1
|
Zhang L, Zetter MA, Hernández VS, Hernández-Pérez OR, Jáuregui-Huerta F, Krabichler Q, Grinevich V. Morphological Signatures of Neurogenesis and Neuronal Migration in Hypothalamic Vasopressinergic Magnocellular Nuclei of the Adult Rat. Int J Mol Sci 2024; 25:6988. [PMID: 39000096 PMCID: PMC11241681 DOI: 10.3390/ijms25136988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024] Open
Abstract
The arginine vasopressin (AVP)-magnocellular neurosecretory system (AVPMNS) in the hypothalamus plays a critical role in homeostatic regulation as well as in allostatic motivational behaviors. However, it remains unclear whether adult neurogenesis exists in the AVPMNS. By using immunoreaction against AVP, neurophysin II, glial fibrillar acidic protein (GFAP), cell division marker (Ki67), migrating neuroblast markers (doublecortin, DCX), microglial marker (Ionized calcium binding adaptor molecule 1, Iba1), and 5'-bromo-2'-deoxyuridine (BrdU), we report morphological evidence that low-rate neurogenesis and migration occur in adult AVPMNS in the rat hypothalamus. Tangential AVP/GFAP migration routes and AVP/DCX neuronal chains as well as ascending AVP axonal scaffolds were observed. Chronic water deprivation significantly increased the BrdU+ nuclei within both the supraaoptic (SON) and paraventricular (PVN) nuclei. These findings raise new questions about AVPMNS's potential hormonal role for brain physiological adaptation across the lifespan, with possible involvement in coping with homeostatic adversities.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Department of Medicine and Health, University of La Salle, Mexico City 14000, Mexico
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
- Section on Molecular Neuroscience, National Institute of Mental Health, NIH, Bethesda, MD 20892, USA
| | - Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Fernando Jáuregui-Huerta
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City 04510, Mexico; (M.A.Z.); (V.S.H.); (O.R.H.-P.)
| | - Quirin Krabichler
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, 69120 Mannheim, Germany; (Q.K.); (V.G.)
| |
Collapse
|
2
|
Singh R, Sharma D, Kumar A, Singh C, Singh A. Understanding zebrafish sleep and wakefulness physiology as an experimental model for biomedical research. FISH PHYSIOLOGY AND BIOCHEMISTRY 2024; 50:827-842. [PMID: 38150068 DOI: 10.1007/s10695-023-01288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 12/07/2023] [Indexed: 12/28/2023]
Abstract
Sleep is a globally observable fact, or period of reversible distracted rest, that can be distinguished from arousal by various behavioral criteria. Although the function of sleep is an evolutionarily conserved behavior, its mechanism is not yet clear. The zebrafish (Danio rerio) has become a valuable model for neurobehavioral studies such as studying learning, memory, anxiety, and depression. It is characterized by a sleep-like state and circadian rhythm, making it comparable to mammals. Zebrafish are a good model for behavioral studies because they share genetic similarities with humans. A number of neurotransmitters are involved in sleep and wakefulness. There is a binding between melatonin and the hypocretin system present in zebrafish. The full understanding of sleep and wakefulness physiology in zebrafish is still unclear among researchers. Therefore, to make a clear understanding of the sleep/wake cycle in zebrafish, this article covers the mechanism involved behind it, and the role of the neuromodulator system followed by the mechanism of the HPA axis.
Collapse
Affiliation(s)
- Rima Singh
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Deepali Sharma
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India
| | - Anoop Kumar
- Department of Pharmacology, Delhi Pharmaceutical Sciences & Research University (DPSRU), New Delhi, 110017, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt, Tehri Garhwal, Uttarakhand, 246174, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga-142001, Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
3
|
Pace SA, Myers B. Hindbrain Adrenergic/Noradrenergic Control of Integrated Endocrine and Autonomic Stress Responses. Endocrinology 2023; 165:bqad178. [PMID: 38015813 DOI: 10.1210/endocr/bqad178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 11/30/2023]
Abstract
Hindbrain adrenergic/noradrenergic nuclei facilitate endocrine and autonomic responses to physical and psychological challenges. Neurons that synthesize adrenaline and noradrenaline target hypothalamic structures to modulate endocrine responses while descending spinal projections regulate sympathetic function. Furthermore, these neurons respond to diverse stress-related metabolic, autonomic, and psychosocial challenges. Accordingly, adrenergic and noradrenergic nuclei are integrative hubs that promote physiological adaptation to maintain homeostasis. However, the precise mechanisms through which adrenaline- and noradrenaline-synthesizing neurons sense interoceptive and exteroceptive cues to coordinate physiological responses have yet to be fully elucidated. Additionally, the regulatory role of these cells in the context of chronic stress has received limited attention. This mini-review consolidates reports from preclinical rodent studies on the organization and function of brainstem adrenaline and noradrenaline cells to provide a framework for how these nuclei coordinate endocrine and autonomic physiology. This includes identification of hindbrain adrenaline- and noradrenaline-producing cell groups and their role in stress responding through neurosecretory and autonomic engagement. Although temporally and mechanistically distinct, the endocrine and autonomic stress axes are complementary and interconnected. Therefore, the interplay between brainstem adrenergic/noradrenergic nuclei and peripheral physiological systems is necessary for integrated stress responses and organismal survival.
Collapse
Affiliation(s)
- Sebastian A Pace
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Brent Myers
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
4
|
Hernández-Pérez OR, Hernández VS, Zetter MA, Eiden LE, Zhang L. Nucleus of the lateral olfactory tract: A hub linking the water homeostasis-associated supraoptic nucleus-arginine vasopressin circuit and neocortical regions to promote social behavior under osmotic challenge. J Neuroendocrinol 2023; 35:e13202. [PMID: 36283814 PMCID: PMC10027625 DOI: 10.1111/jne.13202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 09/14/2022] [Accepted: 09/14/2022] [Indexed: 11/30/2022]
Abstract
Homeostatic challenges may alter the drive for social interaction. The neural activity that prompts this motivation remains poorly understood. In the present study, we identify direct projections from the hypothalamic supraoptic nucleus to the cortico-amygdalar nucleus of the lateral olfactory tract (NLOT). Dual in situ hybridization with probes for pituitary adenylate cyclase-activating polypeptide (PACAP), as well as vesicular glutamate transporter (VGLUT)1, VGLUT2, V1a and V1b, revealed a population of vasopressin-receptive PACAPergic neurons in NLOT layer 2 (NLOT2). Water deprivation (48 h, WD48) increased sociability compared to euhydrated subjects, as assessed with the three-chamber social interaction test (3CST). Fos expression immunohistochemistry showed NLOT and its main efferent regions had further increases in rats subjected to WD48 + 3CST. These regions strongly expressed PAC1 mRNA. Microinjections of arginine vasopressin (AVP) into the NLOT produced similar changes in sociability to water deprivation, and these were reduced by co-injection of V1a or V1b antagonists along with AVP. We conclude that, during challenge to water homeostasis, there is a recruitment of a glutamatergic-multi-peptidergic cooperative circuit that promotes social behavior.
Collapse
Affiliation(s)
- Oscar R. Hernández-Pérez
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
- Authors contributed equally to this work
| | - Vito S. Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
- Authors contributed equally to this work
| | - Mario A. Zetter
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
| | - Lee E. Eiden
- National Institute of Mental Health, National Institute of Health, Bethesda, MD, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico
| |
Collapse
|
5
|
Rasiah NP, Loewen SP, Bains JS. Windows into stress: a glimpse at emerging roles for CRH PVN neurons. Physiol Rev 2023; 103:1667-1691. [PMID: 36395349 DOI: 10.1152/physrev.00056.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The corticotropin-releasing hormone cells in the paraventricular nucleus of the hypothalamus (CRHPVN) control the slow endocrine response to stress. The synapses on these cells are exquisitely sensitive to acute stress, leveraging local signals to leave a lasting imprint on this system. Additionally, recent work indicates that these cells also play key roles in the control of distinct stress and survival behaviors. Here we review these observations and provide a perspective on the role of CRHPVN neurons as integrative and malleable hubs for behavioral, physiological, and endocrine responses to stress.
Collapse
Affiliation(s)
- Neilen P Rasiah
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Spencer P Loewen
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| | - Jaideep S Bains
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
6
|
Bárez-López S, Scanlon L, Murphy D, Greenwood MP. Imaging the Hypothalamo-Neurohypophysial System. Neuroendocrinology 2023; 113:168-178. [PMID: 34438401 DOI: 10.1159/000519233] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/23/2021] [Indexed: 11/19/2022]
Abstract
The hypothalamo-neurohypophysial system (HNS) is a brain peptidergic neurosecretory apparatus which is composed of arginine vasopressin (AVP) and oxytocin (OXT) magnocellular neurones and their neuronal processes in the posterior pituitary (PP). In response to specific stimuli, AVP and OXT are secreted into the systemic circulation at the neurovascular interface of the PP, where they act as hormones, but they can also behave as neurotransmitters when released at the somatodendritic compartment or by axon collaterals to other brain regions. Because these peptides are crucial for several physiological processes, including fluid homoeostasis and reproduction, it is of great importance to map the HNS connectome in its entirety in order to understand its functions. In recent years, advances in imaging technologies have provided considerable new information about the HNS. These approaches include the use of reporter proteins under the control of specific promoters, viral tracers, brain-clearing methods, genetically encoded indicators, sniffer cells, mass spectrometry imaging, and spatially resolved transcriptomics. In this review, we illustrate how these latest approaches have enhanced our understanding of the structure and function of the HNS and how they might contribute further in the coming years.
Collapse
Affiliation(s)
- Soledad Bárez-López
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Liam Scanlon
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - David Murphy
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Michael Paul Greenwood
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Marcinkowska AB, Biancardi VC, Winklewski PJ. Arginine Vasopressin, Synaptic Plasticity, and Brain Networks. Curr Neuropharmacol 2022; 20:2292-2302. [PMID: 35193483 PMCID: PMC9890292 DOI: 10.2174/1570159x20666220222143532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/10/2021] [Accepted: 02/10/2022] [Indexed: 12/29/2022] Open
Abstract
The arginine vasopressin (AVP), a neurohypophysial hormone, is synthesized within specific sites of the central nervous system and axonally transported to multiple areas, acting as a neurotransmitter/ neuromodulator. In this context, AVP acts primarily through vasopressin receptors A and B and is involved in regulating complex social and cognition behaviors and basic autonomic function. Many earlier studies have shown that AVP as a neuromodulator affects synaptic plasticity. This review updates our current understanding of the underlying molecular mechanisms by which AVP affects synaptic plasticity. Moreover, we discuss AVP modulatory effects on event-related potentials and blood oxygen level-dependent responses in specific brain structures, and AVP effects on the network level oscillatory activity. We aimed at providing an overview of the AVP effects on the brain from the synaptic to the network level.
Collapse
Affiliation(s)
- Anna B. Marcinkowska
- Applied Cognitive Neuroscience Lab, Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
| | - Vinicia C. Biancardi
- Department of Anatomy, Physiology, and Pharmacology, Auburn University, and Center for Neurosciences Initiative, Auburn University, Auburn, USA
| | - Pawel J. Winklewski
- 2-nd Department of Radiology, Medical University of Gdansk, Gdansk, Poland
- Department of Human Physiology, Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
8
|
Zhang L, Padilla‐Flores T, Hernández VS, Zetter MA, Campos‐Lira E, Escobar LI, Millar RP, Eiden LE. Vasopressin acts as a synapse organizer in limbic regions by boosting PSD95 and GluA1 expression. J Neuroendocrinol 2022; 34:e13164. [PMID: 35666232 PMCID: PMC9787762 DOI: 10.1111/jne.13164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/01/2022] [Accepted: 05/10/2022] [Indexed: 12/31/2022]
Abstract
Hypothalamic arginine vasopressin (AVP)-containing magnocellular neurosecretory neurons (AVPMNN) emit collaterals to synaptically innervate limbic regions influencing learning, motivational behaviour, and fear responses. Here, we characterize the dynamics of expression changes of two key determinants for synaptic strength, the postsynaptic density (PSD) proteins AMPAR subunit GluA1 and PSD scaffolding protein 95 (PSD95), in response to in vivo manipulations of AVPMNN neuronal activation state, or exposure to exogenous AVP ex vivo. Both long-term water deprivation in vivo, which powerfully upregulates AVPMNN metabolic activity, and exogenous AVP application ex vivo, in brain slices, significantly increased GluA1 and PSD95 expression as measured by western blotting, in brain regions reportedly receiving direct ascending innervations from AVPMNN (i.e., ventral hippocampus, amygdala and lateral habenula). By contrast, the visual cortex, a region not observed to receive AVPMNN projections, showed no such changes. Ex vivo application of V1a and V1b antagonists to ventral hippocampal slices ablated the AVP stimulated increase in postsynaptic protein expression measured by western blotting. Using a modified expansion microscopy technique, we were able to quantitatively assess the significant augmentation of PSD95 and GLUA1 densities in subcellular compartments in locus coeruleus tyrosine hydroxylase immunopositive fibres, adjacent to AVP axon terminals. Our data strongly suggest that the AVPMNN ascending system plays a role in the regulation of the excitability of targeted neuronal circuits through upregulation of key postsynaptic density proteins corresponding to excitatory synapses.
Collapse
Affiliation(s)
- Limei Zhang
- Department of Physiology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Teresa Padilla‐Flores
- Department of Physiology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Vito S. Hernández
- Department of Physiology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Mario A. Zetter
- Department of Physiology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Elba Campos‐Lira
- Department of Physiology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Laura I. Escobar
- Department of Physiology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
| | - Robert P. Millar
- Department of Physiology, School of MedicineNational Autonomous University of MexicoMexico CityMexico
- Centre for Neuroendocrinology, Department of ImmunologyUniversity of PretoriaPretoriaSouth Africa
- Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular MedicineUniversity of Cape TownCape TownSouth Africa
| | - Lee E. Eiden
- Section on Molecular NeuroscienceNIMH‐IRP, NIHBethesdaMarylandUSA
| |
Collapse
|
9
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
10
|
Pauža AG, Mecawi AS, Paterson A, Hindmarch CCT, Greenwood M, Murphy D, Greenwood MP. Osmoregulation of the transcriptome of the hypothalamic supraoptic nucleus: A resource for the community. J Neuroendocrinol 2021; 33:e13007. [PMID: 34297454 DOI: 10.1111/jne.13007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/25/2021] [Accepted: 06/20/2021] [Indexed: 01/13/2023]
Abstract
The hypothalamic supraoptic nucleus (SON) is a core osmoregulatory control centre that deciphers information about the metabolic state of the organism and orchestrates appropriate homeostatic (endocrine) and allostatic (behavioural) responses. We have used RNA sequencing to describe the polyadenylated transcriptome of the SON of the male Wistar Han rat. These data have been mined to generate comprehensive catalogues of functional classes of genes (enzymes, transcription factors, endogenous peptides, G protein coupled receptors, transporters, catalytic receptors, channels and other pharmacological targets) expressed in this nucleus in the euhydrated state, and that together form the basal substrate for its physiological interactions. We have gone on to show that fluid deprivation for 3 days (dehydration) results in changes in the expression levels of 2247 RNA transcripts, which have similarly been functionally catalogued, and further mined to describe enriched gene categories and putative regulatory networks (Regulons) that may have physiological importance in SON function related plasticity. We hope that the revelation of these genes, pathways and networks, most of which have no characterised roles in the SON, will encourage the neuroendocrine community to pursue new investigations into the new 'known-unknowns' reported in the present study.
Collapse
Affiliation(s)
- Audrys G Pauža
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - André Souza Mecawi
- Laboratory of Neuroendocrinology, Department of Biophysics, Paulista School of Medicine, Federal University of São Paulo, São Paulo, Brazil
| | - Alex Paterson
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
- Bristol Genomics Facility, University of Bristol, Bristol, UK
| | - Charles C T Hindmarch
- Queen's Cardiopulmonary Unit (QCPU), Department of Medicine, Translational Institute of Medicine (TIME), Queen's University, Kingston, ON, Canada
| | - Mingkwan Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - David Murphy
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| | - Michael P Greenwood
- Molecular Neuroendocrinology Research Group, Bristol Medical School: Translational Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
11
|
Dexmedetomidine Induced Polyuria in the Intensive Care Unit. Case Rep Crit Care 2021; 2021:8850116. [PMID: 33688441 PMCID: PMC7920733 DOI: 10.1155/2021/8850116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 09/27/2020] [Accepted: 02/10/2021] [Indexed: 01/22/2023] Open
Abstract
Dexmedetomidine is an α2-adrenergic used as an adjunct therapy for sedation in the intensive care unit. While it is known to cause polyuria exclusively in perioperative conditions, not many cases are known in the intensive care unit, thus making the diagnosis challenging. We present the case of a 61-year-old male who had developed polyuria secondary to central diabetes insipidus after receiving dexmedetomidine intravenous infusion in the medical ICU. Increased awareness of this uncommon side effect of dexmedetomidine will help clinicians recognize and address it early.
Collapse
|
12
|
Althammer F, Eliava M, Grinevich V. Central and peripheral release of oxytocin: Relevance of neuroendocrine and neurotransmitter actions for physiology and behavior. HANDBOOK OF CLINICAL NEUROLOGY 2021; 180:25-44. [PMID: 34225933 DOI: 10.1016/b978-0-12-820107-7.00003-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The hypothalamic neuropeptide oxytocin (OT) is critically involved in the modulation of socio-emotional behavior, sexual competence, and pain perception and anticipation. While intracellular signaling of OT and its receptor (OTR), as well as the functional connectivity of hypothalamic and extra-hypothalamic OT projections, have been recently explored, it remains elusive how one single molecule has pleotropic effects from cell proliferation all the way to modulation of complex cognitive processes. Moreover, there are astonishing species-dependent differences in the way OT regulates various sensory modalities such as touch, olfaction, and vision, which can be explained by differences in OTR expression in brain regions processing sensory information. Recent research highlights a small subpopulation of OT-synthesizing cells, namely, parvocellular cells, which merely constitute 1% of the total number of OT cells but act as "master cells' that regulate the activity of the entire OT system. In this chapter, we summarize the latest advances in the field of OT research with a particular focus on differences between rodents, monkeys and humans and highlight the main differences between OT and its "sister" peptide arginine-vasopressin, which often exerts opposite effects on physiology and behavior.
Collapse
Affiliation(s)
- Ferdinand Althammer
- Neuroscience Department, Center for Neuroinflammation and Cardiometabolic Diseases, Georgia State University, Atlanta, GA, United States
| | - Marina Eliava
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Valery Grinevich
- Department of Neuropeptide Research in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
13
|
Kim DH, Kim KK, Lee TH, Eom H, Kim JW, Park JW, Jeong JK, Lee BJ. Transcription Factor TonEBP Stimulates Hyperosmolality-Dependent Arginine Vasopressin Gene Expression in the Mouse Hypothalamus. Front Endocrinol (Lausanne) 2021; 12:627343. [PMID: 33796071 PMCID: PMC8008816 DOI: 10.3389/fendo.2021.627343] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
Abstract
The hypothalamic neuroendocrine system is strongly implicated in body energy homeostasis. In particular, the degree of production and release of arginine vasopressin (AVP) in the hypothalamus is affected by plasma osmolality, and that hypothalamic AVP is responsible for thirst and osmolality-dependent water and metabolic balance. However, the osmolality-responsive intracellular mechanism within AVP cells that regulates AVP synthesis is not clearly understood. Here, we report a role for tonicity-responsive enhancer binding protein (TonEBP), a transcription factor sensitive to cellular tonicity, in regulating osmosensitive hypothalamic AVP gene transcription. Our immunohistochemical work shows that hypothalamic AVP cellular activity, as recognized by c-fos, was enhanced in parallel with an elevation in TonEBP expression within AVP cells following water deprivation. Interestingly, our in vitro investigations found a synchronized pattern of TonEBP and AVP gene expression in response to osmotic stress. Those results indicate a positive correlation between hypothalamic TonEBP and AVP production during dehydration. Promoter and chromatin immunoprecipitation assays confirmed that TonEBP can bind directly to conserved binding motifs in the 5'-flanking promoter regions of the AVP gene. Furthermore, dehydration- and TonEBP-mediated hypothalamic AVP gene activation was reduced in TonEBP haploinsufficiency mice, compared with wild TonEBP homozygote animals. Therefore, our result support the idea that TonEBP is directly necessary, at least in part, for the elevation of AVP transcription in dehydration conditions. Additionally, dehydration-induced reductions in body weight were rescued in TonEBP haploinsufficiency mice. Altogether, our results demonstrate an intracellular machinery within hypothalamic AVP cells that is responsible for dehydration-induced AVP synthesis.
Collapse
Affiliation(s)
- Dong Hee Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Kwang Kon Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Tae Hwan Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Hyejin Eom
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Woo Kim
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jeong Woo Park
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin Kwon Jeong
- Department of Pharmacology and Physiology, School of Medicine & Health Sciences, The George Washington University, Washington, DC, United States
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| | - Byung Ju Lee
- Department of Biological Sciences, College of Natural Sciences, University of Ulsan, Ulsan, South Korea
- *Correspondence: Byung Ju Lee, ; Jin Kwon Jeong,
| |
Collapse
|
14
|
Grueschow M, Kleim B, Ruff CC. Role of the locus coeruleus arousal system in cognitive control. J Neuroendocrinol 2020; 32:e12890. [PMID: 32820571 DOI: 10.1111/jne.12890] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 06/18/2020] [Accepted: 07/08/2020] [Indexed: 12/13/2022]
Abstract
Cognitive control lies at the core of human adaptive behaviour. Humans vary substantially in their ability to execute cognitive control with respect to optimally facing environmental challenges, although the neural origins of this heterogeneity are currently not well understood. Recent theoretical frameworks implicate the locus coeruleus noradrenergic arousal system (LC-NE) in that process. Invasive neurophysiological work in rodents has shown that the LC-NE is an important homeostatic control centre of the body. LC-NE innervates the entire neocortex and has particularly strong connections with the cingulate gyrus. In the present study, using a response conflict task, functional magnetic resonance imaging and concurrent pupil dilation measures (a proxy for LC-NE firing), we provide empirical evidence for a decisive role of the LC-NE in cognitive control in humans. We show that the level of individual behavioural adjustment in cognitive control relates to the level of functional coupling between LC-NE and the dorsomedial prefrontal cortex, as well as dorsolateral prefrontal cortex. Moreover, we show that the pupil is substantially more dilated during conflict trials requiring behavioural adjustment than during no conflict trials. In addition, we explore a potential relationship between pupil dilation and neural activity during choice conflict adjustments. Our data provide novel insight into arousal-related influences on cognitive control and suggest pupil dilation as a potential external marker for endogenous neural processes involved in optimising behavioural control. Our results may also be clinically relevant for a variety of pathologies where cognitive control is compromised, such as anxiety, depression, addiction and post-traumatic stress disorder.
Collapse
Affiliation(s)
- Marcus Grueschow
- Department of Economics, Zurich Center for Neuroeconomics (ZNE), University of Zurich, Zurich, Switzerland
| | - Birgit Kleim
- Department of Experimental Psychopathology and Psychotherapy, University of Zurich, Zurich, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, University of Zurich, Zurich, Switzerland
| | - Christian C Ruff
- Department of Economics, Zurich Center for Neuroeconomics (ZNE), University of Zurich, Zurich, Switzerland
| |
Collapse
|
15
|
Brown CH, Ludwig M, Tasker JG, Stern JE. Somato-dendritic vasopressin and oxytocin secretion in endocrine and autonomic regulation. J Neuroendocrinol 2020; 32:e12856. [PMID: 32406599 PMCID: PMC9134751 DOI: 10.1111/jne.12856] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/29/2020] [Accepted: 04/11/2020] [Indexed: 12/29/2022]
Abstract
Somato-dendritic secretion was first demonstrated over 30 years ago. However, although its existence has become widely accepted, the function of somato-dendritic secretion is still not completely understood. Hypothalamic magnocellular neurosecretory cells were among the first neuronal phenotypes in which somato-dendritic secretion was demonstrated and are among the neurones for which the functions of somato-dendritic secretion are best characterised. These neurones secrete the neuropeptides, vasopressin and oxytocin, in an orthograde manner from their axons in the posterior pituitary gland into the blood circulation to regulate body fluid balance and reproductive physiology. Retrograde somato-dendritic secretion of vasopressin and oxytocin modulates the activity of the neurones from which they are secreted, as well as the activity of neighbouring populations of neurones, to provide intra- and inter-population signals that coordinate the endocrine and autonomic responses for the control of peripheral physiology. Somato-dendritic vasopressin and oxytocin have also been proposed to act as hormone-like signals in the brain. There is some evidence that somato-dendritic secretion from magnocellular neurosecretory cells modulates the activity of neurones beyond their local environment where there are no vasopressin- or oxytocin-containing axons but, to date, there is no conclusive evidence for, or against, hormone-like signalling throughout the brain, although it is difficult to imagine that the levels of vasopressin found throughout the brain could be underpinned by release from relatively sparse axon terminal fields. The generation of data to resolve this issue remains a priority for the field.
Collapse
Affiliation(s)
- Colin H. Brown
- Department of Physiology, Brain Health Research Centre, Centre for Neuroendocrinology, University of Otago, Dunedin, New Zealand
| | - Mike Ludwig
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
- Department of Immunology, Centre for Neuroendocrinology, University of Pretoria, Pretoria, South Africa
| | - Jeffrey G. Tasker
- Department of Cell and Molecular Biology, Brain Institute, Tulane University, New Orleans, LA, USA
| | - Javier E. Stern
- Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
16
|
Eiden LE, Goosens KA, Jacobson KA, Leggio L, Zhang L. Peptide-Liganded G Protein-Coupled Receptors as Neurotherapeutics. ACS Pharmacol Transl Sci 2020; 3:190-202. [PMID: 32296762 DOI: 10.1021/acsptsci.0c00017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Indexed: 12/19/2022]
Abstract
Peptide-liganded G protein-coupled receptors (GPCRs) are a growing fraction of GPCR drug targets, concentrated in two of the five major GPCR structural classes. The basic physiology and pharmacology of some within the rhodopsin class, for example, the enkephalin (μ opioid receptor, MOR) and angiotensin (ATR) receptors, and most in class B, all the members of which are peptide receptors, are well-known, whereas others are less so. Furthermore, with the notable exception of opioid peptide receptors, the ability to translate from peptide to "drug-like" (i.e., low-molecular-weight nonpeptide) molecules, with desirable oral absorption, brain penetrance, and serum stability, has met with limited success. Yet, peripheral peptide administration in patients with metabolic disorders is clinically effective, suggesting that "drug-like" molecules for peptide receptor targets may not always be required for disease intervention. Here, we consider recent developments in GPCR structure analysis, intracellular signaling, and genetic analysis of peptide and peptide receptor knockout phenotypes in animal models. These lines of research converge on a better understanding of how peptides facilitate adaptive behaviors in mammals. They suggest pathways to translate this burgeoning information into identified drug targets for neurological and psychiatric illnesses such as obesity, addiction, anxiety disorders, and neurodegenerative diseases. Advances centered on the peptide ligands oxytocin, vasopressin, GLP-1, ghrelin, PACAP, NPY, and their GPCRs are considered here. These represent the spectrum of progress across the "virtual pipeline", of peptide receptors associated with many established drugs, those of long-standing interest for which clinical application is still under development, and those just coming into focus through basic research.
Collapse
Affiliation(s)
- Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Health, Bethesda, Maryland 20892, United States
| | - Ki Ann Goosens
- Icahn School of Medicine, Mt. Sinai Hospital, New York, New York 10029, United States
| | - Kenneth A Jacobson
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892, United States
| | - Lorenzo Leggio
- Section on Clinical Psychoneuroendocrinology and Neuropsychopharmacology, National Institute on Alcohol Abuse and Alcoholism/National Institute on Drug Abuse, Bethesda, Maryland 20892, United States
| | - Limei Zhang
- Department of Physiology, Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico
| |
Collapse
|
17
|
Zhang L, Hernández VS, Zetter MA, Eiden LE. VGLUT-VGAT expression delineates functionally specialised populations of vasopressin-containing neurones including a glutamatergic perforant path-projecting cell group to the hippocampus in rat and mouse brain. J Neuroendocrinol 2020; 32:e12831. [PMID: 31944441 DOI: 10.1111/jne.12831] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 11/27/2022]
Abstract
The origin and functional significance of vasopressin (AVP)-containing fibres in limbic regions has been an ongoing subject of investigation for several years. We have previously identified AVP-magnocellular neurones of rat hypothalamus that provide glutamatergic projections to the hippocampus, amygdala, lateral habenula and locus coeruleus. However, we also reported AVP-immunopositive fibres in those regions that are thin and make Gray type II synapses, which are unlikely to be of magnocellular origin. Therefore, in the present study, we characterised AVP mRNA co-expression with expression of mRNAs marking glutamatergic (vesicular glutamate transporter [VGLUT]) and GABAergic (vesicular GABA transporter [VGAT]) neuronal traits in rat and mouse brain, using high-resolution in situ hybridisation methods, including a radio-ribonucleotide and RNAscope 2.5 HD duplex assay, with Slc17a7, Slc17a6, Slc32a1 and Avp probes corresponding to mRNAs of VGLUT1, VGLUT2, VGAT and AVP, respectively. We located 18 cell groups expressing Avp and identified their molecular signatures for VGLUT and VGAT mRNA expression. Avp cell groups of hypothalamus and midbrain are mainly VGLUT mRNA-expressing, whereas those in regions derived from cerebral nuclei are mainly VGAT mRNA-expressing, suggesting a functional segregation of glutamate/GABA co-transmission with AVP. A newly identified Slc17a7 and Slc17a6 (but not Slc32a1) expressing vasopressinergic cell group was found in layer II-III neurones of the central entorhinal cortex, which projects to the hippocampus. These data support the notion of a complex role for AVP with respect to modulating multiple central circuits controlling behaviour in specific ways depending on co-transmission with glutamate or GABA, potentially giving rise to a functional classification of AVPergic neurones in the central nervous system.
Collapse
Affiliation(s)
- Limei Zhang
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Section on Molecular Neuroscience, National Institute of Mental Heath-Intramural Research Program, NIH, Bethesda, MD, USA
| | - Vito S Hernández
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mario A Zetter
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán (INCMNSZ), Mexico City, Mexico
| | - Lee E Eiden
- Section on Molecular Neuroscience, National Institute of Mental Heath-Intramural Research Program, NIH, Bethesda, MD, USA
| |
Collapse
|
18
|
Murthy S, Gould E. How Early Life Adversity Influences Defensive Circuitry. Trends Neurosci 2020; 43:200-212. [PMID: 32209452 DOI: 10.1016/j.tins.2020.02.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/12/2022]
Abstract
Childhood maltreatment increases the likelihood of developing anxiety disorders in humans. Early life adversity (ELA) paradigms in rodents produce lasting increases in avoidant and inhibitory responses to both immediate and nonspecific threats, collectively referred to as defensive behaviors. This approach provides an opportunity to thoroughly investigate the underlying mechanisms, an effort that is currently under way. In this review, we consider the growing literature indicating that ELA alters the rhythmic firing of neurons in brain regions associated with defensive behavior, as well as potential neuronal, glial, and extracellular matrix contributions to functional changes in this circuitry. We also consider how ELA studies in rodents may inform us about both susceptible and resilient outcomes in humans.
Collapse
Affiliation(s)
- Sahana Murthy
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Elizabeth Gould
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|