1
|
Schall TA, Li KL, Qi X, Lee BT, Wright WJ, Alpaugh EE, Zhao RJ, Liu J, Li Q, Zeng B, Wang L, Huang YH, Schlüter OM, Nestler EJ, Nieh EH, Dong Y. Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking. Nat Commun 2024; 15:9285. [PMID: 39468146 DOI: 10.1038/s41467-024-53690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
The nucleus accumbens (NAc) regulates reward-motivated behavior, but the temporal dynamics of NAc neurons that enable "free-willed" animals to obtain rewards remain elusive. Here, we recorded Ca2+ activity from individual NAc neurons when mice performed self-paced lever-presses for sucrose. NAc neurons exhibited three temporally-sequenced clusters, defined by times at which they exhibited increased Ca2+ activity: approximately 0, -2.5 or -5 sec relative to the lever-pressing. Dopamine D1 receptor (D1)-expressing neurons and D2-neurons formed the majority of the -5-sec versus -2.5-sec clusters, respectively, while both neuronal subtypes were represented in the 0-sec cluster. We found that pre-press activity patterns of D1- or D2-neurons could predict subsequent lever-presses. Inhibiting D1-neurons at -5 sec or D2-neurons at -2.5 sec, but not at other timepoints, reduced sucrose-motivated lever-pressing. We propose that the time-specific activity of D1- and D2-neurons mediate key temporal features of the NAc through which reward motivation initiates reward-seeking behavior.
Collapse
Affiliation(s)
- Terra A Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - King-Lun Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiguang Qi
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brian T Lee
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Erin E Alpaugh
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachel J Zhao
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jianwei Liu
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qize Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bo Zeng
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lirong Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Edward H Nieh
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
2
|
Aomine Y, Shimo Y, Sakurai K, Abe M, Macpherson T, Ozawa T, Hikida T. Sex-dependent differences in the ability of nicotine to modulate discrimination learning and cognitive flexibility in mice. J Neurochem 2024. [PMID: 39289039 DOI: 10.1111/jnc.16227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/19/2024]
Abstract
Nicotine, an addictive compound found in tobacco, functions as an agonist of nicotinic acetylcholine receptors (nAChRs) in the brain. Interestingly, nicotine has been reported to act as a cognitive enhancer in both human subjects and experimental animals. However, its effects in animal studies have not always been consistent, and sex differences have been identified in the effects of nicotine on several behaviors. Specifically, the role that sex plays in modulating the effects of nicotine on discrimination learning and cognitive flexibility in rodents is still unclear. Here, we evaluated sex-dependent differences in the effect of daily nicotine intraperitoneal (i.p.) administration at various doses (0.125, 0.25, and 0.5 mg/kg) on visual discrimination (VD) learning and reversal (VDR) learning in mice. In male mice, 0.5 mg/kg nicotine significantly improved performance in the VDR, but not the VD, task, while 0.5 mg/kg nicotine significantly worsened performance in the VD, but not VDR task in female mice. Furthermore, 0.25 mg/kg nicotine significantly worsened performance in the VD and VDR task only in female mice. Next, to investigate the cellular mechanisms that underlie the sex difference in the effects of nicotine on cognition, transcriptomic analyses were performed focusing on the medial prefrontal cortex tissue samples from male and female mice that had received continuous administration of nicotine for 3 or 18 days. As a result of pathway enrichment analysis and protein-protein interaction analysis using gene sets of differentially expressed genes, decreased expression of postsynaptic-related genes in males and increased expression of innate immunity-related genes in females were identified as possible molecular mechanisms related to sex differences in the effects of nicotine on cognition in discrimination learning and cognitive flexibility. Our result suggests that nicotine modulates cognitive function in a sex-dependent manner by alternating the expression of specific gene sets in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Research Fellow of Japan Society for the Promotion of Science, Suita, Japan
| | - Yuto Shimo
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
- Laboratory of Protein Profiling and Functional Proteomics, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
| | - Mayuka Abe
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Osaka, Japan
| |
Collapse
|
3
|
Derman RC, Bryda EC, Ferrario CR. Role of nucleus accumbens D1-type medium spiny neurons in the expression and extinction of sign-tracking. Behav Brain Res 2024; 459:114768. [PMID: 37984521 PMCID: PMC10842774 DOI: 10.1016/j.bbr.2023.114768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/31/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
While sign-tracking, also known as autoshaping, has been studied for many decades, only recently has the tendency to show sign-tracking behavior been linked to the development and persistence of addiction. Sign-tracking is dependent upon dopamine activity in the nucleus accumbens (NAc). The NAc is comprised predominantly of medium spiny projection neurons (MSN) that can be differentiated by their D1-like or D2-like dopamine receptor expression. Here we determined how reducing activity of D1-type MSNs in the NAc affects the expression and extinction of sign-tracking. To address this, we transfected the NAc of transgenic male and female rats that selectively express Cre recombinase in D1-type MSNs with a DIO viral vector expressing hM4Di. Cre- rats were given the same viral infusion but did not express the hM4Di receptor and therefore served as controls. Rats were then conditioned to associate lever presentations with pellet delivery. After sign-tracking was established, all rats were administered clozapine-n-oxide (CNO) prior to three additional conditioning sessions to assess the effects of NAc D1-MSNs inhibition on sign-tracking in the presence of reward. CNO treatment did not alter the expression of sign-tracking in Cre+ or Cre- rats. Next rats underwent extinction training where lever presentations occurred without pellet delivery and all rats received a CNO injection prior to each extinction session. In these extinction conditions, Cre+ rats exhibited robust extinction of sign-tracking across sessions, whereas Cre- rats did not. To determine if D1-MSN inhibition merely produced a temporary cessation of sign-tracking or instead had facilitated a persistent loss of sign-tracking, we evaluated the reemergence of sign-tracking in a test for reconditioning. During testing, reintroduction of the CS-US pairing did not promote the reemergence of sign-tracking in Cre+ rats, but restored sign-tracking in Cre- rats. Thus, chemogenetic inhibition of NAc D1-MSNs promoted extinction of sign-tracking. Collectively, these data suggest that D1-MSNs play an important role in resistance to extinction that typifies sign-tracking behavior.
Collapse
Affiliation(s)
- Rifka C Derman
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA.
| | - Elizabeth C Bryda
- Rat Resource and Research Center, Animal Modeling Core, Veterinary Pathobiology, University of Missouri, Columbia, MO 65201, USA
| | - Carrie R Ferrario
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109, USA; Department of Pharmacology, Psychology Department, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
4
|
Macpherson T, Dixon CI, Robertson J, Sindarto MM, Janak PH, Belelli D, Lambert JJ, Stephens DN, King SL. α4-Containing GABA A Receptors on DRD2 Neurons of the Nucleus Accumbens Mediate Instrumental Responding for Conditioned Reinforcers and Its Potentiation by Cocaine. eNeuro 2023; 10:ENEURO.0236-23.2023. [PMID: 37553242 PMCID: PMC10470850 DOI: 10.1523/eneuro.0236-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/10/2023] Open
Abstract
Extrasynaptic GABAA receptors (GABAARs) composed of α4, β, and δ subunits mediate GABAergic tonic inhibition and are potential molecular targets in the modulation of behavioral responses to natural and drug rewards. These GABAARs are highly expressed within the nucleus accumbens (NAc), where they influence the excitability of the medium spiny neurons. Here, we explore their role in modulating behavioral responses to food-conditioned cues and the behavior-potentiating effects of cocaine. α4-Subunit constitutive knock-out mice (α4-/-) showed higher rates of instrumental responding for reward-paired stimuli in a test of conditioned reinforcement (CRf). A similar effect was seen following viral knockdown of GABAAR α4 subunits within the NAc. Local infusion of the α4βδ-GABAAR-preferring agonist THIP (4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol; Gaboxadol) into the NAc had no effect on responding when given alone but reduced cocaine potentiation of responding for conditioned reinforcers in wild-type, but not α4-/- mice. Finally, specific deletion of α4-subunits from dopamine D2, but not D1, receptor-expressing neurons (DRD2 and DRD1 neurons), mimicked the phenotype of the constitutive knockout, potentiating CRf responding, and blocking intra-accumbal THIP attenuation of cocaine-potentiated CRf responding. These data demonstrate that α4-GABAAR-mediated inhibition of DRD2 neurons reduces instrumental responding for a conditioned reinforcer and its potentiation by cocaine and emphasize the importance of GABAergic signaling within the NAc in mediating the effects of cocaine.
Collapse
Affiliation(s)
- Tom Macpherson
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton BN1 9QG, United Kingdom
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita 565-0871, Japan
| | - Claire I. Dixon
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Jonathan Robertson
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Marsha M. Sindarto
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Patricia H. Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218
| | - Delia Belelli
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - Jeremy J. Lambert
- Division of Neuroscience, Medical Research Institute, Ninewells Hospital & Medical School, University of Dundee, Dundee DD1 9SY, United Kingdom
| | - David N. Stephens
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton BN1 9QG, United Kingdom
| | - Sarah L. King
- Sussex Neuroscience, School of Psychology, University of Sussex, Brighton BN1 9QG, United Kingdom
| |
Collapse
|
5
|
Nishioka T, Attachaipanich S, Hamaguchi K, Lazarus M, de Kerchove d'Exaerde A, Macpherson T, Hikida T. Error-related signaling in nucleus accumbens D2 receptor-expressing neurons guides inhibition-based choice behavior in mice. Nat Commun 2023; 14:2284. [PMID: 37085502 PMCID: PMC10121661 DOI: 10.1038/s41467-023-38025-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/12/2023] [Indexed: 04/23/2023] Open
Abstract
Learned associations between environmental cues and the outcomes they predict (cue-outcome associations) play a major role in behavioral control, guiding not only which responses we should perform, but also which we should inhibit, in order to achieve a specific goal. The encoding of such cue-outcome associations, as well as the performance of cue-guided choice behavior, is thought to involve dopamine D1 and D2 receptor-expressing medium spiny neurons (D1-/D2-MSNs) of the nucleus accumbens (NAc). Here, using a visual discrimination task in male mice, we assessed the role of NAc D1-/D2-MSNs in cue-guided inhibition of inappropriate responding. Cell-type specific neuronal silencing and in-vivo imaging revealed NAc D2-MSNs to contribute to inhibiting behavioral responses, with activation of NAc D2-MSNs following response errors playing an important role in optimizing future choice behavior. Our findings indicate that error-signaling by NAc D2-MSNs contributes to the ability to use environmental cues to inhibit inappropriate behavior.
Collapse
Affiliation(s)
- Tadaaki Nishioka
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan.
- Laboratory for Developing Minds, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Suthinee Attachaipanich
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
| | - Kosuke Hamaguchi
- Department of Biological Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS) and Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan.
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan.
| |
Collapse
|
6
|
Continuous cholinergic-dopaminergic updating in the nucleus accumbens underlies approaches to reward-predicting cues. Nat Commun 2022; 13:7924. [PMID: 36564387 PMCID: PMC9789106 DOI: 10.1038/s41467-022-35601-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/13/2022] [Indexed: 12/25/2022] Open
Abstract
The ability to learn Pavlovian associations from environmental cues predicting positive outcomes is critical for survival, motivating adaptive behaviours. This cued-motivated behaviour depends on the nucleus accumbens (NAc). NAc output activity mediated by spiny projecting neurons (SPNs) is regulated by dopamine, but also by cholinergic interneurons (CINs), which can release acetylcholine and glutamate via the activity of the vesicular acetylcholine transporter (VAChT) or the vesicular glutamate transporter (VGLUT3), respectively. Here we investigated behavioural and neurochemical changes in mice performing a touchscreen Pavlovian approach task by recording dopamine, acetylcholine, and calcium dynamics from D1- and D2-SPNs using fibre photometry in control, VAChT or VGLUT3 mutant mice to understand how these signals cooperate in the service of approach behaviours toward reward-predicting cues. We reveal that NAc acetylcholine-dopaminergic signalling is continuously updated to regulate striatal output underlying the acquisition of Pavlovian approach learning toward reward-predicting cues.
Collapse
|
7
|
Macpherson T, Kim JY, Hikida T. Nucleus Accumbens Core Dopamine D2 Receptor-Expressing Neurons Control Reversal Learning but Not Set-Shifting in Behavioral Flexibility in Male Mice. Front Neurosci 2022; 16:885380. [PMID: 35837123 PMCID: PMC9275008 DOI: 10.3389/fnins.2022.885380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/03/2022] [Indexed: 11/13/2022] Open
Abstract
The ability to use environmental cues to flexibly guide responses is crucial for adaptive behavior and is thought to be controlled within a series of cortico-basal ganglia-thalamo-cortical loops. Previous evidence has indicated that different prefrontal cortical regions control dissociable aspects of behavioral flexibility, with the medial prefrontal cortex (mPFC) necessary for the ability to shift attention to a novel strategy (set-shifting) and the orbitofrontal cortex (OFC) necessary for shifting attention between learned stimulus-outcome associations (reversal learning). The nucleus accumbens (NAc) is a major downstream target of both the mPFC and the OFC; however, its role in controlling reversal learning and set-shifting abilities is still unclear. Here we investigated the contribution of the two major NAc neuronal populations, medium spiny neurons expressing either dopamine D1 or D2 receptors (D1-/D2-MSNs), in guiding reversal learning and set-shifting in an attentional set-shifting task (ASST). Persistent inhibition of neurotransmitter release from NAc D2-MSNs, but not D1-MSNs, resulted in an impaired ability for reversal learning, but not set-shifting in male mice. These findings suggest that NAc D2-MSNs play a critical role in suppressing responding toward specific learned cues that are now associated with unfavorable outcomes (i.e., in reversal stages), but not in the suppression of more general learned strategies (i.e., in set-shifting). This study provides further evidence for the anatomical separation of reversal learning and set-shifting abilities within cortico-basal ganglia-thalamo-cortical loops.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- *Correspondence: Tom Macpherson,
| | - Ji Yoon Kim
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Suita, Japan
- Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- Takatoshi Hikida,
| |
Collapse
|
8
|
Savchenko A, Müller C, Lubec J, Leo D, Korz V, Afjehi-Sadat L, Malikovic J, Sialana FJ, Lubec G, Sukhanov I. The Lack of Dopamine Transporter Is Associated With Conditional Associative Learning Impairments and Striatal Proteomic Changes. Front Psychiatry 2022; 13:799433. [PMID: 35370807 PMCID: PMC8971526 DOI: 10.3389/fpsyt.2022.799433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/04/2022] [Indexed: 11/14/2022] Open
Abstract
Dopamine (DA) is critically involved in different functions of the central nervous system (CNS) including control of voluntary movement, affect, reward, sleep, and cognition. One of the key components of DA neurotransmission is DA reuptake by the DA transporter (DAT), ensuring rapid clearance of DA from the synaptic cleft. Thus, lack of DAT leads to persistent high extracellular DA levels. While there is strong evidence for a role of striatal dopaminergic activity in learning and memory processes, little is known about the contribution of DAT deficiency to conditional learning impairments and underlying molecular processes. DAT-knockout (DAT-KO) rats were tested in a set of behavioral experiments evaluating conditional associative learning, which requires unaltered striatal function. In parallel, a large-scale proteomic analysis of the striatum was performed to identify molecular factors probably underlying behavioral patterns. DAT-KO rats were incapable to acquire a new operant skill in Pavlovian/instrumental autoshaping, although the conditional stimulus-unconditional stimulus (CS-US) association seems to be unaffected. These findings suggest that DAT directly or indirectly contributes to the reduction of transference of incentive salience from the reward to the CS. We propose that specific impairment of conditional learning might be caused by molecular adaptations to the hyperdopaminergic state, presumably by dopamine receptor 1 (DRD1) hypofunction, as proposed by proteomic analysis. Whether DRD1 downregulation can cause cognitive deficits in the hyperdopaminergic state is the subject of discussion, and further studies are needed to answer this question. This study may be useful for the interpretation of previous and the design of future studies in the dopamine field.
Collapse
Affiliation(s)
- Artem Savchenko
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| | - Carina Müller
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Jana Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Damiana Leo
- Department of Neurosciences, University of Mons, Mons, Belgium
| | - Volker Korz
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Leila Afjehi-Sadat
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Jovana Malikovic
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Fernando J Sialana
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Gert Lubec
- Programme for Proteomics, Paracelsus Medical University, Salzburg, Austria
| | - Ilya Sukhanov
- Institute of Pharmacology, Pavlov First Saint Petersburg State Medical University, St. Petersburg, Russia
| |
Collapse
|
9
|
Onitsuka T, Hirano Y, Nemoto K, Hashimoto N, Kushima I, Koshiyama D, Koeda M, Takahashi T, Noda Y, Matsumoto J, Miura K, Nakazawa T, Hikida T, Kasai K, Ozaki N, Hashimoto R. Trends in big data analyses by multicenter collaborative translational research in psychiatry. Psychiatry Clin Neurosci 2022; 76:1-14. [PMID: 34716732 PMCID: PMC9306748 DOI: 10.1111/pcn.13311] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 10/01/2021] [Accepted: 10/17/2021] [Indexed: 12/01/2022]
Abstract
The underlying pathologies of psychiatric disorders, which cause substantial personal and social losses, remain unknown, and their elucidation is an urgent issue. To clarify the core pathological mechanisms underlying psychiatric disorders, in addition to laboratory-based research that incorporates the latest findings, it is necessary to conduct large-sample-size research and verify reproducibility. For this purpose, it is critical to conduct multicenter collaborative research across various fields, such as psychiatry, neuroscience, molecular biology, genomics, neuroimaging, cognitive science, neurophysiology, psychology, and pharmacology. Moreover, collaborative research plays an important role in the development of young researchers. In this respect, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) consortium and Cognitive Genetics Collaborative Research Organization (COCORO) have played important roles. In this review, we first overview the importance of multicenter collaborative research and our target psychiatric disorders. Then, we introduce research findings on the pathophysiology of psychiatric disorders from neurocognitive, neurophysiological, neuroimaging, genetic, and basic neuroscience perspectives, focusing mainly on the findings obtained by COCORO. It is our hope that multicenter collaborative research will contribute to the elucidation of the pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Toshiaki Onitsuka
- Department of Neuroimaging Psychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoji Hirano
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan.,Institute of Industrial Science, The University of Tokyo, Tokyo, Japan
| | - Kiyotaka Nemoto
- Department of Psychiatry, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Naoki Hashimoto
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Itaru Kushima
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan.,Medical Genomics Center, Nagoya University Hospital, Nagoya, Japan
| | - Daisuke Koshiyama
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Michihiko Koeda
- Department of Neuropsychiatry, Graduate School of Medicine, Nippon Medical School, Tokyo, Japan.,Department of Neuropsychiatry, Nippon Medical School, Tama Nagayama Hospital, Tokyo, Japan
| | - Tsutomu Takahashi
- Department of Neuropsychiatry, University of Toyama Graduate School of Medicine and Pharmaceutical Sciences, Toyama, Japan.,Research Center for Idling Brain Science, University of Toyama, Toyama, Japan
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Junya Matsumoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Kenichiro Miura
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| | - Takanobu Nakazawa
- Department of Bioscience, Tokyo University of Agriculture, Tokyo, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.,The International Research Center for Neurointelligence (WPI-IRCN) at The University of Tokyo Institutes for Advanced Study (UTIAS), Tokyo, Japan
| | - Norio Ozaki
- Department of Psychiatry, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Ryota Hashimoto
- Department of Pathology of Mental Diseases, National Institute of Mental Health, National Center of Neurology and Psychiatry, Tokyo, Japan
| |
Collapse
|
10
|
Nomura H, Son C, Aotani D, Shimizu Y, Katsuura G, Noguchi M, Kusakabe T, Tanaka T, Miyazawa T, Hosoda K, Nakao K. Impaired leptin responsiveness in the nucleus accumbens of leptin-overexpressing transgenic mice with dysregulated sucrose and lipid preference independent of obesity. Neurosci Res 2021; 177:94-102. [PMID: 34971637 DOI: 10.1016/j.neures.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/06/2021] [Accepted: 12/26/2021] [Indexed: 11/19/2022]
Abstract
While hypothalamic leptin resistance can occur prior to establishment of obesity, clarification is needed as to whether the impaired response to leptin in the reward-related nuclei occurs independently of obesity. To answer this question, we attempted to dissociate the normally coexisting leptin resistance from obesity. We investigated phenotypes of leptin-overexpressing transgenic mice fed for 1 week with 60 % high-fat diet (HFD) (LepTg-HFD1W mice). After 1 week, we observed that LepTg-HFD1W mice weighed as same as wild type (WT) mice fed standard chow diet (CD) for 1 week (WT-CD1W mice). However, compared to WT-CD1W mice, LepTg-HFD1W mice exhibited attenuated leptin-induced anorexia, decreased leptin-induced c-fos immunostaining in nucleus accumbens (NAc), one of important site of reward system, decreased leptin-stimulated pSTAT3 immunostaining in hypothalamus. Furthermore, neither sucrose nor lipid preference was suppressed by leptin in LepTg-HFD1W mice. On the contrary, leptin significantly suppressed both preferences in WT mice fed HFD (WT-HFD1 W mice). These results indicate that leptin responsiveness decreases in NAc independently of obesity. Additionally, in this situation, suppressive effect of leptin on the hedonic feeding results in impaired regulation. Such findings suggest the impaired leptin responsiveness in NAc partially contributes to dysregulated hedonic feeding behavior independently of obesity.
Collapse
Affiliation(s)
- Hidenari Nomura
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Diabetes, Endocrinology and Nutrition, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Cheol Son
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Omics Research Center, National Cerebral and Cardiovascular Center, Suita, Japan.
| | - Daisuke Aotani
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yoshiyuki Shimizu
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan; Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Goro Katsuura
- Department of Social and Behavioral Medicine, Division of Psychosomatic Internal Medicine, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Michio Noguchi
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Toru Kusakabe
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tomohiro Tanaka
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takashi Miyazawa
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kiminori Hosoda
- Department of Human Health and Science, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kazuwa Nakao
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
11
|
Sivils A, Wang JQ, Chu XP. Striatonigrostriatal Spirals in Addiction. Front Neural Circuits 2021; 15:803501. [PMID: 34955762 PMCID: PMC8703003 DOI: 10.3389/fncir.2021.803501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022] Open
Abstract
A biological reward system is integral to all animal life and humans are no exception. For millennia individuals have investigated this system and its influences on human behavior. In the modern day, with the US facing an ongoing epidemic of substance use without an effective treatment, these investigations are of paramount importance. It is well known that basal ganglia contribute to rewards and are involved in learning, approach behavior, economic choices, and positive emotions. This review aims to elucidate the physiological role of striatonigrostriatal (SNS) spirals, as part of basal ganglia circuits, in this reward system and their pathophysiological role in perpetuating addiction. Additionally, the main functions of neurotransmitters such as dopamine and glutamate and their receptors in SNS circuits will be summarized. With this information, the claim that SNS spirals are crucial intermediaries in the shift from goal-directed behavior to habitual behavior will be supported, making this circuit a viable target for potential therapeutic intervention in those with substance use disorders.
Collapse
Affiliation(s)
| | | | - Xiang-Ping Chu
- Department of Biomedical Sciences, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, United States
| |
Collapse
|
12
|
Hikida T, Yao S, Macpherson T, Fukakusa A, Morita M, Kimura H, Hirai K, Ando T, Toyoshiba H, Sawa A. Nucleus accumbens pathways control cell-specific gene expression in the medial prefrontal cortex. Sci Rep 2020; 10:1838. [PMID: 32020036 PMCID: PMC7000772 DOI: 10.1038/s41598-020-58711-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 01/16/2020] [Indexed: 11/08/2022] Open
Abstract
The medial prefrontal cortex (mPFC) is a critical component of a cortico-basal ganglia-thalamo-cortical loop regulating limbic and cognitive functions. Within this circuit, two distinct nucleus accumbens (NAc) output neuron types, dopamine D1 or D2 receptor-expressing neurons, dynamically control the flow of information through basal ganglia nuclei that eventually project back to the mPFC to complete the loop. Thus, chronic dysfunction of the NAc may result in mPFC transcriptomal changes, which in turn contribute to disease conditions associated with the mPFC and basal ganglia. Here, we used RNA sequencing to analyse differentially expressed genes (DEGs) in the mPFC following a reversible neurotransmission blocking technique in D1 or D2 receptor-expressing NAc neurons, respectively (D1-RNB, or D2-RNB). Gene Set Enrichment Analysis revealed that gene sets of layer 5b and 6 pyramidal neurons were enriched in DEGs of the mPFC downregulated in both NAc D1- and D2-RNB mice. In contrast, gene sets of layer 5a pyramidal neurons were enriched in upregulated DEGs of the mPFC in D1-RNB mice, and downregulated DEGs of the mPFC in D2-RNB mice. These findings reveal for the first time that NAc output pathways play an important role in controlling mPFC gene expression.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan.
| | - Shuhei Yao
- Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Ayumi Fukakusa
- Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Makiko Morita
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Research and Drug Discovery, Medical Innovation Center, Kyoto University Graduate School of Medicine, 53 Shogoin-Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Haruhide Kimura
- Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Keisuke Hirai
- Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Tatsuya Ando
- Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Hiroyoshi Toyoshiba
- Research, Takeda Pharmaceutical Company Limited, 2-26-1 Muraoka-Higashi, Fujisawa, Kanagawa, 251-8555, Japan
| | - Akira Sawa
- Departments of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Departments of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Departments of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Departments of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA
- Department of Mental Health, Johns Hopkins University Bloomberg School of Medicine, Baltimore, MD, 21287, USA
| |
Collapse
|
13
|
Abstract
Drug use among adolescents continues to be an area of concern because of the possibility of long-lasting physical and mental changes. The aim of this study was to determine whether methamphetamine exposure during adolescence results in long-lasting neurobehavioral alterations in adulthood. Sprague-Dawley rats were injected with methamphetamine (4 mg/kg/day) during postnatal days 28-37. Once rats reached postnatal days 150, they were placed in standard operant chambers, where they were trained to respond to a lever for sucrose pellets, the experimental reinforcement. Methamphetamine exposure during adolescence did not result in a noteworthy impairment in the development of the correct lever touch response in the autoshaped learning test with 4 seconds delayed reinforcement. These rats were also tested for the motivation to obtain sucrose pellets under a progressive ratio schedule of the reinforcement on postnatal days 170. Decreased lever-pressing response was noted in male rats exposed to methamphetamine during adolescence, but not in female rats. These results indicate that methamphetamine exposure during adolescence results in a decrease in the motivation for a natural reinforcer later in adulthood, particularly in male rats. From our data, we suggest that male brains are less capable of facilitating recovery than female brains after methamphetamine-induced perturbation of brain function during the adolescent period.
Collapse
|
14
|
Macpherson T, Hikida T. Role of basal ganglia neurocircuitry in the pathology of psychiatric disorders. Psychiatry Clin Neurosci 2019; 73:289-301. [PMID: 30734985 DOI: 10.1111/pcn.12830] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 01/22/2019] [Accepted: 02/05/2019] [Indexed: 12/21/2022]
Abstract
Over the last few decades, advances in human and animal-based techniques have greatly enhanced our understanding of the neural mechanisms underlying psychiatric disorders. Many of these studies have indicated connectivity between and alterations within basal ganglia structures to be particularly pertinent to the development of symptoms associated with several of these disorders. Here we summarize the connectivity, molecular composition, and function of sites within basal ganglia neurocircuits. Then we review the current literature from both human and animal studies concerning altered basal ganglia function in five common psychiatric disorders: obsessive-compulsive disorder, substance-related and addiction disorders, major depressive disorder, generalized anxiety disorder, and schizophrenia. Finally, we present a model based upon the findings of these studies that highlights the striatum as a particularly attractive target for restoring normal function to basal ganglia neurocircuits altered within psychiatric disorder patients.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
| |
Collapse
|
15
|
Macpherson T, Mizoguchi H, Yamanaka A, Hikida T. Preproenkephalin-expressing ventral pallidal neurons control inhibitory avoidance learning. Neurochem Int 2019; 126:11-18. [PMID: 30797970 DOI: 10.1016/j.neuint.2019.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/14/2019] [Accepted: 02/18/2019] [Indexed: 02/06/2023]
Abstract
The ventral pallidum (VP) is a critical component of the basal ganglia neurocircuitry regulating learning and decision making; however, its precise role in controlling associative learning of environmental stimuli conditioned to appetitive or aversive outcomes is still unclear. Here, we investigated the expression of preproenkephalin, a polypeptide hormone previously shown to be expressed in nucleus accumbens neurons controlling aversive learning, within GABAergic and glutamatergic VP neurons. Next, we explored the behavioral consequences of chemicogenetic inhibition or excitation of preproenkephalin-expressing VP neurons on associative learning of reward- or aversion-paired stimuli in autoshaping and inhibitory avoidance tasks, respectively. We reveal for the first time that preproenkephalin is expressed predominantly in GABAergic rather than glutamatergic VP neurons, and that excitation of these preproenkephalin-expressing VP neurons was sufficient to impair inhibitory avoidance learning. These findings indicate the necessity for inhibition of preproenkephalin-expressing VP neurons for avoidance learning, and suggest these neurons as a potential therapeutic target for psychiatric disorders associated with maladaptive aversive learning.
Collapse
Affiliation(s)
- Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan
| | - Hiroyuki Mizoguchi
- Research Center for Next-Generation Drug Development, Research Institute of Environmental Medicine, Nagoya University, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Japan.
| |
Collapse
|
16
|
Hikida T. [Homeostatic regulation of basal ganglia circuit for flexible behavior]. Nihon Yakurigaku Zasshi 2018; 152:295-298. [PMID: 30531100 DOI: 10.1254/fpj.152.295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Behavioral inflexibility has been reported in various psychiatric disorders including drug addiction and schizophrenia. Considerable evidence has demonstrated a critical role for the basal ganglia in the flexibility of behavioral strategies. These processes are guided by the activity of two discrete neuron types, dopamine D1- or D2-receptor expressing medium spiny neurons (D1-/D2-MSNs) in the basal ganglia circuit. We used a reversible neurotransmission blocking technique to examine the role of D1- and D2-MSNs in the acquisition and reversal learning of a place discrimination task in the IntelliCage. We demonstrated that D1- and D2-MSNs do not mediate the acquisition of the task, but that suppression of activity in D2-MSNs impairs reversal learning and increased perseverative errors. Additionally, global knockout of the dopamine D2L receptor isoform produced a similar behavioral phenotype to D2-MSN-blocked mice. We also showed that D2L receptors are necessary for visual discrimination and reversal learning. These results suggest that D2L receptors and D2-MSNs have a critical role in the homeostatic regulation of basal ganglia circuit for flexible behaviors.
Collapse
Affiliation(s)
- Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University
| |
Collapse
|