biological Sciences and Center for Neural Circuits and Behavior, University of California San Diego, La Jolla, CA 92093, USA
- Kavli Institute for Brain and Mind, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
9
|
Zhao W, Zhang K, Dong WY, Tang HD, Sun JQ, Huang JY, Wan GL, Guan RR, Guo XT, Cheng PK, Tao R, Sun JW, Zhang Z, Zhu X. A pharynx-to-brain axis controls pharyngeal inflammation-induced anxiety. Proc Natl Acad Sci U S A 2024; 121:e2312136121. [PMID: 38446848 PMCID: PMC10945766 DOI: 10.1073/pnas.2312136121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/12/2024] [Indexed: 03/08/2024] Open
Abstract
Anxiety is a remarkably common condition among patients with pharyngitis, but the relationship between these disorders has received little research attention, and the underlying neural mechanisms remain unknown. Here, we show that the densely innervated pharynx transmits signals induced by pharyngeal inflammation to glossopharyngeal and vagal sensory neurons of the nodose/jugular/petrosal (NJP) superganglia in mice. Specifically, the NJP superganglia project to norepinephrinergic neurons in the nucleus of the solitary tract (NTSNE). These NTSNE neurons project to the ventral bed nucleus of the stria terminalis (vBNST) that induces anxiety-like behaviors in a murine model of pharyngeal inflammation. Inhibiting this pharynx→NJP→NTSNE→vBNST circuit can alleviate anxiety-like behaviors associated with pharyngeal inflammation. This study thus defines a pharynx-to-brain axis that mechanistically links pharyngeal inflammation and emotional response.
Collapse
Affiliation(s)
- Wan Zhao
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, People’s Republic of China
| | - Ke Zhang
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, People’s Republic of China
| | - Wan-Ying Dong
- Department of Neurobiology and Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Hao-Di Tang
- Department of Neurobiology and Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, People’s Republic of China
- Laboratory of Anesthesia and Critical Care Medicine Department of Anesthesia and Critical Care Laboratory, National-Local Joint Engineering Research Center of Translational Medicine of Anesthesiology, West China Hospital, Sichuan University, Chengdu610041, People’s Republic of China
| | - Jia-Qiang Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, People’s Republic of China
| | - Ji-Ye Huang
- Department of Neurobiology and Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Guang-Lun Wan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, People’s Republic of China
| | - Rui-Rui Guan
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, People’s Republic of China
| | - Xiao-Tao Guo
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, People’s Republic of China
| | - Ping-Kai Cheng
- Department of Neurobiology and Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Ran Tao
- Department of Vascular Surgery, The Second Hospital of Anhui Medical University, Hefei230601, People’s Republic of China
| | - Jing-Wu Sun
- Department of Otolaryngology-Head and Neck Surgery, The First Affiliated Hospital of University of Science and Technology of China, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230001, People’s Republic of China
| | - Zhi Zhang
- Department of Neurobiology and Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, People’s Republic of China
- The Center for Advanced Interdisciplinary Science and Biomedicine, Institute of Health and Medicine, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, People’s Republic of China
| | - Xia Zhu
- Department of Neurobiology and Biophysics, Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei230026, People’s Republic of China
| |
Collapse
|
10
|
Maita I, Bazer A, Chae K, Parida A, Mirza M, Sucher J, Phan M, Liu T, Hu P, Soni R, Roepke TA, Samuels BA. Chemogenetic activation of corticotropin-releasing factor-expressing neurons in the anterior bed nucleus of the stria terminalis reduces effortful motivation behaviors. Neuropsychopharmacology 2024; 49:377-385. [PMID: 37452139 PMCID: PMC10724138 DOI: 10.1038/s41386-023-01646-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/18/2023]
Abstract
Corticotropin-releasing factor (CRF) in the anterior bed nucleus of the stria terminalis (aBNST) is associated with chronic stress and avoidance behavior. However, CRF + BNST neurons project to reward- and motivation-related brain regions, suggesting a potential role in motivated behavior. We used chemogenetics to selectively activate CRF+ aBNST neurons in male and female CRF-ires-Cre mice during an effort-related choice task and a concurrent choice task. In both tasks, mice were given the option either to exert effort for high value rewards or to choose freely available low value rewards. Acute chemogenetic activation of CRF+ aBNST neurons reduced barrier climbing for a high value reward in the effort-related choice task in both males and females. Furthermore, acute chemogenetic activation of CRF+ aBNST neurons also reduced effortful lever pressing in high-performing males in the concurrent choice task. These data suggest a novel role for CRF+ aBNST neurons in effort-based decision and motivation behaviors.
Collapse
Affiliation(s)
- Isabella Maita
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Neuroscience Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Allyson Bazer
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Behavioral and Systems Neuroscience Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Kiyeon Chae
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Amlaan Parida
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Mikyle Mirza
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Jillian Sucher
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
- Behavioral and Systems Neuroscience Graduate Program, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Mimi Phan
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Tonia Liu
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Pu Hu
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Ria Soni
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Troy A Roepke
- Department of Animal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Benjamin Adam Samuels
- Department of Psychology, School of Arts and Sciences, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
11
|
Hochgerner H, Singh S, Tibi M, Lin Z, Skarbianskis N, Admati I, Ophir O, Reinhardt N, Netser S, Wagner S, Zeisel A. Neuronal types in the mouse amygdala and their transcriptional response to fear conditioning. Nat Neurosci 2023; 26:2237-2249. [PMID: 37884748 PMCID: PMC10689239 DOI: 10.1038/s41593-023-01469-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/20/2023] [Indexed: 10/28/2023]
Abstract
The amygdala is a brain region primarily associated with emotional response. The use of genetic markers and single-cell transcriptomics can provide insights into behavior-associated cell state changes. Here we present a detailed cell-type taxonomy of the adult mouse amygdala during fear learning and memory consolidation. We perform single-cell RNA sequencing on naïve and fear-conditioned mice, identify 130 neuronal cell types and validate their spatial distributions. A subset of all neuronal types is transcriptionally responsive to fear learning and memory retrieval. The activated engram cells upregulate activity-response genes and coordinate the expression of genes associated with neurite outgrowth, synaptic signaling, plasticity and development. We identify known and previously undescribed candidate genes responsive to fear learning. Our molecular atlas may be used to generate hypotheses to unveil the neuron types and neural circuits regulating the emotional component of learning and memory.
Collapse
Affiliation(s)
- Hannah Hochgerner
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shelly Singh
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Muhammad Tibi
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Zhige Lin
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Niv Skarbianskis
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Inbal Admati
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Osnat Ophir
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Nuphar Reinhardt
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Shai Netser
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Shlomo Wagner
- Sagol Department of Neurobiology, University of Haifa, Haifa, Israel
| | - Amit Zeisel
- Faculty of Biotechnology and Food Engineering, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
12
|
Rybka KA, Lafrican JJ, Rosinger ZJ, Ariyibi DO, Brooks MR, Jacobskind JS, Zuloaga DG. Sex differences in androgen receptor, estrogen receptor alpha, and c-Fos co-expression with corticotropin releasing factor expressing neurons in restrained adult mice. Horm Behav 2023; 156:105448. [PMID: 38344954 PMCID: PMC10861933 DOI: 10.1016/j.yhbeh.2023.105448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/03/2023] [Accepted: 10/23/2023] [Indexed: 02/15/2024]
Abstract
Gonadal hormone actions through androgen receptor (AR) and estrogen receptor alpha (ERα) regulate sex differences in hypothalamic-pituitary-adrenal (HPA) axis responsivity and stress-related behaviors. Here we tested whether corticotropin releasing factor (CRF) expressing neurons, which are widely known to regulate neuroendocrine and behavioral stress responses, co-express AR and ERα as a potential mechanism for gonadal hormone regulation of these responses. Using Crh-IRES-Cre::Ai9 reporter mice we report high co-localization of AR in CRF neurons within the medial preoptic area (MPOA), bed nucleus of the stria terminalis (BST), medial amygdala (MeA), and ventromedial hypothalamus (VMH), moderate levels within the central amygdala (CeA) and low levels in the paraventricular hypothalamus (PVN). Sex differences in CRF/AR co-expression were found in the principal nucleus of the BST (BSTmpl), CeA, MeA, and VMH (males>females). CRF co-localization with ERα was generally lower relative to AR co-localization. However, high co-expression was found within the MPOA, AVPV, and VMH, with moderate co-expression in the arcuate nucleus (ARC), BST, and MeA and low levels in the PVN and CeA. Sex differences in CRF/ERα co-localization were found in the BSTmpl and PVN (males>females). Finally, we assessed neural activation of CRF neurons in restraint-stressed mice and found greater CRF/c-Fos co-expression in females in the BSTmpl and periaqueductal gray, while co-expression was higher in males within the ARC and dorsal CA1. Given the known role of CRF in regulating behavioral stress responses and the HPA axis, AR/ERα co-expression and sex-specific activation of CRF cell groups indicate potential mechanisms for modulating sex differences in these functions.
Collapse
Affiliation(s)
- Krystyna A Rybka
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jennifer J Lafrican
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Zachary J Rosinger
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Deborah O Ariyibi
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Mecca R Brooks
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Jason S Jacobskind
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America
| | - Damian G Zuloaga
- Department of Psychology, University at Albany, State University New York, 1400 Washington Avenue, Albany, NY 12222, United States of America.
| |
Collapse
|
13
|
Presto P, Ji G, Ponomareva O, Ponomarev I, Neugebauer V. Hmgb1 Silencing in the Amygdala Inhibits Pain-Related Behaviors in a Rat Model of Neuropathic Pain. Int J Mol Sci 2023; 24:11944. [PMID: 37569320 PMCID: PMC10418916 DOI: 10.3390/ijms241511944] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023] Open
Abstract
Chronic pain presents a therapeutic challenge due to the highly complex interplay of sensory, emotional-affective and cognitive factors. The mechanisms of the transition from acute to chronic pain are not well understood. We hypothesized that neuroimmune mechanisms in the amygdala, a brain region involved in the emotional-affective component of pain and pain modulation, play an important role through high motility group box 1 (Hmgb1), a pro-inflammatory molecule that has been linked to neuroimmune signaling in spinal nociception. Transcriptomic analysis revealed an upregulation of Hmgb1 mRNA in the right but not left central nucleus of the amygdala (CeA) at the chronic stage of a spinal nerve ligation (SNL) rat model of neuropathic pain. Hmgb1 silencing with a stereotaxic injection of siRNA for Hmgb1 into the right CeA of adult male and female rats 1 week after (post-treatment), but not 2 weeks before (pre-treatment) SNL induction decreased mechanical hypersensitivity and emotional-affective responses, but not anxiety-like behaviors, measured 4 weeks after SNL. Immunohistochemical data suggest that neurons are a major source of Hmgb1 in the CeA. Therefore, Hmgb1 in the amygdala may contribute to the transition from acute to chronic neuropathic pain, and the inhibition of Hmgb1 at a subacute time point can mitigate neuropathic pain.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Igor Ponomarev
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
14
|
Sheng ZF, Zhang H, Phaup JG, Zheng P, Kang X, Liu Z, Chang HM, Yeh ETH, Johnson AK, Pan HL, Li DP. Corticotropin-releasing hormone neurons in the central nucleus of amygdala are required for chronic stress-induced hypertension. Cardiovasc Res 2023; 119:1751-1762. [PMID: 37041718 PMCID: PMC10325697 DOI: 10.1093/cvr/cvad056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 11/30/2022] [Accepted: 04/08/2023] [Indexed: 04/13/2023] Open
Abstract
AIMS Chronic stress is a well-known risk factor for the development of hypertension. However, the underlying mechanisms remain unclear. Corticotropin-releasing hormone (CRH) neurons in the central nucleus of the amygdala (CeA) are involved in the autonomic responses to chronic stress. Here, we determined the role of CeA-CRH neurons in chronic stress-induced hypertension. METHODS AND RESULTS Borderline hypertensive rats (BHRs) and Wistar-Kyoto (WKY) rats were subjected to chronic unpredictable stress (CUS). Firing activity and M-currents of CeA-CRH neurons were assessed, and a CRH-Cre-directed chemogenetic approach was used to suppress CeA-CRH neurons. CUS induced a sustained elevation of arterial blood pressure (ABP) and heart rate (HR) in BHRs, while in WKY rats, CUS-induced increases in ABP and HR quickly returned to baseline levels after CUS ended. CeA-CRH neurons displayed significantly higher firing activities in CUS-treated BHRs than unstressed BHRs. Selectively suppressing CeA-CRH neurons by chemogenetic approach attenuated CUS-induced hypertension and decreased elevated sympathetic outflow in CUS-treated BHRs. Also, CUS significantly decreased protein and mRNA levels of Kv7.2 and Kv7.3 channels in the CeA of BHRs. M-currents in CeA-CRH neurons were significantly decreased in CUS-treated BHRs compared with unstressed BHRs. Blocking Kv7 channel with its blocker XE-991 increased the excitability of CeA-CRH neurons in unstressed BHRs but not in CUS-treated BHRs. Microinjection of XE-991 into the CeA increased sympathetic outflow and ABP in unstressed BHRs but not in CUS-treated BHRs. CONCLUSIONS CeA-CRH neurons are required for chronic stress-induced sustained hypertension. The hyperactivity of CeA-CRH neurons may be due to impaired Kv7 channel activity, which represents a new mechanism involved in chronic stress-induced hypertension.
Collapse
Affiliation(s)
- Zhao-Fu Sheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hua Zhang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Jeffery G Phaup
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - PeiRu Zheng
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - XunLei Kang
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Zhenguo Liu
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| | - Hui-Ming Chang
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Edward T H Yeh
- Department of Pharmacology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Toxicology, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
- Department of Internal Medicine, The University of Arkansas for Medical Sciences, 4301 West Markham Street, Little Rock, AR 72205, USA
| | - Alan Kim Johnson
- Department of Psychological and Brain Sciences, The University of Iowa, G60 Psychological and Brain Sciences Building, Iowa City, IA 52242, USA
| | - Hui-Lin Pan
- Department of Anesthesiology and Perioperative Medicine, The University of Texas, MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - De-Pei Li
- Center for Precision Medicine, Department of Medicine, School of Medicine University of Missouri, One Hospital Drive, Columbia, MO 65212, USA
| |
Collapse
|
15
|
Cheng Y, Dempsey RE, Roodsari SK, Shuboni-Mulligan DD, George O, Sanford LD, Guo ML. Cocaine Regulates NLRP3 Inflammasome Activity and CRF Signaling in a Region- and Sex-Dependent Manner in Rat Brain. Biomedicines 2023; 11:1800. [PMID: 37509440 PMCID: PMC10376186 DOI: 10.3390/biomedicines11071800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/14/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Cocaine, one of the most abused drugs worldwide, is capable of activating microglia in vitro and in vivo. Several neuroimmune pathways have been suggested to play roles in cocaine-mediated microglial activation. Previous work showed that cocaine activates microglia in a region-specific manner in the brains of self-administered mice. To further characterize the effects of cocaine on microglia and neuroimmune signaling in vivo, we utilized the brains from both sexes of outbred rats with cocaine self-administration to explore the activation status of microglia, NOD-, LRR-, and pyrin domain-containing protein 3 (NLRP3) inflammasome activity, corticotropin-releasing factor (CRF) signaling, and NF-κB levels in the striatum and hippocampus (HP). Age-matched rats of the same sex (drug naïve) served as controls. Our results showed that cocaine increased neuroinflammation in the striatum and HP of both sexes with a relatively higher increases in male brains. In the striatum, cocaine upregulated NLRP3 inflammasome activity and CRF levels in males but not in females. In contrast, cocaine increased NLRP3 inflammasome activity in the HP of females but not in males, and no effects on CRF signaling were observed in this region of either sex. Interestingly, cocaine increased NF-κB levels in the striatum and HP with no sex difference. Taken together, our results provide evidence that cocaine can exert region- and sex-specific differences in neuroimmune signaling in the brain. Targeting neuroimmune signaling has been suggested as possible treatment for cocaine use disorders (CUDs). Our current results indicate that sex should be taken into consideration when determining the efficacy of these new therapeutic approaches.
Collapse
Affiliation(s)
- Yan Cheng
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Rachael Elizabeth Dempsey
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Soheil Kazemi Roodsari
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Dorela D Shuboni-Mulligan
- Sleep Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Olivier George
- Department of Psychiatry, School of Medicine, University of California San Diego, San Diego, CA 92093, USA
| | - Larry D Sanford
- Sleep Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| | - Ming-Lei Guo
- Drug Addiction Laboratory, Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA 23507, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA 23507, USA
| |
Collapse
|
16
|
Neugebauer V, Presto P, Yakhnitsa V, Antenucci N, Mendoza B, Ji G. Pain-related cortico-limbic plasticity and opioid signaling. Neuropharmacology 2023; 231:109510. [PMID: 36944393 PMCID: PMC10585936 DOI: 10.1016/j.neuropharm.2023.109510] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 03/15/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
Neuroplasticity in cortico-limbic circuits has been implicated in pain persistence and pain modulation in clinical and preclinical studies. The amygdala has emerged as a key player in the emotional-affective dimension of pain and pain modulation. Reciprocal interactions with medial prefrontal cortical regions undergo changes in pain conditions. Other limbic and paralimbic regions have been implicated in pain modulation as well. The cortico-limbic system is rich in opioids and opioid receptors. Preclinical evidence for their pain modulatory effects in different regions of this highly interactive system, potentially opposing functions of different opioid receptors, and knowledge gaps will be described here. There is little information about cell type- and circuit-specific functions of opioid receptor subtypes related to pain processing and pain-related plasticity in the cortico-limbic system. The important role of anterior cingulate cortex (ACC) and amygdala in MOR-dependent analgesia is most well-established, and MOR actions in the mesolimbic system appear to be similar but remain to be determined in mPFC regions other than ACC. Evidence also suggests that KOR signaling generally serves opposing functions whereas DOR signaling in the ACC has similar, if not synergistic effects, to MOR. A unifying picture of pain-related neuronal mechanisms of opioid signaling in different elements of the cortico-limbic circuitry has yet to emerge. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nico Antenucci
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Brianna Mendoza
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
17
|
Li HQ, Jiang W, Ling L, Gupta V, Chen C, Pratelli M, Godavarthi SK, Spitzer NC. Generalized fear following acute stress is caused by change in co-transmitter identity of serotonergic neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.10.540268. [PMID: 37214936 PMCID: PMC10197626 DOI: 10.1101/2023.05.10.540268] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Overgeneralization of fear to harmless situations is a core feature of anxiety disorders resulting from acute stress, yet the mechanisms by which fear becomes generalized are poorly understood. Here we show that generalized fear in mice in response to footshock results from a transmitter switch from glutamate to GABA in serotonergic neurons of the lateral wings of the dorsal raphe. We observe a similar change in transmitter identity in the postmortem brains of PTSD patients. Overriding the transmitter switch in mice using viral tools prevents the acquisition of generalized fear. Corticosterone release and activation of glucocorticoid receptors trigger the switch, and prompt antidepressant treatment blocks the co-transmitter switch and generalized fear. Our results provide new understanding of the plasticity involved in fear generalization.
Collapse
Affiliation(s)
- Hui-Quan Li
- Neurobiology Department and Kavli Institute for Brain and Mind, University of California, San Diego
| | - Wuji Jiang
- Neurobiology Department and Kavli Institute for Brain and Mind, University of California, San Diego
| | - Lily Ling
- Neurobiology Department and Kavli Institute for Brain and Mind, University of California, San Diego
| | - Vaidehi Gupta
- Neurobiology Department and Kavli Institute for Brain and Mind, University of California, San Diego
| | - Cong Chen
- Department of Cellular and Molecular Medicine, University of California, San Diego
| | - Marta Pratelli
- Neurobiology Department and Kavli Institute for Brain and Mind, University of California, San Diego
| | - Swetha K Godavarthi
- Neurobiology Department and Kavli Institute for Brain and Mind, University of California, San Diego
| | - Nicholas C Spitzer
- Neurobiology Department and Kavli Institute for Brain and Mind, University of California, San Diego
| |
Collapse
|
18
|
Chudoba R, Dabrowska J. Distinct populations of corticotropin-releasing factor (CRF) neurons mediate divergent yet complementary defensive behaviors in response to a threat. Neuropharmacology 2023; 228:109461. [PMID: 36775096 PMCID: PMC10055972 DOI: 10.1016/j.neuropharm.2023.109461] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/31/2023] [Accepted: 02/09/2023] [Indexed: 02/12/2023]
Abstract
Defensive behaviors in response to a threat are shared across the animal kingdom. Active (fleeing, sheltering) or passive (freezing, avoiding) defensive responses are adaptive and facilitate survival. Selecting appropriate defensive strategy depends on intensity, proximity, temporal threat threshold, and past experiences. Hypothalamic corticotropin-releasing factor (CRF) is a major driver of an acute stress response, whereas extrahypothalamic CRF mediates stress-related affective behaviors. In this review, we shift the focus from a monolithic role of CRF as an anxiogenic peptide to comprehensively dissecting contributions of distinct populations of CRF neurons in mediating defensive behaviors. Direct interrogation of CRF neurons of the central amygdala (CeA) or the bed nucleus of the stria terminalis (BNST) show they drive unconditioned defensive responses, such as vigilance and avoidance of open spaces. Although both populations also contribute to learned fear responses in familiar, threatening contexts, CeA-CRF neurons are particularly attuned to the ever-changing environment. Depending on threat intensities, they facilitate discrimination of salient stimuli predicting manageable threats, and prevent their generalization. Finally, hypothalamic CRF neurons mediate initial threat assessment and active defense such as escape to shelter. Overall, these three major populations of CRF neurons demonstrate divergent, yet complementary contributions to the versatile defense system: heightened vigilance, discriminating salient threats, and active escape, representing three legs of the defense tripod. Despite the 'CRF exhaustion' in the field of affective neuroscience, understanding contributions of specific CRF neurons during adaptive defensive behaviors is needed in order to understand the implications of their dysregulation in fear- and anxiety-related psychiatric disorders. This article is part of the Special Issue on "Fear, Anxiety and PTSD".
Collapse
Affiliation(s)
- Rachel Chudoba
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Joanna Dabrowska
- Center for the Neurobiology of Stress Resilience and Psychiatric Disorders, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; Discipline of Cellular and Molecular Pharmacology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States; School of Graduate and Postdoctoral Studies, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States.
| |
Collapse
|
19
|
Sleep-Disturbance-Induced Microglial Activation Involves CRH-Mediated Galectin 3 and Autophagy Dysregulation. Cells 2022; 12:cells12010160. [PMID: 36611953 PMCID: PMC9818437 DOI: 10.3390/cells12010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/21/2022] [Accepted: 12/29/2022] [Indexed: 01/04/2023] Open
Abstract
Chronic sleep disturbances (CSDs) including insomnia, insufficient sleep time, and poor sleep quality are major public health concerns around the world, especially in developed countries. CSDs are major health risk factors linked to multiple neurodegenerative and neuropsychological diseases. It has been suggested that CSDs could activate microglia (Mg) leading to increased neuroinflammation levels, which ultimately lead to neuronal dysfunction. However, the detailed mechanisms underlying CSD-mediated microglial activation remain mostly unexplored. In this study, we used mice with three-weeks of sleep fragmentation (SF) to explore the underlying pathways responsible for Mg activation. Our results revealed that SF activates Mg in the hippocampus (HP) but not in the striatum and prefrontal cortex (PFc). SF increased the levels of corticotropin-releasing hormone (CRH) in the HP. In vitro mechanism studies revealed that CRH activation of Mg involves galectin 3 (Gal3) upregulation and autophagy dysregulation. CRH could disrupt lysosome membrane integrity resulting in lysosomal cathepsins leakage. CRHR2 blockage mitigated CRH-mediated effects on microglia in vitro. SF mice also show increased Gal3 levels and autophagy dysregulation in the HP compared to controls. Taken together, our results show that SF-mediated hippocampal Mg activation involves CRH mediated galectin 3 and autophagy dysregulation. These findings suggest that targeting the hippocampal CRH system might be a novel therapeutic approach to ameliorate CSD-mediated neuroinflammation and neurodegenerative diseases.
Collapse
|
20
|
Marshall SA, Robinson SL, Ebert SE, Companion MA, Thiele TE. Chemogenetic inhibition of corticotropin-releasing factor neurons in the central amygdala alters binge-like ethanol consumption in male mice. Behav Neurosci 2022; 136:541-550. [PMID: 35771510 PMCID: PMC9671851 DOI: 10.1037/bne0000522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Repetitive bouts of binge drinking can lead to neuroplastic events that alter ethanol's pharmacologic effects and perpetuate excessive consumption. The corticotropin-releasing factor (CRF) system is an example of ethanol-induced neuroadaptations that drive excessive ethanol consumption. Our laboratory has previously shown that CRF antagonist, when infused into the central amygdala (CeA), reduces binge-like ethanol consumption. The present study extends this research by assessing the effects of silencing CRF-producing neurons in CeA on binge-like ethanol drinking stemming from "Drinking in the Dark" (DID) procedures. CRF-ires-Cre mice underwent surgery to infuse Gi/o-coupled Designer Receptors Exclusively Activated by Designer Drugs (DREADD) virus or a control virus into either the CeA or basolateral amygdala (BLA). Gi/o-DREADD-induced CRF-neuronal inhibition in the CeA resulted in a 33% decrease in binge-like ethanol consumption. However, no effect on ethanol consumption was seen after DREADD manipulation in the BLA. Moreover, CeA CRF-neuronal inhibition had no effect on sucrose consumption. The effects of silencing CRF neurons in the CeA on ethanol consumption are not secondary to changes in motor function or anxiety-like behaviors as assessed in the open-field test (OFT). Finally, the DREADD construct's functional ability to inhibit CRF-neuronal activity was demonstrated by reduced ethanol-induced c-Fos following DREADD activation. Together, these data suggest that the CRF neurons in the CeA play an important role in binge ethanol consumption and that inhibition of the CRF-signaling pathway remains a viable target for manipulating binge-like ethanol consumption. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- S. Alex Marshall
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Biological & Biomedical Sciences Department, The University of North Carolina, Chapel Hill, NC 27599
| | - Stacey L. Robinson
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| | - Suzahn E. Ebert
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
| | - Michel A. Companion
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| | - Todd E. Thiele
- Department of Psychology & Neuroscience, The University of North Carolina, Chapel Hill, NC 27599
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
21
|
You Z, Liu B, Qi H. Neuronal regulation of B-cell immunity: Anticipatory immune posturing? Neuron 2022; 110:3582-3596. [PMID: 36327899 DOI: 10.1016/j.neuron.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 12/12/2022]
Abstract
The brain may sense, evaluate, modulate, and intervene in the operation of immune system, which would otherwise function autonomously in defense against pathogens. Antibody-mediated immunity is one arm of adaptive immunity that may achieve sterilizing protection against infection. Lymphoid organs are densely innervated. Immune cells supporting the antigen-specific antibody response express receptors for neurotransmitters and glucocorticoid hormones, and they are subjected to collective regulation by the neuroendocrine and the autonomic nervous system. Emerging evidence reveals a brain-spleen axis that regulates antigen-specific B cell responses and antibody-mediated immunity. In this article, we provide a synthesis of those studies as pertinent to neuronal regulation of B cell responses in secondary lymphoid organs. We propose the concept of defensive immune posturing as a brain-initiated top-down reaction in anticipation of potential tissue injury that requires immune protection.
Collapse
Affiliation(s)
- Zhiwei You
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Bo Liu
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Hai Qi
- Tsinghua-Peking Center for Life Sciences, Beijing 100084, China; Laboratory of Dynamic Immunobiology, Institute for Immunology, Tsinghua University, Beijing 100084, China; Department of Basic Medical Sciences, School of Medicine, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
22
|
Viden A, Ch'ng SS, Walker LC, Shesham A, Hamilton SM, Smith CM, Lawrence AJ. Organisation of enkephalin inputs and outputs of the central nucleus of the amygdala in mice. J Chem Neuroanat 2022; 125:102167. [PMID: 36182026 DOI: 10.1016/j.jchemneu.2022.102167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 09/11/2022] [Accepted: 09/26/2022] [Indexed: 10/31/2022]
Abstract
The central nucleus of the amygdala (CeA) is a key hub integrating sensory inputs and modulating behavioural outputs. The CeA is a complex structure with discrete subdivisions, high peptidergic heterogeneity and broad CNS afferent and efferent projections. While several neuropeptide systems within the CeA have been examined in detail, less is known about CeA preproenkephalin (ppENK) cells. Here, we used a recently developed transgenic Penk-Cre mouse line to advance our understanding of the efferent and afferent connectivity of ppENK in the CeA. First, to determine the fidelity of Cre expression in Penk-Cre transgenic mice, we conducted RNAscope in the CeA of Penk-Cre mice. Our analysis revealed that 96.6% of CeA Cre+ neurons co-expressed pENK mRNA, and 99.7% of CeA pENK+ neurons co-expressed Cre mRNA, indicating faithful recapitulation of Cre expression in CeA ppENK-expressing cells, supporting the fidelity of the Penk-Cre reporter mouse. Anterograde tracing of CeAPenk cells showed strong efferent projections to the extended amygdala, midbrain and hindbrain PBN and NTS. Retrograde tracing of Penk afferents to the CeA were more restricted, with primary innervation originating within the amygdala complex and bed nucleus of the stria terminalis, and minor innervation from the parabrachial nucleus and nucleus of the solitary tract. Together, our data provide a comprehensive map of ENKergic efferent and afferent connectivity of the CeA in Penk-Cre mice. Further, we highlight both the utility and limitations of the Penk-Cre mice to study the function of CeA, PBN and NTS ppENK cells.
Collapse
Affiliation(s)
- Aida Viden
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052
| | - Sarah S Ch'ng
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052
| | - Arnav Shesham
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Department of Physiology, Monash University, Clayton, VIC 3800
| | - Sabine M Hamilton
- School of Medicine, IMPACT, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Craig M Smith
- School of Medicine, IMPACT, Institute for Innovation in Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, VIC 3216, Australia
| | - Andrew J Lawrence
- Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052; Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC 3052.
| |
Collapse
|
23
|
Dilly GA, Kittleman CW, Kerr TM, Messing RO, Mayfield RD. Cell-type specific changes in PKC-delta neurons of the central amygdala during alcohol withdrawal. Transl Psychiatry 2022; 12:289. [PMID: 35859068 PMCID: PMC9300707 DOI: 10.1038/s41398-022-02063-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 07/01/2022] [Accepted: 07/06/2022] [Indexed: 02/08/2023] Open
Abstract
The central amygdala (CeA) contains a diverse population of cells, including multiple subtypes of GABAergic neurons, along with glia and epithelial cells. Specific CeA cell types have been shown to affect alcohol consumption in animal models of dependence and may be involved in negative affect during alcohol withdrawal. We used single-nuclei RNA sequencing to determine cell-type specificity of differential gene expression in the CeA induced by alcohol withdrawal. Cells within the CeA were classified using unbiased clustering analyses and identified based on the expression of known marker genes. Differential gene expression analysis was performed on each identified CeA cell-type. It revealed differential gene expression in astrocytes and GABAergic neurons associated with alcohol withdrawal. GABAergic neurons were further subclassified into 13 clusters of cells. Analyzing transcriptomic responses in these subclusters revealed that alcohol exposure induced multiple differentially expressed genes in one subtype of CeA GABAergic neurons, the protein kinase C delta (PKCδ) expressing neurons. These results suggest that PKCδ neurons in the CeA may be uniquely sensitive to the effects of alcohol exposure and identify a novel population of cells in CeA associated with alcohol withdrawal.
Collapse
Affiliation(s)
- Geoffrey A. Dilly
- grid.89336.370000 0004 1936 9924Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neurology, The University of Texas at Austin, Austin, TX 78712 USA
| | - Cory W. Kittleman
- grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA
| | - Tony M. Kerr
- grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neurology, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - Robert O. Messing
- grid.89336.370000 0004 1936 9924Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neurology, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924College of Pharmacy, The University of Texas at Austin, Austin, TX 78712 USA
| | - R. Dayne Mayfield
- grid.89336.370000 0004 1936 9924Institute for Neuroscience, University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Department of Neuroscience, The University of Texas at Austin, Austin, TX 78712 USA ,grid.89336.370000 0004 1936 9924Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX 78712 USA
| |
Collapse
|
24
|
Rodriguez L, Kirson D, Wolfe SA, Patel RR, Varodayan FP, Snyder AE, Gandhi PJ, Khom S, Vlkolinsky R, Bajo M, Roberto M. Alcohol Dependence Induces CRF Sensitivity in Female Central Amygdala GABA Synapses. Int J Mol Sci 2022; 23:7842. [PMID: 35887190 PMCID: PMC9318832 DOI: 10.3390/ijms23147842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/11/2022] [Accepted: 07/14/2022] [Indexed: 02/05/2023] Open
Abstract
Alcohol use disorder (AUD) is a chronically relapsing disease characterized by loss of control in seeking and consuming alcohol (ethanol) driven by the recruitment of brain stress systems. However, AUD differs among the sexes: men are more likely to develop AUD, but women progress from casual to binge drinking and heavy alcohol use more quickly. The central amygdala (CeA) is a hub of stress and anxiety, with corticotropin-releasing factor (CRF)-CRF1 receptor and Gamma-Aminobutyric Acid (GABA)-ergic signaling dysregulation occurring in alcohol-dependent male rodents. However, we recently showed that GABAergic synapses in female rats are less sensitive to the acute effects of ethanol. Here, we used patch-clamp electrophysiology to examine the effects of alcohol dependence on the CRF modulation of rat CeA GABAergic transmission of both sexes. We found that GABAergic synapses of naïve female rats were unresponsive to CRF application compared to males, although alcohol dependence induced a similar CRF responsivity in both sexes. In situ hybridization revealed that females had fewer CeA neurons containing mRNA for the CRF1 receptor (Crhr1) than males, but in dependence, the percentage of Crhr1-expressing neurons in females increased, unlike in males. Overall, our data provide evidence for sexually dimorphic CeA CRF system effects on GABAergic synapses in dependence.
Collapse
Affiliation(s)
- Larry Rodriguez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Dean Kirson
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
- Department of Pharmacology, Addiction Science, and Toxicology, The University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Sarah A. Wolfe
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Reesha R. Patel
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Florence P. Varodayan
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
- Department of Psychology, Binghamton University-SUNY, Binghamton, NY 13902, USA
| | - Angela E. Snyder
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Pauravi J. Gandhi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Sophia Khom
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
- Department of Pharmaceutical Sciences, University of Vienna Josef-Holaubek-Platz 2, A-1090 Vienna, Austria
| | - Roman Vlkolinsky
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Michal Bajo
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| | - Marisa Roberto
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA; (L.R.); (S.A.W.); (R.R.P.); (F.P.V.); (A.E.S.); (P.J.G.); (S.K.); (R.V.); (M.B.)
| |
Collapse
|
25
|
Binette AN, Totty MS, Maren S. Sex differences in the immediate extinction deficit and renewal of extinguished fear in rats. PLoS One 2022; 17:e0264797. [PMID: 35687598 PMCID: PMC9187087 DOI: 10.1371/journal.pone.0264797] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/31/2022] [Indexed: 12/16/2022] Open
Abstract
Extinction learning is central to exposure-based behavioral therapies for reducing fear and anxiety in humans. However, patients with fear and anxiety disorders are often resistant to extinction. Moreover, trauma and stress-related disorders are highly prone to relapse and are twice as likely to occur in females compared to males, suggesting that females may be more susceptible to extinction deficits and fear relapse phenomena. In this report, we tested this hypothesis by examining sex differences in a stress-induced extinction learning impairment, the immediate extinction deficit (IED), and renewal, a common form of fear relapse. In contrast to our hypothesis, there were no sex differences in the magnitude of the immediate extinction deficit in two different rat strains (Long-Evans and Wistar). However, we did observe a sex difference in the renewal of fear when the extinguished conditioned stimulus was presented outside the extinction context. Male Wistar rats exhibited significantly greater renewal than female rats, a sex difference that has previously been reported after appetitive extinction. Collectively, these data reveal that stress-induced extinction impairments are similar in male and female rats, though the context-dependence of extinction is more pronounced in males.
Collapse
Affiliation(s)
- Annalise N. Binette
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| | - Michael S. Totty
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| | - Stephen Maren
- Department of Psychological and Brain Sciences and Institute for Neuroscience, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
26
|
Presto P, Neugebauer V. Sex Differences in CGRP Regulation and Function in the Amygdala in a Rat Model of Neuropathic Pain. Front Mol Neurosci 2022; 15:928587. [PMID: 35726298 PMCID: PMC9206543 DOI: 10.3389/fnmol.2022.928587] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 05/12/2022] [Indexed: 12/02/2022] Open
Abstract
The amygdala has emerged as a key player in the emotional response to pain and pain modulation. The lateral and capsular regions of the central nucleus of the amygdala (CeA) represent the “nociceptive amygdala” due to their high content of neurons that process pain-related information. These CeA divisions are the targets of the spino-parabrachio-amygdaloid pain pathway, which is the predominant source of calcitonin gene-related peptide (CGRP) within the amygdala. Changes in lateral and capsular CeA neurons have previously been observed in pain models, and synaptic plasticity in these areas has been linked to pain-related behavior. CGRP has been demonstrated to play an important role in peripheral and spinal mechanisms, and in pain-related amygdala plasticity in male rats in an acute arthritis pain model. However, the role of CGRP in chronic neuropathic pain-related amygdala function and behaviors remains to be determined for both male and female rats. Here we tested the hypothesis that the CGRP1 receptor is involved in neuropathic pain-related amygdala activity, and that blockade of this receptor can inhibit neuropathic pain behaviors in both sexes. CGRP mRNA expression levels in the CeA of male rats were upregulated at the acute stage of the spinal nerve ligation (SNL) model of neuropathic pain, whereas female rats had significantly higher CGRP and CGRP receptor component expression at the chronic stage. A CGRP1 receptor antagonist (CGRP 8-37) administered into the CeA in chronic neuropathic rats reduced mechanical hypersensitivity (von Frey and paw compression tests) in both sexes but showed female-predominant effects on emotional-affective responses (ultrasonic vocalizations) and anxiety-like behaviors (open field test). CGRP 8-37 inhibited the activity of CeA output neurons assessed with calcium imaging in brain slices from chronic neuropathic pain rats. Together, these findings may suggest that CGRP1 receptors in the CeA are involved in neuropathic pain-related amygdala activity and contribute to sensory aspects in both sexes but to emotional-affective pain responses predominantly in females. The sexually dimorphic function of CGRP in the amygdala would make CGRP1 receptors a potential therapeutic target for neuropathic pain relief, particularly in females in chronic pain conditions.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- *Correspondence: Volker Neugebauer
| |
Collapse
|
27
|
Yakhnitsa V, Ji G, Hein M, Presto P, Griffin Z, Ponomareva O, Navratilova E, Porreca F, Neugebauer V. Kappa Opioid Receptor Blockade in the Amygdala Mitigates Pain Like-Behaviors by Inhibiting Corticotropin Releasing Factor Neurons in a Rat Model of Functional Pain. Front Pharmacol 2022; 13:903978. [PMID: 35694266 PMCID: PMC9177060 DOI: 10.3389/fphar.2022.903978] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/09/2022] [Indexed: 01/06/2023] Open
Abstract
Functional pain syndromes (FPS) occur in the absence of identifiable tissue injury or noxious events and include conditions such as migraine, fibromyalgia, and others. Stressors are very common triggers of pain attacks in various FPS conditions. It has been recently demonstrated that kappa opioid receptors (KOR) in the central nucleus of amygdala (CeA) contribute to FPS conditions, but underlying mechanisms remain unclear. The CeA is rich in KOR and encompasses major output pathways involving extra-amygdalar projections of corticotropin releasing factor (CRF) expressing neurons. Here we tested the hypothesis that KOR blockade in the CeA in a rat model of FPS reduces pain-like and nocifensive behaviors by restoring inhibition of CeA-CRF neurons. Intra-CeA administration of a KOR antagonist (nor-BNI) decreased mechanical hypersensitivity and affective and anxiety-like behaviors in a stress-induced FPS model. In systems electrophysiology experiments in anesthetized rats, intra-CeA application of nor-BNI reduced spontaneous firing and responsiveness of CeA neurons to peripheral stimulation. In brain slice whole-cell patch-clamp recordings, nor-BNI increased feedforward inhibitory transmission evoked by optogenetic and electrical stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. Nor-BNI decreased frequency, but not amplitude, of spontaneous inhibitory synaptic currents, suggesting a presynaptic action. Blocking KOR receptors in stress-induced FPS conditions may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Peyton Presto
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Zack Griffin
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Olga Ponomareva
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Edita Navratilova
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Frank Porreca
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
- Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
28
|
Baumgartner HM, Granillo M, Schulkin J, Berridge KC. Corticotropin releasing factor (CRF) systems: Promoting cocaine pursuit without distress via incentive motivation. PLoS One 2022; 17:e0267345. [PMID: 35503756 PMCID: PMC9064096 DOI: 10.1371/journal.pone.0267345] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
Corticotropin releasing factor (CRF) systems in limbic structures are posited to mediate stress-induced relapse in addiction, traditionally by generating distress states that spur drug consumption as attempts at hedonic self-medication. Yet evidence suggests that activating CRF-expressing neurons in the central amygdala (CeA) or nucleus accumbens (NAc) can magnify incentive motivation in absence of distress, at least for sucrose rewards. However, traditional CRF hypotheses in addiction neuroscience are primarily directed toward drug rewards. The question remains open whether CRF systems can similarly act via incentive motivation mechanisms to promote pursuit of drug rewards, such as cocaine. Here we tested whether optogenetic excitation of CRF-containing neurons in either NAc medial shell, lateral CeA, or dorsolateral BNST of transgenic Crh-Cre+ rats would spur preference and pursuit of a particular laser-paired cocaine reward over an alternative cocaine reward, and whether excitation served as a positively-valenced incentive itself, through laser self-stimulation tests. We report that excitation of CRF-containing neurons in either NAc or CeA recruited mesocorticolimbic circuitry to amplify incentive motivation to pursue the laser-paired cocaine: focusing preference on the laser-paired cocaine reward in a two-choice task, and spurred pursuit as doubled breakpoint in a progressive ratio task. Crucially indicating positive-valence, excitation of CRF neurons in NAc and CeA also was actively sought after by most rats in self-stimulation tasks. Conversely, CRF neuronal activation in BNST was never self-stimulated, but failed to enhance cocaine consumption. Collectively, we find that NAc and CeA CRF-containing neurons can amplify pursuit and consumption of cocaine by positively-valenced incentive mechanisms, without any aversive distress.
Collapse
Affiliation(s)
- Hannah M. Baumgartner
- Department of Psychology, University of Michigan Ann Arbor, Ann Arbor, Michigan, United Started of America
| | - Madeliene Granillo
- Department of Psychology, University of Michigan Ann Arbor, Ann Arbor, Michigan, United Started of America
| | - Jay Schulkin
- School of Medicine, University of Washington, Seattle, Washington, United States of America
| | - Kent C. Berridge
- Department of Psychology, University of Michigan Ann Arbor, Ann Arbor, Michigan, United Started of America
| |
Collapse
|
29
|
Kreifeldt M, Herman MA, Sidhu H, Okhuarobo A, Macedo GC, Shahryari R, Gandhi PJ, Roberto M, Contet C. Central amygdala corticotropin-releasing factor neurons promote hyponeophagia but do not control alcohol drinking in mice. Mol Psychiatry 2022; 27:2502-2513. [PMID: 35264727 PMCID: PMC9149056 DOI: 10.1038/s41380-022-01496-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 12/20/2022]
Abstract
Corticotropin-releasing factor (CRF) signaling in the central nucleus of the amygdala (CeA) plays a critical role in rodent models of excessive alcohol drinking. However, the source of CRF acting in the CeA during alcohol withdrawal remains to be identified. In the present study, we hypothesized that CeA CRF interneurons may represent a behaviorally relevant source of CRF to the CeA increasing motivation for alcohol via negative reinforcement. We first observed that Crh mRNA expression in the anterior part of the mouse CeA correlates positively with alcohol intake in C57BL/6J males with a history of chronic binge drinking followed by abstinence and increases upon exposure to chronic intermittent ethanol (CIE) vapor inhalation. We then found that chemogenetic activation of CeA CRF neurons in Crh-IRES-Cre mouse brain slices increases gamma-aminobutyric acid (GABA) release in the medial CeA, in part via CRF1 receptor activation. While chemogenetic stimulation exacerbated novelty-induced feeding suppression (NSF) in alcohol-naïve mice, thereby mimicking the effect of withdrawal from CIE, it had no effect on voluntary alcohol consumption, following either acute or chronic manipulation. Furthermore, chemogenetic inhibition of CeA CRF neurons did not affect alcohol consumption or NSF in chronic alcohol drinkers exposed to air or CIE. Altogether, these findings indicate that CeA CRF neurons produce local release of GABA and CRF and promote hyponeophagia in naïve mice, but do not drive alcohol intake escalation or negative affect in CIE-withdrawn mice. The latter result contrasts with previous findings in rats and demonstrates species specificity of CRF circuit engagement in alcohol dependence.
Collapse
Affiliation(s)
- Max Kreifeldt
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Melissa A Herman
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- Department of Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, NC, USA
| | - Harpreet Sidhu
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Agbonlahor Okhuarobo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
- University of Benin, Faculty of Pharmacy, Department of Pharmacology & Toxicology, Benin City, Nigeria
| | - Giovana C Macedo
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Roxana Shahryari
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Pauravi J Gandhi
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Marisa Roberto
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA
| | - Candice Contet
- The Scripps Research Institute, Department of Molecular Medicine, La Jolla, CA, USA.
| |
Collapse
|
30
|
Barretto-de-Souza L, Benini R, Reis-Silva LL, Crestani CC. Role of CRF 1 and CRF 2 receptors in the lateral hypothalamus in cardiovascular and anxiogenic responses evoked by restraint stress in rats: Evaluation of acute and chronic exposure. Neuropharmacology 2022; 212:109061. [PMID: 35452627 DOI: 10.1016/j.neuropharm.2022.109061] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/08/2022] [Accepted: 04/10/2022] [Indexed: 12/13/2022]
Abstract
We investigated the role of corticotropin-releasing factor (CRF) neurotransmission within the lateral hypothalamus (LH) in cardiovascular and anxiogenic-like responses evoked by acute and repeated restraint stress in rats. For this, animals were subjected to intra-LH microinjection of a selective CRF1 (CP376395) or CRF2 (antisauvagine-30) receptor antagonist before either an acute or the 10th session of restraint stress. Restraint-evoked arterial pressure and heart rate increases, tail skin temperature decrease and anxiogenic-like effect in the elevated plus maze (EPM) were evaluated. We also assessed the effect of 10 daily sessions of restraint on expression of CRF1 and CRF2 receptors within the LH. We identified that antagonism of either CRF1 or CRF2 receptor within the LH decreased the tachycardia during both the acute and 10th session of restraint, but the effect of the CRF1 receptor antagonist was more pronounced during the 10th session. Acute restraint stress also caused anxiogenic-like effect, and this response was inhibited in animals treated with either CP376395 or antisauvagine-30. Anxiety-like behaviors were not changed following the 10th session of restraint, and pharmacological treatments did not affect the behavior in the EPM in chronically stressed animals. Repeated restraint also did not change the level of the CRF receptors within the LH. Taken together, the findings indicate that CRF1 and CRF2 receptors within the LH are involved in tachycardic and anxiogenic-like responses to aversive stimuli. Control of tachycardia by the CRF1 receptor is sensitized by previous stressful experience, and this effect seems to be independent of changes in expression of the receptor.
Collapse
Affiliation(s)
- Lucas Barretto-de-Souza
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ricardo Benini
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Lilian Liz Reis-Silva
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Carlos C Crestani
- Laboratory of Pharmacology, São Paulo State University (UNESP), School of Pharmaceutical Sciences, Araraquara, SP, Brazil.
| |
Collapse
|
31
|
Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022; 23:4387. [PMID: 35457203 PMCID: PMC9027355 DOI: 10.3390/ijms23084387] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
During the aging process our body becomes less well equipped to deal with cellular stress, resulting in an increase in unrepaired damage. This causes varying degrees of impaired functionality and an increased risk of mortality. One of the most effective anti-aging strategies involves interventions that combine simultaneous glucometabolic support with augmented DNA damage protection/repair. Thus, it seems prudent to develop therapeutic strategies that target this combinatorial approach. Studies have shown that the ADP-ribosylation factor (ARF) GTPase activating protein GIT2 (GIT2) acts as a keystone protein in the aging process. GIT2 can control both DNA repair and glucose metabolism. Through in vivo co-regulation analyses it was found that GIT2 forms a close coexpression-based relationship with the relaxin-3 receptor (RXFP3). Cellular RXFP3 expression is directly affected by DNA damage and oxidative stress. Overexpression or stimulation of this receptor, by its endogenous ligand relaxin 3 (RLN3), can regulate the DNA damage response and repair processes. Interestingly, RLN3 is an insulin-like peptide and has been shown to control multiple disease processes linked to aging mechanisms, e.g., anxiety, depression, memory dysfunction, appetite, and anti-apoptotic mechanisms. Here we discuss the molecular mechanisms underlying the various roles of RXFP3/RLN3 signaling in aging and age-related disorders.
Collapse
Affiliation(s)
- Hanne Leysen
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Deborah Walter
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lore Clauwaert
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Lieselot Hellemans
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| | - Jaana van Gastel
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
- SGS Belgium, Intercity Business Park, Generaal De Wittelaan 19-A5, 2800 Mechelen, Belgium
| | | | - Bronwen Martin
- Faculty of Pharmaceutical, Biomedical and Veterinary Sciences, University of Antwerp, 2610 Wilrijk, Belgium;
| | - Stuart Maudsley
- Receptor Biology Laboratory, University of Antwerp, 2610 Wilrijk, Belgium; (H.L.); (D.W.); (L.C.); (L.H.); (J.v.G.)
| |
Collapse
|
32
|
Weera MM, Agoglia AE, Douglass E, Jiang Z, Rajamanickam S, Shackett RS, Herman MA, Justice NJ, Gilpin NW. Generation of a CRF 1-Cre transgenic rat and the role of central amygdala CRF 1 cells in nociception and anxiety-like behavior. eLife 2022; 11:e67822. [PMID: 35389341 PMCID: PMC9033268 DOI: 10.7554/elife.67822] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 04/06/2022] [Indexed: 11/13/2022] Open
Abstract
Corticotropin-releasing factor type-1 (CRF1) receptors are critical to stress responses because they allow neurons to respond to CRF released in response to stress. Our understanding of the role of CRF1-expressing neurons in CRF-mediated behaviors has been largely limited to mouse experiments due to the lack of genetic tools available to selectively visualize and manipulate CRF1+ cells in rats. Here, we describe the generation and validation of a transgenic CRF1-Cre-tdTomato rat. We report that Crhr1 and Cre mRNA expression are highly colocalized in both the central amygdala (CeA), composed of mostly GABAergic neurons, and in the basolateral amygdala (BLA), composed of mostly glutamatergic neurons. In the CeA, membrane properties, inhibitory synaptic transmission, and responses to CRF bath application in tdTomato+ neurons are similar to those previously reported in GFP+ cells in CRFR1-GFP mice. We show that stimulatory DREADD receptors can be targeted to CeA CRF1+ cells via virally delivered Cre-dependent transgenes, that transfected Cre/tdTomato+ cells are activated by clozapine-n-oxide in vitro and in vivo, and that activation of these cells in vivo increases anxiety-like and nocifensive behaviors. Outside the amygdala, we show that Cre-tdTomato is expressed in several brain areas across the brain, and that the expression pattern of Cre-tdTomato cells is similar to the known expression pattern of CRF1 cells. Given the accuracy of expression in the CRF1-Cre rat, modern genetic techniques used to investigate the anatomy, physiology, and behavioral function of CRF1+ neurons can now be performed in assays that require the use of rats as the model organism.
Collapse
Affiliation(s)
- Marcus M Weera
- Department of Physiology, Louisiana State University Health Sciences CenterNew OrleansUnited States
| | - Abigail E Agoglia
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Eliza Douglass
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Zhiying Jiang
- Institute of Molecular Medicine, University of Texas Health Sciences CenterHoustonUnited States
| | - Shivakumar Rajamanickam
- Institute of Molecular Medicine, University of Texas Health Sciences CenterHoustonUnited States
| | - Rosetta S Shackett
- Department of Physiology, Louisiana State University Health Sciences CenterNew OrleansUnited States
| | - Melissa A Herman
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
- Bowles Center for Alcohol Studies, University of North CarolinaChapel HillUnited States
| | - Nicholas J Justice
- Institute of Molecular Medicine, University of Texas Health Sciences CenterHoustonUnited States
- Department of Integrative Biology and Pharmacology, McGovern Medical School at UT HealthHoustonUnited States
| | - Nicholas W Gilpin
- Department of Physiology, Louisiana State University Health Sciences CenterNew OrleansUnited States
- Neuroscience Center of Excellence, Louisiana State University Health Sciences CenterNew OrleansUnited States
- Alcohol & Drug Abuse Center of Excellence, Louisiana State University Health Sciences CenterNew OrleansUnited States
- Southeast Louisiana VA Healthcare System (SLVHCS)New OrleansUnited States
| |
Collapse
|
33
|
Optogenetic manipulations of CeA-CRF neurons modulate pain- and anxiety-like behaviors in neuropathic pain and control rats. Neuropharmacology 2022; 210:109031. [PMID: 35304173 DOI: 10.1016/j.neuropharm.2022.109031] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/07/2022] [Accepted: 03/12/2022] [Indexed: 11/23/2022]
Abstract
The amygdala plays a critical role in the emotional-affective component of pain and pain modulation. The central nucleus of amygdala (CeA) serves major output functions and has been linked to pain-related behaviors. Corticotropin releasing factor (CRF) in the CeA has emerged as an important modulator of pain and affective disorders. Here we measured the effects of optogenetic manipulation of CeA-CRF neurons on pain-related behaviors in a rat neuropathic pain model and under control conditions. Emotional-affective behaviors (vocalizations), mechanosensitivity (electronic von Frey anesthesiometer and calibrated forceps), and anxiety-like behaviors (open field test and elevated plus maze) were assessed in adult rats 1 week and 4 weeks after spinal nerve ligation (SNL model) and sham surgery (control). For optogenetic silencing or activation of CRF neurons, a Cre-inducible viral vector encoding enhanced halorhodopsin (eNpHR3.0) or channelrhodopsin 2 (ChR2) was injected stereotaxically into the right CeA of transgenic Crh-Cre rats. Light of the appropriate wavelength (590 nm for eNpHR3.0; 473 nm for ChR2) was delivered into the CeA with an LED optic fiber. Optical silencing of CeA-CRF neurons decreased the emotional-affective responses in the acute and chronic phases of the neuropathic pain model but had anxiolytic effects only at the chronic stage and no effect on mechanosensitivity. Optogenetic activation of CeA-CRF neurons increased the emotional-affective responses and induced anxiety-like behaviors but had no effect on mechanosensitivity in control rats. The data show the critical contribution of CeA-CRF neurons to pain-related behaviors under normal conditions and beneficial effects of inhibiting CeA-CRF neurons in neuropathic pain.
Collapse
|
34
|
Avegno EM, Gilpin NW. Reciprocal midbrain-extended amygdala circuit activity in preclinical models of alcohol use and misuse. Neuropharmacology 2022; 202:108856. [PMID: 34710467 PMCID: PMC8627447 DOI: 10.1016/j.neuropharm.2021.108856] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 01/03/2023]
Abstract
Alcohol dependence is characterized by a shift in motivation to consume alcohol from positive reinforcement (i.e., increased likelihood of future alcohol drinking based on its rewarding effects) to negative reinforcement (i.e., increased likelihood of future alcohol drinking based on alcohol-induced reductions in negative affective symptoms, including but not limited to those experienced during alcohol withdrawal). The neural adaptations that occur during this transition are not entirely understood. Mesolimbic reinforcement circuitry (i.e., ventral tegmental area [VTA] neurons) is activated during early stages of alcohol use, and may be involved in the recruitment of brain stress circuitry (i.e., extended amygdala) during the transition to alcohol dependence, after chronic periods of high-dose alcohol exposure. Here, we review the literature regarding the role of canonical brain reinforcement (VTA) and brain stress (extended amygdala) systems, and the connections between them, in acute, sub-chronic, and chronic alcohol response. Particular emphasis is placed on preclinical models of alcohol use.
Collapse
Affiliation(s)
- Elizabeth M Avegno
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Corresponding author: Correspondence should be addressed to Elizabeth Avegno, 1901 Perdido St, Room 7205, New Orleans, LA 70112,
| | - Nicholas W Gilpin
- Department of Physiology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Department of Alcohol & Drug Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Neuroscience Center of Excellence, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA,Southeast Louisiana VA Healthcare System (SLVHCS), New Orleans, LA
| |
Collapse
|
35
|
Snyder AE, Silberman Y. Corticotropin releasing factor and norepinephrine related circuitry changes in the bed nucleus of the stria terminalis in stress and alcohol and substance use disorders. Neuropharmacology 2021; 201:108814. [PMID: 34624301 PMCID: PMC8578398 DOI: 10.1016/j.neuropharm.2021.108814] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 09/12/2021] [Accepted: 09/24/2021] [Indexed: 12/18/2022]
Abstract
Alcohol Use Disorder (AUD) affects around 14.5 million individuals in the United States, with Substance Use Disorder (SUD) affecting an additional 8.3 million individuals. Relapse is a major barrier to effective long-term treatment of this illness with stress often described as a key trigger for a person with AUD or SUD to relapse during a period of abstinence. Two signaling molecules, norepinephrine (NE) and corticotropin releasing factor (CRF), are released during the stress response, and also play important roles in reward behaviors and the addiction process. Within the addiction literature, one brain region in which there has been increasing research focus in recent years is the bed nucleus of the stria terminalis (BNST). The BNST is a limbic structure with numerous cytoarchitecturally and functionally different subregions that has been implicated in drug-seeking behaviors and stress responses. This review focuses on drug and stress-related neurocircuitry changes in the BNST, particularly within the CRF and NE systems, with an emphasis on differences and similarities between the major dorsal and ventral BNST subregions.
Collapse
Affiliation(s)
- Angela E Snyder
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA
| | - Yuval Silberman
- Penn State College of Medicine, Department of Neural and Behavioral Sciences, USA.
| |
Collapse
|
36
|
De Oliveira Sergio T, Wetherill L, Kwok C, Khoyloo F, Hopf FW. Sex differences in specific aspects of two animal tests of anxiety-like behavior. Psychopharmacology (Berl) 2021; 238:2775-2787. [PMID: 34120205 PMCID: PMC11071636 DOI: 10.1007/s00213-021-05893-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022]
Abstract
RATIONALE Anxiety, a negative state of high arousal and vigilance, is especially prevalent in women, making identification of underlying mechanisms critical for developing effective therapies. With the challenge of disentangling biological and social factors in humans, animal tests can provide valuable insights, although such tests, developed in males, have unclear validity for females. OBJECTIVE To better understand patterns of sex differences across multiple measures within two classical rodent anxiety tests. METHODS We examined female and male adult Wistar rats (n = 15-18/group) that were single-housed in the novelty suppression of feeding test (NSFT) that involves food under a bright light in food-restricted animals, and light-dark test (LDT), which reflects innate aversion to bright light. To further validate these tests in females, we also examined the impact of 1 mg/kg diazepam. RESULTS NSFT measures of the most direct interaction with food, latency to grab food and food consumed, indicated increased anxiety-like behavior in females versus males, with diazepam altering these behaviors in females but not males. Most other measures showed more similar effects of diazepam across the sexes, with some evidence of reduced anxiety-like behavior in LDT for females. Principal component analyses indicated limited relationships across behavioral factors, underscoring previous suggestions of the importance of assessing multiple measures to maximize information and ethological relevance. CONCLUSIONS Combining our findings and previous studies, we speculate that increased anxiety-like behavior in females manifests especially when there is a specific, life-relevant condition (e.g., food in the NSFT). Our findings also validate NSFT and LDT use in females.
Collapse
Affiliation(s)
- Thatiane De Oliveira Sergio
- Department of Psychiatry, Indiana University School of Medicine, 320 W. 15th Street, NB 300E, Indianapolis, IN, 46202, USA
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA
| | - Leah Wetherill
- Department of Medical & Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claudina Kwok
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA
| | - Farrah Khoyloo
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA
| | - Frederic W Hopf
- Department of Psychiatry, Indiana University School of Medicine, 320 W. 15th Street, NB 300E, Indianapolis, IN, 46202, USA.
- Department of Neurology, University of California At San Francisco, San Francisco, CA, USA.
| |
Collapse
|
37
|
Ardianto C, Budiatin AS, Sumartha INB, Nurrahmi N, Rahmadi M, Khotib J. Resveratrol ameliorates physical and psychological stress-induced depressive-like behavior. J Basic Clin Physiol Pharmacol 2021; 32:335-340. [PMID: 34214312 DOI: 10.1515/jbcpp-2020-0437] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 03/08/2021] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Depression is a mental disorder that profoundly affects all aspects of life, but currently, antidepressants have some problems with their effectiveness and side effects. Resveratrol is a compound that has the ability to regulate the hypothalamic-pituitary-adrenal axis. This study aimed to determine resveratrol's effect on physical and psychological stress-induced depressive-like behavior. METHODS Mice were divided into control, physical stress, psychological stress groups. Treatment was conducted with fluvoxamine 20 mg/kg and resveratrol 20, 40, and 80 mg/kg for seven days. The depressive-like state was evaluated using a forced swim test (FST), tail suspension test (TST), and open field test (OFT). RESULTS Physical stress and psychological stress induction increase the immobility time on FST and TST. Besides, there is an increase in time in central on OFT, which indicates an anxiety or mental illness-like behavior. However, the OFT examination on sniffing, rearing, grooming, and crossing behavior did not show a significant difference. Resveratrol 80 mg/kg and fluvoxamine 20 mg/kg were significantly reduced immobility time at TST compared to the physical stress group. While in psychological stress, resveratrol 80 mg/kg tended to decrease immobility time but not significant. A significant increase in time in central duration was seen in the resveratrol 40 mg/kg compared to the psychological stress. Stress induction causes increased amygdala corticotrophin-releasing factor (CRF) mRNA expression. However, neither resveratrol nor fluvoxamine affected amygdala CRF mRNA expression. CONCLUSIONS Resveratrol ameliorates depressive-like behavior induced by physical and psychological stress.
Collapse
Affiliation(s)
- Chrismawan Ardianto
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Aniek Setiya Budiatin
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - I Nengah Budi Sumartha
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Nurrahmi Nurrahmi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Mahardian Rahmadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| | - Junaidi Khotib
- Department of Clinical Pharmacy, Faculty of Pharmacy, University of Airlangga, Surabaya, Indonesia
| |
Collapse
|
38
|
Pomrenze MB, Marinelli M. Love it or Leave it: Differential Modulation of Incentive Motivation by Corticotropin-Releasing Factor Neurons. Biol Psychiatry 2021; 89:1113-1115. [PMID: 34082887 PMCID: PMC8380042 DOI: 10.1016/j.biopsych.2021.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 03/30/2021] [Indexed: 12/01/2022]
Affiliation(s)
| | - Michela Marinelli
- Department of Neuroscience, College of Natural Sciences, Austin, Texas; Department of Neurology, The University of Texas at Austin, Austin, Texas; Department of Psychiatry and Behavioral Sciences, Dell Medical School, Austin, Texas; Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas.
| |
Collapse
|
39
|
Baumgartner HM, Schulkin J, Berridge KC. Activating Corticotropin-Releasing Factor Systems in the Nucleus Accumbens, Amygdala, and Bed Nucleus of Stria Terminalis: Incentive Motivation or Aversive Motivation? Biol Psychiatry 2021; 89:1162-1175. [PMID: 33726937 PMCID: PMC8178165 DOI: 10.1016/j.biopsych.2021.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neural systems are important stress mechanisms in the central amygdala (CeA), bed nucleus of stria terminalis (BNST), nucleus accumbens (NAc), and related structures. CRF-containing neural systems are traditionally posited to generate aversive distress states that motivate overconsumption of rewards and relapse in addiction. However, CRF-containing systems may alternatively promote incentive motivation to increase reward pursuit and consumption without requiring aversive states. METHODS We optogenetically stimulated CRF-expressing neurons in the CeA, BNST, or NAc using Crh-Cre+ rats (n = 37 female, n = 34 male) to investigate roles in incentive motivation versus aversive motivation. We paired CRF-expressing neuronal stimulations with earning sucrose rewards in two-choice and progressive ratio tasks and investigated recruitment of distributed limbic circuitry. We further assessed valence with CRF-containing neuron laser self-stimulation tasks. RESULTS Channelrhodopsin excitation of CRF-containing neurons in the CeA and NAc amplified and focused incentive motivation and recruited activation of mesocorticolimbic reward circuitry. CRF systems in both the CeA and NAc supported laser self-stimulation, amplified incentive motivation for sucrose in a breakpoint test, and focused "wanting" on laser-paired sucrose over a sucrose alternative in a two-choice test. Conversely, stimulation of CRF-containing neurons in the BNST produced negative valence or aversive effects and recruited distress-related circuitry, as stimulation was avoided and suppressed motivation for sucrose. CONCLUSIONS CRF-containing systems in the NAc and CeA can promote reward consumption by increasing incentive motivation without involving aversion. In contrast, stimulation of CRF-containing systems in the BNST is aversive but suppresses sucrose reward pursuit and consumption rather than increase, as predicted by traditional hedonic self-medication hypotheses.
Collapse
Affiliation(s)
| | - Jay Schulkin
- Department of Neuroscience, Georgetown University, Washington, DC
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
40
|
Bloodgood DW, Hardaway JA, Stanhope CM, Pati D, Pina MM, Neira S, Desai S, Boyt KM, Palmiter RD, Kash TL. Kappa opioid receptor and dynorphin signaling in the central amygdala regulates alcohol intake. Mol Psychiatry 2021; 26:2187-2199. [PMID: 32099099 PMCID: PMC8124770 DOI: 10.1038/s41380-020-0690-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/14/2020] [Accepted: 02/13/2020] [Indexed: 01/09/2023]
Abstract
Excessive alcohol drinking has been shown to modify brain circuitry to predispose individuals for future alcohol abuse. Previous studies have implicated the central nucleus of the amygdala (CeA) as an important site for mediating the somatic symptoms of withdrawal and for regulating alcohol intake. In addition, recent work has established a role for both the Kappa Opioid Receptor (KOR) and its endogenous ligand dynorphin in mediating these processes. However, it is unclear whether these effects are due to dynorphin or KOR arising from within the CeA itself or other input brain regions. To directly examine the role of preprodynorphin (PDYN) and KOR expression in CeA neurons, we performed region-specific conditional knockout of these genes and assessed the effects on the Drinking in the Dark (DID) and Intermittent Access (IA) paradigms. Conditional gene knockout resulted in sex-specific responses wherein PDYN knockout decreased alcohol drinking in both male and female mice, whereas KOR knockout decreased drinking in males only. We also found that neither PDYN nor KOR knockout protected against anxiety caused by alcohol drinking. Lastly, a history of alcohol drinking did not alter synaptic transmission in PDYN neurons in the CeA of either sex, but excitability of PDYN neurons was increased in male mice only. Taken together, our findings indicate that PDYN and KOR signaling in the CeA plays an important role in regulating excessive alcohol consumption and highlight the need for future studies to examine how this is mediated through downstream effector regions.
Collapse
Affiliation(s)
- Daniel W Bloodgood
- Bowles Center for Alcohol Studies, Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - J Andrew Hardaway
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Christina M Stanhope
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Dipanwita Pati
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Melanie M Pina
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Sofia Neira
- Bowles Center for Alcohol Studies, Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Shivani Desai
- Department of Biology, University of North Carolina College of Arts and Sciences, Chapel Hill, NC, USA
| | - Kristen M Boyt
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Richard D Palmiter
- Howard Hughes Medical Institute and Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Thomas L Kash
- Bowles Center for Alcohol Studies, Curriculum in Neuroscience, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
- Bowles Center for Alcohol Studies, Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, NC, USA.
| |
Collapse
|
41
|
Mazzitelli M, Marshall K, Pham A, Ji G, Neugebauer V. Optogenetic Manipulations of Amygdala Neurons Modulate Spinal Nociceptive Processing and Behavior Under Normal Conditions and in an Arthritis Pain Model. Front Pharmacol 2021; 12:668337. [PMID: 34113253 PMCID: PMC8185300 DOI: 10.3389/fphar.2021.668337] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/15/2021] [Indexed: 12/14/2022] Open
Abstract
The amygdala is an important neural substrate for the emotional–affective dimension of pain and modulation of pain. The central nucleus (CeA) serves major amygdala output functions and receives nociceptive and affected–related information from the spino-parabrachial and lateral–basolateral amygdala (LA–BLA) networks. The CeA is a major site of extra–hypothalamic expression of corticotropin releasing factor (CRF, also known as corticotropin releasing hormone, CRH), and amygdala CRF neurons form widespread projections to target regions involved in behavioral and descending pain modulation. Here we explored the effects of modulating amygdala neurons on nociceptive processing in the spinal cord and on pain-like behaviors, using optogenetic activation or silencing of BLA to CeA projections and CeA–CRF neurons under normal conditions and in an acute pain model. Extracellular single unit recordings were made from spinal dorsal horn wide dynamic range (WDR) neurons, which respond more strongly to noxious than innocuous mechanical stimuli, in normal and arthritic adult rats (5–6 h postinduction of a kaolin/carrageenan–monoarthritis in the left knee). For optogenetic activation or silencing of CRF neurons, a Cre–inducible viral vector (DIO–AAV) encoding channelrhodopsin 2 (ChR2) or enhanced Natronomonas pharaonis halorhodopsin (eNpHR3.0) was injected stereotaxically into the right CeA of transgenic Crh–Cre rats. For optogenetic activation or silencing of BLA axon terminals in the CeA, a viral vector (AAV) encoding ChR2 or eNpHR3.0 under the control of the CaMKII promoter was injected stereotaxically into the right BLA of Sprague–Dawley rats. For wireless optical stimulation of ChR2 or eNpHR3.0 expressing CeA–CRF neurons or BLA–CeA axon terminals, an LED optic fiber was stereotaxically implanted into the right CeA. Optical activation of CeA–CRF neurons or of BLA axon terminals in the CeA increased the evoked responses of spinal WDR neurons and induced pain-like behaviors (hypersensitivity and vocalizations) under normal condition. Conversely, optical silencing of CeA–CRF neurons or of BLA axon terminals in the CeA decreased the evoked responses of spinal WDR neurons and vocalizations, but not hypersensitivity, in the arthritis pain model. These findings suggest that the amygdala can drive the activity of spinal cord neurons and pain-like behaviors under normal conditions and in a pain model.
Collapse
Affiliation(s)
- Mariacristina Mazzitelli
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Kendall Marshall
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Andrew Pham
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, United States.,Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, United States
| |
Collapse
|
42
|
Warlow SM, Berridge KC. Incentive motivation: 'wanting' roles of central amygdala circuitry. Behav Brain Res 2021; 411:113376. [PMID: 34023307 DOI: 10.1016/j.bbr.2021.113376] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 05/16/2021] [Accepted: 05/18/2021] [Indexed: 12/28/2022]
Abstract
The central nucleus of amygdala (CeA) mediates positively-valenced reward motivation as well as negatively-valenced fear. Optogenetic or neurochemical stimulation of CeA circuitry can generate intense incentive motivation to pursue and consume a paired natural food, sex, or addictive drug reward, and even create maladaptive 'wanting what hurts' such as attraction to a shock rod. Evidence indicates CeA stimulations selectively amplify incentive motivation ('wanting') but not hedonic impact ('liking') of the same reward. Further, valence flips can occur for CeA contributions to motivational salience. That is, CeA stimulation can promote either incentive motivation or fearful motivation, even in the same individual, depending on situation. These findings may carry implications for understanding CeA roles in neuropsychiatric disorders involving aberrant motivational salience, ranging from addiction to paranoia and anxiety disorders.
Collapse
Affiliation(s)
- Shelley M Warlow
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
43
|
Urien L, Stein N, Ryckman A, Bell L, Bauer EP. Extended amygdala circuits are differentially activated by context fear conditioning in male and female rats. Neurobiol Learn Mem 2021; 180:107401. [PMID: 33581315 PMCID: PMC8076097 DOI: 10.1016/j.nlm.2021.107401] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/02/2021] [Accepted: 02/02/2021] [Indexed: 02/06/2023]
Abstract
As the incidence of anxiety disorders is more prevalent in females, comparing the neural underpinnings of anxiety in males and females is imperative. The bed nucleus of the stria terminalis (BNST) contributes to long-lasting, anxiety-like states including the expression of context fear conditioning. Currently, there is conflicting evidence as to which nuclei of the BNST contribute to these behaviors. The anterolateral portion of the BNST (BNST-AL) located dorsal to the anterior commissure and lateral to the stria terminalis sends robust projections to the central nucleus of the amygdala (CE). Here we asked whether the BNST-AL is active during the expression of context fear conditioning in both male and female rats. At the cellular level, the expression of context fear produced upregulation of the immediate-early gene ARC in the BNST-AL as well as an upregulation of ARC specifically in neurons projecting to the CE, as labeled by the retrograde tracer Fluorogold infused into the CE. However, this pattern of ARC expression was observed in male rats only. Excitotoxic lesions of the BNST reduced context fear expression in both sexes, suggesting that a different set of BNST subnuclei may be recruited by the expression of fear and anxiety-like behaviors in females. Overall, our data highlight the involvement of the BNST-AL in fear expression in males, and suggest that subnuclei of the BNST may be functionally different in male and female rats.
Collapse
Affiliation(s)
- Louise Urien
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Nicole Stein
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Abigail Ryckman
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Lindsey Bell
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States
| | - Elizabeth P Bauer
- Departments of Biology and Neuroscience & Behavior, Barnard College of Columbia University, 3009 Broadway, New York, NY 10027, United States.
| |
Collapse
|
44
|
Hein M, Ji G, Tidwell D, D'Souza P, Kiritoshi T, Yakhnitsa V, Navratilova E, Porreca F, Neugebauer V. Kappa opioid receptor activation in the amygdala disinhibits CRF neurons to generate pain-like behaviors. Neuropharmacology 2021; 185:108456. [PMID: 33444637 PMCID: PMC7887082 DOI: 10.1016/j.neuropharm.2021.108456] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 12/15/2022]
Abstract
Recent evidence suggests that kappa opioid receptors (KOR) in limbic brain regions such as the amygdala contribute to pain conditions, but underlying mechanisms remain to be determined. The amygdala is an important player in averse-affective aspects of pain and pain modulation. The central nucleus (CeA) serves output functions through projection neurons that include corticotropin releasing factor (CRF) expressing neurons. The CeA is also rich in KOR. Here we tested the novel hypothesis that KOR activation in the CeA generates pain-like behaviors through a mechanism that involves inhibition of synaptic inhibition (disinhibition) of CRF neurons. Intra-CeA administration of a KOR agonist (U-69,593) increased vocalizations of naïve rats to noxious stimuli, and induced anxiety-like behaviors in the open field test (OFT) and avoidance in the conditioned place preference test, without affecting mechanosensory thresholds. Optogenetic silencing of CeA-CRF neurons blocked the facilitatory effects of systemically applied U-69,593 in naïve rats. Patch-clamp recordings of CRF neurons in rat brain slices found that U-69,593 decreased feedforward inhibitory transmission evoked by optogenetic stimulation of parabrachial afferents, but had no effect on monosynaptic excitatory transmission. U-69,593 decreased frequency, but not amplitude, of inhibitory synaptic currents, suggesting a presynaptic action. Multiphoton imaging of CeA-CRF neurons in rat brain slices showed that U-69,593 increased calcium signals evoked by electrical stimulation of presumed parabrachial input. This study shows for the first time that KOR activation increases activity of amygdala CRF neurons through synaptic disinhibition, resulting in averse-affective pain-like behaviors. Blocking KOR receptors may therefore represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Matthew Hein
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Guangchen Ji
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dalton Tidwell
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Preston D'Souza
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Takaki Kiritoshi
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Vadim Yakhnitsa
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Edita Navratilova
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Frank Porreca
- Department of Pharmacology, Arizona Health Sciences Center, University of Arizona, Tucson, AZ, USA
| | - Volker Neugebauer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Center of Excellence for Translational Neuroscience and Therapeutics, Texas Tech University Health Sciences Center, Lubbock, TX, USA; Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
45
|
Giardino WJ, Pomrenze MB. Extended Amygdala Neuropeptide Circuitry of Emotional Arousal: Waking Up on the Wrong Side of the Bed Nuclei of Stria Terminalis. Front Behav Neurosci 2021; 15:613025. [PMID: 33633549 PMCID: PMC7900561 DOI: 10.3389/fnbeh.2021.613025] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep is fundamental to life, and poor sleep quality is linked to the suboptimal function of the neural circuits that process and respond to emotional stimuli. Wakefulness ("arousal") is chiefly regulated by circadian and homeostatic forces, but affective mood states also strongly impact the balance between sleep and wake. Considering the bidirectional relationships between sleep/wake changes and emotional dynamics, we use the term "emotional arousal" as a representative characteristic of the profound overlap between brain pathways that: (1) modulate wakefulness; (2) interpret emotional information; and (3) calibrate motivated behaviors. Interestingly, many emotional arousal circuits communicate using specialized signaling molecules called neuropeptides to broadly modify neural network activities. One major neuropeptide-enriched brain region that is critical for emotional processing and has been recently implicated in sleep regulation is the bed nuclei of stria terminalis (BNST), a core component of the extended amygdala (an anatomical term that also includes the central and medial amygdalae, nucleus accumbens shell, and transition zones betwixt). The BNST encompasses an astonishing diversity of cell types that differ across many features including spatial organization, molecular signature, biological sex and hormonal milieu, synaptic input, axonal output, neurophysiological communication mode, and functional role. Given this tremendous complexity, comprehensive elucidation of the BNST neuropeptide circuit mechanisms underlying emotional arousal presents an ambitious set of challenges. In this review, we describe how rigorous investigation of these unresolved questions may reveal key insights to enhancing psychiatric treatments and global psychological wellbeing.
Collapse
|
46
|
Walker LC. A balancing act: the role of pro- and anti-stress peptides within the central amygdala in anxiety and alcohol use disorders. J Neurochem 2021; 157:1615-1643. [PMID: 33450069 DOI: 10.1111/jnc.15301] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/18/2020] [Accepted: 01/06/2021] [Indexed: 12/21/2022]
Abstract
The central nucleus of the amygdala (CeA) is widely implicated as a structure that integrates both appetitive and aversive stimuli. While intrinsic CeA microcircuits primarily consist of GABAergic neurons that regulate amygdala output, a notable feature of the CeA is the heterogeneity of neuropeptides and neuropeptide/neuromodulator receptors that it expresses. There is growing interest in the role of the CeA in mediating psychopathologies, including stress and anxiety states and their interactions with alcohol use disorders. Within the CeA, neuropeptides and neuromodulators often exert pro- or anti- stress actions, which can influence anxiety and alcohol associated behaviours. In turn, alcohol use can cause adaptions within the CeA, which may render an individual more vulnerable to stress which is a major trigger of relapse to alcohol seeking. This review examines the neurocircuitry, neurochemical phenotypes and how pro- and anti-stress peptide systems act within the CeA to regulate anxiety and alcohol seeking, focusing on preclinical observations from animal models. Furthermore, literature exploring the targeting of genetically defined populations or neuronal ensembles and the role of the CeA in mediating sex differences in stress x alcohol interactions are explored.
Collapse
Affiliation(s)
- Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, Parkville, Vic, Australia.,Florey Department of Neuroscience and Mental Health, University of Melbourne, Parkville, Vic, Australia
| |
Collapse
|
47
|
Abstract
Alcohol dependence is a chronically relapsing disorder characterized by compulsive drug-seeking and drug-taking, loss of control in limiting intake, and the emergence of a withdrawal syndrome in the absence of the drug. Accumulating evidence suggests an important role for synaptic transmission in the central nucleus of the amygdala (CeA) in mediating alcohol-related behaviors and neuroadaptive mechanisms associated with alcohol dependence. Acute alcohol facilitates γ-aminobutyric acid (GABA)ergic transmission in the CeA via both pre- and postsynaptic mechanisms, and chronic alcohol increases baseline GABAergic transmission. Acute alcohol inhibits glutamatergic transmission via effects at N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors in the CeA, whereas chronic alcohol up-regulates NMDA receptor (NMDAR)-mediated transmission. Pro- (e.g., corticotropin-releasing factor [CRF]) and antistress (e.g., nociceptin/orphanin FQ, oxytocin) neuropeptides affect alcohol- and anxiety-related behaviors, and also alter the alcohol-induced effects on CeA neurotransmission. Alcohol dependence produces plasticity in these neuropeptide systems, reflecting a recruitment of those systems during the transition to alcohol dependence.
Collapse
Affiliation(s)
- Marisa Roberto
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Dean Kirson
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| | - Sophia Khom
- Departments of Molecular Medicine and Neuroscience, The Scripps Research Institute, La Jolla, California 92037, USA
| |
Collapse
|
48
|
Curtis GR, Oakes K, Barson JR. Expression and Distribution of Neuropeptide-Expressing Cells Throughout the Rodent Paraventricular Nucleus of the Thalamus. Front Behav Neurosci 2021; 14:634163. [PMID: 33584216 PMCID: PMC7873951 DOI: 10.3389/fnbeh.2020.634163] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
The paraventricular nucleus of the thalamus (PVT) has been shown to make significant contributions to affective and motivated behavior, but a comprehensive description of the neurochemicals expressed in the cells of this brain region has never been presented. While the PVT is believed to be composed of projection neurons that primarily use as their neurotransmitter the excitatory amino acid, glutamate, several neuropeptides have also been described in this brain region. In this review article, we combine published literature with our observations from the Allen Brain Atlas to describe in detail the expression and distribution of neuropeptides in cells throughout the mouse and rat PVT, with a special focus on neuropeptides known to be involved in behavior. Several themes emerge from this investigation. First, while the majority of neuropeptides are expressed across the antero-posterior axis of the PVT, they generally exist in a gradient, in which expression is most dense but not exclusive in either the anterior or posterior PVT, although other neuropeptides display somewhat more equal expression in the anterior and posterior PVT but have reduced expression in the middle PVT. Second, we find overall that neuropeptides involved in arousal are more highly expressed in the anterior PVT, those involved in depression-like behavior are more highly expressed in the posterior PVT, and those involved in reward are more highly expressed in the medial PVT, while those involved in the intake of food and drugs of abuse are distributed throughout the PVT. Third, the pattern and content of neuropeptide expression in mice and rats appear not to be identical, and many neuropeptides found in the mouse PVT have not yet been demonstrated in the rat. Thus, while significantly more work is required to uncover the expression patterns and specific roles of individual neuropeptides in the PVT, the evidence thus far supports the existence of a diverse yet highly organized system of neuropeptides in this nucleus. Determined in part by their location within the PVT and their network of projections, the function of the neuropeptides in this system likely involves intricate coordination to influence both affective and motivated behavior.
Collapse
Affiliation(s)
- Genevieve R Curtis
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Kathleen Oakes
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Jessica R Barson
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA, United States
| |
Collapse
|
49
|
Central Amygdala Projections to Lateral Hypothalamus Mediate Avoidance Behavior in Rats. J Neurosci 2021; 41:61-72. [PMID: 33188067 DOI: 10.1523/jneurosci.0236-20.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/26/2020] [Accepted: 10/28/2020] [Indexed: 11/21/2022] Open
Abstract
Persistent avoidance of stress-related stimuli following acute stress exposure predicts negative outcomes such as substance abuse and traumatic stress disorders. Previous work using a rat model showed that the central amygdala (CeA) plays an important role in avoidance of a predator odor stress-paired context. Here, we show that CeA projections to the lateral hypothalamus (LH) are preferentially activated in male rats that show avoidance of a predator odor-paired context (termed Avoider rats), that chemogenetic inhibition of CeA-LH projections attenuates avoidance in male Avoider rats, that chemogenetic stimulation of the CeA-LH circuit produces conditioned place avoidance (CPA) in otherwise naive male rats, and that avoidance behavior is associated with intrinsic properties of LH-projecting CeA cells. Collectively, these data show that CeA-LH projections are important for persistent avoidance of stress-related stimuli following acute stress exposure.SIGNIFICANCE STATEMENT This study in rats shows that a specific circuit in the brain [i.e., neurons that project from the central amygdala (CeA) to the lateral hypothalamus (LH)] mediates avoidance of stress-associated stimuli. In addition, this study shows that intrinsic physiological properties of cells in this brain circuit are associated with avoidance of stress-associated stimuli. Further characterization of the CeA-LH circuit may improve our understanding of the neural mechanisms underlying specific aspects of stress-related disorders in humans.
Collapse
|
50
|
Hammack SE, Braas KM, May V. Chemoarchitecture of the bed nucleus of the stria terminalis: Neurophenotypic diversity and function. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:385-402. [PMID: 34225977 DOI: 10.1016/b978-0-12-819975-6.00025-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The bed nucleus of the stria terminalis (BNST) is a compact but neurophenotypically complex structure in the ventral forebrain that is structurally and functionally linked to other limbic structures, including the amygdala nuclear complex, hypothalamic nuclei, hippocampus, and related midbrain structures, to participate in a wide range of functions, especially emotion, emotional learning, stress-related responses, and sexual behaviors. From a variety of sensory inputs, the BNST acts as a node for signal integration and coordination for information relay to downstream central neuroendocrine and autonomic centers for appropriate homeostatic physiological and behavioral responses. In contrast to the role of the amygdala in fear, the BNST has gained wide interest from work suggesting that it has main roles in mediating sustained responses to diffuse, unpredictable and/or long-duration threats that are typically associated with anxiety-related responses. Further, some BNST subregions are highly sexually dimorphic which appear contributory to the differential stress and social interactive behaviors, including reproductive responses, between males and females. Notably, maladaptive BNST neuroplasticity and function have been implicated in chronic pain, depression, anxiety-related abnormalities, and other psychopathologies including posttraumatic stress disorders. The BNST circuits are predominantly GABAergic-the glutaminergic neurons represent a minor population-but the complexity of the system results from an overlay of diverse neuropeptide coexpression in these neurons. More than a dozen neuropeptides may be differentially coexpressed in BNST neurons, and from variable G protein-coupled receptor signaling, may inhibit or activate downstream circuit activities. The mechanisms and roles of these peptides in modulating intrinsic BNST neurocircuit signaling and BNST long-distance target cell projections are still not well understood. Nevertheless, an understanding of some of the principal players may allow assembly of the circuit interactions.
Collapse
Affiliation(s)
- Sayamwong E Hammack
- Department of Psychological Science, University of Vermont, Burlington, VT, United States
| | - Karen M Braas
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States
| | - Victor May
- Department of Neurological Sciences, University of Vermont Larner College of Medicine, Burlington, VT, United States.
| |
Collapse
|