1
|
Bhattacharya S, Xu L, Arrué L, Bartels T, Thompson D. Conformational Selection of α-Synuclein Tetramers at Biological Interfaces. J Chem Inf Model 2024; 64:8010-8023. [PMID: 39377660 PMCID: PMC11523075 DOI: 10.1021/acs.jcim.4c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/20/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
Controlling the polymorphic assemblies of α-synuclein (αS) oligomers is crucial to reroute toxic protein aggregation implicated in Parkinson's disease (PD). One potential mediator is the interaction of αS tetramers with cell membranes, which may regulate the dynamic balance between aggregation-prone disordered monomers and aggregation-resistant helical tetramers. Here, we model diverse tetramer-cell interactions and compare the structure-function relations at the supramolecular-biological interface with available experimental data. The models predict preferential interaction of compact αS tetramers with highly charged membrane surfaces, which may further stabilize this aggregation-resistant conformer. On moderately charged membranes, extended structures are preferred. In addition to surface charge, curvature influences tetramer thermodynamic stability and aggregation, with potential for selective isolation of tetramers via regio-specific interactions with strongly negatively charged micelles that screen further aggregation. Our modeling data set highlights diverse beneficial nano-bio interactions to redirect biomolecule assembly, supporting new therapeutic approaches for PD based on lipid-mediated conformational selection and inhibition.
Collapse
Affiliation(s)
- Shayon Bhattacharya
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Liang Xu
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Lily Arrué
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| | - Tim Bartels
- UK
Dementia Research Institute, University
College London, London WC1E6BT, U.K.
| | - Damien Thompson
- Department
of Physics, Bernal Institute, University
of Limerick, Limerick V94 T9PX, Ireland
| |
Collapse
|
2
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
3
|
Sanluca C, Spagnolo P, Mancinelli R, De Bartolo MI, Fava M, Maccarrone M, Carotti S, Gaudio E, Leuti A, Vivacqua G. Interaction between α-Synuclein and Bioactive Lipids: Neurodegeneration, Disease Biomarkers and Emerging Therapies. Metabolites 2024; 14:352. [PMID: 39057675 PMCID: PMC11278689 DOI: 10.3390/metabo14070352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/10/2024] [Accepted: 06/14/2024] [Indexed: 07/28/2024] Open
Abstract
The present review provides a comprehensive examination of the intricate dynamics between α-synuclein, a protein crucially involved in the pathogenesis of several neurodegenerative diseases, including Parkinson's disease and multiple system atrophy, and endogenously-produced bioactive lipids, which play a pivotal role in neuroinflammation and neurodegeneration. The interaction of α-synuclein with bioactive lipids is emerging as a critical factor in the development and progression of neurodegenerative and neuroinflammatory diseases, offering new insights into disease mechanisms and novel perspectives in the identification of potential biomarkers and therapeutic targets. We delve into the molecular pathways through which α-synuclein interacts with biological membranes and bioactive lipids, influencing the aggregation of α-synuclein and triggering neuroinflammatory responses, highlighting the potential of bioactive lipids as biomarkers for early disease detection and progression monitoring. Moreover, we explore innovative therapeutic strategies aimed at modulating the interaction between α-synuclein and bioactive lipids, including the development of small molecules and nutritional interventions. Finally, the review addresses the significance of the gut-to-brain axis in mediating the effects of bioactive lipids on α-synuclein pathology and discusses the role of altered gut lipid metabolism and microbiota composition in neuroinflammation and neurodegeneration. The present review aims to underscore the potential of targeting α-synuclein-lipid interactions as a multifaceted approach for the detection and treatment of neurodegenerative and neuroinflammatory diseases.
Collapse
Affiliation(s)
- Chiara Sanluca
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Paolo Spagnolo
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
| | - Romina Mancinelli
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | | | - Marina Fava
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Mauro Maccarrone
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| | - Simone Carotti
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| | - Eugenio Gaudio
- Department of Anatomic, Histologic, Forensic and Locomotor Apparatus Sciences, Sapienza University of Roma, 00185 Rome, Italy (E.G.)
| | - Alessandro Leuti
- Biochemistry and Molecular Biology Unit, Department of Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy
- European Center for Brain Research/IRCCS Santa Lucia Foundation, Via del Fosso di Fiorano 64, 00143 Rome, Italy;
| | - Giorgio Vivacqua
- Department of Medicine, Laboratory of Microscopic and Ultrastructural Anatomy, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128 Rome, Italy (S.C.)
| |
Collapse
|
4
|
Díaz M, Fabelo N, Martín MV, Santos G, Ferrer I. Evidence for alterations in lipid profiles and biophysical properties of lipid rafts from spinal cord in sporadic amyotrophic lateral sclerosis. J Mol Med (Berl) 2024; 102:391-402. [PMID: 38285093 PMCID: PMC10879240 DOI: 10.1007/s00109-024-02419-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/04/2024] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is an age-dependent neurodegenerative disease affecting motor neurons in the spinal cord and brainstem whose etiopathogenesis remains unclear. Recent studies have linked major neurodegenerative diseases with altered function of multimolecular lipid-protein complexes named lipid rafts. In the present study, we have isolated lipid rafts from the anterior horn of the spinal cords of controls and ALS individuals and analysed their lipid composition. We found that ALS affects levels of different fatty acids, lipid classes and related ratios and indexes. The most significant changes affected the contents of n-9/n-7 monounsaturated fatty acids and arachidonic acid, the main n-6 long-chain polyunsaturated fatty acid (LCPUFA), which were higher in ALS lipid rafts. Paralleling these findings, ALS lipid rafts lower saturates-to-unsaturates ratio compared to controls. Further, levels of cholesteryl ester (SE) and anionic-to-zwitterionic phospholipids ratio were augmented in ALS lipid rafts, while sulfatide contents were reduced. Further, regression analyses revealed augmented SE esterification to (mono)unsaturated fatty acids in ALS, but to saturates in controls. Overall, these changes indicate that lipid rafts from ALS spinal cord undergo destabilization of the lipid structure, which might impact their biophysical properties, likely leading to more fluid membranes. Indeed, estimations of membrane microviscosity confirmed less viscous membranes in ALS, as well as more mobile yet smaller lipid rafts compared to surrounding membranes. Overall, these results demonstrate that the changes in ALS lipid rafts are unrelated to oxidative stress, but to anomalies in lipid metabolism and/or lipid raft membrane biogenesis in motor neurons. KEY MESSAGES: The lipid matrix of multimolecular membrane complexes named lipid rafts are altered in human spinal cord in sporadic amyotrophic lateral sclerosis (ALS). Lipid rafts from ALS spinal cord contain higher levels of n-6 LCPUFA (but not n-3 LCPUFA), n-7/n-9 monounsaturates and lower saturates-to-unsaturates ratio. ALS lipid rafts display increased contents of cholesteryl esters, anomalous anionic-to-zwitterionic phospholipids and phospholipid remodelling and reduced sulphated and total sphingolipid levels, compared to control lipid rafts. Destabilization of the lipid structure of lipid raft affects their biophysical properties and leads to more fluid, less viscous membrane microdomains. The changes in ALS lipid rafts are unlikely related to increased oxidative stress, but to anomalies in lipid metabolism and/or raft membrane biogenesis in motor neurons.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of Sciences, University of La Laguna, Tenerife, Spain.
- Instituto Universitario de Neurociencias (IUNE), University of La Laguna, Tenerife, Spain.
| | - Noemí Fabelo
- Laboratory of Membrane Physiology and Biophysics, School of Sciences, University of La Laguna, Tenerife, Spain
| | - M Virginia Martín
- Centro Oceanográfico de Canarias (COC-IEO), Consejo Superior de Investigaciones Científicas, 38180, Santa Cruz de Tenerife, Spain
| | - Guido Santos
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics. School of Sciences, University of La Laguna, Tenerife, Spain
| | - Isidre Ferrer
- University of Barcelona, 08907, Hospitalet de LLobregatBarcelona, Spain
| |
Collapse
|
5
|
Kawahata I, Fukunaga K. Pathogenic Impact of Fatty Acid-Binding Proteins in Parkinson's Disease-Potential Biomarkers and Therapeutic Targets. Int J Mol Sci 2023; 24:17037. [PMID: 38069360 PMCID: PMC10707307 DOI: 10.3390/ijms242317037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 11/26/2023] [Accepted: 11/30/2023] [Indexed: 12/18/2023] Open
Abstract
Parkinson's disease is a neurodegenerative condition characterized by motor dysfunction resulting from the degeneration of dopamine-producing neurons in the midbrain. This dopamine deficiency gives rise to a spectrum of movement-related symptoms, including tremors, rigidity, and bradykinesia. While the precise etiology of Parkinson's disease remains elusive, genetic mutations, protein aggregation, inflammatory processes, and oxidative stress are believed to contribute to its development. In this context, fatty acid-binding proteins (FABPs) in the central nervous system, FABP3, FABP5, and FABP7, impact α-synuclein aggregation, neurotoxicity, and neuroinflammation. These FABPs accumulate in mitochondria during neurodegeneration, disrupting their membrane potential and homeostasis. In particular, FABP3, abundant in nigrostriatal dopaminergic neurons, is responsible for α-synuclein propagation into neurons and intracellular accumulation, affecting the loss of mesencephalic tyrosine hydroxylase protein, a rate-limiting enzyme of dopamine biosynthesis. This review summarizes the characteristics of FABP family proteins and delves into the pathogenic significance of FABPs in the pathogenesis of Parkinson's disease. Furthermore, it examines potential novel therapeutic targets and early diagnostic biomarkers for Parkinson's disease and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Ichiro Kawahata
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
| | - Kohji Fukunaga
- Department of CNS Drug Innovation, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai 980-8578, Japan;
- BRI Pharma Inc., Sendai 982-0804, Japan
| |
Collapse
|
6
|
Singh BP, Morris RJ, Kunath T, MacPhee CE, Horrocks MH. Lipid-induced polymorphic amyloid fibril formation by α-synuclein. Protein Sci 2023; 32:e4736. [PMID: 37515406 PMCID: PMC10521247 DOI: 10.1002/pro.4736] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 06/27/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023]
Abstract
Many proteins that self-assemble into amyloid and amyloid-like fibers can adopt diverse polymorphic forms. These forms have been observed both in vitro and in vivo and can arise through variations in the steric-zipper interactions between β-sheets, variations in the arrangements between protofilaments, and differences in the number of protofilaments that make up a given fiber class. Different polymorphs arising from the same precursor molecule not only exhibit different levels of toxicity, but importantly can contribute to different disease conditions. However, the factors which contribute to formation of polymorphic forms of amyloid fibrils are not known. In this work, we show that in the presence of 1,2-dimyristoyl-sn-glycero-3-phospho-L-serine, a highly abundant lipid in the plasma membrane of neurons, the aggregation of α-synuclein is markedly accelerated and yields a diversity of polymorphic forms under identical experimental conditions. This morphological diversity includes thin and curly fibrils, helical ribbons, twisted ribbons, nanotubes, and flat sheets. Furthermore, the amyloid fibrils formed incorporate lipids into their structures, which corroborates the previous report of the presence of α-synuclein fibrils with high lipid content in Lewy bodies. Thus, the present study demonstrates that an interface, such as that provided by a lipid membrane, can not only modulate the kinetics of α-synuclein amyloid aggregation but also plays an important role in the formation of morphological variants by incorporating lipid molecules in the process of amyloid fibril formation.
Collapse
Affiliation(s)
- Bhanu P. Singh
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
| | - Ryan J. Morris
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Tilo Kunath
- Centre for Regenerative Medicine, School of Biological Sciences, The University of EdinburghEdinburghUK
| | - Cait E. MacPhee
- School of Physics and Astronomy, The University of EdinburghEdinburghUK
| | - Mathew H. Horrocks
- EaStCHEM School of Chemistry, The University of EdinburghEdinburghUK
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of EdinburghEdinburghUK
| |
Collapse
|
7
|
Díaz M, Pereda de Pablo D, Valdés‐Baizabal C, Santos G, Marin R. Molecular and biophysical features of hippocampal "lipid rafts aging" are modified by dietary n-3 long-chain polyunsaturated fatty acids. Aging Cell 2023; 22:e13867. [PMID: 37254617 PMCID: PMC10410061 DOI: 10.1111/acel.13867] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/25/2023] [Accepted: 04/29/2023] [Indexed: 06/01/2023] Open
Abstract
"Lipid raft aging" in nerve cells represents an early event in the development of aging-related neurodegenerative diseases, such as Alzheimer's disease. Lipid rafts are key elements in synaptic plasticity, and their modification with aging alters interactions and distribution of signaling molecules, such as glutamate receptors and ion channels involved in memory formation, eventually leading to cognitive decline. In the present study, we have analyzed, in vivo, the effects of dietary supplementation of n-3 LCPUFA on the lipid structure, membrane microviscosity, domain organization, and partitioning of ionotropic and metabotropic glutamate receptors in hippocampal lipid raffs in female mice. The results revealed several lipid signatures of "lipid rafts aging" in old mice fed control diets, consisting in depletion of n-3 LCPUFA, membrane unsaturation, along with increased levels of saturates, plasmalogens, and sterol esters, as well as altered lipid relevant indexes. These changes were paralleled by increased microviscosity and changes in the raft/non-raft (R/NR) distribution of AMPA-R and mGluR5. Administration of the n-3 LCPUFA diet caused the partial reversion of fatty acid alterations found in aged mice and returned membrane microviscosity to values found in young animals. Paralleling these findings, lipid rafts accumulated mGluR5, NMDA-R, and ASIC2, and increased their R/NR proportions, which collectively indicate changes in synaptic plasticity. Unexpectedly, this diet also modified the lipidome and dimension of lipid rafts, as well as the domain redistribution of glutamate receptors and acid-sensing ion channels involved in hippocampal synaptic plasticity, likely modulating functionality of lipid rafts in memory formation and reluctance to age-associated cognitive decline.
Collapse
Affiliation(s)
- Mario Díaz
- Department of Physics, Faculty of SciencesUniversity of La LagunaTenerifeSpain
- Instituto Universitario de Neurociencias (IUNE)TenerifeSpain
- Laboratory of Membrane Physiology and Biophysics, School of SciencesUniversity of La LagunaTenerifeSpain
| | - Daniel Pereda de Pablo
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
| | - Catalina Valdés‐Baizabal
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
| | - Guido Santos
- Department of Biochemistry, Microbiology, Cellular Biology and Genetics, School of SciencesUniversity of La LagunaTenerifeSpain
| | - Raquel Marin
- Laboratory of Cellular NeurobiologyDepartment of Basic Medical Sciences, Faculty of Health SciencesUniversity of La LagunaTenerifeSpain
- Associate Research Unit ULL‐CSIC “Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases”TenerifeSpain
| |
Collapse
|
8
|
Microarrays, Enzymatic Assays, and MALDI-MS for Determining Specific Alterations to Mitochondrial Electron Transport Chain Activity, ROS Formation, and Lipid Composition in a Monkey Model of Parkinson’s Disease. Int J Mol Sci 2023; 24:ijms24065470. [PMID: 36982541 PMCID: PMC10049643 DOI: 10.3390/ijms24065470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Multiple evidences suggest that mitochondrial dysfunction is implicated in the pathogenesis of Parkinson’s disease via the selective cell death of dopaminergic neurons, such as that which occurs after prolonged exposure to the mitochondrial electron transport chain (ETC) complex I inhibitor, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrine (MPTP). However, the effects of chronic MPTP on the ETC complexes and on enzymes of lipid metabolism have not yet been thoroughly determined. To face these questions, the enzymatic activities of ETC complexes and the lipidomic profile of MPTP-treated non-human primate samples were determined using cell membrane microarrays from different brain areas and tissues. MPTP treatment induced an increase in complex II activity in the olfactory bulb, putamen, caudate, and substantia nigra, where a decrease in complex IV activity was observed. The lipidomic profile was also altered in these areas, with a reduction in the phosphatidylserine (38:1) content being especially relevant. Thus, MPTP treatment not only modulates ETC enzymes, but also seems to alter other mitochondrial enzymes that regulate the lipid metabolism. Moreover, these results show that a combination of cell membrane microarrays, enzymatic assays, and MALDI-MS provides a powerful tool for identifying and validating new therapeutic targets that might accelerate the drug discovery process.
Collapse
|
9
|
Park SS, Do HA, Park HB, Choi HS, Baek KH. Deubiquitinating enzyme YOD1 deubiquitinates and destabilizes α-synuclein. Biochem Biophys Res Commun 2023; 645:124-131. [PMID: 36682332 DOI: 10.1016/j.bbrc.2023.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/02/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023]
Abstract
α-synuclein is one of the proteins involved in degenerative neuronal diseases such as Parkinson's disease (PD) or Lewy body dementia (LBD). The pathogenesis is imparted by the abnormal accumulation of α-synuclein resulting in the formation of a Lewy body (LB) and exerting neurotoxicity via an unknown mechanism. Regulation of α-synuclein is achieved by the ubiquitin-proteasome system (UPS), which influences protein homeostasis via inducing proteasome-dependent degradation by attaching a small molecule (ubiquitin) to the substrate. Deubiquitinating enzymes (DUBs) control the UPS by cleaving the peptide or isopeptide bond between ubiquitin and its substrate proteins. In a previous study, we found that YOD1 deubiquitinates and regulates the cellular function of neural precursor cell expressed developmentally down-regulated protein 4 (NEDD4), an E3 ligase that induces α-synuclein degradation. We hypothesized that YOD1 acts as a DUB involved in a modulated pathway of α-synuclein. In the current study, we found that YOD1 directly interacts with α-synuclein and deubiquitinates K6-, K11-, K29-, K33-, and K63-linked polyubiquitin chains on α-synuclein. Furthermore, YOD1 destabilizes α-synuclein protein stability by upregulating NEDD4. Collectively, this suggests the possibility that YOD1 is potentially a new regulator in the NEDD4-α-synuclein pathway.
Collapse
Affiliation(s)
- Sang-Soo Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Hyeon-Ah Do
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Hong-Beom Park
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Hae-Seul Choi
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea
| | - Kwang-Hyun Baek
- Department of Biomedical Science, CHA University, Gyeonggi-Do, 13488, Republic of Korea.
| |
Collapse
|
10
|
Zaman V, Drasites KP, Myatich A, Shams R, Shields DC, Matzelle D, Haque A, Banik NL. Inhibition of Calpain Attenuates Degeneration of Substantia Nigra Neurons in the Rotenone Rat Model of Parkinson's Disease. Int J Mol Sci 2022; 23:13849. [PMID: 36430329 PMCID: PMC9694996 DOI: 10.3390/ijms232213849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/12/2022] Open
Abstract
In the central nervous system (CNS), calcium homeostasis is a critical determinant of neuronal survival. Calpain, a calcium-dependent neutral protease, is widely expressed in the brain, including substantia nigra (SN) dopaminergic (DA) neurons. Though calpain is implicated in human Parkinson's disease (PD) and corresponding animal models, the roles of specific ubiquitous calpain isoforms in PD, calpain-1 and calpain-2, remain poorly understood. In this study, we found that both isoforms are activated in a nigrostriatal pathway with increased phosphorylated synuclein following the administration of rotenone in Lewis rats, but calpain isoforms played different roles in neuronal survival. Although increased expression of calpain-1 and calpain-2 were detected in the SN of rotenone-administered rats, calpain-1 expression was not altered significantly after treatment with calpain inhibitor (calpeptin); this correlated with neuronal survival. By contrast, increased calpain-2 expression in the SN of rotenone rats correlated with neuronal death, and calpeptin treatment significantly attenuated calpain-2 and neuronal death. Calpain inhibition by calpeptin prevented glial (astroglia/microglia) activation in rotenone-treated rats in vivo, promoted M2-type microglia, and protected neurons. These data suggest that enhanced expression of calpain-1 and calpain-2 in PD models differentially affects glial activation and neuronal survival; thus, the attenuation of calpain-2 may be important in reducing SN neuronal loss in PD.
Collapse
Affiliation(s)
- Vandana Zaman
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | | | - Ali Myatich
- The Citadel, 171 Moultrie St., Charleston, SC 29409, USA
| | - Ramsha Shams
- The Citadel, 171 Moultrie St., Charleston, SC 29409, USA
| | - Donald C. Shields
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
| | - Denise Matzelle
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Azizul Haque
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| | - Narendra L. Banik
- Ralph H. Johnson Veterans Administration Medical Center, 109 Bee St., Charleston, SC 29401, USA
- Department of Neurosurgery, Medical University of South Carolina, 96 Jonathan Lucas St., Charleston, SC 29425, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, 173 Ashley Avenue, Charleston, SC 29425, USA
| |
Collapse
|
11
|
Membrane cholesterol modulates the dynamics and depth of penetration of κ-casein. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
12
|
Propagation of Parkinson's disease by extracellular vesicle production and secretion. Biochem Soc Trans 2022; 50:1303-1314. [DOI: 10.1042/bst20220204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is a common neurodegenerative condition affecting a significant number of individuals globally, resulting in the presentation of debilitating motor and non-motor symptoms, including bradykinesia, resting tremor, as well as mood and sleep disorders. The pathology of PD has been observed to spread through the central nervous system resulting in progressive brain degeneration and a poor prognosis. Aggregated forms of the protein α-synuclein, particularly intermediary aggregates, referred to as oligomers, or preformed fibrils, have been implicated as the causative agent in the degeneration of neuronal processes, including the dysfunction of axonal transport, mitochondrial activity, and ultimately cellular death. Extracellular vesicles (EVs) have been strongly implicated in the propagation of PD pathology. Current observations suggest that aggregated α-synuclein is transported between neurons via small EVs in a series of exocytosis and endocytosis cellular processes leading to the observed spread of neurotoxicity and cellular death. Despite some understanding of the role of EVs in neurodegeneration, the exact mechanism by which these lipidic particles participate in the progression of Parkinson's pathology is not entirely understood. Here we review the current understanding of the role of EVs in the propagation of PD and explore their potential as a therapeutic target.
Collapse
|
13
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|
14
|
Picca A, Ferri E, Calvani R, Coelho-Júnior HJ, Marzetti E, Arosio B. Age-Associated Glia Remodeling and Mitochondrial Dysfunction in Neurodegeneration: Antioxidant Supplementation as a Possible Intervention. Nutrients 2022; 14:2406. [PMID: 35745134 PMCID: PMC9230668 DOI: 10.3390/nu14122406] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/07/2023] Open
Abstract
Aging induces substantial remodeling of glia, including density, morphology, cytokine expression, and phagocytic capacity. Alterations of glial cells, such as hypertrophy of lysosomes, endosomes and peroxisomes, and the progressive accumulation of lipofuscin, lipid droplets, and other debris have also been reported. These abnormalities have been associated with significant declines of microglial processes and reduced ability to survey the surrounding tissue, maintain synapses, and recover from injury. Similarly, aged astrocytes show reduced capacity to support metabolite transportation to neurons. In the setting of reduced glial activity, stressors and/or injury signals can trigger a coordinated action of microglia and astrocytes that may amplify neuroinflammation and contribute to the release of neurotoxic factors. Oxidative stress and proteotoxic aggregates may burst astrocyte-mediated secretion of pro-inflammatory cytokines, thus activating microglia, favoring microgliosis, and ultimately making the brain more susceptible to injury and/or neurodegeneration. Here, we discuss the contribution of microglia and astrocyte oxidative stress to neuroinflammation and neurodegeneration, highlight the pathways that may help gain insights into their molecular mechanisms, and describe the benefits of antioxidant supplementation-based strategies.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
| | - Evelyn Ferri
- Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
| | - Hélio J. Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, 00168 Rome, Italy; (A.P.); (R.C.); (E.M.)
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
15
|
Abstract
Amyloids are protein aggregates bearing a highly ordered cross β structural motif, which may be functional but are mostly pathogenic. Their formation, deposition in tissues and consequent organ dysfunction is the central event in amyloidogenic diseases. Such protein aggregation may be brought about by conformational changes, and much attention has been directed toward factors like metal binding, post-translational modifications, mutations of protein etc., which eventually affect the reactivity and cytotoxicity of the associated proteins. Over the past decade, a global effort from different groups working on these misfolded/unfolded proteins/peptides has revealed that the amino acid residues in the second coordination sphere of the active sites of amyloidogenic proteins/peptides cause changes in H-bonding pattern or protein-protein interactions, which dramatically alter the structure and reactivity of these proteins/peptides. These second sphere effects not only determine the binding of transition metals and cofactors, which define the pathology of some of these diseases, but also change the mechanism of redox reactions catalyzed by these proteins/peptides and form the basis of oxidative damage associated with these amyloidogenic diseases. The present review seeks to discuss such second sphere modifications and their ramifications in the etiopathology of some representative amyloidogenic diseases like Alzheimer's disease (AD), type 2 diabetes mellitus (T2Dm), Parkinson's disease (PD), Huntington's disease (HD), and prion diseases.
Collapse
Affiliation(s)
- Madhuparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Arnab Kumar Nath
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Ishita Pal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| |
Collapse
|
16
|
Sepúlveda D, Cisternas-Olmedo M, Arcos J, Nassif M, Vidal RL. Contribution of Autophagy-Lysosomal Pathway in the Exosomal Secretion of Alpha-Synuclein and Its Impact in the Progression of Parkinson’s Disease. Front Mol Neurosci 2022; 15:805087. [PMID: 35250476 PMCID: PMC8891570 DOI: 10.3389/fnmol.2022.805087] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/07/2022] [Indexed: 01/07/2023] Open
Abstract
Parkinson’s disease (PD) is caused by the degeneration of dopaminergic neurons due to an accumulation of intraneuronal abnormal alpha-synuclein (α-syn) protein aggregates. It has been reported that the levels of exosomal α-syn of neuronal origin in plasma correlate significantly with motor dysfunction, highlighting the exosomes containing α-syn as a potential biomarker of PD. In addition, it has been found that the selective autophagy-lysosomal pathway (ALP) contributes to the secretion of misfolded proteins involved in neurodegenerative diseases. In this review, we describe the evidence that supports the relationship between the ALP and α-syn exosomal secretion on the PD progression and its implications in the diagnosis and progression of this pathology.
Collapse
Affiliation(s)
- Denisse Sepúlveda
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Marisol Cisternas-Olmedo
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Javiera Arcos
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Melissa Nassif
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - René L. Vidal
- Center for Integrative Biology, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
- Biomedical Neuroscience Institute, University of Chile, Santiago, Chile
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
- *Correspondence: René L. Vidal,
| |
Collapse
|
17
|
Yildirim S, Ozkan A, Aytac G, Agar A, Tanriover G. Role of melatonin in TLR4-mediated inflammatory pathway in the MTPT-induced mouse model. Neurotoxicology 2021; 88:168-177. [PMID: 34808223 DOI: 10.1016/j.neuro.2021.11.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 09/08/2021] [Accepted: 11/17/2021] [Indexed: 12/21/2022]
Abstract
Neuroinflammation has an essential role in various neurodegenerative diseases including Parkinson's disease (PD). Microglial activation as a result of neuroinflammation exacerbates the pathological consequences of the disease. The toxic effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) causes alpha-synuclein (α-synuclein) accumulation, which leads to dopaminergic neuron death in the MPTP-induced mouse model. Toll-like receptor 4 (TLR4) stimulates release of cytokine through NF-kB by activating glial cells, thus resulting in the death of dopaminergic neurons. Melatonin has the ability to cross the blood-brain barrier and protect neurons through anti-inflammatory properties. We hypothesized that melatonin could suppress TLR4-mediated neuroinflammation, decrease cytokine release due to the inflammatory response, and reduce dopaminergic neuron loss in the MPTP-induced mouse model. In the MPTP-induced mouse model, we aimed to assess the neuroinflammatory responses caused by TLR4 activation as well as the effect of melatonin on these responses. Three-month-old male C57BL/6 mice were randomly divided into five groups; Control (Group-C), Sham (Group-S), Melatonin-treated (Group-M), MPTP-injected (Group-P), and MPTP + melatonin-injected (Group-P + M). MPTP toxin (20 mg/kg) was dissolved in saline and intraperitoneally (i.p.) injected to mice for two days with 12 h intervals. The total dose per mouse was 80 mg/kg. Melatonin was administered (20 mg/kg) intraperitoneally to Group-M and Group-P + M twice a day for five days. Eight days after starting the experiment, the motor activities of mice were evaluated by locomotor activity tests. The effects on dopamine neurons in the SNPc was determined by tyrosine hydroxylase (TH) immunohistochemistry. TLR4, α-synuclein, and p65 expression was evaluated by immunostaining as well. The amount of TNF-alpha in the total brain was evaluated by western blot analysis. In our results seen that locomotor activity was lower in Group-P compared to Group-C. However, melatonin administration was improved this impairment. MPTPcaused decrease in TH immuno-expression in dopaminergic neurons in Group-P. TLR4 (p < 0.001), α-synuclein (p < 0.001), and p65 (p < 0.01) immuno-expressions were also decreased in Group-P+M compared to Group-P (using MPTP). TNF-α expression was lower in Group-C, Group-S, Group-M, and Group-P+M, when compared to Group-P (p < 0.0001) due to the absence of inflammatory response. In conclusion, our study revealed that melatonin administration reduced α-synuclein aggregation and TLR4-mediated inflammatory response in the MPTP-induced mouse model.
Collapse
Affiliation(s)
- Sendegul Yildirim
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey
| | - Ayse Ozkan
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gunes Aytac
- TOBB University of Economics & Technology, Faculty of Medicine, Department of Anatomy, Ankara, Turkey; University of Hawai'i at Mānoa, John A. Burns School of Medicine, Department of Anatomy, Biochemistry & Physiology, Hawaii, USA
| | - Aysel Agar
- Akdeniz University, Faculty of Medicine, Department of Physiology, Antalya, Turkey
| | - Gamze Tanriover
- Akdeniz University, Faculty of Medicine, Department of Histology and Embryology, Antalya, Turkey; Akdeniz University, Faculty of Medicine, Department of Medical Biotechnology, Antalya, Turkey.
| |
Collapse
|
18
|
Do HA, Baek KH. Cellular functions regulated by deubiquitinating enzymes in neurodegenerative diseases. Ageing Res Rev 2021; 69:101367. [PMID: 34023421 DOI: 10.1016/j.arr.2021.101367] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/07/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022]
Abstract
Neurodegenerative diseases are one of the most common diseases in mankind. Although there are reports of several candidates that cause neurodegenerative diseases, the exact mechanism of pathogenesis is poorly understood. The ubiquitin-proteasome system (UPS) is an important posttranslational modification for protein degradation and control of homeostasis. Enzymes such as E1, E2, E3 ligases, and deubiquitinating enzymes (DUBs) participating in UPS, regulate disease-inducing proteins by controlling the degree of ubiquitination. Therefore, the development of treatments targeting enzymes for degenerative diseases such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS), is emerging as an attractive perspective. In particular, as DUBs are able to regulate one or more degenerative disease-related proteins, the potential as a therapeutic target is even more evident. DUBs influence the regulation of toxic proteins that cause neurodegenerative diseases by not only their removal, but also by regulating signals associated with mitophagy, autophagy, and endoplasmic reticulum-associated degradation (ERAD). In this review, we analyze not only the cellular processes of DUBs, which control neurodegenerative disease-inducing proteins, but also their potentials as a therapeutic agent for neurodegenerative diseases.
Collapse
|
19
|
Bisi N, Feni L, Peqini K, Pérez-Peña H, Ongeri S, Pieraccini S, Pellegrino S. α-Synuclein: An All-Inclusive Trip Around its Structure, Influencing Factors and Applied Techniques. Front Chem 2021; 9:666585. [PMID: 34307295 PMCID: PMC8292672 DOI: 10.3389/fchem.2021.666585] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 06/02/2021] [Indexed: 12/15/2022] Open
Abstract
Alpha-synuclein (αSyn) is a highly expressed and conserved protein, typically found in the presynaptic terminals of neurons. The misfolding and aggregation of αSyn into amyloid fibrils is a pathogenic hallmark of several neurodegenerative diseases called synucleinopathies, such as Parkinson’s disease. Since αSyn is an Intrinsically Disordered Protein, the characterization of its structure remains very challenging. Moreover, the mechanisms by which the structural conversion of monomeric αSyn into oligomers and finally into fibrils takes place is still far to be completely understood. Over the years, various studies have provided insights into the possible pathways that αSyn could follow to misfold and acquire oligomeric and fibrillar forms. In addition, it has been observed that αSyn structure can be influenced by different parameters, such as mutations in its sequence, the biological environment (e.g., lipids, endogenous small molecules and proteins), the interaction with exogenous compounds (e.g., drugs, diet components, heavy metals). Herein, we review the structural features of αSyn (wild-type and disease-mutated) that have been elucidated up to present by both experimental and computational techniques in different environmental and biological conditions. We believe that this gathering of current knowledge will further facilitate studies on αSyn, helping the planning of future experiments on the interactions of this protein with targeting molecules especially taking into consideration the environmental conditions.
Collapse
Affiliation(s)
- Nicolò Bisi
- BioCIS, CNRS, Université Paris Saclay, Châtenay-Malabry Cedex, France
| | - Lucia Feni
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| | - Kaliroi Peqini
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| | - Helena Pérez-Peña
- Dipartimento di Chimica, Università degli Studi di Milano, Milan, Italy
| | - Sandrine Ongeri
- BioCIS, CNRS, Université Paris Saclay, Châtenay-Malabry Cedex, France
| | | | - Sara Pellegrino
- DISFARM-Dipartimento di Scienze Farmaceutiche, Sezione Chimica Generale e Organica "A. Marchesini", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Castellanos DB, Martín-Jiménez CA, Rojas-Rodríguez F, Barreto GE, González J. Brain lipidomics as a rising field in neurodegenerative contexts: Perspectives with Machine Learning approaches. Front Neuroendocrinol 2021; 61:100899. [PMID: 33450200 DOI: 10.1016/j.yfrne.2021.100899] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Accepted: 01/10/2021] [Indexed: 12/14/2022]
Abstract
Lipids are essential for cellular functioning considering their role in membrane composition, signaling, and energy metabolism. The brain is the second most abundant organ in terms of lipid concentration and diversity only after adipose tissue. However, in the central system (CNS) lipid dysregulation has been linked to the etiology, progression, and severity of neurodegenerative diseases such as Alzheimeŕs, Parkinson, and Multiple Sclerosis. Advances in the human genome and subsequent sequencing technologies allowed us the study of lipidomics as a promising approach to diagnosis and treatment of neurodegeneration. Lipidomics advances rapidly increased the amount and quality of data allowing the integration with other omic types as well as implementing novel bioinformatic and quantitative tools such as machine learning (ML). Integration of lipidomics data with ML, as a powerful quantitative predictive approach, led to improvements in diagnostic biomarker prediction, clinical data integration, network, and systems approaches for neural behavior, novel etiology markers for inflammation, and neurodegeneration progression and even Mass Spectrometry image analysis. In this sense, by exploiting lipidomics data with ML is possible to improve the identification of new biomarkers or unveil new molecular mechanisms associated with lipid impairment across neurodegeneration. In this review, we present the lipidomic neurobiology state-of-the-art highlighting its potential applications to study neurodegenerative conditions. Also, we present theoretical background, applications, and advances in the integration of lipidomics with ML. This review opens the door to new approaches in this rising field.
Collapse
Affiliation(s)
- Daniel Báez Castellanos
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Cynthia A Martín-Jiménez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Felipe Rojas-Rodríguez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - George E Barreto
- Health Research Institute, University of Limerick, Limerick, Ireland
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia.
| |
Collapse
|
21
|
Sian-Hulsmann J, Riederer P. The Nigral Coup in Parkinson's Disease by α-Synuclein and Its Associated Rebels. Cells 2021; 10:598. [PMID: 33803185 PMCID: PMC8000327 DOI: 10.3390/cells10030598] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/24/2022] Open
Abstract
The risk of Parkinson's disease increases with age. However, the etiology of the illness remains obscure. It appears highly likely that the neurodegenerative processes involve an array of elements that influence each other. In addition, genetic, endogenous, or exogenous toxins need to be considered as viable partners to the cellular degeneration. There is compelling evidence that indicate the key involvement of modified α-synuclein (Lewy bodies) at the very core of the pathogenesis of the disease. The accumulation of misfolded α-synuclein may be a consequence of some genetic defect or/and a failure of the protein clearance system. Importantly, α-synuclein pathology appears to be a common denominator for many cellular deleterious events such as oxidative stress, mitochondrial dysfunction, dopamine synaptic dysregulation, iron dyshomeostasis, and neuroinflammation. These factors probably employ a common apoptotic/or autophagic route in the final stages to execute cell death. The misfolded α-synuclein inclusions skillfully trigger or navigate these processes and thus amplify the dopamine neuron fatalities. Although the process of neuroinflammation may represent a secondary event, nevertheless, it executes a fundamental role in neurodegeneration. Some viral infections produce parkinsonism and exhibit similar characteristic neuropathological changes such as a modest brain dopamine deficit and α-synuclein pathology. Thus, viral infections may heighten the risk of developing PD. Alternatively, α-synuclein pathology may induce a dysfunctional immune system. Thus, sporadic Parkinson's disease is caused by multifactorial trigger factors and metabolic disturbances, which need to be considered for the development of potential drugs in the disorder.
Collapse
Affiliation(s)
- Jeswinder Sian-Hulsmann
- Department of Medical Physiology, University of Nairobi, P.O. Box 30197, 00100 Nairobi, Kenya
| | - Peter Riederer
- Clinic and Policlinic for Psychiatry, Psychosomatics and Psychotherapy Margarete-Hoeppel-Platz 1, University Hospital Wuerzburg, 97080 Wuerzburg, Germany;
- Department Psychiatry, University of Southern Denmark Odense, J.B. Winslows Vey 18, 5000 Odense, Denmark
| |
Collapse
|
22
|
Ramalingam M, Jang S, Jeong HS. Neural-Induced Human Adipose Tissue-Derived Stem Cells Conditioned Medium Ameliorates Rotenone-Induced Toxicity in SH-SY5Y Cells. Int J Mol Sci 2021; 22:ijms22052322. [PMID: 33652595 PMCID: PMC7956615 DOI: 10.3390/ijms22052322] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Parkinson’s disease (PD) is an age-related neurodegenerative disease (NDD) characterized by the degenerative loss of dopaminergic neurons in the substantia nigra along with aggregation of α-synuclein (α-syn). Neurogenic differentiation of human adipose-derived stem cells (NI-hADSCs) by supplementary factors for 14 days activates different biological signaling pathways. In this study, we evaluated the therapeutic role of NI-hADSC-conditioned medium (NI-hADSC-CM) in rotenone (ROT)-induced toxicity in SH-SY5Y cells. Increasing concentrations of ROT led to decreased cell survival at 24 and 48 h in a dose- and time-dependent manner. Treatment of NI-hADSC-CM (50% dilution in DMEM) against ROT (0.5 μM) significantly increased the cell survival. ROT toxicity decreased the expression of tyrosine hydroxylase (TH). Western blot analysis of the Triton X-100-soluble fraction revealed that ROT significantly decreased the oligomeric, dimeric, and monomeric phosphorylated Serine129 (p-S129) α-syn, as well as the total monomeric α-syn expression levels. ROT toxicity increased the oligomeric, but decreased the dimeric and monomeric p-S129 α-syn expression levels. Total α-syn expression (in all forms) was increased in the Triton X-100-insoluble fraction, compared to the control. NI-hADSC-CM treatment enhanced the TH expression, stabilized α-syn monomers, reduced the levels of toxic insoluble p-S129 α-syn, improved the expression of neuronal functional proteins, regulated the Bax/Bcl-2 ratio, and upregulated the expression of pro-caspases, along with PARP-1 inactivation. Moreover, hADSC-CM treatment decreased the cell numbers and have no effect against ROT toxicity on SH-SY5Y cells. The therapeutic effects of NI-hADSC-CM was higher than the beneficial effects of hADSC-CM on cellular signaling. From these results, we conclude that NI-hADSC-CM exerts neuroregenerative effects on ROT-induced PD-like impairments in SH-SY5Y cells.
Collapse
|
23
|
Cerri S, Ghezzi C, Ongari G, Croce S, Avenali M, Zangaglia R, Di Monte DA, Valente EM, Blandini F. GBA Mutations Influence the Release and Pathological Effects of Small Extracellular Vesicles from Fibroblasts of Patients with Parkinson's Disease. Int J Mol Sci 2021; 22:2215. [PMID: 33672321 PMCID: PMC7927041 DOI: 10.3390/ijms22042215] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/15/2021] [Accepted: 02/20/2021] [Indexed: 12/30/2022] Open
Abstract
Heterozygous mutations in the GBA gene, encoding the lysosomal enzyme glucocerebrosidase (GCase), are the strongest known genetic risk factor for Parkinson's disease (PD). The molecular mechanisms underlying the increased PD risk and the variable phenotypes observed in carriers of different GBA mutations are not yet fully elucidated. Extracellular vesicles (EVs) have gained increasing importance in neurodegenerative diseases since they can vehiculate pathological molecules potentially promoting disease propagation. Accumulating evidence showed that perturbations of the endosomal-lysosomal pathway can affect EV release and composition. Here, we investigate the impact of GCase deficiency on EV release and their effect in recipient cells. EVs were purified by ultracentrifugation from the supernatant of fibroblast cell lines derived from PD patients with or without GBA mutations and quantified by nanoparticle tracking analysis. SH-SY5Y cells over-expressing alpha-synuclein (α-syn) were used to assess the ability of patient-derived small EVs to affect α-syn expression. We observed that defective GCase activity promotes the release of EVs, independently of mutation severity. Moreover, small EVs released from PD fibroblasts carrying severe mutations increased the intra-cellular levels of phosphorylated α-syn. In summary, our work shows that the dysregulation of small EV trafficking and alpha-synuclein mishandling may play a role in GBA-associated PD.
Collapse
Affiliation(s)
- Silvia Cerri
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.G.); (G.O.); (F.B.)
| | - Cristina Ghezzi
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.G.); (G.O.); (F.B.)
| | - Gerardo Ongari
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.G.); (G.O.); (F.B.)
| | - Stefania Croce
- Department of General Surgery, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
- Department of Clinical, Surgical, Diagnostic & Pediatric Sciences, University of Pavia, 27100 Pavia, Italy
| | - Micol Avenali
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy;
- Neurorehabilitation Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy
| | - Roberta Zangaglia
- Parkinson’s Disease and Movement Disorders Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy;
| | - Donato A. Di Monte
- German Centre for Neurodegenerative Diseases (DZNE), 53175 Bonn, Germany;
| | - Enza Maria Valente
- Neurogenetics Research Center, IRCCS Mondino Foundation, 27100 Pavia, Italy;
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Fabio Blandini
- Cellular and Molecular Neurobiology Unit, IRCCS Mondino Foundation, 27100 Pavia, Italy; (C.G.); (G.O.); (F.B.)
- Department of Brain and Behavioural Sciences, University of Pavia, 27100 Pavia, Italy;
| |
Collapse
|
24
|
Therapeutic Effects of Conditioned Medium of Neural Differentiated Human Bone Marrow-Derived Stem Cells on Rotenone-Induced Alpha-Synuclein Aggregation and Apoptosis. Stem Cells Int 2021; 2021:6658271. [PMID: 33552161 PMCID: PMC7847328 DOI: 10.1155/2021/6658271] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 01/08/2023] Open
Abstract
Mesenchymal stem cells (MSCs) have been used against several diseases. Their potential mainly appears from its secreted biomolecules. Human bone marrow-derived stem cells (hBMSC) displayed neuronal functional characteristics after differentiation by basic fibroblast growth factor (bFGF) and forskolin. PD is a chronic age-related neurodegenerative disease (NDD) characterized by loss of dopaminergic neurons in the substantia nigra (SN) and abnormal accumulation of α-synuclein (α-syn) aggregations. In this present study, we evaluated the therapeutic effects of neural differentiated hBMSC (NI-hBMSC) conditioned medium (NI-hBMSC-CM) to a rotenone- (ROT-) induced Parkinson's disease (PD) model in SH-SY5Y cells. NI-hBMSC-CM treatment (50% diluted) in the last 24 h of 48 h ROT (0.5 μM) toxicity showed a significant increase in cell survival. The decreased tyrosine hydroxylase (TH) expression as a hallmark of PD was increased by NI-hBMSC-CM. The Triton X-100-soluble and Triton X-100-insoluble cell lysate fractions were used in Western blotting. The oligomeric, dimeric, and monomeric phosphorylated serine129 (p-S129) α-syn and total monomeric α-syn were decreased during ROT toxicity in the Triton X-100-soluble fraction. The Triton X-100-insoluble fraction revealed that ROT toxicity significantly increased the oligomeric but decreased the dimeric and monomeric p-S129 α-syn expressions while all forms of total α-syn were increased in SH-SY5Y cells. NI-hBMSC-CM stabilized the physiological α-syn monomers and reduced aggregated insoluble p-S129 α-syn against ROT. The cytoskeletal proteins, neurofilament-H (NF-H), β3-tubulin (Tuj1), neuronal nuclei (NeuN), and synaptophysin (SYP) were significantly decreased during ROT toxicity. In addition, proapoptotic Bax was increased by ROT with decreased antiapoptotic Bcl-2 and Mcl-1 as well as proforms of caspase-9, caspase-3, caspase-7, and PARP-1. NI-hBMSC-CM ameliorated the neurotrophic protein expressions, controlled the Bax/Bcl-2 ratio, upregulated procaspases, and inactivated PARP-1. From our results, we conclude that NI-hBMSC-CM containing released biomolecules during neural differentiation employs regenerative effects on the ROT model of PD in SH-SY5Y cells.
Collapse
|
25
|
Han NR, Kim YK, Ahn S, Hwang TY, Lee H, Park HJ. A Comprehensive Phenotype of Non-motor Impairments and Distribution of Alpha-Synuclein Deposition in Parkinsonism-Induced Mice by a Combination Injection of MPTP and Probenecid. Front Aging Neurosci 2021; 12:599045. [PMID: 33519420 PMCID: PMC7838388 DOI: 10.3389/fnagi.2020.599045] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Parkinson's disease (PD) is characterized by non-motor symptoms as well as motor deficits. The non-motor symptoms rarely appear individually and occur simultaneously with motor deficits or independently. However, a comprehensive research on the non-motor symptoms using an experimental model of PD remains poorly understood. The aim of the current study is to establish a chronic mouse model of PD mimicking the comprehensive non-motor symptoms of human PD by injection of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and probenecid (MPTP/p). The non-motor and motor symptoms were evaluated by performing buried food, short-term olfactory memory, hot plate, open field, tail suspension, Y maze, novel object recognition, bead expulsion, one-h stool collection, rotarod, rearing, catalepsy, and akinesia tests after 10 injections of MPTP/p into mice. The expression levels of α-synuclein, glial fibrillary acidic protein (GFAP), tyrosine hydroxylase (TH) or DJ-1 were analyzed by Western blotting or immunostaining. MPTP/p-treated mice achieved to reproduce the key features of non-motor symptoms including olfactory deficit, thermal hyperalgesia, anxiety, depression, cognitive decline, and gastrointestinal dysfunction in addition to motor deficits. The MPTP/p-treated mice also showed the high levels of α-synuclein and low levels of TH and DJ-1 in striatum, substantia nigra, olfactory bulb, hippocampus, amygdala, prefrontal cortex, locus coeruleus, or colon. In addition, the expression levels of phosphorylated-α-synuclein and GFAP were elevated in the striatum and substantia nigra in the MPTP/p-treated mice. Taken together, our study clarifies that the chronic MPTP/p-treated mice have a variety of non-motor dysfunctions as well as motor abnormalities by α-synuclein overexpression and dopaminergic depletion. Therefore, the study of comprehensive phenotypes of non-motor symptoms in one PD model would advance in-depth understandings of neuropathological alternations and contribute to future strategies for PD treatment.
Collapse
Affiliation(s)
- Na-Ra Han
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Yu-Kang Kim
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Sora Ahn
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea
| | - Tae-Yeon Hwang
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Meridian & Acupoints, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hyejung Lee
- Department of Meridian & Acupoints, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| | - Hi-Joon Park
- Integrative Parkinson's Disease Research Group, Acupuncture and Meridian Science Research Center, Kyung Hee University, Seoul, South Korea.,Department of Anatomy & Information Sciences, College of Korean Medicine, Kyung Hee University, Seoul, South Korea
| |
Collapse
|
26
|
Blokhin VE, Ugryumov MV. Alpha-Synuclein in the Blood of Mice in a Neurotoxic Model of Parkinson’s Disease. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Musteikytė G, Jayaram AK, Xu CK, Vendruscolo M, Krainer G, Knowles TPJ. Interactions of α-synuclein oligomers with lipid membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183536. [PMID: 33373595 DOI: 10.1016/j.bbamem.2020.183536] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 12/10/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022]
Abstract
Parkinson's disease is an increasingly prevalent and currently incurable neurodegenerative disorder. At the molecular level, this disease is characterized by the formation of aberrant intracellular protein deposits known as Lewy bodies. Oligomeric forms of the protein α-synuclein (αS), which are believed to be both intermediates and by-products of Lewy body formation, are considered to be the main pathogenic species. Interactions of such oligomers with lipid membranes are increasingly emerging as a major molecular pathway underpinning their toxicity. Here we review recent progress in our understanding of the interactions of αS oligomers with lipid membranes. We highlight key structural and biophysical features of αS oligomers, the effects of these features on αS oligomer membrane binding properties, and resultant implications for understanding the etiology of Parkinson's disease. We discuss mechanistic modes of αS oligomer-lipid membrane interactions and the effects of environmental factors to such modes. Finally, we provide an overview of the current understanding of the main molecular determinants of αS oligomer toxicity in vivo.
Collapse
Affiliation(s)
- Greta Musteikytė
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Akhila K Jayaram
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom
| | - Catherine K Xu
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Michele Vendruscolo
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Georg Krainer
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.
| | - Tuomas P J Knowles
- Centre for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom; Cavendish Laboratory, University of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, United Kingdom.
| |
Collapse
|
28
|
Srivastava AK, Choudhury SR, Karmakar S. Neuronal Bmi-1 is critical for melatonin induced ubiquitination and proteasomal degradation of α-synuclein in experimental Parkinson's disease models. Neuropharmacology 2020; 194:108372. [PMID: 33157086 DOI: 10.1016/j.neuropharm.2020.108372] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 08/18/2020] [Accepted: 10/23/2020] [Indexed: 11/15/2022]
Abstract
Epigenetic polycomb repressor complex-1 subunit BMI-1 plays a pivotal role in the process of gene repression to maintain the self-renewal and differentiation state of neurogenic tissues. Accumulating reports links lower expression of BMI-1 fails to regulate the repression of anti-oxidant response genes disrupt mitochondrial homeostasis underlying neurodegeneration. Interestingly, this negative relation between BMI-1 function and neurodegeneration is distinct but has not been generalized as a potential biomarker particularly in Parkinson's disease (PD). Hyperphosphorylated BMI-1 undergoes canonical polycomb E3 ligase function loss, thereby leads to reduce monoubiquitylation of histone 2A at lysine 119 (H2AK119ub) corroborates cellular accumulation of α-synuclein protein phosphorylated at serine 129 (pα-SYN (S129). In general, neuroprotectant suppressing pα-SYN (S129) level turns ineffective upon depletion of neuronal BMI-1. However, it has been observed that our neuroprotectant exposure suppresses the cellular pα-SYN (S129) and restore the the BMI-1 expression level in neuronal tissues. The pharmacological inhibition and activation of proteasomal machinery promote the cellular accumulation and degradation of neuronal pα-SYN (S129), respectively. Furthermore, our investigation reveals that accumulated pα-SYN (S129) are priorly complexed with BMI-1 undergoes ubiquitin-dependent proteasomal degradation and established as key pathway for therpeutic effect in PD. These findings linked the unestablished non-canonical role of BMI-1 in the clearance of pathological α-SYN and suspected to be a novel therapeutic target in PD.
Collapse
Affiliation(s)
- Anup K Srivastava
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India
| | - Subhasree Roy Choudhury
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| | - Surajit Karmakar
- Institute of Nano Science and Technology, Habitat Centre, Phase-10, Mohali, Punjab, 160062, India.
| |
Collapse
|
29
|
Cai L, Tu L, Yang X, Zhang Q, Tian T, Gu R, Qu X, Wang Q, Tian J. HOTAIR Accelerates Dyskinesia in a MPTP-Lesioned Mouse Model of PD via SSTR1 Methylation-Mediated ERK1/2 Axis. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 22:140-152. [PMID: 32927363 PMCID: PMC7494946 DOI: 10.1016/j.omtn.2020.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/26/2022]
Abstract
Homeobox transcript antisense RNA (HOTAIR), has been associated with neuroprotective effects in Parkinson's disease (PD). However, the underlying mechanisms still remain unclear. Hence, this present study attempted to clarify the functional relevance of HOTAIR in PD. We established an in vivo mouse model of PD using 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and an in vitro cell model of PD by treating dopaminergic neuron MN9D cells with 1-methyl-4-phenylpyridinium species (MPP+). The expressions of somatostatin receptor 1 (SSTR1) and HOTAIR were altered to examine their effects on MN9D cell viability and apoptosis, as well as on movement impairments in MPTP-induced PD mouse model. The results indicated that HOTAIR expression was upregulated and SSTR1 was downregulated in in vivo and in vitro PD models. HOTAIR could bind to the promoter region of SSTR1, resulting in an increase of SSTR1 methylation through the recruitment of DNA methyltransferases in PD cell models. Notably, overexpression of HOTAIR and silencing of SSTR1 enhanced dopaminergic neuron apoptosis in MN9D cells and exacerbated dyskinesia in MPTP-induced PD mouse model. Collectively, overexpressed HOTAIR stimulates DNA methylation of SSTR1 to reduce SSTR1 expression, thereby accelerating dyskinesia and facilitating dopaminergic neuron apoptosis in a MPTP-lesioned PD mouse model via activation of the ERK1/2 axis.
Collapse
Affiliation(s)
- Lijun Cai
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China
| | - Li Tu
- Department of General Practice, Affiliated Hospital of Guizhou Medical University, Guiyang 550004, P.R. China
| | - Xiulin Yang
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Qian Zhang
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Tian Tian
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Rang Gu
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Xiang Qu
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Qian Wang
- Department of Neurology, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China
| | - Jinyong Tian
- Emergency Department of Internal Medicine, Guizhou Provincial People's Hospital, Guiyang 550002, P.R. China.
| |
Collapse
|
30
|
Oppedisano F, Maiuolo J, Gliozzi M, Musolino V, Carresi C, Nucera S, Scicchitano M, Scarano F, Bosco F, Macrì R, Ruga S, Zito MC, Palma E, Muscoli C, Mollace V. The Potential for Natural Antioxidant Supplementation in the Early Stages of Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21072618. [PMID: 32283806 PMCID: PMC7177481 DOI: 10.3390/ijms21072618] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/07/2020] [Accepted: 04/07/2020] [Indexed: 02/06/2023] Open
Abstract
The neurodegenerative process is characterized by the progressive ultrastructural alterations of selected classes of neurons accompanied by imbalanced cellular homeostasis, a process which culminates, in the later stages, in cell death and the loss of specific neurological functions. Apart from the neuronal cell impairment in selected areas of the central nervous system which characterizes many neurodegenerative diseases (e.g., Alzheimer's Disease, Parkinson's Disease, Huntington's Disease, etc.), some alterations may be found in the early stages including gliosis and the misfolding or unfolding accumulation of proteins. On the other hand, several common pathophysiological mechanisms can be found early in the course of the disease including altered oxidative metabolism, the loss of cross-talk among the cellular organelles and increased neuroinflammation. Thus, antioxidant compounds have been suggested, in recent years, as a potential strategy for preventing or counteracting neuronal cell death and nutraceutical supplementation has been studied in approaching the early phases of neurodegenerative diseases. The present review will deal with the pathophysiological mechanisms underlying the early stages of the neurodegenerative process. In addition, the potential of nutraceutical supplementation in counteracting these diseases will be assessed.
Collapse
Affiliation(s)
- Francesca Oppedisano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Jessica Maiuolo
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Micaela Gliozzi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Vincenzo Musolino
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Cristina Carresi
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Saverio Nucera
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Miriam Scicchitano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Federica Scarano
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Francesca Bosco
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Roberta Macrì
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Stefano Ruga
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Maria Caterina Zito
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
| | - Ernesto Palma
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
| | - Carolina Muscoli
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
| | - Vincenzo Mollace
- IRC-FSH Department of Health Sciences, University “Magna Græcia” of Catanzaro, Campus Universitario di Germaneto, 88100 Catanzaro, Italy; (F.O.); (J.M.); (M.G.); (V.M.); (C.C.); (S.N.); (M.S.); (F.S.); (F.B.); (R.M.); (S.R.); (M.C.Z.); (E.P.); (C.M.)
- Nutramed S.c.a.r.l, Complesso Ninì Barbieri, Roccelletta di Borgia, 88021 Catanzaro, Italy
- IRCCS San Raffaele, Via di Valcannuta 247, 00133 Rome, Italy
- Correspondence: ; Tel.: +39-327-475-8007
| |
Collapse
|
31
|
Kumari R, Kumar R, Kumar S, Singh AK, Hanpude P, Jangir D, Maiti TK. Amyloid aggregates of the deubiquitinase OTUB1 are neurotoxic, suggesting that they contribute to the development of Parkinson's disease. J Biol Chem 2020; 295:3466-3484. [PMID: 32005664 DOI: 10.1074/jbc.ra119.009546] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 01/18/2020] [Indexed: 01/10/2023] Open
Abstract
Parkinson's disease (PD) is a multifactorial malady and the second most common neurodegenerative disorder, characterized by loss of dopaminergic neurons in the midbrain. A hallmark of PD pathology is the formation of intracellular protein inclusions, termed Lewy bodies (LBs). Recent MS studies have shown that OTU deubiquitinase ubiquitin aldehyde-binding 1 (OTUB1), a deubiquitinating enzyme of the OTU family, is enriched together with α-synuclein in LBs from individuals with PD and is also present in amyloid plaques associated with Alzheimer's disease. In the present study, using mammalian cell cultures and a PD mouse model, along with CD spectroscopy, atomic force microscopy, immunofluorescence-based imaging, and various biochemical assays, we demonstrate that after heat-induced protein aggregation, OTUB1 reacts strongly with both anti-A11 and anti-osteocalcin antibodies, detecting oligomeric, prefibrillar structures or fibrillar species of amyloidogenic proteins, respectively. Further, recombinant OTUB1 exhibited high thioflavin-T and Congo red binding and increased β-sheet formation upon heat induction. The oligomeric OTUB1 aggregates were highly cytotoxic, characteristic of many amyloid proteins. OTUB1 formed inclusions in neuronal cells and co-localized with thioflavin S and with α-synuclein during rotenone-induced stress. It also co-localized with the disease-associated variant pS129-α-synuclein in rotenone-exposed mouse brains. Interestingly, OTUB1 aggregates were also associated with severe cytoskeleton damage, rapid internalization inside the neuronal cells, and mitochondrial damage, all of which contribute to neurotoxicity. In conclusion, the results of our study indicate that OTUB1 may contribute to LB pathology through its amyloidogenic properties.
Collapse
Affiliation(s)
- Raniki Kumari
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Kalinga Institute of Industrial Technology (KIIT), Bhubaneswar, Odisha 751024, India
| | - Roshan Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sanjay Kumar
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India; Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Abhishek Kumar Singh
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Pranita Hanpude
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Deepak Jangir
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India
| | - Tushar Kanti Maiti
- Functional Proteomics Laboratory, Regional Centre for Biotechnology (RCB), NCR Biotech Science Cluster, Faridabad 121001, India.
| |
Collapse
|
32
|
Samarasimhareddy M, Mayer G, Hurevich M, Friedler A. Multiphosphorylated peptides: importance, synthetic strategies, and applications for studying biological mechanisms. Org Biomol Chem 2020; 18:3405-3422. [DOI: 10.1039/d0ob00499e] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Advances in the synthesis of multiphosphorylated peptides and peptide libraries: tools for studying the effects of phosphorylation patterns on protein function and regulation.
Collapse
Affiliation(s)
- Mamidi Samarasimhareddy
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Guy Mayer
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Mattan Hurevich
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| | - Assaf Friedler
- The Institute of Chemistry
- Edmond J. Safra Campus
- Givat Ram
- The Hebrew University of Jerusalem
- Jerusalem
| |
Collapse
|
33
|
Galimberti VE, Rothlin CV, Ghosh S. Funerals and Feasts: The Immunological Rites of Cell Death. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:663-674. [PMID: 31866781 PMCID: PMC6913811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The immune system functions as a vanguard against pathogens and toxins. While it is mostly considered to be activated on the basis of self versus non-self recognition, injury/infection and damage are unavoidably associated with cell death. Does cell death play a role in the regulation of the immune response? Cell death, for better or for worse, is an omnipresent process in all stages of life that are observed throughout most tissues in multicellular organisms. From development to homeostasis in adult organisms, cells commit to scheduled death, while cases of injury and infection result in unscheduled cell death. Novel understanding of the molecular mechanisms that govern cell death demonstrate that, in fact, a plethora of molecular processes participate in directed dying. Parallel to the molecular modalities directing cell death are machineries employed by the organism to respond to dying cells, including either eliciting an inflammatory or immunological response or altogether avoiding it. Disturbing the careful coupling of these two processes is often met with pathology - on one hand a failure to respond to cell death may contribute to the lack of proper immune response or defective development, and on the other hand exaggerated or aberrant response to cell death can trigger unregulated inflammation, autoimmunity, or fibrosis/scarring. Here we review the molecular mechanisms and associated effector responses that accompany some of the most well-known cell death modalities - with an emphasis on efferocytosis, a process by which the dead cell is recognized and engulfed. In doing so, we highlight the TAM (TYRO3, AXL, MERTK) family of receptor tyrosine kinases (RTKs) that functions dually in the recognition and engulfment of dead cells, and as an important negative regulator of inflammation.
Collapse
Affiliation(s)
- Veronica E. Galimberti
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Department of Neurology, Yale University School of Medicine, New Haven, CT,To whom all correspondence should be addressed: Veronica E. Galimberti, Department of Immunobiology and Neurology, Yale University School of Medicine, New Haven, CT; Tel: 603-362-239,
| | - Carla V. Rothlin
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT,Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| | - Sourav Ghosh
- Department of Neurology, Yale University School of Medicine, New Haven, CT,Department of Pharmacology, Yale University School of Medicine, New Haven, CT
| |
Collapse
|
34
|
Li X, Yang W, Li X, Chen M, Liu C, Li J, Yu S. Alpha-synuclein oligomerization and dopaminergic degeneration occur synchronously in the brain and colon of MPTP-intoxicated parkinsonian monkeys. Neurosci Lett 2019; 716:134640. [PMID: 31759083 DOI: 10.1016/j.neulet.2019.134640] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 11/01/2019] [Accepted: 11/19/2019] [Indexed: 02/06/2023]
Abstract
Dopaminergic (DAergic) degeneration and abnormal α-synuclein (α-syn) expression, phosphorylation and aggregation are observed in both the nigrostriatal system (NSS) and enteric nervous system (ENS) of patients with Parkinson's disease (PD). Whether these alterations in α-syn and DAergic neurons occur synchronously in the two nervous systems or follow a process that spreads from the gut to the brain remains a subject of debate. Here, in MPTP-intoxicated cynomolgus monkeys, we showed a parallel DAergic degeneration in the colon as well as in the substantia nigra and striatum (SN/STR), as indicated by reduced expression of tyrosine hydroxylase (TH) and dopamine transporter (DAT). In addition, we observed a simultaneous increase in the concentrations of total, phosphorylated, and oligomeric α-syn in the colon and SN/STR. Moreover, we identified that the above changes in α-syn were associated with an increase in the expression of polo-like kinase 2 (PLK2), an enzyme that promotes α-syn phosphorylation, and a decrease in the activity of protein phosphatase 2A (PP2A), an enzyme that facilitates α-syn dephosphorylation. Because the colonic ENS can be readily analyzed using routine biopsies, the shared pathological features between the colonic ENS and the brain NSS found in this study provide useful information for assessing and understanding the neuropathology in PD patients using colonic biopsies.
Collapse
Affiliation(s)
- Xuran Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Weiwei Yang
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Xin Li
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China
| | - Min Chen
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Chengwei Liu
- Laboratory of Neuroscience, Affiliated Hospital of Guilin Medical University, Guilin, China
| | - Jie Li
- Department of Neurology, Beijing Daxing District Hospital of Integrated Traditional Chinese and Western Medicine, Beijing, China
| | - Shun Yu
- Department of Neurobiology, Xuanwu Hospital of Capital Medical University, Beijing, China; National Clinical Research Center for Geriatric Disorders, Beijing, China.
| |
Collapse
|
35
|
Mesa-Herrera F, Taoro-González L, Valdés-Baizabal C, Diaz M, Marín R. Lipid and Lipid Raft Alteration in Aging and Neurodegenerative Diseases: A Window for the Development of New Biomarkers. Int J Mol Sci 2019; 20:E3810. [PMID: 31382686 PMCID: PMC6696273 DOI: 10.3390/ijms20153810] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/1970] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022] Open
Abstract
Lipids in the brain are major components playing structural functions as well as physiological roles in nerve cells, such as neural communication, neurogenesis, synaptic transmission, signal transduction, membrane compartmentalization, and regulation of gene expression. Determination of brain lipid composition may provide not only essential information about normal brain functioning, but also about changes with aging and diseases. Indeed, deregulations of specific lipid classes and lipid homeostasis have been demonstrated in neurodegenerative disorders such as Alzheimer's disease (AD) and Parkinson's disease (PD). Furthermore, recent studies have shown that membrane microdomains, named lipid rafts, may change their composition in correlation with neuronal impairment. Lipid rafts are key factors for signaling processes for cellular responses. Lipid alteration in these signaling platforms may correlate with abnormal protein distribution and aggregation, toxic cell signaling, and other neuropathological events related with these diseases. This review highlights the manner lipid changes in lipid rafts may participate in the modulation of neuropathological events related to AD and PD. Understanding and characterizing these changes may contribute to the development of novel and specific diagnostic and prognostic biomarkers in routinely clinical practice.
Collapse
Affiliation(s)
- Fátima Mesa-Herrera
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
| | - Lucas Taoro-González
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Catalina Valdés-Baizabal
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Mario Diaz
- Laboratory of Membrane Physiology and Biophysics, Department of Animal Biology, Edaphology and Geology
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain
| | - Raquel Marín
- Laboratory of Cellular Neurobiology, Department of Basic Medical Sciences, Section of Medicine, Faculty of Health Sciences, University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
- Associate Research Unit ULL-CSIC "Membrane Physiology and Biophysics in Neurodegenerative and Cancer Diseases", University of La Laguna, Sta. Cruz de Tenerife 38200, Spain.
| |
Collapse
|
36
|
Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019; 126:933-995. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/05/2019] [Indexed: 02/06/2023]
Abstract
Extrapyramidal movement disorders include hypokinetic rigid and hyperkinetic or mixed forms, most of them originating from dysfunction of the basal ganglia (BG) and their information circuits. The functional anatomy of the BG, the cortico-BG-thalamocortical, and BG-cerebellar circuit connections are briefly reviewed. Pathophysiologic classification of extrapyramidal movement disorder mechanisms distinguish (1) parkinsonian syndromes, (2) chorea and related syndromes, (3) dystonias, (4) myoclonic syndromes, (5) ballism, (6) tics, and (7) tremor syndromes. Recent genetic and molecular-biologic classifications distinguish (1) synucleinopathies (Parkinson's disease, dementia with Lewy bodies, Parkinson's disease-dementia, and multiple system atrophy); (2) tauopathies (progressive supranuclear palsy, corticobasal degeneration, FTLD-17; Guamian Parkinson-dementia; Pick's disease, and others); (3) polyglutamine disorders (Huntington's disease and related disorders); (4) pantothenate kinase-associated neurodegeneration; (5) Wilson's disease; and (6) other hereditary neurodegenerations without hitherto detected genetic or specific markers. The diversity of phenotypes is related to the deposition of pathologic proteins in distinct cell populations, causing neurodegeneration due to genetic and environmental factors, but there is frequent overlap between various disorders. Their etiopathogenesis is still poorly understood, but is suggested to result from an interaction between genetic and environmental factors. Multiple etiologies and noxious factors (protein mishandling, mitochondrial dysfunction, oxidative stress, excitotoxicity, energy failure, and chronic neuroinflammation) are more likely than a single factor. Current clinical consensus criteria have increased the diagnostic accuracy of most neurodegenerative movement disorders, but for their definite diagnosis, histopathological confirmation is required. We present a timely overview of the neuropathology and pathogenesis of the major extrapyramidal movement disorders in two parts, the first one dedicated to hypokinetic-rigid forms and the second to hyperkinetic disorders.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, 1150, Vienna, Austria.
| |
Collapse
|