1
|
Jiang Y, Sachdeva K, Goulbourne CN, Berg MJ, Peddy J, Stavrides PH, Pensalfini A, Pawlik M, Whyte L, Balapal BS, Shivakumar S, Bleiwas C, Smiley JF, Mathews PM, Nixon RA. Increased neuronal expression of the early endosomal adaptor APPL1 leads to endosomal and synaptic dysfunction with cholinergic neurodegeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.19.613736. [PMID: 39345644 PMCID: PMC11430014 DOI: 10.1101/2024.09.19.613736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Dysfunction of the endolysosomal system within neurons is a prominent feature of Alzheimer's disease (AD) pathology. Multiple AD-risk factors are known to cause hyper-activity of the early-endosome small GTPase rab5, resulting in neuronal endosomal pathway disruption. APPL1, an important rab5 effector protein, is an interface between endosomal and neuronal function through a rab5-activating interaction with the BACE1-generated C-terminal fragment (βCTF or C99) of the amyloid precursor protein (APP), a pathogenic APP fragment generated within endolysosomal compartments. To better understand the role of APPL1 in the AD endosomal phenotype, we generated a transgenic mouse model over-expressing human APPL1 within neurons (Thy1-APPL1 mice). Consistent with the important endosomal regulatory role of APPL1, Thy1-APPL1 mice have enlarged neuronal early endosomes and increased synaptic endocytosis due to increased rab5 activation. We additionally demonstrate pathological consequences of APPL1 overexpression, including functional changes in hippocampal long-term potentiation (LTP) and long-term depression (LTD), as well as degeneration of the large projection cholinergic neurons of the basal forebrain and impairment of hippocampal-dependent memory. Our findings show that increased neuronal APPL1 levels lead to a cascade of pathological effects within neurons, including early endosomal alterations, synaptic dysfunction, and neurodegeneration. Multiple risk factors and molecular regulators, including APPL1 activity, are known to contribute to the endosomal dysregulation seen in the early stages of AD, and these findings further highlight the shared pathobiology and consequences to a neuron of early endosomal pathway disruption. Significance Statement Dysfunction in the endolysosomal system within neurons is a key feature of Alzheimer's disease (AD). Multiple AD risk factors lead to hyperactivity of the early-endosome GTPase rab5, disrupting neuronal pathways including the cholinergic circuits involved early in memory decline. APPL1, a crucial rab5 effector, connects endosomal and neuronal functions through its interaction with a specific amyloid precursor protein (APP) fragment generated within endosomes. To understand APPL1's role, a transgenic mouse model over-expressing human APPL1 in neurons (Thy1-APPL1 mice) was developed. These mice show enlarged early endosomes and increased synaptic endocytosis due to rab5 activation, resulting in impaired hippocampal long-term potentiation and depression, the degeneration of basal forebrain cholinergic neurons, and memory deficits, highlighting a pathological cascade mediated through APPL1 at the early endosome.
Collapse
|
2
|
Talukder MEK, Akhter S, Ahammad F, Aktar A, Islam MS, Laboni AA, Afroze M, Khan M, Uddin MJ, Rahman MM. Multi-modal neuroprotection of Argemone mexicana L. against Alzheimer's disease: In vitro and in silico study. Heliyon 2024; 10:e37178. [PMID: 39286063 PMCID: PMC11402773 DOI: 10.1016/j.heliyon.2024.e37178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024] Open
Abstract
Argemone mexicana L. is a medicinal plant, but its impact on Alzheimer's disease (AD) is right now undetermined. We intended to investigate the in-vitro anti-AD potential of leaves and flowers of A. mexicana methanol, ethanol, and ethyl extracts and to identify multi-modal anti-AD phytochemicals by computational approaches. Molecular docking of 196 phytochemicals identified three hit phytochemicals (protoberberine, protopine, and codeine) with higher binding affinity and multi-targeting ability toward AChE, BChE, BACE-1, and GSK-3β. Further MM-GBSA assays confirmed the integrity of these phytochemicals as the hit phytochemicals. However, these phytochemicals demonstrated favorable pharmacokinetics (PK) and drugable properties having no toxicity. Molecular dynamics simulations confirmed the binding strength of the hit phytoconstituents in the active pockets of AChE, BChE, BACE-1, and GSK-3β with multi-targeting inhibitory activities. All the extracts exhibited dose-dependent antioxidant and anti-cholinesterase activities supporting the in silico results in the context of oxidative stress and cholinergic pathways. Our results offer scientific validation of the anti-AD properties of Argemone mexicana L. and identified protoberberine, protopine, and codeine that could be used for the development of multi-modal inhibitors of AChE, BChE, BACE-1, and GSK-3β to combat AD. Additional in vivo validation is recommended to ensure a thorough assessment in the present research.
Collapse
Affiliation(s)
- Md Enamul Kabir Talukder
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Shahina Akhter
- Department of Biochemistry and Biotechnology, University of Science and Technology Chittagong (USTC), Foy's Lake, Chittagong, 4202, Bangladesh
| | - Foysal Ahammad
- Laboratory of Computational Biology, Biological Solution Centre (BioSol Centre), Jashore, 7408, Bangladesh
| | - Asmim Aktar
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Saidul Islam
- Korea Institute of Radiological & Medical Sciences, 75, Nowon-ro, Nowon-gu, Seoul, South Korea
| | - Aysha Akter Laboni
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mirola Afroze
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mala Khan
- Bangladesh Reference Institute for Chemical Measurements (BRICM), Bangladesh Council of Scientific and Industrial Research, Dr Qudrat-i-Khuda Road, Dhanmondi, Dhaka, 1205, Bangladesh
| | - Mohammad Jashim Uddin
- Department of Pharmacy, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Mashiar Rahman
- Molecular and Cellular Biology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| |
Collapse
|
3
|
Zhang J, Zhang Y, Wang J, Xia Y, Zhang J, Chen L. Recent advances in Alzheimer's disease: Mechanisms, clinical trials and new drug development strategies. Signal Transduct Target Ther 2024; 9:211. [PMID: 39174535 PMCID: PMC11344989 DOI: 10.1038/s41392-024-01911-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/18/2024] [Accepted: 07/02/2024] [Indexed: 08/24/2024] Open
Abstract
Alzheimer's disease (AD) stands as the predominant form of dementia, presenting significant and escalating global challenges. Its etiology is intricate and diverse, stemming from a combination of factors such as aging, genetics, and environment. Our current understanding of AD pathologies involves various hypotheses, such as the cholinergic, amyloid, tau protein, inflammatory, oxidative stress, metal ion, glutamate excitotoxicity, microbiota-gut-brain axis, and abnormal autophagy. Nonetheless, unraveling the interplay among these pathological aspects and pinpointing the primary initiators of AD require further elucidation and validation. In the past decades, most clinical drugs have been discontinued due to limited effectiveness or adverse effects. Presently, available drugs primarily offer symptomatic relief and often accompanied by undesirable side effects. However, recent approvals of aducanumab (1) and lecanemab (2) by the Food and Drug Administration (FDA) present the potential in disrease-modifying effects. Nevertheless, the long-term efficacy and safety of these drugs need further validation. Consequently, the quest for safer and more effective AD drugs persists as a formidable and pressing task. This review discusses the current understanding of AD pathogenesis, advances in diagnostic biomarkers, the latest updates of clinical trials, and emerging technologies for AD drug development. We highlight recent progress in the discovery of selective inhibitors, dual-target inhibitors, allosteric modulators, covalent inhibitors, proteolysis-targeting chimeras (PROTACs), and protein-protein interaction (PPI) modulators. Our goal is to provide insights into the prospective development and clinical application of novel AD drugs.
Collapse
Affiliation(s)
- Jifa Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yinglu Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxing Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, 38163, TN, USA
| | - Yilin Xia
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiaxian Zhang
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Chen
- Department of Neurology, Laboratory of Neuro-system and Multimorbidity and State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Fagerli E, Jackson CW, Escobar I, Ferrier FJ, Perez Lao EJ, Saul I, Gomez J, Dave KR, Bracko O, Perez-Pinzon MA. Resveratrol Mitigates Cognitive Impairments and Cholinergic Cell Loss in the Medial Septum in a Mouse Model of Gradual Cerebral Hypoperfusion. Antioxidants (Basel) 2024; 13:984. [PMID: 39199230 PMCID: PMC11351397 DOI: 10.3390/antiox13080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 09/01/2024] Open
Abstract
Vascular cognitive impairment and dementia (VCID) is the second leading cause of dementia. There is currently no effective treatment for VCID. Resveratrol (RSV) is considered an antioxidant; however, our group has observed pleiotropic effects in stroke paradigms, suggesting more effects may contribute to mechanistic changes beyond antioxidative properties. The main goal of this study was to investigate if administering RSV twice a week could alleviate cognitive declines following the induction of a VCID model. Additionally, our aim was to further describe whether this treatment regimen could decrease cell death in brain areas vulnerable to changes in cerebral blood flow, such as the hippocampus and medial septum. We hypothesized RSV treatments in a mouse model of gradual cerebral hypoperfusion protect against cognitive impairment. We utilized gradual bilateral common carotid artery stenosis (GBCCAS) via the surgical implantation of ameroid constrictor devices. RSV treatment was administered on the day of implantation and twice a week thereafter. Cerebral perfusion was measured by laser speckle contrast imaging, and cognitive functions, including the recognition memory, the spatial working memory, and associative learning, were assessed by novel object recognition (NOR), Y-maze testing, and contextual fear conditioning (CFC), respectively. RSV treatment did not alleviate cerebral perfusion deficits but mitigated cognitive deficits in CFC and NOR after GBCCAS. Despite these deficits, no hippocampal pathology was observed; however, cholinergic cell loss in the medial septum was significantly increased after GBCCAS. This cholinergic cell loss was mitigated by RSV. This study describes a novel mechanism by which chronic RSV treatments protect against a VCID-induced cognitive decline through the preservation of cholinergic cell viability to improve memory performance.
Collapse
Affiliation(s)
- Eric Fagerli
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Charles W. Jackson
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Iris Escobar
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Fernando J. Ferrier
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Efrain J. Perez Lao
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Isabel Saul
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Jorge Gomez
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
| | - Kunjan R. Dave
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| | - Oliver Bracko
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA
| | - Miguel A. Perez-Pinzon
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA; (E.F.); (C.W.J.); (I.E.); (F.J.F.); (E.J.P.L.); (I.S.); (J.G.); (K.R.D.)
- Department of Neurology, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA;
- Neuroscience Program, University of Miami Leonard M. Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Bobkova NV, Chuvakova LN, Kovalev VI, Zhdanova DY, Chaplygina AV, Rezvykh AP, Evgen'ev MB. A Mouse Model of Sporadic Alzheimer's Disease with Elements of Major Depression. Mol Neurobiol 2024:10.1007/s12035-024-04346-7. [PMID: 38980563 DOI: 10.1007/s12035-024-04346-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024]
Abstract
After olfactory bulbectomy, animals are often used as a model of major depression or sporadic Alzheimer's disease and, hence, the status of this model is still disputable. To elucidate the nature of alterations in the expression of the genome after the operation, we analyzed transcriptomes of the cortex, hippocampus, and cerebellum of the olfactory bulbectomized (OBX) mice. Analysis of the functional significance of genes in the brain of OBX mice indicates that the balance of the GABA/glutamatergic systems is disturbed with hyperactivation of the latter in the hippocampus, leading to the development of excitotoxicity and induction of apoptosis in the background of severe mitochondrial dysfunction and astrogliosis. On top of this, the synthesis of neurotrophic factors decreases leading to the disruption of the cytoskeleton of neurons, an increase in the level of intracellular calcium, and the activation of tau protein hyperphosphorylation. Moreover, the acetylcholinergic system is deficient in the background of the hyperactivation of acetylcholinesterase. Importantly, the activity of the dopaminergic, endorphin, and opiate systems in OBX mice decreases, leading to hormonal dysfunction. On the other hand, genes responsible for the regulation of circadian rhythms, cell migration, and innate immunity are activated in OBX animals. All this takes place in the background of a drastic downregulation of ribosomal protein genes in the brain. The obtained results indicate that OBX mice represent a model of Alzheimer's disease with elements of major depression.
Collapse
Affiliation(s)
- N V Bobkova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - L N Chuvakova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - V I Kovalev
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - D Y Zhdanova
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A V Chaplygina
- Institute of Cell Biophysics of the Russian Academy of Sciences-Federal Research Center, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 142290, Pushchino, Moscow Region, Russia
| | - A P Rezvykh
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia
| | - M B Evgen'ev
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991, Moscow, Russia.
| |
Collapse
|
6
|
Sun H, Lv C, Zhang X, Sun X, Chen S, Li K, Hu Y, Feng Y, Yin T, Jia J. Association of CHAT Gene Polymorphism rs3793790 and rs2177370 with Donepezil Response and the Risk of Alzheimer's Disease Continuum. Clin Interv Aging 2024; 19:1041-1050. [PMID: 38894884 PMCID: PMC11182730 DOI: 10.2147/cia.s462786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/04/2024] [Indexed: 06/21/2024] Open
Abstract
Background Genetic variation plays an important role in drug response, there are few relevant studies on patients with Alzheimer's disease continuum (ADC). Objective This study focused on the associations between two single nucleotide polymorphisms (SNPs) (rs3793790 and rs2177370) located in the CHAT gene and donepezil response in ADC patients, and further evaluated the associations between the two SNPs and ADC. Material and Methods According to 2018 National Institute on Aging and Alzheimer's Association (NIA-AA) standard, amyloid β-protein positive (Aβ+) and negative (Aβ-) patients were recruited according to the Aβ-PET/CT standard. rs3793790 and rs2177370 were genotyped in buccal swab samples by using the MassARRAY system. We used the Mini Mental State Examination (MMSE) in Chinese version, caregiver evaluation, and prescribing behavior to assess therapeutic response during the 9-month period. Using logistic regression models, we analyzed the relationship between the two SNPs and donepezil response in 58 Aβ+ patients treated with donepezil alone at the initial diagnosis of ADC. We also explored a probable link between the two SNPs and ADC in 147 Aβ+ and 73 Aβ- patients using a logistic regression analysis. Results The chance of donepezil response was higher in patients with the G allele of rs3793790 and/or the A allele of rs2177370 than in those without (odds ratio (OR) 6.83, 95% confidence interval (CI): 1.64-28.49). Additionally, the rs3793790 variant was not associated with ADC, whereas the A allele in rs2177370 increased 1.51-fold the ADC risk (OR 2.51, 95% CI: 1.28-4.95). Conclusion The genetic variants of rs3793790 and rs2177370 were associated with the donepezil response, and rs2177370 may have a moderate relationship with the risk of ADC.
Collapse
Affiliation(s)
- Hongmei Sun
- Medical School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Chao Lv
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, People’s Republic of China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xiaoxue Zhang
- Medical School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Xuan Sun
- Medical School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Geriatric Neurology, the Second Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Siyu Chen
- Medical School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Geriatric Neurology, the Second Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Ke Li
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Department of Geriatric Neurology, the Second Medical Centre, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yazhuo Hu
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, People’s Republic of China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Yuxin Feng
- Medical School, Chinese PLA General Hospital, Beijing, People’s Republic of China
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Tong Yin
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, People’s Republic of China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Jianjun Jia
- Institute of Geriatrics, Chinese PLA General Hospital, Beijing, People’s Republic of China
- National Clinical Research Center of Geriatric Diseases, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
7
|
Tripathi PN, Lodhi A, Rai SN, Nandi NK, Dumoga S, Yadav P, Tiwari AK, Singh SK, El-Shorbagi ANA, Chaudhary S. Review of Pharmacotherapeutic Targets in Alzheimer's Disease and Its Management Using Traditional Medicinal Plants. Degener Neurol Neuromuscul Dis 2024; 14:47-74. [PMID: 38784601 PMCID: PMC11114142 DOI: 10.2147/dnnd.s452009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. While there is currently no cure for AD, several pharmacotherapeutic targets and management strategies have been explored. Additionally, traditional medicinal plants have gained attention for their potential role in AD management. Pharmacotherapeutic targets in AD include amyloid-beta (Aβ) aggregation, tau protein hyperphosphorylation, neuroinflammation, oxidative stress, and cholinergic dysfunction. Traditional medicinal plants, such as Ginkgo biloba, Huperzia serrata, Curcuma longa (turmeric), and Panax ginseng, have demonstrated the ability to modulate these targets through their bioactive compounds. Ginkgo biloba, for instance, contains flavonoids and terpenoids that exhibit neuroprotective effects by reducing Aβ deposition and enhancing cerebral blood flow. Huperzia serrata, a natural source of huperzine A, has acetylcholinesterase-inhibiting properties, thus improving cholinergic function. Curcuma longa, enriched with curcumin, exhibits anti-inflammatory and antioxidant effects, potentially mitigating neuroinflammation and oxidative stress. Panax ginseng's ginsenosides have shown neuroprotective and anti-amyloidogenic properties. The investigation of traditional medicinal plants as a complementary approach to AD management offers several advantages, including a lower risk of adverse effects and potential multi-target interactions. Furthermore, the cultural knowledge and utilization of these plants provide a rich source of information for the development of new therapies. However, further research is necessary to elucidate the precise mechanisms of action, standardize preparations, and assess the safety and efficacy of these natural remedies. Integrating traditional medicinal-plant-based therapies with modern pharmacotherapies may hold the key to a more comprehensive and effective approach to AD treatment. This review aims to explore the pharmacotherapeutic targets in AD and assess the potential of traditional medicinal plants in its management.
Collapse
Affiliation(s)
- Prabhash Nath Tripathi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Ankit Lodhi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Sachchida Nand Rai
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Nilay Kumar Nandi
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Shweta Dumoga
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Pooja Yadav
- Department of Pharmaceutical Technology, Meerut Institute of Engineering and Technology, Meerut, Uttar Pradesh, India
| | - Amit Kumar Tiwari
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Santosh Kumar Singh
- Center of Experimental Medicine and Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Abdel-Nasser A El-Shorbagi
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| | - Sachin Chaudhary
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
8
|
Mishra CB, Shalini S, Gusain S, Kumar P, Kumari S, Choi YS, Kumari J, Moku BK, Yadav AK, Prakash A, Jeon R, Tiwari M. Multitarget action of Benzothiazole-piperazine small hybrid molecule against Alzheimer's disease: In silico, In vitro, and In vivo investigation. Biomed Pharmacother 2024; 174:116484. [PMID: 38565058 DOI: 10.1016/j.biopha.2024.116484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
A novel small molecule based on benzothiazole-piperazine has been identified as an effective multi-target-directed ligand (MTDL) against Alzheimer's disease (AD). Employing a medicinal chemistry approach, combined with molecular docking, MD simulation, and binding free energy estimation, compound 1 emerged as a potent MTDL against AD. Notably, compound 1 demonstrated efficient binding to both AChE and Aβ1-42, involving crucial molecular interactions within their active sites. It displayed a binding free energy (ΔGbind) -18.64± 0.16 and -16.10 ± 0.18 kcal/mol against AChE and Aβ1-42, respectively. In-silico findings were substantiated through rigorous in vitro and in vivo studies. In vitro analysis confirmed compound 1 (IC50=0.42 μM) as an effective, mixed-type, and selective AChE inhibitor, binding at both the enzyme's catalytic and peripheral anionic sites. Furthermore, compound 1 demonstrated a remarkable ability to reduce the aggregation propensity of Aβ, as evidenced by Confocal laser scanning microscopy and TEM studies. Remarkably, in vivo studies exhibited the promising therapeutic potential of compound 1. In a scopolamine-induced memory deficit mouse model of AD, compound 1 showed significantly improved spatial memory and cognition. These findings collectively underscore the potential of compound 1 as a promising therapeutic candidate for the treatment of AD.
Collapse
Affiliation(s)
- Chandra Bhushan Mishra
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea; Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Shruti Shalini
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Siddharth Gusain
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Pawan Kumar
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Shikha Kumari
- Department of Chemistry, Virginia Tech, Blacksburg, VA 24061, USA
| | - Yong-Sung Choi
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea
| | - Jyoti Kumari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Bala Krishna Moku
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anita Kumari Yadav
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India
| | - Amresh Prakash
- Amity Institute of Integrative Sciences and Health (AIISH), Amity University Haryana, Amity Education Valley, Gurgaon 122413, India
| | - Raok Jeon
- College of Pharmacy, Sookmyung Women's University, Cheongpa-ro 47-gil 100, Yongsan-gu, Seoul 04310, South Korea.
| | - Manisha Tiwari
- Dr. B. R. Ambedkar Centre for Biomedical Research, University of Delhi, New Delhi 110007, India.
| |
Collapse
|
9
|
Zadrozny M, Drapich P, Gasiorowska-Bien A, Niewiadomski W, Harrington CR, Wischik CM, Riedel G, Niewiadomska G. Neuroprotection of Cholinergic Neurons with a Tau Aggregation Inhibitor and Rivastigmine in an Alzheimer's-like Tauopathy Mouse Model. Cells 2024; 13:642. [PMID: 38607082 PMCID: PMC11011792 DOI: 10.3390/cells13070642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Basal forebrain cholinergic dysfunction, most likely linked with tau protein aggregation, is a characteristic feature of Alzheimer's disease (AD). Recent evidence suggests that tau protein is a putative target for the treatment of dementia, and the tau aggregation inhibitor, hydromethylthionine mesylate (HMTM), has emerged as a potential disease-modifying treatment. However, its efficacy was diminished in patients already receiving approved acetylcholinesterase inhibitors. In this study, we ask whether this negative interaction can also be mimicked in experimental tau models of AD and whether the underlying mechanism can be understood. From a previous age profiling study, 6-month-old line 1 (L1) tau transgenic mice were characterized by a severe reduction in several cholinergic markers. We therefore assessed whether long-term pre-exposure with the acetylcholinesterase inhibitor rivastigmine alone and in conjunction with the tau aggregation inhibitor HMTM can reverse cholinergic deficits in L1. Rivastigmine and HMTM, and combinations of the two compounds were administered orally for 11 weeks to both L1 and wild-type mice. The brains were sectioned with a focus on the basal forebrain, motor cortex and hippocampus. Immunohistochemical staining and quantification of choline acetyltransferase (ChAT), tyrosine kinase A (TrkA)-positive neurons and relative optical intensity (ROI) for vesicular acetylcholine transporter (VAChT), and acetylcholinesterase (AChE) reactivity confirmed reversal of the diminished cholinergic phenotype of interneurons (nucleus accumbens, striatum) and projection neurons (medial septum, nucleus basalis magnocellularis) by HMTM, to a greater extent than by rivastigmine alone in L1 mice. Combined administration did not yield additivity but, in most proxies, led to antagonistic effects in which rivastigmine decreased the benefits shown with HMTM alone. Local markers (VAChT and AChE) in target structures of the basal forebrain, motor cortex and hippocampal CA3 seemed to be normalized by HMTM, but not by rivastigmine or the combination of both drugs. HMTM, which was developed as a tau aggregation inhibitor, strongly decreased the tau load in L1 mice, however, not in combination with rivastigmine. Taken together, these data confirm a cholinergic phenotype in L1 tau transgenic mice that resembles the deficits observed in AD patients. This phenotype is reversible by HMTM, but at the same time appears to be subject to a homeostatic regulation induced by chronic pre-treatment with an acetylcholinesterase inhibitor, which interferes with the efficacy of HMTM. The strongest phenotypic reversal coincided with a normalization of the tau load in the cortex and hippocampus of L1, suggesting that tau accumulation underpins the loss of cholinergic markers in the basal forebrain and its projection targets.
Collapse
Affiliation(s)
- Maciej Zadrozny
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Patrycja Drapich
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Anna Gasiorowska-Bien
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Wiktor Niewiadomski
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
| | - Charles R. Harrington
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.R.H.); (C.M.W.); (G.R.)
- TauRx Therapeutics Ltd., Aberdeen AB24 3FX, UK
| | - Claude M. Wischik
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.R.H.); (C.M.W.); (G.R.)
- TauRx Therapeutics Ltd., Aberdeen AB24 3FX, UK
| | - Gernot Riedel
- School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen AB25 2ZD, UK; (C.R.H.); (C.M.W.); (G.R.)
| | - Grazyna Niewiadomska
- Mossakowski Medical Research Institute, 02-106 Warsaw, Poland; (M.Z.); (P.D.); (A.G.-B.); (W.N.)
- Nencki Institute of Experimental Biology, 02-093 Warsaw, Poland
| |
Collapse
|
10
|
De Waegenaere S, van den Berg M, Keliris GA, Adhikari MH, Verhoye M. Early altered directionality of resting brain network state transitions in the TgF344-AD rat model of Alzheimer's disease. Front Hum Neurosci 2024; 18:1379923. [PMID: 38646161 PMCID: PMC11026683 DOI: 10.3389/fnhum.2024.1379923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/18/2024] [Indexed: 04/23/2024] Open
Abstract
Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease resulting in memory loss and cognitive decline. Synaptic dysfunction is an early hallmark of the disease whose effects on whole-brain functional architecture can be identified using resting-state functional MRI (rsfMRI). Insights into mechanisms of early, whole-brain network alterations can help our understanding of the functional impact of AD's pathophysiology. Methods Here, we obtained rsfMRI data in the TgF344-AD rat model at the pre- and early-plaque stages. This model recapitulates the major pathological and behavioral hallmarks of AD. We used co-activation pattern (CAP) analysis to investigate if and how the dynamic organization of intrinsic brain functional networks states, undetectable by earlier methods, is altered at these early stages. Results We identified and characterized six intrinsic brain states as CAPs, their spatial and temporal features, and the transitions between the different states. At the pre-plaque stage, the TgF344-AD rats showed reduced co-activation of hub regions in the CAPs corresponding to the default mode-like and lateral cortical network. Default mode-like network activity segregated into two distinct brain states, with one state characterized by high co-activation of the basal forebrain. This basal forebrain co-activation was reduced in TgF344-AD animals mainly at the pre-plaque stage. Brain state transition probabilities were altered at the pre-plaque stage between states involving the default mode-like network, lateral cortical network, and basal forebrain regions. Additionally, while the directionality preference in the network-state transitions observed in the wild-type animals at the pre-plaque stage had diminished at the early-plaque stage, TgF344-AD animals continued to show directionality preference at both stages. Discussion Our study enhances the understanding of intrinsic brain state dynamics and how they are impacted at the early stages of AD, providing a nuanced characterization of the early, functional impact of the disease's neurodegenerative process.
Collapse
Affiliation(s)
- Sam De Waegenaere
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Monica van den Berg
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- Institute of Computer Science, Foundation for Research and Technology – Hellas, Heraklion, Greece
| | - Mohit H. Adhikari
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marleen Verhoye
- Department of Biomedical Sciences, Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium
- μNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
11
|
Banazadeh M, Abiri A, Poortaheri MM, Asnaashari L, Langarizadeh MA, Forootanfar H. Unexplored power of CRISPR-Cas9 in neuroscience, a multi-OMICs review. Int J Biol Macromol 2024; 263:130413. [PMID: 38408576 DOI: 10.1016/j.ijbiomac.2024.130413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/27/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The neuroscience and neurobiology of gene editing to enhance learning and memory is of paramount interest to the scientific community. The advancements of CRISPR system have created avenues to treat neurological disorders by means of versatile modalities varying from expression to suppression of genes and proteins. Neurodegenerative disorders have also been attributed to non-canonical DNA secondary structures by affecting neuron activity through controlling gene expression, nucleosome shape, transcription, translation, replication, and recombination. Changing DNA regulatory elements which could contribute to the fate and function of neurons are thoroughly discussed in this review. This study presents the ability of CRISPR system to boost learning power and memory, treat or cure genetically-based neurological disorders, and alleviate psychiatric diseases by altering the activity and the irritability of the neurons at the synaptic cleft through DNA manipulation, and also, epigenetic modifications using Cas9. We explore and examine how each different OMIC techniques can come useful when altering DNA sequences. Such insight into the underlying relationship between OMICs and cellular behaviors leads us to better neurological and psychiatric therapeutics by intelligently designing and utilizing the CRISPR/Cas9 technology.
Collapse
Affiliation(s)
- Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ardavan Abiri
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Integrated Graduate Program in Physical and Engineering Biology, Yale University, New Haven, CT 06520, USA
| | | | - Lida Asnaashari
- Student Research Committee, Kerman Universiy of Medical Sciences, Kerman, Iran
| | - Mohammad Amin Langarizadeh
- Department of Medicinal Chemistry, Faculty of Pharmacy, Kerman University of Medical Sciences, Kerman, Iran
| | - Hamid Forootanfar
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran.
| |
Collapse
|
12
|
Speidell A, Agbey C, Mocchetti I. Accelerated neurodegeneration of basal forebrain cholinergic neurons in HIV-1 gp120 transgenic mice: Critical role of the p75 neurotrophin receptor. Brain Behav Immun 2024; 117:347-355. [PMID: 38266662 PMCID: PMC10935610 DOI: 10.1016/j.bbi.2024.01.215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/26/2024] Open
Abstract
Human Immunodeficiency Virus-1 (HIV) infection of the brain induces HIV-associated neurocognitive disorders (HAND). The set of molecular events employed by HIV to drive cognitive impairments in people living with HIV are diverse and remain not completely understood. We have shown that the HIV envelope protein gp120 promotes loss of synapses and decreases performance on cognitive tasks through the p75 neurotrophin receptor (p75NTR). This receptor is abundant on cholinergic neurons of the basal forebrain and contributes to cognitive impairment in various neurological disorders. In this study, we examined cholinergic neurons of gp120 transgenic (gp120tg) mice for signs of degeneration. We observed that the number of choline acetyltransferase-expressing cells is decreased in old (12-14-month-old) gp120tg mice when compared to age matched wild type. In the same animals, we observed an increase in the levels of pro-nerve growth factor, a ligand of p75NTR, as well as a disruption of consolidation of extinction of conditioned fear, a behavior regulated by cholinergic neurons of the basal forebrain. Both biochemical and behavioral outcomes of gp120tg mice were rescued by the deletion of the p75NTR gene, strongly supporting the role that this receptor plays in the neurotoxic effects of gp120. These data indicate that future p75NTR-directed pharmacotherapies could provide an adjunct therapy against synaptic simplification caused by HIV.
Collapse
Affiliation(s)
- Andrew Speidell
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Christy Agbey
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Italo Mocchetti
- Interdisciplinary Program in Neuroscience, and Department of Neuroscience, NRB WP13, Georgetown University Medical Center, Washington, DC 20057, USA.
| |
Collapse
|
13
|
Ambeskovic M, Hopkins G, Hoover T, Joseph JT, Montina T, Metz GAS. Metabolomic Signatures of Alzheimer's Disease Indicate Brain Region-Specific Neurodegenerative Progression. Int J Mol Sci 2023; 24:14769. [PMID: 37834217 PMCID: PMC10573054 DOI: 10.3390/ijms241914769] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Pathological mechanisms contributing to Alzheimer's disease (AD) are still elusive. Here, we identified the metabolic signatures of AD in human post-mortem brains. Using 1H NMR spectroscopy and an untargeted metabolomics approach, we identified (1) metabolomic profiles of AD and age-matched healthy subjects in post-mortem brain tissue, and (2) region-common and region-unique metabolome alterations and biochemical pathways across eight brain regions revealed that BA9 was the most affected. Phenylalanine and phosphorylcholine were mainly downregulated, suggesting altered neurotransmitter synthesis. N-acetylaspartate and GABA were upregulated in most regions, suggesting higher inhibitory activity in neural circuits. Other region-common metabolic pathways indicated impaired mitochondrial function and energy metabolism, while region-unique pathways indicated oxidative stress and altered immune responses. Importantly, AD caused metabolic changes in brain regions with less well-documented pathological alterations that suggest degenerative progression. The findings provide a new understanding of the biochemical mechanisms of AD and guide biomarker discovery for personalized risk prediction and diagnosis.
Collapse
Affiliation(s)
- Mirela Ambeskovic
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Giselle Hopkins
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Tanzi Hoover
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
| | - Jeffrey T. Joseph
- Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Tony Montina
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| | - Gerlinde A. S. Metz
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada; (M.A.); (G.H.); (T.H.)
- Southern Alberta Genome Sciences Centre, University of Lethbridge, Lethbridge, AB T1K 3M4, Canada
| |
Collapse
|
14
|
Miller MR, Lee YF, Kastanenka KV. Calcium sensor Yellow Cameleon 3.6 as a tool to support the calcium hypothesis of Alzheimer's disease. Alzheimers Dement 2023; 19:4196-4203. [PMID: 37154246 PMCID: PMC10524576 DOI: 10.1002/alz.13111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 05/10/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disease with increasing relevance as dementia cases rise. The etiology of AD is widely debated. The Calcium Hypothesis of Alzheimer's disease and brain aging states that the dysfunction of calcium signaling is the final common pathway leading to neurodegeneration. When the Calcium Hypothesis was originally coined, the technology did not exist to test it, but with the advent of Yellow Cameleon 3.6 (YC3.6) we are able to test its validity. METHODS Here we review use of YC3.6 in studying Alzheimer's disease using mouse models and discuss whether these studies support or refute the Calcium Hypothesis. RESULTS YC3.6 studies showed that amyloidosis preceded dysfunction in neuronal calcium signaling and changes in synapse structure. This evidence supports the Calcium Hypothesis. DISCUSSION In vivo YC3.6 studies point to calcium signaling as a promising therapeutic target; however, additional work is necessary to translate these findings to humans.
Collapse
Affiliation(s)
- Morgan R. Miller
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Yee Fun Lee
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, 02118, USA
| | - Ksenia V. Kastanenka
- Department of Neurology, MassGeneral Institute of Neurodegenerative Diseases, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| |
Collapse
|
15
|
Atef MM, Mostafa YM, Ahmed AAM, El-Sayed NM. Simvastatin attenuates aluminium chloride-induced neurobehavioral impairments through activation of TGF-β1/ SMAD2 and GSK3β/β-catenin signalling pathways. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104220. [PMID: 37454825 DOI: 10.1016/j.etap.2023.104220] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/19/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease characterised by the presence of β-amyloid plaques and acetylcholine depletion leading to neurobehavioral defects. AD was contributed also with downregulation of TGF-β1/SMAD2 and GSK3β/β-catenin pathways. Simvastatin (SMV) improved memory function experimentally and clinically. Hence, this study aimed to investigate the mechanistic role of SMV against aluminium chloride (AlCl3) induced neurobehavioral impairments. AD was induced by AlCl3 (50 mg/kg) for 6 weeks. Mice received Simvastatin (10 or 20 mg/kg) or Donepezil (3 mg/kg) for 6 weeks after that the histopathological, immunohistochemical and biochemical test were examined. Treatment with SMV improved the memory deterioration induced by AlCl3 with significant recovery of the histopathological changes. This was concomitant with the decrease of AChE and Aβ (1-42). SMV provides its neuroprotective effect through upregulating the protein expression of β-catenin, TGF-β1 and downregulating the expression of GSK3β, TLR4 and p-SMAD2.
Collapse
Affiliation(s)
| | - Yasser M Mostafa
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt; Department of Pharmacology & Toxicology, Faculty of Pharmacy, Badr University in Cairo, Egypt
| | - Amal A M Ahmed
- Department of Cytology & Histology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Norhan M El-Sayed
- Department of Pharmacology & Toxicology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt.
| |
Collapse
|
16
|
Behera A, Sa N, Pradhan SP, Swain S, Sahu PK. Metal Nanoparticles in Alzheimer's Disease. J Alzheimers Dis Rep 2023; 7:791-810. [PMID: 37662608 PMCID: PMC10473155 DOI: 10.3233/adr-220112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 06/21/2023] [Indexed: 09/05/2023] Open
Abstract
Nanotechnology has emerged in different fields of biomedical application, including lifestyle diseases like diabetes, hypertension, and chronic kidney disease, neurodegenerative diseases like Alzheimer's disease (AD), Parkinson's disease, and different types of cancers. Metal nanoparticles are one of the most used drug delivery systems due to the benefits of their enhanced physicochemical properties as compared to bulk metals. Neurodegenerative diseases are the second most cause affecting mortality worldwide after cancer. Hence, they require the most specific and targeted drug delivery systems for maximum therapeutic benefits. Metal nanoparticles are the preferred drug delivery system, possessing greater blood-brain barrier permeability, biocompatibility, and enhanced bioavailability. But some metal nanoparticles exhibit neurotoxic activity owing to their shape, size, surface charge, or surface modification. This review article has discussed the pathophysiology of AD. The neuroprotective mechanism of gold, silver, selenium, ruthenium, cerium oxide, zinc oxide, and iron oxide nanoparticles are discussed. Again, the neurotoxic mechanisms of gold, iron oxide, titanium dioxide, and cobalt oxide are also included. The neuroprotective and neurotoxic effects of nanoparticles targeted for treating AD are discussed elaborately. The review also focusses on the biocompatibility of metal nanoparticles for targeting the brain in treating AD. The clinical trials and the requirement to develop new drug delivery systems are critically analyzed. This review can show a path for the researchers involved in the brain-targeted drug delivery for AD.
Collapse
Affiliation(s)
- Anindita Behera
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Nishigandha Sa
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | | | - Sunsita Swain
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Pratap Kumar Sahu
- School of Pharmaceutical Sciences, Siksha’ O’Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| |
Collapse
|
17
|
Rodríguez-Ruiz ER, Herrero-Labrador R, Fernández-Fernández AP, Serrano-Masa J, Martínez-Montero JA, González-Nieto D, Hana-Vaish M, Benchekroun M, Ismaili L, Marco-Contelles J, Martínez-Murillo R. The Proof-of-Concept of MBA121, a Tacrine-Ferulic Acid Hybrid, for Alzheimer's Disease Therapy. Int J Mol Sci 2023; 24:12254. [PMID: 37569630 PMCID: PMC10419016 DOI: 10.3390/ijms241512254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/26/2023] [Accepted: 07/30/2023] [Indexed: 08/13/2023] Open
Abstract
Great effort has been devoted to the synthesis of novel multi-target directed tacrine derivatives in the search of new treatments for Alzheimer's disease (AD). Herein we describe the proof of concept of MBA121, a compound designed as a tacrine-ferulic acid hybrid, and its potential use in the therapy of AD. MBA121 shows good β-amyloid (Aβ) anti-aggregation properties, selective inhibition of human butyrylcholinesterase, good neuroprotection against toxic insults, such as Aβ1-40, Aβ1-42, and H2O2, and promising ADMET properties that support translational developments. A passive avoidance task in mice with experimentally induced amnesia was carried out, MBA121 being able to significantly decrease scopolamine-induced learning deficits. In addition, MBA121 reduced the Aβ plaque burden in the cerebral cortex and hippocampus in APPswe/PS1ΔE9 transgenic male mice. Our in vivo results relate its bioavailability with the therapeutic response, demonstrating that MBA121 is a promising agent to treat the cognitive decline and neurodegeneration underlying AD.
Collapse
Affiliation(s)
- Emelina R. Rodríguez-Ruiz
- Neurovascular Research Group, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid, Spain; (E.R.R.-R.); (R.H.-L.); (A.P.F.-F.); (J.S.-M.); (J.A.M.-M.)
| | - Raquel Herrero-Labrador
- Neurovascular Research Group, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid, Spain; (E.R.R.-R.); (R.H.-L.); (A.P.F.-F.); (J.S.-M.); (J.A.M.-M.)
| | - Ana P. Fernández-Fernández
- Neurovascular Research Group, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid, Spain; (E.R.R.-R.); (R.H.-L.); (A.P.F.-F.); (J.S.-M.); (J.A.M.-M.)
| | - Julia Serrano-Masa
- Neurovascular Research Group, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid, Spain; (E.R.R.-R.); (R.H.-L.); (A.P.F.-F.); (J.S.-M.); (J.A.M.-M.)
| | - José A. Martínez-Montero
- Neurovascular Research Group, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid, Spain; (E.R.R.-R.); (R.H.-L.); (A.P.F.-F.); (J.S.-M.); (J.A.M.-M.)
| | - Daniel González-Nieto
- Experimental Neurology Unit, Center for Biomedical Technology (CTB), Universidad Politécnica de Madrid, Campus de Montegancedo S/N, Pozuelo de Alarcón, 28223 Madrid, Spain;
| | - Mayuri Hana-Vaish
- UT Southwestern Medical Center, Department of Neurosurgery, School of Medicine, Baylor College of Medicine, Rice University, Houston, TX 77005, USA;
| | - Mohamed Benchekroun
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive de Besançon, Groupe Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France;
| | - Lhassane Ismaili
- Laboratoire de Recherches Intégratives en Neurosciences et Psychologie Cognitive de Besançon, Groupe Chimie Médicinale, Université de Franche-Comté, F-25000 Besançon, France;
| | - José Marco-Contelles
- Laboratory of Medicinal Chemistry, Institute of Organic Chemistry (CSIC), C/Juan de la Cierva, 3, 28006 Madrid, Spain;
- Center for Biomedical Network Research on Rare Diseases (CIBERER), CIBER, ISCIII, 28029 Madrid, Spain
| | - Ricardo Martínez-Murillo
- Neurovascular Research Group, Instituto Cajal (CSIC), Ave. Doctor Arce 37, 28002 Madrid, Spain; (E.R.R.-R.); (R.H.-L.); (A.P.F.-F.); (J.S.-M.); (J.A.M.-M.)
| |
Collapse
|
18
|
Sie YY, Chen LC, Li CJ, Yuan YH, Hsiao SH, Lee MH, Wang CC, Hou WC. Inhibition of Acetylcholinesterase and Amyloid-β Aggregation by Piceatannol and Analogs: Assessing In Vitro and In Vivo Impact on a Murine Model of Scopolamine-Induced Memory Impairment. Antioxidants (Basel) 2023; 12:1362. [PMID: 37507902 PMCID: PMC10376691 DOI: 10.3390/antiox12071362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/28/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, no drug is effective in delaying the cognitive impairment of Alzheimer's disease, which ranks as one of the top 10 causes of death worldwide. Hydroxylated stilbenes are active compounds that exist in fruit and herbal plants. Piceatannol (PIC) and gnetol (GNT), which have one extra hydroxyl group in comparison to resveratrol (RSV), and rhapontigenin (RHA) and isorhapontigenin (isoRHA), which were metabolized from PIC in vivo and contain the same number of hydroxyl groups as RSV, were evaluated for their effects on Alzheimer's disease-associated factors in vitro and in animal experiments. Among the five hydroxylated stilbenes, PIC was shown to be the most active in DPPH radical scavenging and in inhibitory activities against acetylcholinesterase and amyloid-β peptide aggregations, with concentrations for half-maximal inhibitions of 40.2, 271.74, and 0.48 μM. The different interactions of the five hydroxylated stilbenes with acetylcholinesterase or amyloid-β were obtained by molecular docking. The scopolamine-induced ICR mice fed with PIC (50 mg/kg) showed an improved learning behavior in the passive avoidance tests and had significant differences (p < 0.05) compared with those in the control group. The RHA and isoRHA at 10 μM were proven to stimulate neurite outgrowths in the SH-SY5Y cell models. These results reveal that nutraceuticals or functional foods containing PIC have the potential for use in the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Yi-Yan Sie
- Ph.D. Program in Clinical Drug Development of Herbal Medicine, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
| | - Liang-Chieh Chen
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90089, USA
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Jhen Li
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Yu-Hsiang Yuan
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Sheng-Hung Hsiao
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Mei-Hsien Lee
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| | - Ching-Chiung Wang
- School of Pharmacy, Taipei Medical University, Taipei 110, Taiwan
- Traditional Herbal Medicine Research Center, Taipei Medical University Hospital, Taipei 110, Taiwan
| | - Wen-Chi Hou
- Graduate Institute of Pharmacognosy, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
19
|
Zheng Y, Zheng C, Tu W, Jiang Y, Lin H, Chen W, Lee Q, Zheng W. Danshensu inhibits Aβ aggregation and neurotoxicity as one of the main prominent features of Alzheimer's disease. Int J Biol Macromol 2023:125294. [PMID: 37315666 DOI: 10.1016/j.ijbiomac.2023.125294] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 06/03/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
It has been found that the main cause of neurodegenerative proteinopathies, especially Alzheimer's disease (AD) is the formation of Aβ amyloid plaques, which can be regulated by application of potential small molecules. In the present study, we aimed to investigate the inhibitory effect of danshensu on Aβ(1-42) aggregation and relevant apoptotic pathway in neurons. A broad range of spectroscopic, theoretical, and cellular assays were done to investigate the anti-amyloidogenic characteristics of danshensu. It was found that danshensu triggers its inhibitory effect against Aβ(1-42) aggregation through modulation of hydrophobic patches as well as structural and morphological changes through a stacking interaction. Furthermore, it was observed that incubation of Aβ(1-42) samples with danshensu during aggregation process recovered the cell viability and mitigated the expression of caspase-3 mRNA and protein as well caspase-3 activity deregulated by Aβ(1-42) amyloid fibrils alone. In general, obtained data showed that danshensu potentially inhibits Aβ(1-42) aggregation and associated proteinopathies through regulation of apoptotic pathway in a concentration-dependent manner. Therefore, danshensu may be used as a promising biomolecule against the Aβ aggregation and associated proteinopathies, which can be further analyzed in the future studies for the treatment of AD.
Collapse
Affiliation(s)
- Yuyin Zheng
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Cheng Zheng
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Wenzhan Tu
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yiwei Jiang
- Alberta Institute, Wenzhou Medical University, Wenzhou 325000, China
| | - Haiyan Lin
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Wangchao Chen
- State Key Laboratory of Ophthalmology, Optometry and Visual Science, Eye Hospital, Wenzhou Medical University, Wenzhou 325027, China
| | - Qian Lee
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Wu Zheng
- Rehabilitation Medicine Center, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China; Integrative & Optimized Medicine Research center, China-USA Institute for Acupuncture and Rehabilitation, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China.
| |
Collapse
|
20
|
Panes-Fernandez J, Godoy PA, Gavilan J, Ramírez-Molina O, Burgos CF, Marileo A, Flores-Núñez O, Castro PA, Moraga-Cid G, Yévenes GE, Muñoz-Montesino C, Fuentealba J. TG2 promotes amyloid beta aggregates: Impact on ER-mitochondria crosstalk, calcium homeostasis and synaptic function in Alzheimer’s disease. Biomed Pharmacother 2023; 162:114596. [PMID: 36989728 DOI: 10.1016/j.biopha.2023.114596] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Alzheimer's Disease (AD) is a neurodegenerative disorder characterized by cognitive impairment that increasingly affects the elderly. AD's main features have been related to cellular and molecular events, including the aberrant aggregation of the amyloid beta peptide (Aβ), Ca2+ dyshomeostasis, and increased mitochondria-associated membranes (MAMs). Transglutaminase type 2 (TG2) is a ubiquitous enzyme whose primary role is the Ca2+-dependent proteins transamidation, including the Aβ peptide. TG2 activity has been closely related to cellular damage and death. We detected increased TG2 levels in neuronal cells treated with Aβ oligomers (AβOs) and hippocampal slices from J20 mice using cellular and molecular approaches. In this work, we characterized the capacity of TG2 to interact and promote Aβ toxic aggregates (AβTG2). AβTG2 induced an acute increase in intracellular Ca2+, miniature currents, and hiperexcitability, consistent with an increased mitochondrial Ca2+ overload, IP3R-VDAC tethering, and mitochondria-endoplasmic reticulum contacts (MERCs). AβTG2 also decreased neuronal viability and excitatory postsynaptic currents, reinforcing the idea of synaptic failure associated with MAMs dysregulation mediated by TG2. Z-DON treatment, TG2 inhibitor, reduced calcium overload, mitochondrial membrane potential loss, and synaptic failure, indicating an involvement of TG2 in a toxic cycle which increases Aβ aggregation, Ca2+ overload, and MAMs upregulation. These data provide novel information regarding the role TG2 plays in synaptic function and contribute additional evidence to support the further development of TG2 inhibitors as a disease-modifying strategy for AD.
Collapse
|
21
|
Sanajou S, Erkekoğlu P, Şahin G, Baydar T. Role of aluminum exposure on Alzheimer's disease and related glycogen synthase kinase pathway. Drug Chem Toxicol 2023; 46:510-522. [PMID: 35443844 DOI: 10.1080/01480545.2022.2065291] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Aluminum (Al) is an environmentally abundant metal that is not essential for life. There is considerable evidence that Al as a neurotoxic xenobiotic may play a role in the pathogenesis of neurodegenerative diseases like Alzheimer's disease (AD). Exposure to aluminum has been shown to cause neuronal damage that resembles the symptoms of AD. In this review, we will summarize recent data about Al as the possible risk of incidence of AD. Then glycogen synthase kinase-3 beta (GSK3β) contributes to the hyperphosphorylation of Tau protein, the main component of neurofibrillary tangles, one of the hallmarks of AD as one of the mechanisms behind Al neurotoxicity will be covered. Overall, there is still a need for epidemiological studies and more in vivo and in vitro studies to determine the exact mechanisms of its neurotoxicity and the role of GSK3β in both Al toxic effect and AD.
Collapse
Affiliation(s)
- Sonia Sanajou
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Via Mersin 10, Turkey
| | - Pınar Erkekoğlu
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Gönül Şahin
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus, Via Mersin 10, Turkey
| | - Terken Baydar
- Department of Toxicology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| |
Collapse
|
22
|
Nguyen TH, Wang SL, Nguyen VB. Microorganism-Derived Molecules as Enzyme Inhibitors to Target Alzheimer's Diseases Pathways. Pharmaceuticals (Basel) 2023; 16:ph16040580. [PMID: 37111337 PMCID: PMC10146315 DOI: 10.3390/ph16040580] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. It increases the risk of other serious diseases and causes a huge impact on individuals, families, and socioeconomics. AD is a complex multifactorial disease, and current pharmacological therapies are largely based on the inhibition of enzymes involved in the pathogenesis of AD. Natural enzyme inhibitors are the potential sources for targeting AD treatment and are mainly collected from plants, marine organisms, or microorganisms. In particular, microbial sources have many advantages compared to other sources. While several reviews on AD have been reported, most of these previous reviews focused on presenting and discussing the general theory of AD or overviewing enzyme inhibitors from various sources, such as chemical synthesis, plants, and marine organisms, while only a few reviews regarding microbial sources of enzyme inhibitors against AD are available. Currently, multi-targeted drug investigation is a new trend for the potential treatment of AD. However, there is no review that has comprehensively discussed the various kinds of enzyme inhibitors from the microbial source. This review extensively addresses the above-mentioned aspect and simultaneously updates and provides a more comprehensive view of the enzyme targets involved in the pathogenesis of AD. The emerging trend of using in silico studies to discover drugs concerning AD inhibitors from microorganisms and perspectives for further experimental studies are also covered here.
Collapse
Affiliation(s)
- Thi Hanh Nguyen
- Doctoral Program in Applied Sciences, Tamkang University, New Taipei City 25137, Taiwan
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - San-Lang Wang
- Department of Chemistry, Tamkang University, New Taipei City 25137, Taiwan
| | - Van Bon Nguyen
- Institute of Biotechnology and Environment, Tay Nguyen University, Buon Ma Thuot 630000, Vietnam
| |
Collapse
|
23
|
Manayi A, Rastegari A, Heydarian B, Vahedi-Mazdabadi Y, Khanavi M, Akbarzadeh T, Saeedi M. Phytochemical investigation and biological activity of Doronicum pardalianches L. roots against Alzheimer's disease. Nat Prod Res 2023; 37:1227-1231. [PMID: 34727787 DOI: 10.1080/14786419.2021.1999944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The methanol extract of Doronicum pardalianches L. was fractionated using n-hexane, chloroform, and ethyl acetate to evaluate their cholinesterase (ChE) inhibitory activity via modified Ellman's method. It was perceived that only the ethyl acetate fraction was active toward acetylcholinesterase (AChE) with IC50 value of 172.21 µg/mL. Also, all fractions showed no butyrylcholinesterase (BChE) inhibitory activity. The ethyl acetate fraction was also investigated for its neuroprotectivity and metal chelating ability (Zn2+, Fe2+, and Cu2+) which demonstrated desired activity. Phytochemical analysis of the ethyl acetate fraction led to isolation and identification of formononetin 7-O-β-D-glucopyranoside which has not been previously reported for this plant.
Collapse
Affiliation(s)
- Azadeh Manayi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezoo Rastegari
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Bita Heydarian
- Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Yasaman Vahedi-Mazdabadi
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahnaz Khanavi
- Faculty of Pharmacy, Department of Pharmacognosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Tahmineh Akbarzadeh
- Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Faculty of Pharmacy, Department of Medicinal Chemistry, Tehran University of Medical Sciences, Tehran, Iran
| | - Mina Saeedi
- Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Persian Medicine and Pharmacy Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
24
|
Ailioaie LM, Ailioaie C, Litscher G. Photobiomodulation in Alzheimer's Disease-A Complementary Method to State-of-the-Art Pharmaceutical Formulations and Nanomedicine? Pharmaceutics 2023; 15:916. [PMID: 36986776 PMCID: PMC10054386 DOI: 10.3390/pharmaceutics15030916] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Alzheimer's disease (AD), as a neurodegenerative disorder, usually develops slowly but gradually worsens. It accounts for approximately 70% of dementia cases worldwide, and is recognized by WHO as a public health priority. Being a multifactorial disease, the origins of AD are not satisfactorily understood. Despite huge medical expenditures and attempts to discover new pharmaceuticals or nanomedicines in recent years, there is no cure for AD and not many successful treatments are available. The current review supports introspection on the latest scientific results from the specialized literature regarding the molecular and cellular mechanisms of brain photobiomodulation, as a complementary method with implications in AD. State-of-the-art pharmaceutical formulations, development of new nanoscale materials, bionanoformulations in current applications and perspectives in AD are highlighted. Another goal of this review was to discover and to speed transition to completely new paradigms for the multi-target management of AD, to facilitate brain remodeling through new therapeutic models and high-tech medical applications with light or lasers in the integrative nanomedicine of the future. In conclusion, new insights from this interdisciplinary approach, including the latest results from photobiomodulation (PBM) applied in human clinical trials, combined with the latest nanoscale drug delivery systems to easily overcome protective brain barriers, could open new avenues to rejuvenate our central nervous system, the most fascinating and complex organ. Picosecond transcranial laser stimulation could be successfully used to cross the blood-brain barrier together with the latest nanotechnologies, nanomedicines and drug delivery systems in AD therapy. Original, smart and targeted multifunctional solutions and new nanodrugs may soon be developed to treat AD.
Collapse
Affiliation(s)
- Laura Marinela Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Constantin Ailioaie
- Department of Medical Physics, Alexandru Ioan Cuza University, 11 Carol I Boulevard, 700506 Iasi, Romania
| | - Gerhard Litscher
- President of ISLA (International Society for Medical Laser Applications), Research Unit of Biomedical Engineering in Anesthesia and Intensive Care Medicine, Research Unit for Complementary and Integrative Laser Medicine, Traditional Chinese Medicine (TCM) Research Center Graz, Department of Anesthesiology and Intensive Care Medicine, Medical University of Graz, Auenbruggerplatz 39, 8036 Graz, Austria
| |
Collapse
|
25
|
Salimi-Nezhad N, Missault S, Notario-Reinoso A, Hassani A, Amiri M, Keliris GA. The impact of selective and non-selective medial septum stimulation on hippocampal neuronal oscillations: A study based on modeling and experiments. Neurobiol Dis 2023; 180:106052. [PMID: 36822547 DOI: 10.1016/j.nbd.2023.106052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/23/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with a rising socioeconomic impact on societies. The hippocampus (HPC), which plays an important role in AD, is affected in the early stages. The medial septum (MS) in the forebrain provides major cholinergic input to the HPC and has been shown to play a significant role in generating oscillations in hippocampal neurons. Cholinergic neurons in the basal forebrain are particularly vulnerable to neurodegeneration in AD. To better understand the role of MS neurons including the cholinergic, glutamatergic, and GABAergic subpopulations in generating the well-known brain rhythms in HPC including delta, theta, slow gamma, and fast gamma oscillations, we designed a detailed computational model of the septohippocampal pathway. We validated the results of our model, using electrophysiological recordings in HPC with and without stimulation of the cholinergic neurons in MS using designer receptors exclusively activated by designer drugs (DREADDs) in healthy male ChAT-cre rats. Then, we eliminated 75% of the MS cholinergic neurons in the model to simulate degeneration in AD. A series of selective and non-selective stimulations of the remaining MS neurons were performed to understand the dynamics of oscillation regulation in the HPC during the degenerated state. In this way, appropriate stimulation strategies able to normalize the aberrant oscillations are proposed. We found that selectively stimulating the remaining healthy cholinergic neurons was sufficient for network recovery and compare this to stimulating other subpopulations and a non-selective stimulation of all MS neurons. Our data provide valuable information for the development of new therapeutic strategies in AD and a tool to test and predict the outcome of potential theranostic manipulations.
Collapse
Affiliation(s)
- Nima Salimi-Nezhad
- Medical Biology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Anaïs Notario-Reinoso
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Atefe Hassani
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahmood Amiri
- Medical Technology Research Center, Institute of Health Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Georgios A Keliris
- Bio-Imaging Lab, University of Antwerp, Antwerp, Belgium; Institute of Computer Science, Foundation for Research and Technology Hellas, Heraklion, Crete, Greece.
| |
Collapse
|
26
|
The Nerve Growth Factor Receptor (NGFR/p75 NTR): A Major Player in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24043200. [PMID: 36834612 PMCID: PMC9965628 DOI: 10.3390/ijms24043200] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/01/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Alzheimer's disease (AD) represents the most prevalent type of dementia in elderly people, primarily characterized by brain accumulation of beta-amyloid (Aβ) peptides, derived from Amyloid Precursor Protein (APP), in the extracellular space (amyloid plaques) and intracellular deposits of the hyperphosphorylated form of the protein tau (p-tau; tangles or neurofibrillary aggregates). The Nerve growth factor receptor (NGFR/p75NTR) represents a low-affinity receptor for all known mammalians neurotrophins (i.e., proNGF, NGF, BDNF, NT-3 e NT-4/5) and it is involved in pathways that determine both survival and death of neurons. Interestingly, also Aβ peptides can blind to NGFR/p75NTR making it the "ideal" candidate in mediating Aβ-induced neuropathology. In addition to pathogenesis and neuropathology, several data indicated that NGFR/p75NTR could play a key role in AD also from a genetic perspective. Other studies suggested that NGFR/p75NTR could represent a good diagnostic tool, as well as a promising therapeutic target for AD. Here, we comprehensively summarize and review the current experimental evidence on this topic.
Collapse
|
27
|
Novel Strategy for Alzheimer’s Disease Treatment through Oral Vaccine Therapy with Amyloid Beta. Biologics 2023. [DOI: 10.3390/biologics3010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Alzheimer’s disease (AD) is a neuropathology characterized by progressive cognitive impairment and dementia. The disease is attributed to senile plaques, which are aggregates of amyloid beta (Aβ) outside nerve cells; neurofibrillary tangles, which are filamentous accumulations of phosphorylated tau in nerve cells; and loss of neurons in the brain tissue. Immunization of an AD mouse model with Aβ-eliminated pre-existing senile plaque amyloids and prevented new accumulation. Furthermore, its effect showed that cognitive function can be improved by passive immunity without side effects, such as lymphocyte infiltration in AD model mice treated with vaccine therapy, indicating the possibility of vaccine therapy for AD. Further, considering the possibility of side effects due to direct administration of Aβ, the practical use of the safe oral vaccine, which expressed Aβ in plants, is expected. Indeed, administration of this oral vaccine to Alzheimer’s model mice reduced Aβ accumulation in the brain. Moreover, almost no expression of inflammatory IgG was observed. Therefore, vaccination prior to Aβ accumulation or at an early stage of accumulation may prevent Aβ from causing AD.
Collapse
|
28
|
Pathological trajectory in the Ts65Dn model of Down syndrome. Aging (Albany NY) 2023; 15:295-297. [PMID: 36707069 PMCID: PMC9925689 DOI: 10.18632/aging.204497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/21/2023]
|
29
|
Identification of a Novel Dual Inhibitor of Acetylcholinesterase and Butyrylcholinesterase: In Vitro and In Silico Studies. Pharmaceuticals (Basel) 2023; 16:ph16010095. [PMID: 36678592 PMCID: PMC9864454 DOI: 10.3390/ph16010095] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The enhancement of cholinergic functions via acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) inhibition is considered a valuable therapeutic strategy for the treatment of Alzheimer's disease. This study aimed to evaluate the in vitro effect of ZINC390718, previously filtered using computational approaches, on both cholinesterases and to characterize, using a molecular dynamics (MD) simulation, the possible binding mode of this compound inside the cholinesterase enzymes. The in vitro cytotoxicity effect was also investigated using a primary astrocyte-enriched glial cell culture. ZINC390718 presented in vitro dual inhibitory activity against AChE at a high micromolar range (IC50 = 543.8 µM) and against BuChE (IC50 = 241.1 µM) in a concentration-dependent manner, with greater activity against BuChE. The MD simulation revealed that ZINC390718 performed important hydrophobic and H-bond interactions with the catalytic residue sites on both targets. The residues that promoted the hydrophobic interactions and H-bonding in the AChE target were Leu67, Trp86, Phe123, Tyr124, Ser293, Phe295, and Tyr341, and on the BuChE target, they were Asp70, Tyr332, Tyr128, Ile442, Trp82, and Glu197. The cytotoxic effect of Z390718, evaluated via cell viability, showed that the molecule has low in vitro toxicity. The in vitro and in silico results indicate that ZINC390718 can be used as chemotype for the optimization and identification of new dual cholinesterase inhibitors.
Collapse
|
30
|
Das B, Bhardwaj PK, Sharma N, Sarkar A, Haldar PK, Mukherjee PK. Evaluation of Mollugo oppositifolia Linn. as cholinesterase and β-secretase enzymes inhibitor. Front Pharmacol 2023; 13:990926. [PMID: 36686717 PMCID: PMC9846241 DOI: 10.3389/fphar.2022.990926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 12/05/2022] [Indexed: 01/05/2023] Open
Abstract
Mollugo oppositifolia Linn. is traditionally used in neurological complications. The study aimed to investigate in-vitro neuroprotective effect of the plant extracts through testing against acetylcholinesterase (AChE), butyrylcholinesterase (BChE), and β-secretase linked to Alzheimer's disease (AD). To understand the safety aspects, the extracts were tested for CYP450 isozymes and human hepatocellular carcinoma cell (HepG2) inhibitory potential. The heavy metal contents were estimated using atomic absorption spectroscopy (AAS). Further, the antioxidant capacities as well as total phenolic content and total flavonoid content (TFC) were measured spectrophotometrically. UPLC-QTOF-MS/MS analysis was employed to identify phytometabolites present in the extract. The interactions of the ligands with the target proteins (AChE, BChE, and BACE-1) were studied using AutoDockTools 1.5.6. The results showed that M. oppositifolia extract has more selectivity towards BChE (IC50 = 278.23 ± 1.89 μg/ml) as compared to AChE (IC50 = 322.87 ± 2.05 μg/ml). The IC50 value against β-secretase was 173.93 μg/ml. The extract showed a CC50 value of 965.45 ± 3.07 μg/ml against HepG2 cells and the AAS analysis showed traces of lead 0.02 ± 0.001 which was found to be within the WHO prescribed limits. Moreover, the IC50 values against CYP3A4 (477.03 ± 2.01 μg/ml) and CYP2D6 (249.65 ± 2.46 μg/ml) isozymes justify the safety aspects of the extract. The in silico molecular docking analysis of the target enzymes showed that the compound menthoside was found to be the most stable and showed a good docking score among all the identified metabolites. Keeping in mind the multi-targeted drug approach, the present findings suggested that M. oppositifolia extract have anti-Alzheimer's potential.
Collapse
Affiliation(s)
- Bhaskar Das
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India,Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Pardeep K. Bhardwaj
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India,*Correspondence: Pardeep K. Bhardwaj,
| | - Nanaocha Sharma
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| | - Arnab Sarkar
- Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pallab Kanti Haldar
- School of Natural Product Studies, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - Pulok K. Mukherjee
- Institute of Bioresources and Sustainable Development, Department of Biotechnology, Government of India, Imphal, India
| |
Collapse
|
31
|
Eissa KI, Kamel MM, Mohamed LW, Kassab AE. Development of new Alzheimer's disease drug candidates using donepezil as a key model. Arch Pharm (Weinheim) 2023; 356:e2200398. [PMID: 36149034 DOI: 10.1002/ardp.202200398] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/03/2022] [Accepted: 09/05/2022] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is one of the most prevalent geriatric diseases and a significant cause of high mortality. This crippling disorder is becoming more prevalent at an unprecedented rate, which has led to an increase in the financial cost of caring. It is a pathologically complicated, multifactorial disease characterized by β-amyloid precipitation, β-amyloid oligomer production, decrease in cholinergic function, and dysregulation of other neurotransmitter systems. Due to the pathogenic complexity of AD, multitarget drugs that can simultaneously alternate multiple biological targets may enhance the therapeutic efficacy. Donepezil (DNP) is the most potent approved drug for the treatment of AD. It has a remarkable effect on a number of AD-related processes, including cholinesterase activity, anti-Aβ aggregation, oxidative stress, and more. DNP resembles an excellent scaffold to be hybridized with other pharmacophoric moieties having biological activity against AD pathological factors. There have been significant attempts made to modify the structure of DNP to create new bioactive chemical entities with novel structural patterns. In this review, we highlight recent advances in the development of multiple-target DNP-hybridized models for the treatment of AD that can be used in the future in the rational design of new potential AD therapeutics. The design and development of new drug candidates for the treatment of AD using DNP as a molecular scaffold have also been reviewed and summarized.
Collapse
Affiliation(s)
- Kholoud I Eissa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mona M Kamel
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Lamia W Mohamed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Asmaa E Kassab
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
32
|
de Souza MM, Cenci AR, Teixeira KF, Machado V, Mendes Schuler MCG, Gonçalves AE, Paula Dalmagro A, André Cazarin C, Gomes Ferreira LL, de Oliveira AS, Andricopulo AD. DYRK1A Inhibitors and Perspectives for the Treatment of Alzheimer's Disease. Curr Med Chem 2023; 30:669-688. [PMID: 35726411 DOI: 10.2174/0929867329666220620162018] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/19/2022] [Indexed: 02/08/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a chronic neurodegenerative disease and the most common form of dementia, especially in the elderly. Due to the increase in life expectancy, in recent years, there has been an excessive growth in the number of people affected by this disease, causing serious problems for health systems. In recent years, research has been intensified to find new therapeutic approaches that prevent the progression of the disease. In this sense, recent studies indicate that the dual-specificity tyrosine phosphorylation regulated kinase 1A (DYRK1A) gene, which is located on chromosome 21q22.2 and overexpressed in Down syndrome (DS), may play a significant role in developmental brain disorders and early onset neurodegeneration, neuronal loss and dementia in DS and AD. Inhibiting DYRK1A may serve to stop the phenotypic effects of its overexpression and, therefore, is a potential treatment strategy for the prevention of ageassociated neurodegeneration, including Alzheimer-type pathology. OBJECTIVE In this review, we investigate the contribution of DYRK1A inhibitors as potential anti-AD agents. METHODS A search in the literature to compile an in vitro dataset including IC50 values involving DYRK1A was performed from 2014 to the present day. In addition, we carried out structure-activity relationship studies based on in vitro and in silico data. RESULTS molecular modeling and enzyme kinetics studies indicate that DYRK1A may contribute to AD pathology through its proteolytic process, reducing its kinase specificity. CONCLUSION further evaluation of DYRK1A inhibitors may contribute to new therapeutic approaches for AD.
Collapse
Affiliation(s)
- Márcia Maria de Souza
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Arthur Ribeiro Cenci
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Kerolain Faoro Teixeira
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | - Valkiria Machado
- Department of Exact Sciences and Education, Federal University of Santa Catarina, R. João Pessoa, 2750 - Velha, 89036-002, Blumenau, SC, Brazil
| | | | - Ana Elisa Gonçalves
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Ana Paula Dalmagro
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Camila André Cazarin
- School of Health Sciences, Graduate Program in Pharmaceutical Sciences, UNIVALI, Rua Uruguai, 458 F6 lab 206 Campus I, Centro, Itajai, SC, 88302-202, Brazil
| | - Leonardo Luiz Gomes Ferreira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Aldo Sena de Oliveira
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| | - Adriano Defini Andricopulo
- Laboratory of Medicinal and Computational Chemistry, Center for Research and Innovation in Biodiversity and Drug Discovery, Institute of Physics of São Carlos, University of São Paulo, São Carlos-SP, Brazil
| |
Collapse
|
33
|
Gollapalli P, Rao ASJ, Manjunatha H, Selvan GT, Shetty P, Kumari NS. Systems Pharmacology and Pharmacokinetics Strategy to Decode Bioactive Ingredients and Molecular Mechanisms from Zingiber officinale as Phyto-therapeutics against Neurological Diseases. Curr Drug Discov Technol 2023; 20:e250822207996. [PMID: 36028974 DOI: 10.2174/1570163819666220825141356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 05/24/2022] [Accepted: 06/24/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND The bioactive constituents from Zingiber officinale (Z. officinale) have shown a positive effect on neurodegenerative diseases like Alzheimer's disease (AD), which manifests as progressive memory loss and cognitive impairment. OBJECTIVE This study investigates the binding ability and the pharmaco-therapeutic potential of Z. officinale with AD disease targets by molecular docking and molecular dynamic (MD) simulation approaches. METHODS By coupling enormous available phytochemical data and advanced computational technologies, the possible molecular mechanism of action of these bioactive compounds was deciphered by evaluating phytochemicals, target fishing, and network biological analysis. RESULTS As a result, 175 bioactive compounds and 264 human target proteins were identified. The gene ontology and Kyoto Encyclopaedia of Genes and Genomes pathway enrichment analysis and molecular docking were used to predict the basis of vital bioactive compounds and biomolecular mechanisms involved in the treatment of AD. Amongst selected bioactive compounds, 10- Gingerdione and 1-dehydro-[8]-gingerdione exhibited significant anti-neurological properties against AD targeting amyloid precursor protein with docking energy of -6.0 and -5.6, respectively. CONCLUSION This study suggests that 10-Gingerdione and 1-dehydro-[8]-gingerdione strongly modulates the anti-neurological activity and are associated with pathological features like amyloid-β plaques and hyperphosphorylated tau protein are found to be critically regulated by these two target proteins. This comprehensive analysis provides a clue for further investigation of these natural compounds' inhibitory activity in drug discovery for AD treatment.
Collapse
Affiliation(s)
- Pavan Gollapalli
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
- Center for Bioinformatics, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Aditya S J Rao
- Plant Cell Biotechnology Department, CSIR-Central Food Technological Research Institute, Mysore-570017, Karnataka, India
| | - Hanumanthappa Manjunatha
- Department of Biochemistry, Jnana Bharathi Campus, Bangalore University, Bangalore, Karnataka, 560056, India
| | - Gnanasekaran Tamizh Selvan
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Praveenkumar Shetty
- Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| | - Nalilu Suchetha Kumari
- 1Central Research Laboratory, K.S. Hegde Medical Academy, Nitte (Deemed to be University), Mangalore-575018, Karnataka, India
| |
Collapse
|
34
|
Jiao L, Yu Z, Zhong X, Yao W, Xing L, Ma G, Shen J, Wu Y, Du K, Liu J, Tong J, Fu J, Wei M, Liu M. Cordycepin improved neuronal synaptic plasticity through CREB-induced NGF upregulation driven by MG-M2 polarization: a microglia-neuron symphony in AD. Biomed Pharmacother 2023; 157:114054. [PMID: 36462314 DOI: 10.1016/j.biopha.2022.114054] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/14/2022] [Accepted: 11/25/2022] [Indexed: 12/02/2022] Open
Abstract
PURPOSE Microglia-neuron crosstalk is critically involved in synaptic plasticity and degeneration by releasing diverse mediators in Alzheimer's disease (AD). Therefore, determining contributors that modulate the systemic microenvironment is essential. Cordycepin (CCS) is a novel neuroprotective compound obtained from Cordyceps militaris. However, the anti-AD efficacy and potential mechanism of CCS treatment remain unclear. This study aimed to elucidate the microglia-neuron symphony in AD after CCS treatment and to explore the possible mechanisms of its neuroprotective efficacy. METHODS AND RESULTS CCS treatment improved learning and memory impairment in 9-month-old APP/PS1 mice by behavioral tests. CCS polarized the microglia from M1 to M2, inhibited neuronal apoptosis and promoted synaptic remodeling accompanied by in vivo and in vitro upregulation of NGF. The cAMP-response element-binding protein (CREB) was also activated after MG-M2 polarization. Further, we verified that the sg3 promoter region of NGF (-1018 to -1011) is the key binding site for CREB-induced NGF transcription, which increased NGF expression and secretion. Finally, microglia-derived NGF was confirmed as an important mediator in microglia-neuron symphony to improve the neuronal microenvironment after CCS treatment. CONCLUSIONS CCS improved the neuronal synaptic plasticity and senescence by promoting MG-M2 activation driven by CREB-induced NGF upregulation and facilitated symphony communication between the microglia and neuron in AD. This study provides a new perspective on the development of a novel strategy for anti-AD therapy and offers new targets for anti-AD drug development.
Collapse
Affiliation(s)
- Linchi Jiao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Zhihua Yu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Xin Zhong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Weifan Yao
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Lijuan Xing
- Precision Laboratory of Panjin Central Hospital, Panjin, 124000, China.
| | - Guowei Ma
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Jiajia Shen
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Yuqiang Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Ke Du
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Junxiu Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Junhui Tong
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| | - Jia Fu
- Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110179, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China; Liaoning Medical Diagnosis and Treatment Center, Shenyang, 110179, China.
| | - Mingyan Liu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
35
|
Proteomic Signature and mRNA Expression in Hippocampus of SAMP8 and SAMR1 Mice during Aging. Int J Mol Sci 2022; 23:ijms232315097. [PMID: 36499421 PMCID: PMC9740614 DOI: 10.3390/ijms232315097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Aging is a complex process often accompanied by cognitive decline that represents a risk factor for many neurodegenerative disorders including Alzheimer's and Parkinson's disease. The molecular mechanisms involved in age-related cognitive decline are not yet fully understood, although increased neuroinflammation is considered to play a significant role. In this study, we characterized a proteomic view of the hippocampus of the senescence-accelerated mouse prone-8 (SAMP8), a model of enhanced senescence, in comparison with the senescence-accelerated-resistant mouse (SAMR1), a model of normal aging. We additionally investigated inflammatory cytokines and cholinergic components gene expression during aging in the mouse brain tissues. Proteomic data defined the expression of key proteins involved in metabolic and cellular processes in neuronal and glial cells of the hippocampus. Gene Ontology revealed that most of the differentially expressed proteins are involved in the cytoskeleton and cell motility regulation. Molecular analysis results showed that both inflammatory cytokines and cholinergic components are differentially expressed during aging, with a downward trend of cholinergic receptors and esterase enzymes expression, in contrast to an upward trend of inflammatory cytokines in the hippocampus of SAMP8. Together, our results support the important role of the cholinergic and cytokine systems in the aging of the murine brain.
Collapse
|
36
|
Barrantes FJ. Fluorescence microscopy imaging of a neurotransmitter receptor and its cell membrane lipid milieu. Front Mol Biosci 2022; 9:1014659. [PMID: 36518846 PMCID: PMC9743973 DOI: 10.3389/fmolb.2022.1014659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/01/2022] [Indexed: 05/02/2024] Open
Abstract
Hampered by the diffraction phenomenon, as expressed in 1873 by Abbe, applications of optical microscopy to image biological structures were for a long time limited to resolutions above the ∼200 nm barrier and restricted to the observation of stained specimens. The introduction of fluorescence was a game changer, and since its inception it became the gold standard technique in biological microscopy. The plasma membrane is a tenuous envelope of 4 nm-10 nm in thickness surrounding the cell. Because of its highly versatile spectroscopic properties and availability of suitable instrumentation, fluorescence techniques epitomize the current approach to study this delicate structure and its molecular constituents. The wide spectral range covered by fluorescence, intimately linked to the availability of appropriate intrinsic and extrinsic probes, provides the ability to dissect membrane constituents at the molecular scale in the spatial domain. In addition, the time resolution capabilities of fluorescence methods provide complementary high precision for studying the behavior of membrane molecules in the time domain. This review illustrates the value of various fluorescence techniques to extract information on the topography and motion of plasma membrane receptors. To this end I resort to a paradigmatic membrane-bound neurotransmitter receptor, the nicotinic acetylcholine receptor (nAChR). The structural and dynamic picture emerging from studies of this prototypic pentameric ligand-gated ion channel can be extrapolated not only to other members of this superfamily of ion channels but to other membrane-bound proteins. I also briefly discuss the various emerging techniques in the field of biomembrane labeling with new organic chemistry strategies oriented to applications in fluorescence nanoscopy, the form of fluorescence microscopy that is expanding the depth and scope of interrogation of membrane-associated phenomena.
Collapse
Affiliation(s)
- Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Catholic University of Argentina (UCA)–National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
37
|
Li N, Deng M, Hu G, Li N, Yuan H, Zhou Y. New Insights into Microglial Mechanisms of Memory Impairment in Alzheimer's Disease. Biomolecules 2022; 12:1722. [PMID: 36421736 PMCID: PMC9687453 DOI: 10.3390/biom12111722] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 09/15/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive and irreversible neurodegeneration characterized by the impairment of memory and cognition. Despite years of studies, no effective treatment and prevention strategies are available yet. Identifying new AD therapeutic targets is crucial for better elucidating the pathogenesis and establishing a valid treatment of AD. Growing evidence suggests that microglia play a critical role in AD. Microglia are resident macrophages in the central nervous system (CNS), and their core properties supporting main biological functions include surveillance, phagocytosis, and the release of soluble factors. Activated microglia not only directly mediate the central immune response, but also participate in the pathological changes of AD, including amyloid-beta (Aβ) aggregation, tau protein phosphorylation, synaptic dissection, neuron loss, memory function decline, etc. Based on these recent findings, we provide a new framework to summarize the role of microglia in AD memory impairment. This evidence suggests that microglia have the potential to become new targets for AD therapy.
Collapse
Affiliation(s)
- Na Li
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Medicine, Qingdao Binhai University, Qingdao 266555, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Mingru Deng
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Gonghui Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
| | - Nan Li
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
| | - Haicheng Yuan
- Department of Neurology, Affiliated Qingdao Central Hospital of Qingdao University, Qingdao 266042, China
| | - Yu Zhou
- Department of Rehabilitation Medicine, Affiliated Hospital of Qingdao University, Qingdao 266000, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Qingdao University, Qingdao 266071, China
- Department of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266000, China
- Institute of Brain Sciences and Related Disorders, Qingdao University, Qingdao 266071, China
| |
Collapse
|
38
|
Saeedi M, Iraji A, Vahedi-Mazdabadi Y, Alizadeh A, Edraki N, Firuzi O, Eftekhari M, Akbarzadeh T. Cinnamomum verum J. Presl. Bark essential oil: in vitro investigation of anti-cholinesterase, anti-BACE1, and neuroprotective activity. BMC Complement Med Ther 2022; 22:303. [DOI: 10.1186/s12906-022-03767-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 10/25/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Cinnamomum verum J. Presl. (Lauraceae), Myrtus communis L. (Myrtaceae), Ruta graveolens L. (Rutaaceae), Anethum graveolens L. (Apiaceae), Myristica fragrans Houtt. (Myristicaceae), and Crocus sativus L. (Iridaceae) have been recommended for improvement of memory via inhalation, in Iranian Traditional Medicine (ITM). In this respect, the essential oils (EOs) from those plants were obtained and evaluated for cholinesterase (ChE) inhibitory activity as ChE inhibitors are the available drugs in the treatment of Alzheimer’s disease (AD).
Methods
EOs obtained from the plants under investigation, were evaluated for their potential to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro based on the modified Ellman’s method. The most potent EO was candidate for the investigation of its beta-secretase 1 (BACE1) inhibitory activity and neuroprotectivity.
Results
Among all EOs, C. verum demonstrated the most potent activity toward AChE and BChE with IC50 values of 453.7 and 184.7 µg/mL, respectively. It also showed 62.64% and 41.79% inhibition against BACE1 at the concentration of 500 and 100 mg/mL, respectively. However, it depicted no neuroprotective potential against β-amyloid (Aβ)-induced neurotoxicity in PC12 cells. Also, identification of chemical composition of C. verum EO was achieved via gas chromatography-mass spectrometry (GC-MS) analysis and the major constituent; (E)-cinnamaldehyde, was detected as 68.23%.
Conclusion
Potent BChE inhibitory activity of C. verum EO can be considered in the development of cinnamon based dietary supplements for the management of patients with advanced AD.
Collapse
|
39
|
van den Berg M, Adhikari MH, Verschuuren M, Pintelon I, Vasilkovska T, Van Audekerke J, Missault S, Heymans L, Ponsaerts P, De Vos WH, Van der Linden A, Keliris GA, Verhoye M. Altered basal forebrain function during whole-brain network activity at pre- and early-plaque stages of Alzheimer's disease in TgF344-AD rats. Alzheimers Res Ther 2022; 14:148. [PMID: 36217211 PMCID: PMC9549630 DOI: 10.1186/s13195-022-01089-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/22/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND Imbalanced synaptic transmission appears to be an early driver in Alzheimer's disease (AD) leading to brain network alterations. Early detection of altered synaptic transmission and insight into mechanisms causing early synaptic alterations would be valuable treatment strategies. This study aimed to investigate how whole-brain networks are influenced at pre- and early-plague stages of AD and if these manifestations are associated with concomitant cellular and synaptic deficits. METHODS: To this end, we used an established AD rat model (TgF344-AD) and employed resting state functional MRI and quasi-periodic pattern (QPP) analysis, a method to detect recurrent spatiotemporal motifs of brain activity, in parallel with state-of-the-art immunohistochemistry in selected brain regions. RESULTS At the pre-plaque stage, QPPs in TgF344-AD rats showed decreased activity of the basal forebrain (BFB) and the default mode-like network. Histological analyses revealed increased astrocyte abundance restricted to the BFB, in the absence of amyloid plaques, tauopathy, and alterations in a number of cholinergic, gaba-ergic, and glutamatergic synapses. During the early-plaque stage, when mild amyloid-beta (Aβ) accumulation was observed in the cortex and hippocampus, QPPs in the TgF344-AD rats normalized suggesting the activation of compensatory mechanisms during this early disease progression period. Interestingly, astrogliosis observed in the BFB at the pre-plaque stage was absent at the early-plaque stage. Moreover, altered excitatory/inhibitory balance was observed in cortical regions belonging to the default mode-like network. In wild-type rats, at both time points, peak activity in the BFB preceded peak activity in other brain regions-indicating its modulatory role during QPPs. However, this pattern was eliminated in TgF344-AD suggesting that alterations in BFB-directed neuromodulation have a pronounced impact in network function in AD. CONCLUSIONS This study demonstrates the value of rsfMRI and advanced network analysis methods to detect early alterations in BFB function in AD, which could aid early diagnosis and intervention in AD. Restoring the global synaptic transmission, possibly by modulating astrogliosis in the BFB, might be a promising therapeutic strategy to restore brain network function and delay the onset of symptoms in AD.
Collapse
Affiliation(s)
- Monica van den Berg
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Mohit H. Adhikari
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Marlies Verschuuren
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Isabel Pintelon
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Tamara Vasilkovska
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Johan Van Audekerke
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Stephan Missault
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Loran Heymans
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Peter Ponsaerts
- grid.5284.b0000 0001 0790 3681Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute (Vaxinfectio), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Winnok H. De Vos
- grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Laboratory of Cell Biology and Histology, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,Antwerp Centre for Advanced Microscopy, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Annemie Van der Linden
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Georgios A. Keliris
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium ,grid.511960.aInstitute of Computer Science, Foundation for Research & Technology - Hellas, Heraklion, Crete, Greece
| | - Marleen Verhoye
- grid.5284.b0000 0001 0790 3681Bio-Imaging Lab, University of Antwerp, Universiteitsplein 1 2610 Wilrijk, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681µNEURO Research Centre of Excellence, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
40
|
Kumari S, Maddeboina K, Bachu RD, Boddu SHS, Trippier PC, Tiwari AK. Pivotal role of nitrogen heterocycles in Alzheimer's disease drug discovery. Drug Discov Today 2022; 27:103322. [PMID: 35868626 DOI: 10.1016/j.drudis.2022.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/21/2022] [Accepted: 07/14/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is a detrimental neurodegenerative disease that progressively worsens with time. Clinical options are limited and only provide symptomatic relief to AD patients. The search for effective anti-AD compounds is ongoing with a few already in Phase III clinical trials, yet to be approved. Heterocycles containing nitrogen are important to biological processes owing to their abundance in nature, their function as subunits of biological molecules and/or macromolecular structures, and their biological activities. The present review discusses previously used strategies, SAR, relevant in vitro and in vivo studies, and success stories of nitrogen-containing heterocyclic compounds in AD drug discovery. Also, we propose strategies for designing and developing novel potent anti-AD small molecules that can be used as treatments for AD.
Collapse
Affiliation(s)
- Shikha Kumari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA.
| | - Krishnaiah Maddeboina
- Molecular Targeted Therapeutics Laboratory, Levine Cancer Institute/Atrium Health, Charlotte, NC 28204, USA
| | - Rinda Devi Bachu
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA
| | - Sai H S Boddu
- College of Pharmacy and Health Sciences, Ajman University, UAE; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE
| | - Paul C Trippier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, UNMC Center for Drug Discovery, Fred & Pamela Buffett Cancer Center, Omaha, NE 68198, USA
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, The University of Toledo, Toledo, OH 43614, USA; Center of Medical and Bio-allied Health Sciences Research, Ajman University, P.O. Box 346, Ajman, UAE; Department of Cancer Biology, College of Medicine and Life Sciences, The University of Toledo, Toledo, OH 43614, USA.
| |
Collapse
|
41
|
Preclinical and randomized clinical evaluation of the p38α kinase inhibitor neflamapimod for basal forebrain cholinergic degeneration. Nat Commun 2022; 13:5308. [PMID: 36130946 PMCID: PMC9492778 DOI: 10.1038/s41467-022-32944-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/23/2022] [Indexed: 12/14/2022] Open
Abstract
The endosome-associated GTPase Rab5 is a central player in the molecular mechanisms leading to degeneration of basal forebrain cholinergic neurons (BFCN), a long-standing target for drug development. As p38α is a Rab5 activator, we hypothesized that inhibition of this kinase holds potential as an approach to treat diseases associated with BFCN loss. Herein, we report that neflamapimod (oral small molecule p38α inhibitor) reduces Rab5 activity, reverses endosomal pathology, and restores the numbers and morphology of BFCNs in a mouse model that develops BFCN degeneration. We also report on the results of an exploratory (hypothesis-generating) phase 2a randomized double-blind 16-week placebo-controlled clinical trial (Clinical trial registration: NCT04001517/EudraCT #2019-001566-15) of neflamapimod in mild-to-moderate dementia with Lewy bodies (DLB), a disease in which BFCN degeneration is an important driver of disease expression. A total of 91 participants, all receiving background cholinesterase inhibitor therapy, were randomized 1:1 between neflamapimod 40 mg or matching placebo capsules (taken orally twice-daily if weight <80 kg or thrice-daily if weight >80 kg). Neflamapimod does not show an effect in the clinical study on the primary endpoint, a cognitive-test battery. On two secondary endpoints, a measure of functional mobility and a dementia rating-scale, improvements were seen that are consistent with an effect on BFCN function. Neflamapimod treatment is well-tolerated with no study drug associated treatment discontinuations. The combined preclinical and clinical observations inform on the validity of the Rab5-based pathogenic model of cholinergic degeneration and provide a foundation for confirmatory (hypothesis-testing) clinical evaluation of neflamapimod in DLB.
Collapse
|
42
|
Fide E, Yerlikaya D, Öz D, Öztura İ, Yener G. Normalized Theta but Increased Gamma Activity after Acetylcholinesterase Inhibitor Treatment in Alzheimer's Disease: Preliminary qEEG Study. Clin EEG Neurosci 2022; 54:305-315. [PMID: 35957592 DOI: 10.1177/15500594221120723] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetylcholinesterase inhibitors (AChE-I) are the core treatment of mild to severe Alzheimer's disease (AD). However, the efficacy of AChE-I treatment on electroencephalography (EEG) and cognition remains unclear. We aimed to investigate the EEG power and coherence changes, in addition to neuropsychological performance, following a one-year treatment. Nine de-novo AD patients and demographically-matched healthy controls (HC) were included. After baseline assessments, all AD participants started cholinergic therapy. We found that baseline and follow-up gamma power analyzes were similar between groups. Yet, within the AD group after AChE-I intake, individuals with AD displayed higher gamma power compared to their baselines (P < .039). Also, baseline gamma coherence analysis showed lower values in the AD than in HC (P < .048), while these differences disappeared with increased gamma values of AD patients at the follow-up. Within the AD group after AChE-I intake, individuals with AD displayed higher theta and alpha coherence compared to their baselines (all, P < .039). These increased results within the AD group may result from a subclinical epileptiform activity. Even though AChE-I is associated with lower mortality, our results showed a significant effect on EEG power yet can increase the subclinical epileptiform activity. It is essential to be conscious of the seizure risk that treatment may cause.
Collapse
Affiliation(s)
- Ezgi Fide
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Deniz Yerlikaya
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey
| | - Didem Öz
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Global Brain Health Institute, 8785University of California San Francisco, San Francisco, CA, USA.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - İbrahim Öztura
- Department of Neurosciences, Institute of Health Sciences, 37508Dokuz Eylül University, Izmir, Turkey.,Department of Neurology, 37508Dokuz Eylül University Medical School, Izmir, Turkey.,Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey
| | - Görsev Yener
- Brain Dynamics Multidisciplinary Research Center, 37508Dokuz Eylül University, Izmir, Turkey.,Faculty of Medicine, 605730Izmir University of Economics, Izmir, Turkey.,Izmir Biomedicine and Genome Center, Izmir, Turkey
| |
Collapse
|
43
|
La Barbera L, Mauri E, D’Amelio M, Gori M. Functionalization strategies of polymeric nanoparticles for drug delivery in Alzheimer's disease: Current trends and future perspectives. Front Neurosci 2022; 16:939855. [PMID: 35992936 PMCID: PMC9387393 DOI: 10.3389/fnins.2022.939855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/11/2022] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, is a progressive and multifactorial neurodegenerative disorder whose primary causes are mostly unknown. Due to the increase in life expectancy of world population, including developing countries, AD, whose incidence rises dramatically with age, is at the forefront among neurodegenerative diseases. Moreover, a definitive cure is not yet within reach, imposing substantial medical and public health burdens at every latitude. Therefore, the effort to devise novel and effective therapeutic strategies is still of paramount importance. Genetic, functional, structural and biochemical studies all indicate that new and efficacious drug delivery strategies interfere at different levels with various cellular and molecular targets. Over the last few decades, therapeutic development of nanomedicine at preclinical stage has shown to progress at a fast pace, thus paving the way for its potential impact on human health in improving prevention, diagnosis, and treatment of age-related neurodegenerative disorders, including AD. Clinical translation of nano-based therapeutics, despite current limitations, may present important advantages and innovation to be exploited in the neuroscience field as well. In this state-of-the-art review article, we present the most promising applications of polymeric nanoparticle-mediated drug delivery for bypassing the blood-brain barrier of AD preclinical models and boost pharmacological safety and efficacy. In particular, novel strategic chemical functionalization of polymeric nanocarriers that could be successfully employed for treating AD are thoroughly described. Emphasis is also placed on nanotheranostics as both potential therapeutic and diagnostic tool for targeted treatments. Our review highlights the emerging role of nanomedicine in the management of AD, providing the readers with an overview of the nanostrategies currently available to develop future therapeutic applications against this chronic neurodegenerative disease.
Collapse
Affiliation(s)
- Livia La Barbera
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Emanuele Mauri
- Department of Engineering, Università Campus Bio-Medico di Roma, Rome, Italy
| | - Marcello D’Amelio
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Santa Lucia Foundation, IRCSS, Rome, Italy
| | - Manuele Gori
- Department of Medicine and Surgery, Università Campus Bio-Medico di Roma, Rome, Italy
- Institute of Biochemistry and Cell Biology (IBBC) - National Research Council (CNR), Rome, Italy
| |
Collapse
|
44
|
Anupama KP, Antony A, Shilpa O, Raghu SV, Gurushankara HP. Jatamansinol from Nardostachys jatamansi Ameliorates Tau-Induced Neurotoxicity in Drosophila Alzheimer's Disease Model. Mol Neurobiol 2022; 59:6091-6106. [PMID: 35864434 DOI: 10.1007/s12035-022-02964-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/14/2022] [Indexed: 11/27/2022]
Abstract
Nardostachys jatamansi has long been used to prepare Medhya Rasayana in traditional Indian Ayurveda medicine to treat neurological disorders and enhance memory. Jatamansinol from the N. jatamansi against Alzheimer's disease (AD) showed that it could be a multitargeted drug against AD. Drosophila is an ideal model organism for studying a progressive age-related neurodegenerative disease such as AD since its neuronal organizations and functioning are highly similar to that of humans. The current study investigates the neuroprotective properties of jatamansinol against Tau-induced neurotoxicity in the AD Drosophila model. Results indicate jatamansinol is not an antifeedant for larva and adult Drosophila. Lifespan, locomotor activity, learning and memory, Tau protein expression level, eye degeneration, oxidative stress level, and cholinesterase activities were analyzed in 10, 20, and 30-day-old control (wild type), and tauopathy flies reared on jatamansinol supplemented food or regular food without jatamansinol supplementation. Jatamansinol treatment significantly extends the lifespan, improves locomotor activity, enhances learning and memory, and reduces Tau protein levels in tauopathy flies. It boosts the antioxidant enzyme activities, prevents Tau-induced oxidative stress, ameliorates eye degeneration, and inhibits cholinesterase activities in Tau-induced AD model. This study provides the first evidence that jatamansinol protects against Tau's neurotoxic effect in the AD Drosophila model, and it can be a potential therapeutic drug candidate for AD.
Collapse
Affiliation(s)
- Kizhakke Purayil Anupama
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Thejaswini Hills, Periya, Kasaragod, 671 320, Kerala, India
| | - Anet Antony
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Thejaswini Hills, Periya, Kasaragod, 671 320, Kerala, India
| | - Olakkaran Shilpa
- Department of Zoology, School of Biological Sciences, Central University of Kerala, Thejaswini Hills, Periya, Kasaragod, 671 320, Kerala, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangotri, 574 199, Karnataka, India
| | | |
Collapse
|
45
|
Legault EM, Bouquety J, Drouin-Ouellet J. Disease Modeling of Neurodegenerative Disorders Using Direct Neural Reprogramming. Cell Reprogram 2022; 24:228-251. [PMID: 35749150 DOI: 10.1089/cell.2021.0172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Understanding the pathophysiology of CNS-associated neurological diseases has been hampered by the inaccessibility of patient brain tissue to perform live analyses at the molecular level. To this end, neural cells obtained by differentiation of patient-derived induced pluripotent stem cells (iPSCs) are considerably helpful, especially in the context of monogenic-based disorders. More recently, the use of direct reprogramming to convert somatic cells to neural cells has emerged as an alternative to iPSCs to generate neurons, astrocytes, and oligodendrocytes. This review focuses on the different studies that used direct neural reprogramming to study disease-associated phenotypes in the context of neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis.
Collapse
Affiliation(s)
| | - Julie Bouquety
- Faculty of Pharmacy, Université de Montréal, Montreal, Canada
| | | |
Collapse
|
46
|
Sivaraman B, Raji V, Velmurugan BA, Natarajan R. Acetylcholinesterase Enzyme Inhibitor Molecules with Therapeutic Potential for Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:427-449. [PMID: 34602041 DOI: 10.2174/1871527320666210928160159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 08/19/2021] [Accepted: 08/30/2021] [Indexed: 11/22/2022]
Abstract
Acetylcholinesterase (AchE), hydrolase enzyme, regulates the hydrolysis of acetylcholine neurotransmitter in the neurons. AchE is found majorly in the central nervous system at the site of cholinergic neurotransmission. It is involved in the pathophysiology of Alzheimer's diseasecausing dementia, cognitive impairment, behavioral and psychological symptoms. Recent findings involved the inhibition of AchE that could aid in the treatment of Alzheimer's. Many drugs of different classes are being analyzed in the clinical trials and examined for their potency. Drugs that are used in the treatment of Alzheimer's disease are donepezil, galantamine, tacrine, rivastigmine showing major adverse effects. To overcome this, researchers work on novel drugs to elicit inhibition. This review comprises many hybrids and non-hybrid forms of heteroaromatic and nonheteroaromatic compounds that were designed and evaluated for AchE inhibition by Ellman's method of assay. These novel compounds may assist future perspectives in the discovery of novel moieties against Alzheimer's disease by the inhibition of AchE.
Collapse
Affiliation(s)
- Bhuvaneswari Sivaraman
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| | - Vijaykumar Raji
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| | - Bala Aakash Velmurugan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| | - Ramalakshmi Natarajan
- Department of Pharmaceutical Chemistry, C.L. Baid Metha College of Pharmacy, Thoraipakkam, Chennai-97, Tamilnadu, India
| |
Collapse
|
47
|
Narine M, Colognato H. Current Insights Into Oligodendrocyte Metabolism and Its Power to Sculpt the Myelin Landscape. Front Cell Neurosci 2022; 16:892968. [PMID: 35573837 PMCID: PMC9097137 DOI: 10.3389/fncel.2022.892968] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 04/06/2022] [Indexed: 12/20/2022] Open
Abstract
Once believed to be part of the nervenkitt or "nerve glue" network in the central nervous system (CNS), oligodendroglial cells now have established roles in key neurological functions such as myelination, neuroprotection, and motor learning. More recently, oligodendroglia has become the subject of intense investigations aimed at understanding the contributions of its energetics to CNS physiology and pathology. In this review, we discuss the current understanding of oligodendroglial metabolism in regulating key stages of oligodendroglial development and health, its role in providing energy to neighboring cells such as neurons, as well as how alterations in oligodendroglial bioenergetics contribute to disease states. Importantly, we highlight how certain inputs can regulate oligodendroglial metabolism, including extrinsic and intrinsic mediators of cellular signaling, pharmacological compounds, and even dietary interventions. Lastly, we discuss emerging studies aimed at discovering the therapeutic potential of targeting components within oligodendroglial bioenergetic pathways.
Collapse
Affiliation(s)
- Mohanlall Narine
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
- Department of Neurobiology, & Behavior, Stony Brook University, Stony Brook, NY, United States
| | - Holly Colognato
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
48
|
Scalable Functionalization of Polyaniline-Grafted rGO Field-Effect Transistors for a Highly Sensitive Enzymatic Acetylcholine Biosensor. BIOSENSORS 2022; 12:bios12050279. [PMID: 35624580 PMCID: PMC9138234 DOI: 10.3390/bios12050279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022]
Abstract
For decades, acetylcholine (Ach) has been considered a critical biomarker for several degenerative brain diseases, including Alzheimer’s, Parkinson’s disease, Huntington’s disease, and schizophrenia. Here, we propose a wafer-scale fabrication of polyaniline (PAni)-grafted graphene-based field-effect transistors (PGFET) and their biosensing applications for highly sensitive and reliable real-time monitoring of Ach in flow configuration. The grafted PAni provides suitable electrostatic binding sites for enzyme immobilization and enhances the pH sensitivity (2.68%/pH), compared to that of bare graphene-FET (1.81%/pH) for a pH range of 3–9 without any pH-hysteresis. We further evaluated the PGFET’s sensing performance for Ach detection with a limit of detection at the nanomolar level and significantly improved sensitivity (~103%) in the concentration range of 108 nM to 2 mM. Moreover, the PGFET exhibits excellent selectivity against various interferences, including glucose, ascorbic acid, and neurotransmitters dopamine and serotonin. Finally, we investigated the effects of an inhibitor (rivastigmine) on the AchE activity of the PGFET. From the results, we demonstrated that the PGFET has great potential as a real-time drug-screening platform by monitoring the inhibitory effects on enzymatic activity.
Collapse
|
49
|
Varela L, Garcia-Rendueles MER. Oncogenic Pathways in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23063223. [PMID: 35328644 PMCID: PMC8952192 DOI: 10.3390/ijms23063223] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/05/2023] Open
Abstract
Cancer and neurodegenerative diseases are two of the leading causes of premature death in modern societies. Their incidence continues to increase, and in the near future, it is believed that cancer will kill more than 20 million people per year, and neurodegenerative diseases, due to the aging of the world population, will double their prevalence. The onset and the progression of both diseases are defined by dysregulation of the same molecular signaling pathways. However, whereas in cancer, these alterations lead to cell survival and proliferation, neurodegenerative diseases trigger cell death and apoptosis. The study of the mechanisms underlying these opposite final responses to the same molecular trigger is key to providing a better understanding of the diseases and finding more accurate treatments. Here, we review the ten most common signaling pathways altered in cancer and analyze them in the context of different neurodegenerative diseases such as Alzheimer's (AD), Parkinson's (PD), and Huntington's (HD) diseases.
Collapse
Affiliation(s)
- Luis Varela
- Yale Center for Molecular and Systems Metabolism, Department of Comparative Medicine, School of Medicine, Yale University, 310 Cedar St. BML 330, New Haven, CT 06520, USA
- Correspondence: (L.V.); (M.E.R.G.-R.)
| | - Maria E. R. Garcia-Rendueles
- Precision Nutrition and Cancer Program, IMDEA Food Institute, Campus Excelencia Internacional UAM+CSIC, 28049 Madrid, Spain
- Correspondence: (L.V.); (M.E.R.G.-R.)
| |
Collapse
|
50
|
Hardy-Sosa A, León-Arcia K, Llibre-Guerra JJ, Berlanga-Acosta J, Baez SDLC, Guillen-Nieto G, Valdes-Sosa PA. Diagnostic Accuracy of Blood-Based Biomarker Panels: A Systematic Review. Front Aging Neurosci 2022; 14:683689. [PMID: 35360215 PMCID: PMC8963375 DOI: 10.3389/fnagi.2022.683689] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 01/24/2022] [Indexed: 01/10/2023] Open
Abstract
Background Because of high prevalence of Alzheimer's disease (AD) in low- and middle-income countries (LMICs), there is an urgent need for inexpensive and minimally invasive diagnostic tests to detect biomarkers in the earliest and asymptomatic stages of the disease. Blood-based biomarkers are predicted to have the most impact for use as a screening tool and predict the onset of AD, especially in LMICs. Furthermore, it has been suggested that panels of markers may perform better than single protein candidates. Methods Medline/Pubmed was searched to identify current relevant studies published from January 2016 to December 2020. We included all full-text articles examining blood-based biomarkers as a set of protein markers or panels to aid in AD's early diagnosis, prognosis, and characterization. Results Seventy-six articles met the inclusion criteria for systematic review. Majority of the studies reported plasma and serum as the main source for biomarker determination in blood. Protein-based biomarker panels were reported to aid in AD diagnosis and prognosis with better accuracy than individual biomarkers. Conventional (amyloid-beta and tau) and neuroinflammatory biomarkers, such as amyloid beta-42, amyloid beta-40, total tau, phosphorylated tau-181, and other tau isoforms, were the most represented. We found the combination of amyloid beta-42/amyloid beta-40 ratio and APOEε4 status to be most represented with high accuracy for predicting amyloid beta-positron emission tomography status. Conclusion Assessment of Alzheimer's disease biomarkers in blood as a non-invasive and cost-effective alternative will potentially contribute to early diagnosis and improvement of therapeutic interventions. Given the heterogeneous nature of AD, combination of markers seems to perform better in the diagnosis and prognosis of the disease than individual biomarkers.
Collapse
Affiliation(s)
- Anette Hardy-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | | | | | - Saiyet de la C. Baez
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Ingeniería Genética y Biotecnología, La Habana, Cuba
| | | | - Pedro A. Valdes-Sosa
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, China
- Centro de Neurociencias de Cuba, La Habana, Cuba
| |
Collapse
|