1
|
Kauv P, Chalah MA, Créange A, Lefaucheur JP, Hodel J, Ayache SS. The corticospinal tract in multiple sclerosis: correlation between cortical excitability and magnetic resonance imaging measures. J Neural Transm (Vienna) 2025; 132:265-273. [PMID: 39417879 PMCID: PMC11785694 DOI: 10.1007/s00702-024-02849-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024]
Abstract
Multiple sclerosis (MS) is a central nervous system disease involving gray and white matters. Transcranial magnetic stimulation (TMS) and magnetic resonance imaging (MRI) could help identify potential markers of disease evolution, disability, and treatment response. This work evaluates the relationship between intracortical inhibition and facilitation, motor cortex lesions, and corticospinal tract (CST) integrity. Consecutive adult patients with progressive MS were included. Sociodemographic and clinical data were collected. MRI was acquired to assess primary motor cortex lesions (double inversion and phase-sensitive inversion recovery) and CST integrity (diffusion tensor imaging). TMS outcomes were obtained: motor evoked potentials (MEP) latency, resting motor threshold, short-interval intracortical facilitation (ICF) and inhibition. Correlation analysis was performed. Twenty-five patients completed the study (13 females, age: 55.60 ± 11.49 years, Expanded Disability Status Score: 6.00 ± 1.25). Inverse correlations were found between ICF mean and each of CST radial diffusivity (RD) (ρ =-0.56; p < 0.01), CST apparent diffusion coefficient (ADC) (ρ=-0.44; p = 0.03), and disease duration (ρ=-0.46; p = 0.02). MEP latencies were directly correlated with disability scores (ρ = 0.55; p < 0.01). High ADC/RD and low ICF have been previously reported in patients with MS. While the former could reflect structural damage of the CST, the latter could hint towards an aberrant synaptic transmission as well as a depletion of facilitatory compensatory mechanisms that helps overcoming functional decline. The findings suggest concomitant structural and functional abnormalities at later disease stages that would be accompanied with a heightened disability. The results should be interpreted with caution mainly because of the small sample size that precludes further comparisons (e.g., treated vs. untreated patients, primary vs. secondary progressive MS). The role of these outcomes as potential MS biomarkers merit to be further explored.
Collapse
Affiliation(s)
- Paul Kauv
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France.
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France.
| | - Moussa A Chalah
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Institut de Neuromodulation, Pôle Hospitalo-Universitaire Psychiatrie Paris 15, GHU Paris Psychiatrie et Neurosciences, Hôpital Sainte-Anne, Paris, France
| | - Alain Créange
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Service de Neurologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| | - Jérôme Hodel
- Service de Neuroradiologie, Hôpital Henri-Mondor, Assistance Publique- Hôpitaux de Paris (AP-HP), 51 avenue du Maréchal de Lattre de Tassigny, Créteil Cedex, 94010, France
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Radiology, Groupe Hospitalier Paris Saint-Joseph, Paris, France
- Centre d'Imagerie Médicale Léonard de Vinci, Paris, France
| | - Samar S Ayache
- EA 4391, Excitabilité Nerveuse et Thérapeutique, Université Paris-Est-Créteil, Créteil, France
- Department of Neurology, Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Byblos, Lebanon
- Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, Paris, France
- Department of Clinical Neurophysiology, DMU FIxIT, Henri Mondor University Hospital, Assistance Publique- Hôpitaux de Paris (AP-HP), Créteil, France
| |
Collapse
|
2
|
Aslan U, Akşahin MF. Enhancing multiple sclerosis diagnosis: A comparative study of electroencephalogram signal processing and entropy methods. Comput Biol Med 2025; 185:109615. [PMID: 39721414 DOI: 10.1016/j.compbiomed.2024.109615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
As one of the most common neurodegenerative diseases, Multiple sclerosis (MS) is a chronic immune-driven disorder that affects the central nervous system (CNS). Due to the variety of symptoms, accurately diagnosing MS demands rigorous attention to differential diagnosis, as various disorders can closely mimic its clinical and paraclinical features. Although MR imaging techniques are gold standards in diagnosing MS, the feasibility of advanced Electroencephalogram (EEG) signal processing methods is discussed in this study to detect patients with MS disorder. EEG signals from 50 individuals were evaluated through entropy-based methods. Sixteen distinct entropy methods were employed to extract features, which were used to train several machine-learning algorithms for classifying MS patients. Furthermore, each entropy method was individually evaluated to identify the most effective approach for MS diagnosis. A regional analysis of the EEG channels was conducted to determine the most informative regions for classification. The results indicated that the proposed method outperformed previous studies and achieved highly effective results in the classification of MS patients.
Collapse
Affiliation(s)
- Umut Aslan
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey.
| | - Mehmet Feyzi Akşahin
- Department of Electrical and Electronic Engineering, Gazi University, Ankara, Turkey
| |
Collapse
|
3
|
Sahu M, Ambasta RK, Das SR, Mishra MK, Shanker A, Kumar P. Harnessing Brainwave Entrainment: A Non-invasive Strategy To Alleviate Neurological Disorder Symptoms. Ageing Res Rev 2024; 101:102547. [PMID: 39419401 DOI: 10.1016/j.arr.2024.102547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/19/2024]
Abstract
From 1990-2019, the burden of neurological disorders varied considerably across countries and regions. Psychiatric disorders, often emerging in early to mid-adulthood, are linked to late-life neurodegenerative diseases like Alzheimer's disease and Parkinson's disease. Individuals with conditions such as Major Depressive Disorder, Anxiety Disorder, Schizophrenia, and Bipolar Disorder face up to four times higher risk of developing neurodegenerative disorders. Contrarily, 65 % of those with neurodegenerative conditions experience severe psychiatric symptoms during their illness. Further, the limitation of medical resources continues to make this burden a significant global and local challenge. Therefore, brainwave entrainment provides therapeutic avenues for improving the symptoms of diseases. Brainwaves are rhythmic oscillations produced either spontaneously or in response to stimuli. Key brainwave patterns include gamma, beta, alpha, theta, and delta waves, yet the underlying physiological mechanisms and the brain's ability to shift between these dynamic states remain areas for further exploration. In neurological disorders, brainwaves are often disrupted, a phenomenon termed "oscillopathy". However, distinguishing these impaired oscillations from the natural variability in brainwave activity across different regions and functional states poses significant challenges. Brainwave-mediated therapeutics represents a promising research field aimed at correcting dysfunctional oscillations. Herein, we discuss a range of non-invasive techniques such as non-invasive brain stimulation (NIBS), neurologic music therapy (NMT), gamma stimulation, and somatosensory interventions using light, sound, and visual stimuli. These approaches, with their minimal side effects and cost-effectiveness, offer potential therapeutic benefits. When integrated, they may not only help in delaying disease progression but also contribute to the development of innovative medical devices for neurological care.
Collapse
Affiliation(s)
- Mehar Sahu
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India
| | - Rashmi K Ambasta
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Suman R Das
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Manoj K Mishra
- Cancer Biology Research and Training, Department of Biological Sciences, Alabama State University, Montgomery, AL 36104, USA
| | - Anil Shanker
- Department of Biochemistry, Cancer Biology, Neuroscience & Pharmacology, School of Medicine, Meharry Medical College, and The Office for Research and Innovation, Meharry Medical College, Nashville, TN 37208, USA
| | - Pravir Kumar
- Molecular Neuroscience and Functional Genomics Laboratory, Department of Biotechnology, Delhi Technological University (Formerly Delhi College of Engineering), Shahbad Daulatpur, Bawana Road, Delhi 110042, India.
| |
Collapse
|
4
|
Beck M, Heyl M, Mejer L, Vinding M, Christiansen L, Tomasevic L, Siebner H. Methodological Choices Matter: A Systematic Comparison of TMS-EEG Studies Targeting the Primary Motor Cortex. Hum Brain Mapp 2024; 45:e70048. [PMID: 39460649 PMCID: PMC11512442 DOI: 10.1002/hbm.70048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Transcranial magnetic stimulation (TMS) triggers time-locked cortical activity that can be recorded with electroencephalography (EEG). Transcranial evoked potentials (TEPs) are widely used to probe brain responses to TMS. Here, we systematically reviewed 137 published experiments that studied TEPs elicited from TMS to the human primary motor cortex (M1) in healthy individuals to investigate the impact of methodological choices. We scrutinized prevalent methodological choices and assessed how consistently they were reported in published papers. We extracted amplitudes and latencies from reported TEPs and compared specific TEP peaks and components between studies using distinct methods. Reporting of methodological details was overall sufficient, but some relevant information regarding the TMS settings and the recording and preprocessing of EEG data were missing in more than 25% of the included experiments. The published TEP latencies and amplitudes confirm the "prototypical" TEP waveform following stimulation of M1, comprising distinct N15, P30, N45, P60, N100, and P180 peaks. However, variations in amplitude were evident across studies. Higher stimulation intensities were associated with overall larger TEP amplitudes. Active noise masking during TMS generally resulted in lower TEP amplitudes compared to no or passive masking but did not specifically impact those TEP peaks linked to long-latency sensory processing. Studies implementing independent component analysis (ICA) for artifact removal generally reported lower TEP magnitudes. In summary, some aspects of reporting practices could be improved in future TEP studies to enable replication. Methodological choices, including TMS intensity and the use of noise masking or ICA, introduce systematic differences in reported TEP amplitudes. Further investigation into the significance of these and other methodological factors and their interactions is warranted.
Collapse
Affiliation(s)
- Mikkel Malling Beck
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Marieke Heyl
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Louise Mejer
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Mikkel C. Vinding
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Lasse Christiansen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of Neuroscience, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and ResearchCopenhagen University Hospital—Amager and HvidovreHvidovreDenmark
- Department of NeurologyCopenhagen University Hospital Bispebjerg and FrederiksbergKøbenhavnDenmark
- Department of Clinical Medicine, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| |
Collapse
|
5
|
Sun Y, Lucas MV, Cline CC, Menezes MC, Kim S, Badami FS, Narayan M, Wu W, Daskalakis ZJ, Etkin A, Saggar M. Densely sampled stimulus-response map of human cortex with single pulse TMS-EEG and its relation to whole brain neuroimaging measures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599236. [PMID: 38948696 PMCID: PMC11212865 DOI: 10.1101/2024.06.16.599236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Large-scale networks underpin brain functions. How such networks respond to focal stimulation can help decipher complex brain processes and optimize brain stimulation treatments. To map such stimulation-response patterns across the brain non-invasively, we recorded concurrent EEG responses from single-pulse transcranial magnetic stimulation (i.e., TMS-EEG) from over 100 cortical regions with two orthogonal coil orientations from one densely-sampled individual. We also acquired Human Connectome Project (HCP)-styled diffusion imaging scans (six), resting-state functional Magnetic Resonance Imaging (fMRI) scans (120 mins), resting-state EEG scans (108 mins), and structural MR scans (T1- and T2-weighted). Using the TMS-EEG data, we applied network science-based community detection to reveal insights about the brain's causal-functional organization from both a stimulation and recording perspective. We also computed structural and functional maps and the electric field of each TMS stimulation condition. Altogether, we hope the release of this densely sampled (n=1) dataset will be a uniquely valuable resource for both basic and clinical neuroscience research.
Collapse
Affiliation(s)
- Yinming Sun
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry, University of California San Diego, San Diego, CA, USA
| | - Molly V. Lucas
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Christopher C. Cline
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Matthew C. Menezes
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Sanggyun Kim
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Faizan S. Badami
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA
| | - Manjari Narayan
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Wei Wu
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA
| | | | - Amit Etkin
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
- Alto Neuroscience, Los Altos, CA
| | - Manish Saggar
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, USA
| |
Collapse
|
6
|
Bardel B, Ayache SS, Lefaucheur JP. The contribution of EEG to assess and treat motor disorders in multiple sclerosis. Clin Neurophysiol 2024; 162:174-200. [PMID: 38643612 DOI: 10.1016/j.clinph.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) can highlight significant changes in spontaneous electrical activity of the brain produced by altered brain network connectivity linked to inflammatory demyelinating lesions and neuronal loss occurring in multiple sclerosis (MS). In this review, we describe the main EEG findings reported in the literature to characterize motor network alteration in term of local activity or functional connectivity changes in patients with MS (pwMS). METHODS A comprehensive literature search was conducted to include articles with quantitative analyses of resting-state EEG recordings (spectrograms or advanced methods for assessing spatial and temporal dynamics, such as coherence, theory of graphs, recurrent quantification, microstates) or dynamic EEG recordings during a motor task, with or without connectivity analyses. RESULTS In this systematic review, we identified 26 original articles using EEG in the evaluation of MS-related motor disorders. Various resting or dynamic EEG parameters could serve as diagnostic biomarkers of motor control impairment to differentiate pwMS from healthy subjects or be related to a specific clinical condition (fatigue) or neuroradiological aspects (lesion load). CONCLUSIONS We highlight some key EEG patterns in pwMS at rest and during movement, both suggesting an alteration or disruption of brain connectivity, more specifically involving sensorimotor networks. SIGNIFICANCE Some of these EEG biomarkers of motor disturbance could be used to design future therapeutic strategies in MS based on neuromodulation approaches, or to predict the effects of motor training and rehabilitation in pwMS.
Collapse
Affiliation(s)
- Benjamin Bardel
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France
| | - Samar S Ayache
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France; Gilbert and Rose-Marie Chagoury School of Medicine, Department of Neurology, 4504 Byblos, Lebanon; Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, F-75116 Paris, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France.
| |
Collapse
|
7
|
Vucic S, Stanley Chen KH, Kiernan MC, Hallett M, Benninger DH, Di Lazzaro V, Rossini PM, Benussi A, Berardelli A, Currà A, Krieg SM, Lefaucheur JP, Long Lo Y, Macdonell RA, Massimini M, Rosanova M, Picht T, Stinear CM, Paulus W, Ugawa Y, Ziemann U, Chen R. Clinical diagnostic utility of transcranial magnetic stimulation in neurological disorders. Updated report of an IFCN committee. Clin Neurophysiol 2023; 150:131-175. [PMID: 37068329 PMCID: PMC10192339 DOI: 10.1016/j.clinph.2023.03.010] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/28/2023] [Accepted: 03/09/2023] [Indexed: 03/31/2023]
Abstract
The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.
Collapse
Affiliation(s)
- Steve Vucic
- Brain, Nerve Research Center, The University of Sydney, Sydney, Australia.
| | - Kai-Hsiang Stanley Chen
- Department of Neurology, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
| | - Matthew C Kiernan
- Brain and Mind Centre, The University of Sydney; and Department of Neurology, Royal Prince Alfred Hospital, Australia
| | - Mark Hallett
- Human Motor Control Section, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bethesda, Maryland, United States
| | - David H Benninger
- Department of Neurology, University Hospital of Lausanne (CHUV), Switzerland
| | - Vincenzo Di Lazzaro
- Unit of Neurology, Neurophysiology, Neurobiology, Department of Medicine, University Campus Bio-Medico of Rome, Rome, Italy
| | - Paolo M Rossini
- Department of Neurosci & Neurorehab IRCCS San Raffaele-Rome, Italy
| | - Alberto Benussi
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alfredo Berardelli
- IRCCS Neuromed, Pozzilli; Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy
| | - Antonio Currà
- Department of Medico-Surgical Sciences and Biotechnologies, Alfredo Fiorini Hospital, Sapienza University of Rome, Terracina, LT, Italy
| | - Sandro M Krieg
- Department of Neurosurgery, Technical University Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, EA4391, ENT, Créteil, France; Clinical Neurophysiology Unit, Henri Mondor Hospital, AP-HP, Créteil, France
| | - Yew Long Lo
- Department of Neurology, National Neuroscience Institute, Singapore General Hospital, Singapore, and Duke-NUS Medical School, Singapore
| | | | - Marcello Massimini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, Milan, Italy; Istituto Di Ricovero e Cura a Carattere Scientifico, Fondazione Don Carlo Gnocchi, Milan, Italy
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences University of Milan, Milan, Italy
| | - Thomas Picht
- Department of Neurosurgery, Charité-Universitätsmedizin Berlin, Cluster of Excellence: "Matters of Activity. Image Space Material," Humboldt University, Berlin Simulation and Training Center (BeST), Charité-Universitätsmedizin Berlin, Germany
| | - Cathy M Stinear
- Department of Medicine Waipapa Taumata Rau, University of Auckland, Auckland, Aotearoa, New Zealand
| | - Walter Paulus
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Yoshikazu Ugawa
- Department of Human Neurophysiology, School of Medicine, Fukushima Medical University, Japan
| | - Ulf Ziemann
- Department of Neurology and Stroke, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 27, 72076 Tübingen, Germany
| | - Robert Chen
- Edmond J. Safra Program in Parkinson's Disease, Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital-UHN, Division of Neurology-University of Toronto, Toronto Canada
| |
Collapse
|
8
|
Šoda J, Pavelin S, Vujović I, Rogić Vidaković M. Assessment of Motor Evoked Potentials in Multiple Sclerosis. SENSORS (BASEL, SWITZERLAND) 2023; 23:s23010497. [PMID: 36617096 PMCID: PMC9824873 DOI: 10.3390/s23010497] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/01/2023]
Abstract
Transcranial magnetic stimulation (TMS) is a noninvasive technique mainly used for the assessment of corticospinal tract integrity and excitability of the primary motor cortices. Motor evoked potentials (MEPs) play a pivotal role in TMS studies. TMS clinical guidelines, concerning the use and interpretation of MEPs in diagnosing and monitoring corticospinal tract integrity in people with multiple sclerosis (pwMS), were established almost ten years ago and refer mainly to the use of TMS implementation; this comprises the magnetic stimulator connected to a standard EMG unit, with the positioning of the coil performed by using the external landmarks on the head. The aim of the present work was to conduct a narrative literature review on the MEP assessment and outcome measures in clinical and research settings, assessed by TMS Methodological characteristics of different TMS system implementations (TMS without navigation, line-navigated TMS and e-field-navigated TMS); these were discussed in the context of mapping the corticospinal tract integrity in MS. An MEP assessment of two case reports, by using an e-field-navigated TMS, was presented; the results of the correspondence between the e-field-navigated TMS with MRI, and the EDSS classifications were presented. Practical and technical guiding principles for the improvement of TMS studies in MEP assessment for MS are discussed, suggesting the use of e-field TMS assessment in the sense that it can improve the accuracy of corticospinal tract integrity testing by providing a more objective correspondence of the neurophysiological (e-field-navigated TMS) and clinical (Expanded Disability Status Scale-EDSS) classifications.
Collapse
Affiliation(s)
- Joško Šoda
- Signal Processing, Analysis, and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Sanda Pavelin
- Department of Neurology, University Hospital of Split, 21000 Split, Croatia
| | - Igor Vujović
- Signal Processing, Analysis, and Advanced Diagnostics Research and Education Laboratory (SPAADREL), Faculty of Maritime Studies, University of Split, 21000 Split, Croatia
| | - Maja Rogić Vidaković
- Laboratory for Human and Experimental Neurophysiology, Department of Neuroscience, School of Medicine, University of Split, 21000 Split, Croatia
| |
Collapse
|
9
|
Ortelli P, Benso F, Ferrazzoli D, Scarano I, Saltuari L, Sebastianelli L, Versace V, Maestri R. Global slowness and increased intra-individual variability are key features of attentional deficits and cognitive fluctuations in post COVID-19 patients. Sci Rep 2022; 12:13123. [PMID: 35907947 PMCID: PMC9338963 DOI: 10.1038/s41598-022-17463-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/26/2022] [Indexed: 11/09/2022] Open
Abstract
Fatigue, attentional deficits and cognitive fluctuations are the most characterizing symptoms of neurological involvement in Post COVID-19 syndrome (PCS). As the intraindividual variability (IIV) in cognitive performances has been recognized as a hallmark of brain-related disorders associated with cognitive deficits, it could be an interesting measure to elucidate the mechanisms subtending both the attentive impairment and the cognitive fluctuations in these patients. By referring to IIV analysis of Reaction Times (RTs), the present study aims to define the attentive impairment and its relation to fluctuations and fatigue, in patients suffering from Post COVID-19 neurological symptoms. 74 patients were enrolled. They underwent an extensive clinical and neuropsychological assessments, as well as computerized Sustained Attention and Stroop tasks. For studying IIV, RTs distributions of performances in computerized tasks were fitted with ex-Gaussian distribution, for obtaining the τ values. Finally, the Resting Motor Threshold (RMT) was also collected to estimate cortical excitability. 29 healthy volunteers served as controls. Patients showed poorer scores in Montreal Cognitive Assessment and higher RMT, in comparison with controls. In Sustained Attention Task, Mean, µ, σ and τ values were significantly higher in PCS patients (p value = < 0.0001; 0.001; 0.018 and < 0.0001, respectively). Repeated measures ANOVA comparing the RTs mean in Stroop task within-subject and between-subjects revealed significant condition and group effect (p < 0.0001 both) and significant interaction (p = 0.005), indicating worst performances in patients. The mean of the derived interference value was significantly higher in PCS patients than in controls (p = 0.036). Patients suffering from PCS show deficits in attention, both in the sustained and executive components. Both high RTs means and high IIV subtend these deficits and could explain the often-complained cognitive fluctuations in this population.
Collapse
Affiliation(s)
- Paola Ortelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA) - Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy.
| | - Francesco Benso
- Laboratory of Observational, Diagnosis and Education (ODFLab), Department of Psychology and Cognitive Science, University of Trento, 38068, Rovereto, Italy
| | - Davide Ferrazzoli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA) - Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy
| | - Ilaria Scarano
- Department of Geriatrics, Memory Clinic, Hospital of Merano (SABES-ASDAA), BZ, Italy
| | - Leopold Saltuari
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA) - Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy
| | - Luca Sebastianelli
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA) - Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy
| | - Viviana Versace
- Department of Neurorehabilitation, Hospital of Vipiteno (SABES-ASDAA) - Lehrkrankenhaus der Paracelsus Medizinischen Privatuniversität, Margarethenstr. 24, 39049, Vipiteno-Sterzing, BZ, Italy
| | - Roberto Maestri
- IRCCS Istituti Clinici Scientifici Maugeri, Montescano, Pavia, Italy
| |
Collapse
|
10
|
Rostami M, Zomorrodi R, Rostami R, Hosseinzadeh GA. Impact of methodological variability on EEG responses evoked by transcranial magnetic stimulation: a meta-analysis. Clin Neurophysiol 2022; 142:154-180. [DOI: 10.1016/j.clinph.2022.07.495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 07/12/2022] [Accepted: 07/15/2022] [Indexed: 12/01/2022]
|
11
|
Ellwardt E, Muthuraman M, Gonzalez-Escamilla G, Chirumamilla VC, Luessi F, Bittner S, Zipp F, Groppa S, Fleischer V. Network alterations underlying anxiety symptoms in early multiple sclerosis. J Neuroinflammation 2022; 19:119. [PMID: 35610651 PMCID: PMC9131528 DOI: 10.1186/s12974-022-02476-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Accepted: 05/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Anxiety, often seen as comorbidity in multiple sclerosis (MS), is a frequent neuropsychiatric symptom and essentially affects the overall disease burden. Here, we aimed to decipher anxiety-related networks functionally connected to atrophied areas in patients suffering from MS. METHODS Using 3-T MRI, anxiety-related atrophy maps were generated by correlating longitudinal cortical thinning with the severity of anxiety symptoms in MS patients. To determine brain regions functionally connected to these maps, we applied a technique termed "atrophy network mapping". Thereby, the anxiety-related atrophy maps were projected onto a large normative connectome (n = 1000) performing seed-based functional connectivity. Finally, an instructed threat paradigm was conducted with regard to neural excitability and effective connectivity, using transcranial magnetic stimulation combined with high-density electroencephalography. RESULTS Thinning of the left dorsal prefrontal cortex was the only region that was associated with higher anxiety levels. Atrophy network mapping identified functional involvement of bilateral prefrontal cortex as well as amygdala and hippocampus. Structural equation modeling confirmed that the volumes of these brain regions were significant determinants that influence anxiety symptoms in MS. We additionally identified reduced information flow between the prefrontal cortex and the amygdala at rest, and pathologically increased excitability in the prefrontal cortex in MS patients as compared to controls. CONCLUSION Anxiety-related prefrontal cortical atrophy in MS leads to a specific network alteration involving structures that resemble known neurobiological anxiety circuits. These findings elucidate the emergence of anxiety as part of the disease pathology and might ultimately enable targeted treatment approaches modulating brain networks in MS.
Collapse
Affiliation(s)
- Erik Ellwardt
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Muthuraman Muthuraman
- Biomedical Statistics and Multimodal Signal Processing Unit, Department of Neurology, Focus Program Translational Neuroscience (FTN) Neuroimaging Center, Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Langenbeckstr. 1, 55131, Mainz, Germany.
| | - Gabriel Gonzalez-Escamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Venkata Chaitanya Chirumamilla
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Felix Luessi
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Stefan Bittner
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Frauke Zipp
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Section of Movement Disorders and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center, Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
12
|
Mohseni E, Moghaddasi SM. A Hybrid Approach for MS Diagnosis Through Nonlinear EEG Descriptors and Metaheuristic Optimized Classification Learning. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2022; 2022:5430528. [PMID: 35619773 PMCID: PMC9129937 DOI: 10.1155/2022/5430528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 03/16/2022] [Accepted: 04/04/2022] [Indexed: 11/17/2022]
Abstract
Multiple sclerosis (MS), a disease of the central nervous system, affects the white matter of the brain. Neurologists interpret magnetic resonance images that are often complicated, time-consuming, and contradictory. Using EEG signals, this disease can be analyzed and diagnosed more accurately. However, it is imperative that MS be diagnosed by specialists using assistive technology. Until now, a few methods have been proposed in this field that are sometimes associated with different challenges in analysis. This paper presents a hybrid approach to MS diagnosis in order to decrease classification error rates. Using the proposed method, EEG descriptors in both the time and frequency domains are analyzed. After the feature extraction stage, a modified version of the ant colony optimization method (m-ACO) was used to select the appropriate subset of features. Then, the support vector machine is used to determine whether the disease exists. A metaheuristic algorithm adjusts the support vector machine's parameters to withstand overfitting challenges. Despite a limited number of input channels, significant classification accuracy has been achieved using wavelet analysis techniques, dividing all five subbands of EEG signals, signal windowing, and extracting efficient features from the data. Additionally, alpha, beta, and gamma bands of the signal are important, and the accuracy, sensitivity, and specificity levels are higher than 98.5%. Compared to similar MS diagnostic methods, the proposed method achieved significantly higher diagnostic accuracy. Application and implementation of this method can be effective in treating neurological diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Elnaz Mohseni
- Department of Biomedical Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
13
|
Cope ZA, Murai T, Sukoff Rizzo SJ. Emerging Electroencephalographic Biomarkers to Improve Preclinical to Clinical Translation in Alzheimer's Disease. Front Aging Neurosci 2022; 14:805063. [PMID: 35250541 PMCID: PMC8891809 DOI: 10.3389/fnagi.2022.805063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
Continually emerging data indicate that sub-clinical, non-convulsive epileptiform activity is not only prevalent in Alzheimer's disease (AD) but is detectable early in the course of the disease and predicts cognitive decline in both humans and animal models. Epileptiform activity and other electroencephalographic (EEG) measures may hold powerful, untapped potential to improve the translational validity of AD-related biomarkers in model animals ranging from mice, to rats, and non-human primates. In this review, we will focus on studies of epileptiform activity, EEG slowing, and theta-gamma coupling in preclinical models, with particular focus on its role in cognitive decline and relevance to AD. Here, each biomarker is described in the context of the contemporary literature and recent findings in AD relevant animal models are discussed.
Collapse
Affiliation(s)
| | | | - Stacey J. Sukoff Rizzo
- Aging Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
14
|
Bridging the gap: TMS-EEG from Lab to Clinic. J Neurosci Methods 2022; 369:109482. [PMID: 35041855 DOI: 10.1016/j.jneumeth.2022.109482] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/09/2022] [Accepted: 01/13/2022] [Indexed: 01/06/2023]
Abstract
The combination of transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has reached technological maturity and has been an object of significant scientific interest for over two decades. Ιn parallel, accumulating evidence highlights the potential of TMS-EEG as a useful tool in the field of clinical neurosciences. Nevertheless, its clinical utility has not yet been established, partly because technical and methodological limitations have created a gap between an evolving scientific tool and standard clinical practice. Here we review some of the identified gaps that still prevent TMS-EEG moving from science laboratories to clinical practice. The principal and partly overlapping gaps include: 1) complex and laborious application, 2) difficulty in obtaining high-quality signals, 3) suboptimal accuracy and reliability, and 4) insufficient understanding of the neurobiological substrate of the responses. All these four aspects need to be satisfactorily addressed for the method to become clinically applicable and enter the diagnostic and therapeutic arena. In the current review, we identify steps that might be taken to address these issues and discuss promising recent studies providing tools to aid bridging the gaps.
Collapse
|
15
|
Chaves AR, Kenny HM, Snow NJ, Pretty RW, Ploughman M. Sex-specific disruption in corticospinal excitability and hemispheric (a)symmetry in multiple sclerosis. Brain Res 2021; 1773:147687. [PMID: 34634288 DOI: 10.1016/j.brainres.2021.147687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Multiple Sclerosis (MS) is a neurodegenerative disease in which pathophysiology and symptom progression presents differently between the sexes. In a cohort of people with MS (n = 110), we used transcranial magnetic stimulation (TMS) to investigate sex differences in corticospinal excitability (CSE) and sex-specific relationships between CSE and cognitive function. Although demographics and disease characteristics did not differ between sexes, males were more likely to have cognitive impairment as measured by the Montreal Cognitive Assessment (MoCA); 53.3% compared to females at 26.3%. Greater CSE asymmetry was noted in females compared to males. Females demonstrated higher active motor thresholds and longer silent periods in the hemisphere corresponding to the weaker hand which was more typical of hand dominance patterns in healthy individuals. Males, but not females, exhibited asymmetry of nerve conduction latency (delayed MEP latency in the hemisphere corresponding to the weaker hand). In males, there was also a relationship between delayed onset of ipsilateral silent period (measured in the hemisphere corresponding to the weaker hand) and MoCA, suggestive of cross-callosal disruption. Our findings support that a sex-specific disruption in CSE exists in MS, pointing to interhemispheric disruption as a potential biomarker of cognitive impairment and target for neuromodulating therapies.
Collapse
Affiliation(s)
- Arthur R Chaves
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Hannah M Kenny
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Nicholas J Snow
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Ryan W Pretty
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, L.A. Miller Centre, Memorial University of Newfoundland, St. John's, NL, Canada.
| |
Collapse
|
16
|
Groppa S, Gonzalez-Escamilla G, Eshaghi A, Meuth SG, Ciccarelli O. Linking immune-mediated damage to neurodegeneration in multiple sclerosis: could network-based MRI help? Brain Commun 2021; 3:fcab237. [PMID: 34729480 PMCID: PMC8557667 DOI: 10.1093/braincomms/fcab237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/21/2021] [Indexed: 01/04/2023] Open
Abstract
Inflammatory demyelination characterizes the initial stages of multiple sclerosis, while progressive axonal and neuronal loss are coexisting and significantly contribute to the long-term physical and cognitive impairment. There is an unmet need for a conceptual shift from a dualistic view of multiple sclerosis pathology, involving either inflammatory demyelination or neurodegeneration, to integrative dynamic models of brain reorganization, where, glia-neuron interactions, synaptic alterations and grey matter pathology are longitudinally envisaged at the whole-brain level. Functional and structural MRI can delineate network hallmarks for relapses, remissions or disease progression, which can be linked to the pathophysiology behind inflammatory attacks, repair and neurodegeneration. Here, we aim to unify recent findings of grey matter circuits dynamics in multiple sclerosis within the framework of molecular and pathophysiological hallmarks combined with disease-related network reorganization, while highlighting advances from animal models (in vivo and ex vivo) and human clinical data (imaging and histological). We propose that MRI-based brain networks characterization is essential for better delineating ongoing pathology and elaboration of particular mechanisms that may serve for accurate modelling and prediction of disease courses throughout disease stages.
Collapse
Affiliation(s)
- Sergiu Groppa
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Gabriel Gonzalez-Escamilla
- Imaging and Neurostimulation, Department of Neurology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Arman Eshaghi
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK.,Department of Computer Science, Centre for Medical Image Computing (CMIC), University College London, London WC1E 6BT, UK
| | - Sven G Meuth
- Department of Neurology, Medical Faculty, Heinrich Heine University, Düsseldorf 40225, Germany
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London WC1E 6BT, UK
| |
Collapse
|
17
|
Radetz A, Mladenova K, Ciolac D, Gonzalez-Escamilla G, Fleischer V, Ellwardt E, Krämer J, Bittner S, Meuth SG, Muthuraman M, Groppa S. Linking Microstructural Integrity and Motor Cortex Excitability in Multiple Sclerosis. Front Immunol 2021; 12:748357. [PMID: 34712236 PMCID: PMC8546169 DOI: 10.3389/fimmu.2021.748357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/23/2021] [Indexed: 11/15/2022] Open
Abstract
Motor skills are frequently impaired in multiple sclerosis (MS) patients following grey and white matter damage with cortical excitability abnormalities. We applied advanced diffusion imaging with 3T magnetic resonance tomography for neurite orientation dispersion and density imaging (NODDI), as well as diffusion tensor imaging (DTI) in 50 MS patients and 49 age-matched healthy controls to quantify microstructural integrity of the motor system. To assess excitability, we determined resting motor thresholds using non-invasive transcranial magnetic stimulation. As measures of cognitive-motor performance, we conducted neuropsychological assessments including the Nine-Hole Peg Test, Trail Making Test part A and B (TMT-A and TMT-B) and the Symbol Digit Modalities Test (SDMT). Patients were evaluated clinically including assessments with the Expanded Disability Status Scale. A hierarchical regression model revealed that lower neurite density index (NDI) in primary motor cortex, suggestive for axonal loss in the grey matter, predicted higher motor thresholds, i.e. reduced excitability in MS patients (p = .009, adjusted r² = 0.117). Furthermore, lower NDI was indicative of decreased cognitive-motor performance (p = .007, adjusted r² = .142 for TMT-A; p = .009, adjusted r² = .129 for TMT-B; p = .006, adjusted r² = .142 for SDMT). Motor WM tracts of patients were characterized by overlapping clusters of lowered NDI (p <.05, Cohen's d = 0.367) and DTI-based fractional anisotropy (FA) (p <.05, Cohen's d = 0.300), with NDI exclusively detecting a higher amount of abnormally appearing voxels. Further, orientation dispersion index of motor tracts was increased in patients compared to controls, suggesting a decreased fiber coherence (p <.05, Cohen's d = 0.232). This study establishes a link between microstructural characteristics and excitability of neural tissue, as well as cognitive-motor performance in multiple sclerosis. We further demonstrate that the NODDI parameters neurite density index and orientation dispersion index detect a larger amount of abnormally appearing voxels in patients compared to healthy controls, as opposed to the classical DTI parameter FA. Our work outlines the potential for microstructure imaging using advanced biophysical models to forecast excitability alterations in neuroinflammation.
Collapse
Affiliation(s)
- Angela Radetz
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Kalina Mladenova
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Dumitru Ciolac
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Laboratory of Neurobiology and Medical Genetics, Nicolae Testemițanu State University of Medicine and Pharmacy, Chişinău, Moldova
- Department of Neurology, Institute of Emergency Medicine, Chişinău, Moldova
| | - Gabriel Gonzalez-Escamilla
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Vinzenz Fleischer
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Erik Ellwardt
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Julia Krämer
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
| | - Stefan Bittner
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sven G. Meuth
- Department of Neurology, Institute of Translational Neurology, University Hospital Münster, Münster, Germany
- Department of Neurology, University Hospital Düsseldorf, Düsseldorf, Germany
| | - Muthuraman Muthuraman
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Sergiu Groppa
- Neuroimaging and Neurostimulation, Department of Neurology, Focus Program Translational Neuroscience (FTN), Rhine-Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
18
|
Ishibashi K, Ishii D, Yamamoto S, Okamoto Y, Wakatabi M, Kohno Y. Asymmetry of Interhemispheric Connectivity during Rapid Movements of Right and Left Hands: A TMS-EEG Study. J Mot Behav 2021; 54:135-145. [PMID: 34180775 DOI: 10.1080/00222895.2021.1930993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The interhemispheric signal propagation (ISP) obtained by electroencephalography during transcranial magnetic stimulation (TMS) allows for the assessment of the interhemispheric connectivity involved in inhibitory processes. To investigate the functional asymmetry of hemispheres during rapid movement, we compared ISP in the left and right hemispheres during rapid hand movements. In 11 healthy right-handed adults, we delivered TMS to the M1 and recorded ISP from the M1 to the contralateral hemisphere. We found that ISP from the left to right hemisphere during right-hand rapid movement was higher than ISP from the right to left hemisphere during the left-hand rapid movement. These results indicate that the left M1 strongly inhibits the right M1, and that the left hemisphere is dominant for rapid movements as well as sequential movements.
Collapse
Affiliation(s)
- Kiyoshige Ishibashi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan.,Graduate School of Health Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Daisuke Ishii
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan.,Department of Cognitive Behavioral Physiology, Chiba University Graduate School of Medicine, Chiba, Japan
| | - Satoshi Yamamoto
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| | - Yoshitaka Okamoto
- Department of Rehabilitation, University of Tsukuba Hospital, Ibaraki, Japan
| | - Masahiro Wakatabi
- Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences Hospital, Ibaraki, Japan
| | - Yutaka Kohno
- Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan
| |
Collapse
|
19
|
Altered interhemispheric signal propagation in schizophrenia and depression. Clin Neurophysiol 2021; 132:1604-1611. [PMID: 34030057 DOI: 10.1016/j.clinph.2021.03.039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 02/04/2021] [Accepted: 03/19/2021] [Indexed: 01/03/2023]
Abstract
OBJECTIVE Altered interhemispheric connectivity is implicated in the pathophysiology of schizophrenia (SCZ) and major depressive disorder (MDD) and may account for deficits in lateralized cognitive processes. We measured transcranial magnetic stimulation evoked interhemispheric signal propagation (ISP), a non-invasive measure of transcallosal connectivity, and hypothesized that the SCZ and MDD groups will have increased ISP compared to healthy controls. METHODS We evaluated ISP over the dorsolateral prefrontal cortex in 34 patients with SCZ and 34 patients with MDD compared to 32 age and sex-matched healthy controls. RESULTS ISP was significantly increased in patients with SCZ and patients with MDD compared to healthy controls but did not differ between patient groups. There were no effects of antidepressant, antipsychotic, and benzodiazepine medications on ISP and our results remained unchanged after re-analysis with a region of interest method. CONCLUSION Altered ISP was found in both SCZ and MDD patient groups. This indicates that disruptions of interhemispheric signaling processes can be indexed with ISP across psychiatric populations. SIGNIFICANCE These findings enhance our knowledge of the physiological mechanisms of interhemispheric imbalances in SCZ and MDD, which may serve as potential treatment targets in future patients.
Collapse
|
20
|
Chaves AR, Snow NJ, Alcock LR, Ploughman M. Probing the Brain-Body Connection Using Transcranial Magnetic Stimulation (TMS): Validating a Promising Tool to Provide Biomarkers of Neuroplasticity and Central Nervous System Function. Brain Sci 2021; 11:384. [PMID: 33803028 PMCID: PMC8002717 DOI: 10.3390/brainsci11030384] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 01/18/2023] Open
Abstract
Transcranial magnetic stimulation (TMS) is a non-invasive method used to investigate neurophysiological integrity of the human neuromotor system. We describe in detail, the methodology of a single pulse TMS protocol that was performed in a large cohort of people (n = 110) with multiple sclerosis (MS). The aim was to establish and validate a core-set of TMS variables that predicted typical MS clinical outcomes: walking speed, hand dexterity, fatigue, and cognitive processing speed. We provide a brief and simple methodological pipeline to examine excitatory and inhibitory corticospinal mechanisms in MS that map to clinical status. Delayed and longer ipsilateral silent period (a measure of transcallosal inhibition; the influence of one brain hemisphere's activity over the other), longer cortical silent period (suggestive of greater corticospinal inhibition via GABA) and higher resting motor threshold (lower corticospinal excitability) most strongly related to clinical outcomes, especially when measured in the hemisphere corresponding to the weaker hand. Greater interhemispheric asymmetry (imbalance between hemispheres) correlated with poorer performance in the greatest number of clinical outcomes. We also show, not surprisingly, that TMS variables related more strongly to motor outcomes than non-motor outcomes. As it was validated in a large sample of patients with varying severities of central nervous system dysfunction, the protocol described herein can be used by investigators and clinicians alike to investigate the role of TMS as a biomarker in MS and other central nervous system disorders.
Collapse
Affiliation(s)
| | | | | | - Michelle Ploughman
- L.A. Miller Centre, Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1A 1E5, Canada; (A.R.C.); (N.J.S.); (L.R.A.)
| |
Collapse
|
21
|
Aloizou AM, Pateraki G, Anargyros K, Siokas V, Bakirtzis C, Liampas I, Nousia A, Nasios G, Sgantzos M, Peristeri E, Dardiotis E. Transcranial magnetic stimulation (TMS) and repetitive TMS in multiple sclerosis. Rev Neurosci 2021; 32:723-736. [PMID: 33641274 DOI: 10.1515/revneuro-2020-0140] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/05/2021] [Indexed: 01/02/2023]
Abstract
Multiple sclerosis (MS) is the most well-known autoimmune disorder of the central nervous system, and constitutes a major cause of disability, especially in young individuals. A wide array of pharmacological treatments is available, but they have often been proven to be ineffective in ameliorating disease symptomatology or slowing disease progress. As such, non-invasive and non-pharmacological techniques have been gaining more ground. Transcranial magnetic stimulation (TMS) utilizes the electric field generated by a magnetic coil to stimulate neurons and has been applied, usually paired with electroencephalography, to study the underlying pathophysiology of MS, and in repetitive trains, in the form of repetitive transcranial magnetic stimulation (rTMS), to induce long-lasting changes in neuronal circuits. In this review, we present the available literature on the application of TMS and rTMS in the context of MS, with an emphasis on its therapeutic potential on various clinical aspects, while also naming the ongoing trials, whose results are anticipated in the future.
Collapse
Affiliation(s)
- Athina-Maria Aloizou
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Georgia Pateraki
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Konstantinos Anargyros
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Vasileios Siokas
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Christos Bakirtzis
- B' Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Ioannis Liampas
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Anastasia Nousia
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Grigorios Nasios
- Department of Speech and Language Therapy, University of Ioannina, Ioannina, Greece
| | - Markos Sgantzos
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Eleni Peristeri
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| | - Efthimios Dardiotis
- Department of Neurology,Laboratory of Neurogenetics, University of Thessaly, University Hospital of Larissa, Biopolis, Mezourlo Hill, 41100Larissa, Greece
| |
Collapse
|
22
|
Mohy AB, Hatem AK, Kadoori HG, Hamdan FB. Motor disability in patients with multiple sclerosis: transcranial magnetic stimulation study. THE EGYPTIAN JOURNAL OF NEUROLOGY, PSYCHIATRY AND NEUROSURGERY 2020. [DOI: 10.1186/s41983-020-00255-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Transcranial magnetic stimulation (TMS) is a non-invasive procedure used in a small targeted region of the brain via electromagnetic induction and used diagnostically to measure the connection between the central nervous system (CNS) and skeletal muscle to evaluate the damage that occurs in MS.
Objectives
The study aims to investigate whether single-pulse TMS measures differ between patients with MS and healthy controls and to consider if these measures are associated with clinical disability.
Patients and methods
Single-pulse TMS was performed in 26 patients with MS who hand an Expanded Disability Status Scale (EDSS) score between 0 and 9.5 and in 26 normal subjects. Different TMS parameters from upper and lower limbs were investigated.
Results
TMS disclosed no difference in all MEP parameters between the right and left side of the upper and lower limbs in patients with MS and controls. In all patients, TMS parameters were different from the control group. Upper limb central motor conduction time (CMCT) was prolonged in MS patients with pyramidal signs. Upper and lower limb CMCT and CMCT-f wave (CMCT-f) were prolonged in patients with ataxia. Moreover, CMCT and CMCT-f were prolonged in MS patients with EDSS of 5–9.5 as compared to those with a score of 0–4.5. EDSS correlated with upper and lower limb cortical latency (CL), CMCT, and CMCT-f whereas motor evoked potential (MEP) amplitude not.
Conclusion
TMS yields objective data to evaluate clinical disability and its parameters correlated well with EDSS.
Collapse
|
23
|
Mamoei S, Hvid LG, Boye Jensen H, Zijdewind I, Stenager E, Dalgas U. Neurophysiological impairments in multiple sclerosis-Central and peripheral motor pathways. Acta Neurol Scand 2020; 142:401-417. [PMID: 32474916 DOI: 10.1111/ane.13289] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/09/2020] [Accepted: 05/24/2020] [Indexed: 12/27/2022]
Abstract
A systematic review of the literature was conducted comparing neurophysiological outcomes in persons with multiple sclerosis (PwMS) to healthy controls (HC), in studies of the central nervous system (CNS) function comprising motor evoked potentials (MEP) elicited by transcranial magnetic stimulation (TMS) and in studies of the peripheral nervous system (PNS) function comprising electroneuronography (ENG) outcomes elicited by peripheral nerve stimulation. Studies comparing neuromuscular function, assessed during maximal voluntary contraction (MVC) of muscle, were included if they reported muscle strength along with muscle activation by use of electromyography (EMG) and/or interpolated twitch technique (ITT). Studies investigating CNS function showed prolonged central motor conduction times, asymmetry of nerve conduction motor pathways, and prolonged latencies in PwMS when compared to HC. Resting motor threshold, amplitude, and cortical silent periods showed conflicting results. CNS findings generally correlated with disabilities. Studies of PNS function showed near significant prolongation in motor latency of the median nerve, reduced nerve conduction velocities in the tibial and peroneal nerves, and decreased compound muscle action potential amplitudes of the tibial nerve in PwMS. ENG findings did not correlate with clinical severity of disabilities. Studies of neuromuscular function showed lower voluntary muscle activation and increased central fatigue in PwMS, whereas EMG showed divergent muscle activation (ie, EMG amplitude) during MVC. When comparing the existing literature on neurophysiological motor examinations in PwMS and HC, consistent and substantial impairments of CNS function were seen in PwMS, whereas impairments of the PNS were less pronounced and inconsistent. In addition, impairments in muscle activation were observed in PwMS.
Collapse
Affiliation(s)
- Sepehr Mamoei
- Department of Regional Health Research University of Southern Denmark Odense Denmark
- Denmark/MS‐Clinic of Southern Jutland (Sønderborg, Kolding, Esbjerg) Department of Neurology University Hospital of Southern Jutland Sønderborg Denmark
| | - Lars G. Hvid
- Exercise Biology Department of Public Health Aarhus University Aarhus C Denmark
| | - Henrik Boye Jensen
- Department of Regional Health Research University of Southern Denmark Odense Denmark
- Department of Neurology Kolding Sygehus Kolding Denmark
| | - Inge Zijdewind
- Department of Biomedical Sciences of Cells and Systems UMCG University of Groningen Groningen The Netherlands
| | - Egon Stenager
- Department of Regional Health Research University of Southern Denmark Odense Denmark
- Denmark/MS‐Clinic of Southern Jutland (Sønderborg, Kolding, Esbjerg) Department of Neurology University Hospital of Southern Jutland Sønderborg Denmark
| | - Ulrik Dalgas
- Exercise Biology Department of Public Health Aarhus University Aarhus C Denmark
| |
Collapse
|
24
|
Neural implant for the treatment of multiple sclerosis. Med Hypotheses 2020; 145:110324. [PMID: 33038587 DOI: 10.1016/j.mehy.2020.110324] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/06/2020] [Accepted: 09/26/2020] [Indexed: 11/20/2022]
Abstract
The methods used to treat various neurological diseases are evolving. The facilities provided by the technology have led to creation of new treatment opportunities. Neuromodulation is one of these important methods. By definition, the neuromodulation is a change in neural activity which occurs by stimulating a specific area of nervous system. The mentioned stimulation can be electrical, magnetic, or chemical. This method is used in various diseases, such as stroke, Parkinson's, Alzheimer's, and amyotrophic lateral sclerosis (ALS). Multiple sclerosis (MS) is no exception in this regard and methods including the neurofeedback and transcranial magnetic stimulation (TMS) are used to treat various complications of the MS. One aspect of neuromodulation is the use of neural implant, which is applied nowadays, especially in the Parkinson's disease, and the use of microchips and prostheses to treat various symptoms in different neurological diseases has received significant attention. Although neural implant has been exploited to improve the symptoms of MS, they appear to have much greater potential to improve the condition of patients with MS. It seems that more attention to the symptoms of MS, on the one hand, and a new approach to the pathogenesis of this disease and considering it as a connectomopathy, on the other hand, can provide new opportunities for application of this method in the treatment of MS.
Collapse
|
25
|
Hui J, Zomorrodi R, Lioumis P, Salavati B, Rajji TK, Chen R, Blumberger DM, Daskalakis ZJ. Pharmacological mechanisms of interhemispheric signal propagation: a TMS-EEG study. Neuropsychopharmacology 2020; 45:932-939. [PMID: 31357206 PMCID: PMC7162860 DOI: 10.1038/s41386-019-0468-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/19/2019] [Accepted: 07/22/2019] [Indexed: 02/03/2023]
Abstract
Interhemispheric connections across the corpus callosum have a predominantly inhibitory effect. Previous electrophysiology studies imply that local inhibitory circuits are responsible for inducing transcallosal inhibition, likely through inhibitory GABAB-mediated neurotransmission. We investigated the neurochemical mechanisms involved in interhemispheric connectivity by measuring transcranial magnetic stimulation (TMS)-induced interhemispheric signal propagation (ISP) in the motor cortex and dorsolateral prefrontal cortex (DLPFC) with electroencephalography (EEG) recordings under the pharmacological effects of baclofen, L-DOPA, dextromethorphan, and rivastigmine. We hypothesized that for both stimulated regions, GABAB receptor agonist baclofen would decrease ISP when compared against baseline while drugs that target other neurotransmitter systems (dopaminergic, acetylcholinergic, and glutamatergic systems) would have no effect on ISP. Twelve right-handed healthy volunteers completed this study and underwent TMS across five sessions in a randomized order. In the motor cortex, participants showed a significant decrease in ISP under baclofen, but not in the other drug conditions. There were no drug-induced changes in ISP in the DLPFC and baseline ISP did not differ across experimental sessions for both brain regions. Together, our results suggest that the inhibitory effects observed with interhemispheric signal transmission are mediated by a population of interneurons involving GABAB receptor neurotransmission. Inhibitory mechanisms of ISP may be more salient for motor-related functions in the motor cortex than for cognitive control in the DLPFC. These findings are a fundamental step in advancing our understanding of interhemispheric connectivity and may be used to identify treatments for disorders in which transcallosal transmission is dysfunctional.
Collapse
Affiliation(s)
- Jeanette Hui
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Reza Zomorrodi
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada
| | - Pantelis Lioumis
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000000108389418grid.5373.2Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Bahar Salavati
- 0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada
| | - Tarek K. Rajji
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Robert Chen
- 0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0004 0474 0428grid.231844.8Krembil Brain Institute, University Health Network and Division of Neurology, Toronto, ON Canada
| | - Daniel M. Blumberger
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Zafiris J. Daskalakis
- 0000 0000 8793 5925grid.155956.bTemerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Institute of Medical Science, University of Toronto, Toronto, ON Canada ,0000 0001 2157 2938grid.17063.33Department of Psychiatry, University of Toronto, Toronto, ON Canada
| |
Collapse
|
26
|
Kamada K, Kapeller C, Takeuchi F, Gruenwald J, Guger C. Tailor-Made Surgery Based on Functional Networks for Intractable Epilepsy. Front Neurol 2020; 11:73. [PMID: 32117032 PMCID: PMC7031351 DOI: 10.3389/fneur.2020.00073] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 01/21/2020] [Indexed: 12/13/2022] Open
Abstract
Normal and pathological networks related to seizure propagation have got attention to elucide complex seizure semiology and contribute to diagnosis and surgical monitoring in epilepsy treatment. Since focal and generalized epileptogenic syndromes abnormalities might involve multiple foci and large-scale networks, we applied electrophysiolpgy (cortco-cortico evoked potential; CCEP), and tractography to make detailed diagnosis for complex syndrome. All 14 epilepsy patients with no or little abnormality on images investigations underwent subdural grid implantation for epilepsy diagnosis. To perform quick network analysis, we recorded and analyzed high gamma activity (HGA) of epileptogenic activity and CCEPs to identify pathological activity distribution and network connectivity. [Results] Pathological CCEPs showed two negative deflections consisting of early (>40 ms) and late (>150 ms) components in electrically stable circumstance at bed side and early CCEPs appeared in 57% of the patients. On the basis of the CCEP findings, tractography detected anatomical connections. Early components of pathological CCEPs diminished after complete disconnection of tractoography-based fibers between the foci in seven of eight cases. One case with residual pathological CCEPs showed poorer outcome. Thirteen (92.8%) patients with or without CCEPs who underwent network surgery had favorable prognosis except for a case with wide traumatic epilepsy. Intraoperative CCEP measurements and HGA mapping enabled visualization of pathological networks and clinical impotence as a biomarker to improve functional prognosis. HGA/CCEP recording should shed light on pathological and complex propagation for epilepsy surgery.
Collapse
Affiliation(s)
- Kyousuke Kamada
- Department of Neurosurgery, Megumino Hospital, Eniwa, Japan.,ATR Advanced Telecommunications Research Institute International, Kyoto, Japan
| | - Christoph Kapeller
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Fumiya Takeuchi
- Department of Research Promotion Center, Asahikawa Medical University, Asahikawa, Japan
| | - Johannes Gruenwald
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| | - Christoph Guger
- g.tec Guger Technologies OG/g.tec Medical Engineering GmbH, Schiedlberg, Austria
| |
Collapse
|
27
|
Workman CD, Kamholz J, Rudroff T. Transcranial Direct Current Stimulation (tDCS) to Improve Gait in Multiple Sclerosis: A Timing Window Comparison. Front Hum Neurosci 2019; 13:420. [PMID: 31849628 PMCID: PMC6893177 DOI: 10.3389/fnhum.2019.00420] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 11/13/2019] [Indexed: 12/18/2022] Open
Abstract
Unilateral weakness of the lower limb is a hallmark of multiple sclerosis (MS) and a significant contributor to the progressive worsening of walking ability. There are currently no effective rehabilitation strategies targeting strength asymmetries and/or gait impairments in people with MS (PwMS). Transcranial direct current stimulation (tDCS) has improved motor outcomes in various populations, but the effect of tDCS on gait in PwMS and the ideal timing window of tDCS application are still unknown. This study investigated the effects of tDCS, either before or during a 6 min walk test (6MWT), on the distance walked and gait characteristics in PwMS. Twelve participants were recruited and randomly assigned into BEFORE or DURING groups (both n = 6). The BEFORE group received stimulation before performing a 6MWT (sham/2 mA, 13 min). The DURING group received stimulation only during a 6MWT (sham/2 mA, 6 min). Stimulation was over the more MS-affected primary motor cortex (M1). Distance walked and gait characteristics of the walk were the primary and secondary outcomes. The results indicated a significant decrease in distance walked in the DURING group (p = 0.026) and a significant increase in gait velocity in the BEFORE group (p = 0.04). These changes were accompanied by trends (p < 0.1) in distance walked, gait velocity, and stride length. Overall, the results of this study suggest that tDCS performed before a 6MWT might be more effective than tDCS during a 6MWT and that a single session of tDCS may not be sufficient to influence gait. Clinical Trial Registration: www.ClinicalTrials.gov, identifier #NCT03757819.
Collapse
Affiliation(s)
- Craig D Workman
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States
| | - John Kamholz
- Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| | - Thorsten Rudroff
- Department of Health and Human Physiology, University of Iowa, Iowa City, IA, United States.,Department of Neurology, Carver College of Medicine, University of Iowa Hospitals and Clinics, Iowa City, IA, United States
| |
Collapse
|
28
|
Snow NJ, Wadden KP, Chaves AR, Ploughman M. Transcranial Magnetic Stimulation as a Potential Biomarker in Multiple Sclerosis: A Systematic Review with Recommendations for Future Research. Neural Plast 2019; 2019:6430596. [PMID: 31636661 PMCID: PMC6766108 DOI: 10.1155/2019/6430596] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/31/2019] [Indexed: 12/23/2022] Open
Abstract
Multiple sclerosis (MS) is a demyelinating disorder of the central nervous system. Disease progression is variable and unpredictable, warranting the development of biomarkers of disease status. Transcranial magnetic stimulation (TMS) is a noninvasive method used to study the human motor system, which has shown potential in MS research. However, few reviews have summarized the use of TMS combined with clinical measures of MS and no work has comprehensively assessed study quality. This review explored the viability of TMS as a biomarker in studies of MS examining disease severity, cognitive impairment, motor impairment, or fatigue. Methodological quality and risk of bias were evaluated in studies meeting selection criteria. After screening 1603 records, 30 were included for review. All studies showed high risk of bias, attributed largely to issues surrounding sample size justification, experimenter blinding, and failure to account for key potential confounding variables. Central motor conduction time and motor-evoked potentials were the most commonly used TMS techniques and showed relationships with disease severity, motor impairment, and fatigue. Short-latency afferent inhibition was the only outcome related to cognitive impairment. Although there is insufficient evidence for TMS in clinical assessments of MS, this review serves as a template to inform future research.
Collapse
Affiliation(s)
- Nicholas J. Snow
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Katie P. Wadden
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Arthur R. Chaves
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michelle Ploughman
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, Canada
| |
Collapse
|
29
|
Darmani G, Bergmann TO, Zipser C, Baur D, Müller-Dahlhaus F, Ziemann U. Effects of antiepileptic drugs on cortical excitability in humans: A TMS-EMG and TMS-EEG study. Hum Brain Mapp 2018; 40:1276-1289. [PMID: 30549127 DOI: 10.1002/hbm.24448] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/21/2018] [Accepted: 10/17/2018] [Indexed: 12/29/2022] Open
Abstract
Brain responses to transcranial magnetic stimulation (TMS) recorded by electroencephalography (EEG) are emergent noninvasive markers of neuronal excitability and effective connectivity in humans. However, the underlying physiology of these TMS-evoked EEG potentials (TEPs) is still heavily underexplored, impeding a broad application of TEPs to study pathology in neuropsychiatric disorders. Here we tested the effects of a single oral dose of three antiepileptic drugs with specific modes of action (carbamazepine, a voltage-gated sodium channel (VGSC) blocker; brivaracetam, a ligand to the presynaptic vesicle protein VSA2; tiagabine, a gamma-aminobutyric acid (GABA) reuptake inhibitor) on TEP amplitudes in 15 healthy adults in a double-blinded randomized placebo-controlled crossover design. We found that carbamazepine decreased the P25 and P180 TEP components, and brivaracetam the N100 amplitude in the nonstimulated hemisphere, while tiagabine had no effect. Findings corroborate the view that the P25 represents axonal excitability of the corticospinal system, the N100 in the nonstimulated hemisphere propagated activity suppressed by inhibition of presynaptic neurotransmitter release, and the P180 late activity particularly sensitive to VGSC blockade. Pharmaco-physiological characterization of TEPs will facilitate utilization of TMS-EEG in neuropsychiatric disorders with altered excitability and/or network connectivity.
Collapse
Affiliation(s)
- Ghazaleh Darmani
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Til O Bergmann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Institute of Medical Psychology and Behavioral Neurobiology, University of Tübingen, Tübingen, Germany
| | - Carl Zipser
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - David Baur
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Florian Müller-Dahlhaus
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Department of Psychiatry and Psychotherapy, University Medical Center Mainz, Mainz, Germany
| | - Ulf Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|