1
|
Xiang J, Zhang Z, Wu S, Ye K. Positron emission tomography tracers for synucleinopathies. Mol Neurodegener 2025; 20:1. [PMID: 39757220 DOI: 10.1186/s13024-024-00787-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025] Open
Abstract
Synucleinopathies, such as Parkinson's disease, dementia with Lewy bodies, and multiple system atrophy, are characterized by the aggregation of α-synuclein. Variations in brain distribution allow for differentiation among these diseases and facilitate precise clinical diagnosis. However, distinguishing between synucleinopathies and Parkinsonism with tauopathies poses a challenge, significantly impacting clinical drug development. Therefore, molecular imaging is crucial for synucleinopathies, particularly for clinical diagnosis, assessment of drug efficacy, and disease surveillance. In recent years, advances in molecular imaging have led to rapid development of α-synuclein-specific tracers for positron emission tomography (PET), most of which are still in pre-clinical stages. Interestingly, some of these tracers share similar compound skeletal structures and are currently undergoing optimization for clinical application. Despite this progress, there remain challenges in developing α-synuclein tracers. This review summarizes recent findings on promising PET tracers and discusses representative compounds' characteristics while offering suggestions for further research orientation.
Collapse
Affiliation(s)
- Jie Xiang
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shengxi Wu
- Department of Neurobiology, Fourth Military Medical University, Xi'an, 710032, China
| | - Keqiang Ye
- Faculty of Life and Health Sciences, Shenzhen University of Advanced Technology (SUAT), Shenzhen, China.
- Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
2
|
Gao Y, Zhang J, Tang T, Liu Z. Hypoxia Pathways in Parkinson's Disease: From Pathogenesis to Therapeutic Targets. Int J Mol Sci 2024; 25:10484. [PMID: 39408813 PMCID: PMC11477385 DOI: 10.3390/ijms251910484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/23/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The human brain is highly dependent on oxygen, utilizing approximately 20% of the body's oxygen at rest. Oxygen deprivation to the brain can lead to loss of consciousness within seconds and death within minutes. Recent studies have identified regions of the brain with spontaneous episodic hypoxia, referred to as "hypoxic pockets". Hypoxia can also result from impaired blood flow due to conditions such as heart disease, blood clots, stroke, or hemorrhage, as well as from reduced oxygen intake or excessive oxygen consumption caused by factors like low ambient oxygen, pulmonary diseases, infections, inflammation, and cancer. Severe hypoxia in the brain can manifest symptoms similar to Parkinson's disease (PD), including cerebral edema, mood disturbances, and cognitive impairments. Additionally, the development of PD appears to be closely associated with hypoxia and hypoxic pathways. This review seeks to investigate the molecular interactions between hypoxia and PD, emphasizing the pathological role of hypoxic pathways in PD and exploring their potential as therapeutic targets.
Collapse
Affiliation(s)
- Yuanyuan Gao
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Jiarui Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Zhenjiang Liu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun 130012, China; (Y.G.); (J.Z.)
| |
Collapse
|
3
|
Lau D, Tang Y, Kenche V, Copie T, Kempe D, Jary E, Graves NJ, Biro M, Masters CL, Dzamko N, Gambin Y, Sierecki E. Single-Molecule Fingerprinting Reveals Different Growth Mechanisms in Seed Amplification Assays for Different Polymorphs of α-Synuclein Fibrils. ACS Chem Neurosci 2024; 15:3270-3285. [PMID: 39197832 PMCID: PMC11413846 DOI: 10.1021/acschemneuro.4c00185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 09/01/2024] Open
Abstract
α-Synuclein (αSyn) aggregates, detected in the biofluids of patients with Parkinson's disease (PD), have the ability to catalyze their own aggregation, leading to an increase in the number and size of aggregates. This self-templated amplification is used by newly developed assays to diagnose Parkinson's disease and turns the presence of αSyn aggregates into a biomarker of the disease. It has become evident that αSyn can form fibrils with slightly different structures, called "strains" or polymorphs, but little is known about their differential reactivity in diagnostic assays. Here, we compared the properties of two well-described αSyn polymorphs. Using single-molecule techniques, we observed that one of the polymorphs had an increased tendency to undergo secondary nucleation and we showed that this could explain the differences in reactivity observed in in vitro seed amplification assay and cellular assays. Simulations and high-resolution microscopy suggest that a 100-fold difference in the apparent rate of growth can be generated by a surprisingly low number of secondary nucleation "points" (1 every 2000 monomers added by elongation). When both strains are present in the same seeded reaction, secondary nucleation displaces proportions dramatically and causes a single strain to dominate the reaction as the major end product.
Collapse
Affiliation(s)
- Derrick Lau
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Yuan Tang
- Brain
and Mind Centre and Faculty of Medicine and Health, School of Medical
Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Vijaya Kenche
- Florey
Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Thomas Copie
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Daryan Kempe
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Eve Jary
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Noah J. Graves
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Maté Biro
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Colin L. Masters
- Florey
Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Nicolas Dzamko
- Brain
and Mind Centre and Faculty of Medicine and Health, School of Medical
Sciences, University of Sydney, Camperdown, NSW 2050, Australia
| | - Yann Gambin
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| | - Emma Sierecki
- EMBL
Australia Node for Single Molecule Science and School of Biomedical
Sciences, Faculty of Medicine, The University
of New South Wales, Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Bankapalli K, Thomas RE, Vincow ES, Milstein G, Fisher LV, Pallanck LJ. A Drosophila model for mechanistic investigation of tau protein spread. Dis Model Mech 2024; 17:dmm050858. [PMID: 39350752 PMCID: PMC11463956 DOI: 10.1242/dmm.050858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 08/09/2024] [Indexed: 10/09/2024] Open
Abstract
Brain protein aggregates are a hallmark of neurodegenerative disease. Previous work indicates that specific protein components of these aggregates are toxic, including tau (encoded by MAPT) in Alzheimer's disease and related tauopathies. Increasing evidence also indicates that these toxic proteins traffic between cells in a prion-like fashion, thereby spreading pathology from one brain region to another. However, the mechanisms involved in trafficking are poorly understood. We therefore developed a transgenic Drosophila model to facilitate rapid evaluation of candidate tau trafficking modifiers. Our model uses the bipartite Q system to drive co-expression of tau and GFP in the fly eye. We found age-dependent spread of tau into the brain, represented by detection of tau, but not of GFP. We also found that tau trafficking was attenuated upon inhibition of the endocytic factor dynamin (encoded by shi) or knockdown of glycogen synthase kinase-3β (GSK-3β, encoded by sgg). Further work revealed that dynamin promoted tau uptake in recipient tissues, whereas GSK-3β appeared to promote tau spread via direct phosphorylation of tau. Our robust and flexible system will promote the identification of tau-trafficking components involved in the pathogenesis of neurodegenerative diseases.
Collapse
Affiliation(s)
- Kondalarao Bankapalli
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA98195, USA
| | - Ruth E. Thomas
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA98195, USA
| | - Evelyn S. Vincow
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA98195, USA
| | - Gillian Milstein
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA98195, USA
| | - Laura V. Fisher
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA98195, USA
| | - Leo J. Pallanck
- Department of Genome Sciences, University of Washington, 3720 15th Avenue NE, Seattle, WA98195, USA
| |
Collapse
|
5
|
Kluge A, Schaeffer E, Bunk J, Sommerauer M, Röttgen S, Schulte C, Roeben B, von Thaler AK, Welzel J, Lucius R, Heinzel S, Xiang W, Eschweiler GW, Maetzler W, Suenkel U, Berg D. Detecting Misfolded α-Synuclein in Blood Years before the Diagnosis of Parkinson's Disease. Mov Disord 2024; 39:1289-1299. [PMID: 38651526 DOI: 10.1002/mds.29766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND Identifying individuals with Parkinson's disease (PD) already in the prodromal phase of the disease has become a priority objective for opening a window for early disease-modifying therapies. OBJECTIVE The aim was to evaluate a blood-based α-synuclein seed amplification assay (α-syn SAA) as a novel biomarker for diagnosing PD in the prodromal phase. METHODS In the TREND study (University of Tuebingen) biennial blood samples of n = 1201 individuals with/without increased risk for PD were taken prospectively over 4 to 10 years. We retrospectively analyzed blood samples of 12 participants later diagnosed with PD during the study to detect and amplify pathological α-syn conformers derived from neuronal extracellular vesicles using (1) immunoblot analyses with an antibody against these conformers and (2) an α-syn-SAA. Additionally, blood samples of n = 13 healthy individuals from the TREND cohort and n = 20 individuals with isolated rapid eye movement sleep behavior disorder (iRBD) from the University Hospital Cologne were analyzed. RESULTS All individuals with PD showed positive immunoblots and a positive α-syn SAA at the time of diagnosis. Moreover, all PD patients showed a positive α-syn SAA 1 to 10 years before clinical diagnosis. In the iRBD cohort, 30% showed a positive α-syn SAA. All healthy controls had a negative SAA. CONCLUSIONS We here demonstrate the possibility to detect and amplify pathological α-syn conformers in peripheral blood up to 10 years before the clinical diagnosis of PD in individuals with and without iRBD. The findings of this study indicate that this blood-based α-syn SAA assay has the potential to serve as a diagnostic biomarker for prodromal PD. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Eva Schaeffer
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Josina Bunk
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Michael Sommerauer
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Sinah Röttgen
- Department of Neurology, University of Cologne, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany
| | - Claudia Schulte
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Benjamin Roeben
- Department of Neurodegeneration, Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases, University of Tübingen, Tübingen, Germany
| | - Anna-Katharina von Thaler
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Julius Welzel
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | - Sebastian Heinzel
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Wei Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Gerhard W Eschweiler
- Geriatric Center, University Hospital Tübingen, Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
| | - Walter Maetzler
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Ulrike Suenkel
- Department of Psychiatry and Psychotherapy, University Hospital Tübingen, Tübingen, Germany
- German Center for Mental Health (DZPG), Partner Site Tübingen, Tübingen, Germany
| | - Daniela Berg
- Department of Neurology, University Hospital Kiel, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
6
|
Mazzotta GM, Conte C. Alpha Synuclein Toxicity and Non-Motor Parkinson's. Cells 2024; 13:1265. [PMID: 39120295 PMCID: PMC11311369 DOI: 10.3390/cells13151265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/12/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
Parkinson's disease (PD) is a common multisystem neurodegenerative disorder affecting 1% of the population over the age of 60 years. The main neuropathological features of PD are the loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) and the presence of alpha synuclein (αSyn)-rich Lewy bodies both manifesting with classical motor signs. αSyn has emerged as a key protein in PD pathology as it can spread through synaptic networks to reach several anatomical regions of the body contributing to the appearance of non-motor symptoms (NMS) considered prevalent among individuals prior to PD diagnosis and persisting throughout the patient's life. NMS mainly includes loss of taste and smell, constipation, psychiatric disorders, dementia, impaired rapid eye movement (REM) sleep, urogenital dysfunction, and cardiovascular impairment. This review summarizes the more recent findings on the impact of αSyn deposits on several prodromal NMS and emphasizes the importance of early detection of αSyn toxic species in biofluids and peripheral biopsies as prospective biomarkers in PD.
Collapse
Affiliation(s)
| | - Carmela Conte
- Department of Pharmaceutical Sciences, University of Perugia, 06126 Perugia, Italy
| |
Collapse
|
7
|
Zhuo Y, Li WS, Lu W, Li X, Ge LT, Huang Y, Gao QT, Deng YJ, Jiang XC, Lan ZW, Deng Q, Chen YH, Xiao Y, Lu S, Jiang F, Liu Z, Hu L, Liu Y, Ding Y, He ZW, Tan DA, Duan D, Lu M. TGF-β1 mediates hypoxia-preconditioned olfactory mucosa mesenchymal stem cells improved neural functional recovery in Parkinson's disease models and patients. Mil Med Res 2024; 11:48. [PMID: 39034405 PMCID: PMC11265117 DOI: 10.1186/s40779-024-00550-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 07/01/2024] [Indexed: 07/23/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN). Activation of the neuroinflammatory response has a pivotal role in PD. Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic approach for various nerve injuries, but there are limited reports on their use in PD and the underlying mechanisms remain unclear. METHODS We investigated the effects of clinical-grade hypoxia-preconditioned olfactory mucosa (hOM)-MSCs on neural functional recovery in both PD models and patients, as well as the preventive effects on mouse models of PD. To assess improvement in neuroinflammatory response and neural functional recovery induced by hOM-MSCs exposure, we employed single-cell RNA sequencing (scRNA-seq), assay for transposase accessible chromatin with high-throughput sequencing (ATAC-seq) combined with full-length transcriptome isoform-sequencing (ISO-seq), and functional assay. Furthermore, we present the findings from an initial cohort of patients enrolled in a phase I first-in-human clinical trial evaluating the safety and efficacy of intraspinal transplantation of hOM-MSC transplantation into severe PD patients. RESULTS A functional assay identified that transforming growth factor-β1 (TGF-β1), secreted from hOM-MSCs, played a critical role in modulating mitochondrial function recovery in dopaminergic neurons. This effect was achieved through improving microglia immune regulation and autophagy homeostasis in the SN, which are closely associated with neuroinflammatory responses. Mechanistically, exposure to hOM-MSCs led to an improvement in neuroinflammation and neural function recovery partially mediated by TGF-β1 via activation of the anaplastic lymphoma kinase/phosphatidylinositol-3-kinase/protein kinase B (ALK/PI3K/Akt) signaling pathway in microglia located in the SN of PD patients. Furthermore, intraspinal transplantation of hOM-MSCs improved the recovery of neurologic function and regulated the neuroinflammatory response without any adverse reactions observed in patients with PD. CONCLUSIONS These findings provide compelling evidence for the involvement of TGF-β1 in mediating the beneficial effects of hOM-MSCs on neural functional recovery in PD. Treatment and prevention of hOM-MSCs could be a promising and effective neuroprotective strategy for PD. Additionally, TGF-β1 may be used alone or combined with hOM-MSCs therapy for treating PD.
Collapse
Affiliation(s)
- Yi Zhuo
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
- Department of Neurosurgery, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Wen-Shui Li
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Wen Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Xuan Li
- Department of Neurosurgery, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, China
| | - Li-Te Ge
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, 410008, China
| | - Qing-Tao Gao
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Yu-Jia Deng
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Xin-Chen Jiang
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Zi-Wei Lan
- Department of Neurology, the Second Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Que Deng
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China
| | - Yong-Heng Chen
- First Clinical Department of Changsha Medical University, Changsha, 410219, China
| | - Yi Xiao
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Shuo Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Feng Jiang
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Zuo Liu
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Li Hu
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Yu Liu
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Yu Ding
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China
| | - Zheng-Wen He
- Department of Neurosurgery, the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, China
| | - De-An Tan
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China.
| | - Da Duan
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China.
| | - Ming Lu
- Hunan Provincial Key Laboratory of Neurorestoratology, 921 Hospital of Joint Logistics Support Force People's Liberation Army of China, (the Second Affiliated Hospital of Hunan Normal University), Changsha, 410003, China.
- The National & Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, China.
| |
Collapse
|
8
|
Ashique S, Kumar N, Mishra N, Muthu S, Rajendran RL, Chandrasekaran B, Obeng BF, Hong CM, Krishnan A, Ahn BC, Gangadaran P. Unveiling the role of exosomes as cellular messengers in neurodegenerative diseases and their potential therapeutic implications. Pathol Res Pract 2024; 260:155451. [PMID: 39002435 DOI: 10.1016/j.prp.2024.155451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/15/2024]
Abstract
Exosomes are a subgroup of extracellular vesicles that function as transmitters, allowing cells to communicate more effectively with each other. However, exosomes may have both beneficial and harmful impacts on central nervous system disorders. Hence, the fundamental molecular mechanisms of the origin of illness and its progression are currently being investigated. The involvement of exosomes in the origin and propagation of neurodegenerative illness has been demonstrated recently. Exosomes provide a representation of the intracellular environment since they include various essential bioactive chemicals. The latest studies have demonstrated that exosomes transport several proteins. Additionally, these physiological vesicles are important in the regeneration of nervous tissue and the healing of neuronal lesions. They also offer a microenvironment to stimulate the conformational variation of concerning proteins for aggregation, resulting in neurodegenerative diseases. The biosynthesis, composition, and significance of exosomes as extracellular biomarkers in neurodegenerative disorders are discussed in this article, with a particular emphasis on their neuroprotective effects.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bengal College of Pharmaceutical Sciences & Research, Durgapur, West Bengal 713212, India; Research Scholar, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Nitish Kumar
- SRM Modinagar College of Pharmacy, SRM Institute of Science and Technology (Deemed to be University), Delhi-NCR Campus, Modinagar, Ghaziabad, Uttar Pradesh 201204, India
| | - Neeraj Mishra
- Amity Institute of Pharmacy, Amity University Madhya Pradesh (AUMP), Gwalior, Madhya Pradesh 474005, India
| | - Sathish Muthu
- Department of Orthopaedics, Orthopaedic Research Group, Coimbatore, Tamil Nadu 641045, India; Department of Biotechnology, Faculty of Engineering, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Ramya Lakshmi Rajendran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea
| | | | - Brenya Francis Obeng
- Faculty of Science, College of Health and Allied Sciences, School of Medical Sciences, University of Cape Coast, PMB, Cape Coast, Ghana
| | - Chae Moon Hong
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea
| | - Anand Krishnan
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa.
| | - Byeong-Cheol Ahn
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; Department of Nuclear Medicine, Kyungpook National University Hospital, Daegu 41944, the Republic of Korea.
| | - Prakash Gangadaran
- Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea; BK21 FOUR KNU Convergence Educational Program of Biomedical Sciences for Creative Future Talents, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu 41944, the Republic of Korea.
| |
Collapse
|
9
|
Klokkaris A, Migdalska-Richards A. An Overview of Epigenetic Changes in the Parkinson's Disease Brain. Int J Mol Sci 2024; 25:6168. [PMID: 38892355 PMCID: PMC11172855 DOI: 10.3390/ijms25116168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
Parkinson's disease is a progressive neurodegenerative disorder, predominantly of the motor system. Although some genetic components and cellular mechanisms of Parkinson's have been identified, much is still unknown. In recent years, emerging evidence has indicated that non-DNA-sequence variation (in particular epigenetic mechanisms) is likely to play a crucial role in the development and progression of the disease. Here, we present an up-to-date overview of epigenetic processes including DNA methylation, DNA hydroxymethylation, histone modifications and non-coding RNAs implicated in the brain of those with Parkinson's disease. We will also discuss the limitations of current epigenetic research in Parkinson's disease, the advantages of simultaneously studying genetics and epigenetics, and putative novel epigenetic therapies.
Collapse
Affiliation(s)
| | - Anna Migdalska-Richards
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter Medical School, University of Exeter, Exeter EX2 5DW, UK;
| |
Collapse
|
10
|
Jin X, Si X, Lei X, Liu H, Shao A, Li L. Disruption of Dopamine Homeostasis Associated with Alteration of Proteins in Synaptic Vesicles: A Putative Central Mechanism of Parkinson's Disease Pathogenesis. Aging Dis 2024; 15:1204-1226. [PMID: 37815908 PMCID: PMC11081171 DOI: 10.14336/ad.2023.0821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 08/21/2023] [Indexed: 10/12/2023] Open
Abstract
Vestigial dopaminergic cells in PD have selectivity for a sub-class of hypersensitive neurons with the nigrostriatal dopamine (DA) tract. DA is modulated in pre-synaptic nerve terminals to remain stable. To be specific, proteins at DA release sites that have a function of synthesizing and packing DA in cytoplasm, modulating release and reingestion, and changing excitability of neurons, display regional discrepancies that uncover relevancy of the observed sensitivity to neurodegenerative changes. Although the reasons of a majority of PD cases are still indistinct, heredity and environment are known to us to make significant influences. For decades, genetic analysis of PD patients with heredity in family have promoted our comprehension of pathogenesis to a great extent, which reveals correlative mechanisms including oxidative stress, abnormal protein homeostasis and mitochondrial dysfunction. In this review, we review the constitution of presynaptic vesicle related to DA homeostasis and describe the genetic and environmental evidence of presynaptic dysfunction that increase risky possibility of PD concerning intracellular vesicle transmission and their functional outcomes. We summarize alterations in synaptic vesicular proteins with great involvement in the reasons of some DA neurons highly vulnerable to neurodegenerative changes. We generalize different potential targets and therapeutic strategies for different pathogenic mechanisms, providing a reference for further studies of PD treatment in the future. But it remains to be further researched on this recently discovered and converging mechanism of vesicular dynamics and PD, which will provide a more profound comprehension and put up with new therapeutic tactics for PD patients.
Collapse
Affiliation(s)
- Xuanxiang Jin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| | - Xiaoli Si
- Department of Neurology, the Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Xiaoguang Lei
- Department of Neurology, First Affiliated Hospital of Kunming Medical University, the First School of Clinical Medicine, Kunming Medical University, Kunming, China.
| | - Huifang Liu
- Division of Neurology, Department of Medicine, University of Hong Kong, Hong Kong.
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Disease, Hangzhou, China.
| | - Lingfei Li
- Department of Neurology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
11
|
Bankapalli K, Thomas RE, Vincow ES, Milstein G, Fisher LV, Pallanck LJ. A Drosophila model for mechanistic investigation of tau protein spread. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.21.590466. [PMID: 38712083 PMCID: PMC11071371 DOI: 10.1101/2024.04.21.590466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Brain protein aggregates are a hallmark of neurodegenerative disease. Previous work indicates that specific protein components of these aggregates are toxic, including tau in Alzheimer's disease and related tauopathies. Increasing evidence also indicates that these toxic proteins traffic between cells in a prion-like fashion, thereby spreading pathology from one brain region to another. However, the mechanisms involved in trafficking are poorly understood. We therefore developed a transgenic Drosophila model to facilitate rapid evaluation of candidate tau trafficking modifiers. Our model uses the bipartite Q system to drive co-expression of tau and GFP in the fly eye. We find age-dependent tau spread into the brain, represented by detection of tau, but not GFP in the brain. We also found that tau trafficking was attenuated upon inhibition of the endocytic factor dynamin or the kinase glycogen synthase kinase-3β ( GSK-3β ). Further work revealed that dynamin promotes tau uptake in recipient tissues, whereas GSK-3β appears to promote tau spread via direct phosphorylation of tau. Our robust and flexible system will promote the identification of tau trafficking components involved in the pathogenesis of neurodegenerative diseases. SUMMARY STATEMENT The trafficking of toxic proteins in neurodegenerative disease is well-known but poorly understood. Our model will allow rapid and new insight into molecular mechanisms underlying this process.
Collapse
|
12
|
Martinez Pomier K, Ahmed R, Huang J, Melacini G. Inhibition of toxic metal-alpha synuclein interactions by human serum albumin. Chem Sci 2024; 15:3502-3515. [PMID: 38455030 PMCID: PMC10915811 DOI: 10.1039/d3sc06285f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/12/2024] [Indexed: 03/09/2024] Open
Abstract
Human serum albumin (HSA), the most abundant protein in plasma and cerebrospinal fluid, not only serves as a crucial carrier of various exogenous and endogenous ligands but also modulates the aggregation of amyloidogenic proteins, including alpha synuclein (αSyn), which is associated with Parkinson's disease and other α-synucleinopathies. HSA decreases αSyn toxicity through the direct binding to monomeric and oligomeric αSyn species. However, it is possible that HSA also sequesters metal ions that otherwise promote aggregation. Cu(ii) ions, for example, enhance αSyn fibrillization in vitro, while also leading to neurotoxicity by generating reactive oxygen species (ROS). However, it is currently unclear if and how HSA affects Cu(ii)-binding to αSyn. Using an integrated set of NMR experiments, we show that HSA is able to chelate Cu(ii) ions from αSyn more efficiently than standard chelators such as EDTA, revealing an unexpected cooperativity between the HSA metal-binding sites. Notably, fatty acid binding to HSA perturbs this cooperativity, thus interfering with the sequestration of Cu(ii) ions from αSyn. We also observed that glycation of HSA diminished Cu(ii)-binding affinity, while largely preserving the degree of cooperativity between the HSA metal-binding sites. Additionally, our results show that Cu(ii)-binding to HSA stabilizes the interactions of HSA with αSyn primarily at two different regions, i.e. the N-terminus, Tyr 39 and the majority of the C-terminus. Our study not only unveils the effect of fatty acid binding and age-related posttranslational modifications, such as glycation, on the neuroprotective mechanisms of HSA, but also highlights the potential of αSyn as a viable NMR-based sensor to investigate HSA-metal interactions.
Collapse
Affiliation(s)
| | - Rashik Ahmed
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Jinfeng Huang
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
| | - Giuseppe Melacini
- Department of Chemistry and Chemical Biology, McMaster University ON L8S 4M1 Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University Hamilton ON L8S 4M1 Canada
| |
Collapse
|
13
|
Wang B, Kobeissy F, Golpich M, Cai G, Li X, Abedi R, Haskins W, Tan W, Benner SA, Wang KKW. Aptamer Technologies in Neuroscience, Neuro-Diagnostics and Neuro-Medicine Development. Molecules 2024; 29:1124. [PMID: 38474636 DOI: 10.3390/molecules29051124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/15/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Aptamers developed using in vitro Systematic Evolution of Ligands by Exponential Enrichment (SELEX) technology are single-stranded nucleic acids 10-100 nucleotides in length. Their targets, often with specificity and high affinity, range from ions and small molecules to proteins and other biological molecules as well as larger systems, including cells, tissues, and animals. Aptamers often rival conventional antibodies with improved performance, due to aptamers' unique biophysical and biochemical properties, including small size, synthetic accessibility, facile modification, low production cost, and low immunogenicity. Therefore, there is sustained interest in engineering and adapting aptamers for many applications, including diagnostics and therapeutics. Recently, aptamers have shown promise as early diagnostic biomarkers and in precision medicine for neurodegenerative and neurological diseases. Here, we critically review neuro-targeting aptamers and their potential applications in neuroscience research, neuro-diagnostics, and neuro-medicine. We also discuss challenges that must be overcome, including delivery across the blood-brain barrier, increased affinity, and improved in vivo stability and in vivo pharmacokinetic properties.
Collapse
Affiliation(s)
- Bang Wang
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Firas Kobeissy
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| | - Mojtaba Golpich
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Guangzheng Cai
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xiaowei Li
- Department of Chemistry, University of Florida, Gainesville, FL 32611, USA
| | - Reem Abedi
- Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut 1107-2020, Lebanon
| | - William Haskins
- Gryphon Bio, Inc., 611 Gateway Blvd. Suite 120 #253, South San Francisco, CA 94080, USA
| | - Weihong Tan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), The Chinese Academy of Sciences, Hangzhou 310022, China
| | - Steven A Benner
- The Foundation for Applied Molecular Evolution, 1501 NW 68th Terrace, Gainesville, FL 32605, USA
| | - Kevin K W Wang
- Center for Neurotrauma, MultiOmics and Biomarkers (CNMB), Department of Neurobiology, Neuroscience Institute, Morehouse School of Medicine, Atlanta, GA 30310, USA
- Department of Emergency Medicine, University of Florida, Gainesville, FL 32611, USA
- Brain Rehabilitation Research Center, Malcom Randall VA Medical Center, North Florida/South Georgia Veterans Health System, 1601 SW Archer Road, Gainesville, FL 32608, USA
- Center for Visual and Neurocognitive Rehabilitation (CVNR), Atlanta VA Health Care System, 1670 Clairmont Rd, Decatur, GA 30033, USA
| |
Collapse
|
14
|
Wu Y, Meng X, Cheng WY, Yan Z, Li K, Wang J, Jiang T, Zhou F, Wong KH, Zhong C, Dong Y, Gao S. Can pluripotent/multipotent stem cells reverse Parkinson's disease progression? Front Neurosci 2024; 18:1210447. [PMID: 38356648 PMCID: PMC10864507 DOI: 10.3389/fnins.2024.1210447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/02/2024] [Indexed: 02/16/2024] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by continuous and selective degeneration or death of dopamine neurons in the midbrain, leading to dysfunction of the nigrostriatal neural circuits. Current clinical treatments for PD include drug treatment and surgery, which provide short-term relief of symptoms but are associated with many side effects and cannot reverse the progression of PD. Pluripotent/multipotent stem cells possess a self-renewal capacity and the potential to differentiate into dopaminergic neurons. Transplantation of pluripotent/multipotent stem cells or dopaminergic neurons derived from these cells is a promising strategy for the complete repair of damaged neural circuits in PD. This article reviews and summarizes the current preclinical/clinical treatments for PD, their efficacies, and the advantages/disadvantages of various stem cells, including pluripotent and multipotent stem cells, to provide a detailed overview of how these cells can be applied in the treatment of PD, as well as the challenges and bottlenecks that need to be overcome in future translational studies.
Collapse
Affiliation(s)
- Yongkang Wu
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Xiangtian Meng
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wai-Yin Cheng
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Zhichao Yan
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Keqin Li
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jian Wang
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianfang Jiang
- Department of Neurology, Shanghai Eighth People’s Hospital Affiliated to Jiangsu University, Shanghai, China
| | - Fei Zhou
- Department of Neurology, Third Affiliated Hospital of Navy Military Medical University, Shanghai, China
| | - Ka-Hing Wong
- Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong, Hong Kong SAR, China
| | - Chunlong Zhong
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yi Dong
- Key Laboratory of Adolescent Health Evaluation and Sports Intervention, Ministry of Education, East China Normal University, Shanghai, China
| | - Shane Gao
- Department of Neurosurgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Ratan Y, Rajput A, Pareek A, Pareek A, Jain V, Sonia S, Farooqui Z, Kaur R, Singh G. Advancements in Genetic and Biochemical Insights: Unraveling the Etiopathogenesis of Neurodegeneration in Parkinson's Disease. Biomolecules 2024; 14:73. [PMID: 38254673 PMCID: PMC10813470 DOI: 10.3390/biom14010073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/15/2023] [Accepted: 12/28/2023] [Indexed: 01/24/2024] Open
Abstract
Parkinson's disease (PD) is the second most prevalent neurodegenerative movement disorder worldwide, which is primarily characterized by motor impairments. Even though multiple hypotheses have been proposed over the decades that explain the pathogenesis of PD, presently, there are no cures or promising preventive therapies for PD. This could be attributed to the intricate pathophysiology of PD and the poorly understood molecular mechanism. To address these challenges comprehensively, a thorough disease model is imperative for a nuanced understanding of PD's underlying pathogenic mechanisms. This review offers a detailed analysis of the current state of knowledge regarding the molecular mechanisms underlying the pathogenesis of PD, with a particular emphasis on the roles played by gene-based factors in the disease's development and progression. This study includes an extensive discussion of the proteins and mutations of primary genes that are linked to PD, including α-synuclein, GBA1, LRRK2, VPS35, PINK1, DJ-1, and Parkin. Further, this review explores plausible mechanisms for DAergic neural loss, non-motor and non-dopaminergic pathologies, and the risk factors associated with PD. The present study will encourage the related research fields to understand better and analyze the current status of the biochemical mechanisms of PD, which might contribute to the design and development of efficacious and safe treatment strategies for PD in future endeavors.
Collapse
Affiliation(s)
- Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aishwarya Rajput
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali 304022, Rajasthan, India; (A.R.); (A.P.); (A.P.)
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur 313001, Rajasthan, India;
| | - Sonia Sonia
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar 143005, Punjab, India;
| | - Zeba Farooqui
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| | - Ranjeet Kaur
- Adesh Institute of Dental Sciences and Research, Bathinda 151101, Punjab, India;
| | - Gurjit Singh
- Department of Biomedical Engineering, University of Illinois Chicago, Chicago, IL 60607, USA;
| |
Collapse
|
16
|
Tang Z, Hirano S, Koizumi Y, Izumi M, Kitayama Y, Yamagishi K, Tamura M, Ishikawa A, Kashiwado K, Iimori T, Mukai H, Yokota H, Horikoshi T, Uno T, Kuwabara S. Diagnostic Sensitivity and Symptomatic Relevance of Dopamine Transporter Imaging and Myocardial Sympathetic Scintigraphy in Patients with Dementia with Lewy Bodies. J Alzheimers Dis 2024; 100:127-137. [PMID: 38848178 PMCID: PMC11307094 DOI: 10.3233/jad-231395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2024] [Indexed: 06/09/2024]
Abstract
Background Dementia with Lewy bodies (DLB) presents with various symptoms, posing challenges for early diagnosis challenging. Dopamine transporter (123I-FP-CIT) single-photon emission tomography (SPECT) and 123I-meta-iodobenzylguanidine (123I-MIBG) imaging are crucial diagnostic biomarkers. Hypothesis about body- and brain-first subtypes of DLB indicate that some DLB may show normal 123I-FP-CIT or 123I-MIBG results; but the characteristic expression of these two subtypes remains unclear. Objective This study aimed to evaluate the diagnostic sensitivity of 123I-FP-CIT and 123I-MIBG imaging alone, combined in patients with DLB and explore symptoms associated with the abnormal imaging results. Methods Demographic data, clinical status, and imaging results were retrospectively collected from patients diagnosed with possible DLB. Both images were quantified using semi-automated software, and the sensitivity of each imaging modality and their combination was calculated. Demographic data, cognition, and motor and non-motor symptoms were compared among the subgroups based on the imaging results. Symptoms related to each imaging abnormality were examined using binomial logistic regression analyses. Results Among 114 patients with DLB, 80 underwent 123I-FP-CIT SPECT (sensitivity: 80.3%), 83 underwent 123I-MIBG imaging (68.2%), and 66 both (sensitivity of either abnormal result: 93.9%). Visual hallucinations differed among the four subgroups based on imaging results. Additionally, nocturia and orthostatic hypotension differed between abnormal and normal 123I-MIBG images. Conclusions Overall, 123I-FP-CIT SPECT was slightly higher sensitivity than 123I-MIBG imaging, with combined imaging increasing diagnostic sensitivity. Normal results of a single imaging test may not refute DLB. Autonomic symptoms may lead to abnormal 123I-MIBG scintigraphy findings indicating body-first subtype of patients with DLB.
Collapse
Affiliation(s)
- Zhihui Tang
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shigeki Hirano
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yume Koizumi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Michiko Izumi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Yoshihisa Kitayama
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kosuke Yamagishi
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Mitsuyoshi Tamura
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Ai Ishikawa
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kouichi Kashiwado
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Iimori
- Department of Radiology, Chiba University Hospital, Chiba, Japan
| | - Hiroki Mukai
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Hajime Yokota
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takuro Horikoshi
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takashi Uno
- Department of Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuwabara
- Department of Neurology, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
17
|
Kluge A, Iranzo A. Biofluid Detection of Pathological α-Synuclein in the Prodromal Phase of Synucleinopathies. JOURNAL OF PARKINSON'S DISEASE 2024; 14:S323-S331. [PMID: 38995801 PMCID: PMC11494638 DOI: 10.3233/jpd-230429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/10/2024] [Indexed: 07/14/2024]
Abstract
Synucleinopathies are disorders characterized by the aggregation and deposition of pathological α-synuclein conformers. The underlying neurodegenerative processes begin years or decades before the onset of cardinal motor symptoms. This prodromal phase may manifest with various signs or symptoms. However, there are no current standardized laboratory tests to ascertain the progression and conversion of prodromal conditions such as mild cognitive impairment, isolated REM sleep behavior disorder or pure autonomic failure. The aim of this systematic review was to evaluate the diagnostic possibilities using human biofluids as source material to detect pathological α-synuclein in the prodromal phase of synucleinopathies. Our review identified eight eligible studies, that investigated pathological α-synuclein conformers using cerebrospinal fluid from patients with prodromal signs of synulceinopathies to differentiate this patient group from non-synucleinopathies, while only one study investigated this aspect using blood as medium. While previous studies clearly demonstrated a high diagnostic performance of α-synuclein seed amplification assays for differentiating synucleinopathies with Lewy bodies from healthy controls, only few analyses were performed focussing on individuals with prodromal disease. Nevertheless, results for the early detection of α-synuclein seeds using α-synuclein seed amplification assays were promising and may be of particular relevance for future clinical trials and clinical practice.
Collapse
Affiliation(s)
- Annika Kluge
- Department of Neurology, University Hospital Schleswig-Holstein, Campus Kiel and Kiel University, Kiel, Germany
| | - Alex Iranzo
- Sleep Unit, Neurology Service, Hospital Clínic Barcelona, Barcelona University, IDIBAPS, CIBERNED, Barcelona, Spain
| |
Collapse
|
18
|
Kumari N, Anand S, Shah K, Chauhan NS, Sethiya NK, Singhal M. Emerging Role of Plant-Based Bioactive Compounds as Therapeutics in Parkinson's Disease. Molecules 2023; 28:7588. [PMID: 38005310 PMCID: PMC10673433 DOI: 10.3390/molecules28227588] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Neurological ailments, including stroke, Alzheimer's disease (AD), epilepsy, Parkinson's disease (PD), and other related diseases, have affected around 1 billion people globally to date. PD stands second among the common neurodegenerative diseases caused as a result of dopaminergic neuron loss in the midbrain's substantia nigra regions. It affects cognitive and motor activities, resulting in tremors during rest, slow movement, and muscle stiffness. There are various traditional approaches for the management of PD, but they provide only symptomatic relief. Thus, a survey for finding new biomolecules or substances exhibiting the therapeutic potential to patients with PD is the main focus of present-day research. Medicinal plants, herbal formulations, and natural bioactive molecules have been gaining much more attention in recent years as synthetic molecules orchestrate a number of undesired effects. Several in vitro, in vivo, and in silico studies in the recent past have demonstrated the therapeutic potential of medicinal plants, herbal formulations, and plant-based bioactives. Among the plant-based bioactives, polyphenols, terpenes, and alkaloids are of particular interest due to their potent anti-inflammatory, antioxidant, and brain-health-promoting properties. Further, there are no concise, elaborated articles comprising updated mechanism-of-action-based reviews of the published literature on potent, recently investigated (2019-2023) medicinal plants, herbal formulations, and plant based-bioactive molecules, including polyphenols, terpenes, and alkaloids, as a method for the management of PD. Therefore, we designed the current review to provide an illustration of the efficacious role of various medicinal plants, herbal formulations, and bioactives (polyphenols, terpenes, and alkaloids) that can become potential therapeutics against PD with greater specificity, target approachability, bioavailability, and safety to the host. This information can be further utilized in the future to develop several value-added formulations and nutraceutical products to achieve the desired safety and efficacy for the management of PD.
Collapse
Affiliation(s)
- Nitu Kumari
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Santosh Anand
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru 560064, Karnataka, India;
| | - Kamal Shah
- Institute of Pharmaceutical Research, GLA University, Mathura 281406, Uttar Pradesh, India;
| | | | - Neeraj K. Sethiya
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| | - Manmohan Singhal
- Faculty of Pharmacy, School of Pharmaceutical and Populations Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India;
| |
Collapse
|
19
|
Gil-Jaramillo N, Aristizábal-Pachón AF, Luque Aleman MA, González Gómez V, Escobar Hurtado HD, Girón Pinto LC, Jaime Camacho JS, Rojas-Cruz AF, González-Giraldo Y, Pinzón A, González J. Competing endogenous RNAs in human astrocytes: crosstalk and interacting networks in response to lipotoxicity. Front Neurosci 2023; 17:1195840. [PMID: 38027526 PMCID: PMC10679742 DOI: 10.3389/fnins.2023.1195840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by a progressive deterioration of neuronal function, leading to motor and cognitive damage in patients. Astrocytes are essential for maintaining brain homeostasis, and their functional impairment is increasingly recognized as central to the etiology of various NDs. Such impairment can be induced by toxic insults with palmitic acid (PA), a common fatty acid, that disrupts autophagy, increases reactive oxygen species, and triggers inflammation. Although the effects of PA on astrocytes have been addressed, most aspects of the dynamics of this fatty acid remain unknown. Additionally, there is still no model that satisfactorily explains how astroglia goes from being neuroprotective to neurotoxic. Current incomplete knowledge needs to be improved by the growing field of non-coding RNAs (ncRNAs), which is proven to be related to NDs, where the complexity of the interactions among these molecules and how they control other RNA expressions need to be addressed. In the present study, we present an extensive competing endogenous RNA (ceRNA) network using transcriptomic data from normal human astrocyte (NHA) cells exposed to PA lipotoxic conditions and experimentally validated data on ncRNA interaction. The obtained network contains 7 lncRNA transcripts, 38 miRNAs, and 239 mRNAs that showed enrichment in ND-related processes, such as fatty acid metabolism and biosynthesis, FoxO and TGF-β signaling pathways, prion diseases, apoptosis, and immune-related pathways. In addition, the transcriptomic profile was used to propose 22 potential key controllers lncRNA/miRNA/mRNA axes in ND mechanisms. The relevance of five of these axes was corroborated by the miRNA expression data obtained in other studies. MEG3 (ENST00000398461)/hsa-let-7d-5p/ATF6B axis showed importance in Parkinson's and late Alzheimer's diseases, while AC092687.3/hsa-let-7e-5p/[SREBF2, FNIP1, PMAIP1] and SDCBP2-AS1 (ENST00000446423)/hsa-miR-101-3p/MAPK6 axes are probably related to Alzheimer's disease development and pathology. The presented network and axes will help to understand the PA-induced mechanisms in astrocytes, leading to protection or injury in the CNS under lipotoxic conditions as part of the intricated cellular regulation influencing the pathology of different NDs. Furthermore, the five corroborated axes could be considered study targets for new pharmacologic treatments or as possible diagnostic molecules, contributing to improving the quality of life of millions worldwide.
Collapse
Affiliation(s)
- Natalia Gil-Jaramillo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - María Alejandra Luque Aleman
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Valentina González Gómez
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Hans Deyvy Escobar Hurtado
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Laura Camila Girón Pinto
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Juan Sebastian Jaime Camacho
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Alexis Felipe Rojas-Cruz
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Yeimy González-Giraldo
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Andrés Pinzón
- Laboratorio de Bioinformática y Biología de Sistemas, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Janneth González
- Departamento de Nutrición y Bioquímica, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá, Colombia
| |
Collapse
|
20
|
Kattan FG, Koukouraki P, Anagnostopoulos AK, Tsangaris GT, Doxakis E. RNA binding protein AUF1/HNRNPD regulates nuclear export, stability and translation of SNCA transcripts. Open Biol 2023; 13:230158. [PMID: 37989221 PMCID: PMC10688287 DOI: 10.1098/rsob.230158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/11/2023] [Indexed: 11/23/2023] Open
Abstract
Alpha-synuclein (SNCA) accumulation plays a central role in the pathogenesis of Parkinson's disease. Determining and interfering with the mechanisms that control SNCA expression is one approach to limiting disease progression. Currently, most of our understanding of SNCA regulation is protein-based. Post-transcriptional mechanisms directly regulating SNCA mRNA expression via its 3' untranslated region (3'UTR) were investigated here. Mass spectrometry of proteins pulled down from murine brain lysates using a biotinylated SNCA 3'UTR revealed multiple RNA-binding proteins, of which HNRNPD/AUF1 was chosen for further analysis. AUF1 bound both proximal and distal regions of the SNCA 3'UTR, but not the 5'UTR or CDS. In the nucleus, AUF1 attenuated SNCA pre-mRNA maturation and was indispensable for the export of SNCA transcripts. AUF1 destabilized SNCA transcripts in the cytosol, primarily those with shorter 3'UTRs, independently of microRNAs by recruiting the CNOT1-CNOT7 deadenylase complex to trim the polyA tail. Furthermore, AUF1 inhibited SNCA mRNA binding to ribosomes. These data identify AUF1 as a multi-tasking protein regulating maturation, nucleocytoplasmic shuttling, stability and translation of SNCA transcripts.
Collapse
Affiliation(s)
- Fedon-Giasin Kattan
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens 11527, Greece
- Department of Biological Applications and Technology, Faculty of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Pelagia Koukouraki
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens 11527, Greece
| | - Athanasios K. Anagnostopoulos
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens 11527, Greece
| | - George T. Tsangaris
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens 11527, Greece
| | - Epaminondas Doxakis
- Center of Basic Research, Biomedical Research Foundation of the Academy of Athens (BRFAA), Soranou Efesiou 4, Athens 11527, Greece
| |
Collapse
|
21
|
Odongo R, Bellur O, Abdik E, Çakır T. Brain-wide transcriptome-based metabolic alterations in Parkinson's disease: human inter-region and human-experimental model correlations. Mol Omics 2023; 19:522-537. [PMID: 36928892 DOI: 10.1039/d2mo00343k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Alterations in brain metabolism are closely associated with the molecular hallmarks of Parkinson's disease (PD). A clear understanding of the main metabolic perturbations in PD is therefore important. Here, we retrospectively analysed the expression of metabolic genes from 34 PD-control post-mortem human brain transcriptome data comparisons from literature, spanning multiple brain regions. We found high metabolic correlations between the Substantia nigra (SN)- and cerebral cortex-derived tissues. Moreover, three clusters of PD patient cohorts were identified based on perturbed metabolic processes in the SN - each characterised by perturbations in (a) bile acid metabolism (b) omega-3 fatty acid metabolism, and (c) lipoic acid and androgen metabolism - metabolic themes not comprehensively addressed in PD. These perturbations were supported by concurrence between transcriptome and proteome changes in the expression patterns for CBR1, ECI2, BDH2, CYP27A1, ALDH1B1, ALDH9A1, ADH5, ALDH7A1, L1CAM, and PLXNB3 genes, providing a valuable resource for drug targeting and diagnosis. Also, we analysed 58 PD-control transcriptome data comparisons from in vivo/in vitro disease models and identified experimental PD models with significant correlations to matched human brain regions. Collectively, our findings suggest metabolic alterations in several brain regions, heterogeneity in metabolic alterations between study cohorts for the SN tissues and the need to optimize current experimental models to advance research on metabolic aspects of PD.
Collapse
Affiliation(s)
- Regan Odongo
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Orhan Bellur
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Ecehan Abdik
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| | - Tunahan Çakır
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey.
| |
Collapse
|
22
|
Patrigeon M, Brot S, Bonnet ML, Belnoue L, Gaillard A. Host-to-graft Propagation of α-synuclein in a Mouse Model of Parkinson's Disease: Intranigral Versus Intrastriatal Transplantation. Transplantation 2023; 107:e201-e212. [PMID: 36944598 DOI: 10.1097/tp.0000000000004565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
BACKGROUND Parkinson's disease (PD) is a progressive neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNpc) and by the accumulation of misfolded α-synuclein (α-syn) in Lewy bodies. Ectopic transplantation of human fetal ventral mesencephalic DA neurons into the striatum of PD patients have provided proof-of-principle for the cell replacement strategy in this disorder. However, 10 to 22 y after transplantation, 1% to 27% of grafted neurons contained α-syn aggregates similar to those observed in the host brain. We hypothesized that intrastriatal grafts are more vulnerable to α-syn propagation because the striatum is not the ontogenic site of nigral DA neurons and represents an unfavorable environment for transplanted neurons. Here, we compared the long-term host-to-graft propagation of α-syn in 2 transplantation sites: the SNpc and the striatum. METHODS Two mouse models of PD were developed by injecting adeno-associated-virus2/9-human α-syn A53T into either the SNpc or the striatum of C57BL/6 mice. Mouse fetal ventral mesencephalic DA progenitors were grafted into the SNpc or into the striatum of SNpc or striatum of α-syn injected mice, respectively. RESULTS First, we have shown a degeneration of the nigrostriatal pathway associated with motor deficits after nigral but not striatal adeno-associated-virus-hαsyn A53T injection. Second, human α-syn preferentially accumulates in striatal grafts compared to nigral grafts. However, no differences were observed for phosphorylated α-syn, a marker of pathological α-syn aggregates. CONCLUSIONS Taken together, our results suggest that the ectopic site of the transplantation impacts the host-to-graft transmission of α-syn.
Collapse
Affiliation(s)
- Maëlig Patrigeon
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Sébastien Brot
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| | - Marie-Laure Bonnet
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Laure Belnoue
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
- CHU Poitiers, Poitiers, France
| | - Afsaneh Gaillard
- Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers Cedex, France
| |
Collapse
|
23
|
Graves NJ, Gambin Y, Sierecki E. α-Synuclein Strains and Their Relevance to Parkinson's Disease, Multiple System Atrophy, and Dementia with Lewy Bodies. Int J Mol Sci 2023; 24:12134. [PMID: 37569510 PMCID: PMC10418915 DOI: 10.3390/ijms241512134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
Like many neurodegenerative diseases, Parkinson's disease (PD) is characterized by the formation of proteinaceous aggregates in brain cells. In PD, those proteinaceous aggregates are formed by the α-synuclein (αSyn) and are considered the trademark of this neurodegenerative disease. In addition to PD, αSyn pathological aggregation is also detected in atypical Parkinsonism, including Dementia with Lewy Bodies (DLB), Multiple System Atrophy (MSA), as well as neurodegeneration with brain iron accumulation, some cases of traumatic brain injuries, and variants of Alzheimer's disease. Collectively, these (and other) disorders are referred to as synucleinopathies, highlighting the relation between disease type and protein misfolding/aggregation. Despite these pathological relationships, however, synucleinopathies cover a wide range of pathologies, present with a multiplicity of symptoms, and arise from dysfunctions in different neuroanatomical regions and cell populations. Strikingly, αSyn deposition occurs in different types of cells, with oligodendrocytes being mainly affected in MSA, while aggregates are found in neurons in PD. If multiple factors contribute to the development of a pathology, especially in the cases of slow-developing neurodegenerative disorders, the common presence of αSyn aggregation, as both a marker and potential driver of disease, is puzzling. In this review, we will focus on comparing PD, DLB, and MSA, from symptomatology to molecular description, highlighting the role and contribution of αSyn aggregates in each disorder. We will particularly present recent evidence for the involvement of conformational strains of αSyn aggregates and discuss the reciprocal relationship between αSyn strains and the cellular milieu. Moreover, we will highlight the need for effective methodologies for the strainotyping of aggregates to ameliorate diagnosing capabilities and therapeutic treatments.
Collapse
Affiliation(s)
| | | | - Emma Sierecki
- EMBL Australia Node for Single Molecule Sciences and School of Biomedical Sciences, Faculty of Medicine, The University of New South Wales, Sydney, NSW 2052, Australia; (N.J.G.)
| |
Collapse
|
24
|
Starr LA, McKay LE, Peter KN, Seyfarth LM, Berkowitz LA, Caldwell KA, Caldwell GA. Attenuation of Dopaminergic Neurodegeneration in a C. elegans Parkinson's Model through Regulation of Xanthine Dehydrogenase (XDH-1) Expression by the RNA Editase, ADR-2. J Dev Biol 2023; 11:jdb11020020. [PMID: 37218814 DOI: 10.3390/jdb11020020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/24/2023] Open
Abstract
Differential RNA editing by adenosine deaminases that act on RNA (ADARs) has been implicated in several neurological disorders, including Parkinson's disease (PD). Here, we report results of a RNAi screen of genes differentially regulated in adr-2 mutants, normally encoding the only catalytically active ADAR in Caenorhabditis elegans, ADR-2. Subsequent analysis of candidate genes that alter the misfolding of human α-synuclein (α-syn) and dopaminergic neurodegeneration, two PD pathologies, reveal that reduced expression of xdh-1, the ortholog of human xanthine dehydrogenase (XDH), is protective against α-synuclein-induced dopaminergic neurodegeneration. Further, RNAi experiments show that WHT-2, the worm ortholog of the human ABCG2 transporter and a predicted interactor of XDH-1, is the rate-limiting factor in the ADR-2, XDH-1, WHT-2 system for dopaminergic neuroprotection. In silico structural modeling of WHT-2 indicates that the editing of one nucleotide in the wht-2 mRNA leads to the substitution of threonine with alanine at residue 124 in the WHT-2 protein, changing hydrogen bonds in this region. Thus, we propose a model where wht-2 is edited by ADR-2, which promotes optimal export of uric acid, a known substrate of WHT-2 and a product of XDH-1 activity. In the absence of editing, uric acid export is limited, provoking a reduction in xdh-1 transcription to limit uric acid production and maintain cellular homeostasis. As a result, elevation of uric acid is protective against dopaminergic neuronal cell death. In turn, increased levels of uric acid are associated with a decrease in ROS production. Further, downregulation of xdh-1 is protective against PD pathologies because decreased levels of XDH-1 correlate to a concomitant reduction in xanthine oxidase (XO), the form of the protein whose by-product is superoxide anion. These data indicate that modifying specific targets of RNA editing may represent a promising therapeutic strategy for PD.
Collapse
Affiliation(s)
- Lindsey A Starr
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Luke E McKay
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kylie N Peter
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Lena M Seyfarth
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Laura A Berkowitz
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
| | - Kim A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy A Caldwell
- Department of Biological Sciences, Center for Convergent Biomedicine, Alabama Life Research Institute, The University of Alabama, Tuscaloosa, AL 35487, USA
- Department of Neurology, Center for Neurodegeneration and Experimental Therapeutics, Nathan Shock Center of Excellence for the Basic Biology of Aging, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
25
|
Gielnik M, Szymańska A, Dong X, Jarvet J, Svedružić ŽM, Gräslund A, Kozak M, Wärmländer SKTS. Prion Protein Octarepeat Domain Forms Transient β-Sheet Structures upon Residue-Specific Binding to Cu(II) and Zn(II) Ions. Biochemistry 2023. [PMID: 37163663 DOI: 10.1021/acs.biochem.3c00129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Misfolding of the cellular prion protein (PrPC) is associated with the development of fatal neurodegenerative diseases called transmissible spongiform encephalopathies (TSEs). Metal ions appear to play a crucial role in PrPC misfolding. PrPC is a combined Cu(II) and Zn(II) metal-binding protein, where the main metal-binding site is located in the octarepeat (OR) region. Thus, the biological function of PrPC may involve the transport of divalent metal ions across membranes or buffering concentrations of divalent metal ions in the synaptic cleft. Recent studies have shown that an excess of Cu(II) ions can result in PrPC instability, oligomerization, and/or neuroinflammation. Here, we have used biophysical methods to characterize Cu(II) and Zn(II) binding to the isolated OR region of PrPC. Circular dichroism (CD) spectroscopy data suggest that the OR domain binds up to four Cu(II) ions or two Zn(II) ions. Binding of the first metal ion results in a structural transition from the polyproline II helix to the β-turn structure, while the binding of additional metal ions induces the formation of β-sheet structures. Fluorescence spectroscopy data indicate that the OR region can bind both Cu(II) and Zn(II) ions at neutral pH, but under acidic conditions, it binds only Cu(II) ions. Molecular dynamics simulations suggest that binding of either metal ion to the OR region results in the formation of β-hairpin structures. As the formation of β-sheet structures can be a first step toward amyloid formation, we propose that high concentrations of either Cu(II) or Zn(II) ions may have a pro-amyloid effect in TSE diseases.
Collapse
Affiliation(s)
- Maciej Gielnik
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
| | - Aneta Szymańska
- Department of Biomedical Chemistry, Faculty of Chemistry, Gdańsk University, PL 80-308 Gdańsk, Poland
| | - Xiaolin Dong
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Jüri Jarvet
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
- The National Institute of Chemical Physics and Biophysics, 12618 Tallinn, Estonia
| | - Željko M Svedružić
- Department of Biotechnology, University of Rijeka, HR 51000 Rijeka, Croatia
| | - Astrid Gräslund
- Chemistry Section, Stockholm University, 10691 Stockholm, Sweden
| | - Maciej Kozak
- Department of Macromolecular Physics, Faculty of Physics, Adam Mickiewicz University, PL 61-614 Poznań, Poland
- National Synchrotron Radiation Centre SOLARIS, Jagiellonian University, PL 30-392 Kraków, Poland
| | | |
Collapse
|
26
|
Zhuo Y, Li X, He Z, Lu M. Pathological mechanisms of neuroimmune response and multitarget disease-modifying therapies of mesenchymal stem cells in Parkinson's disease. Stem Cell Res Ther 2023; 14:80. [PMID: 37041580 PMCID: PMC10091615 DOI: 10.1186/s13287-023-03280-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 03/13/2023] [Indexed: 04/13/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease characterized by the degeneration of dopaminergic neurons in the substantia nigra (SN); the etiology and pathological mechanism of the disease are still unclear. Recent studies have shown that the activation of a neuroimmune response plays a key role in the development of PD. Alpha-synuclein (α-Syn), the primary pathological marker of PD, can gather in the SN and trigger a neuroinflammatory response by activating microglia which can further activate the dopaminergic neuron's neuroimmune response mediated by reactive T cells through antigen presentation. It has been shown that adaptive immunity and antigen presentation processes are involved in the process of PD and further research on the neuroimmune response mechanism may open new methods for its prevention and therapy. While current therapeutic regimens are still focused on controlling clinical symptoms, applications such as immunoregulatory strategies can delay the symptoms and the process of neurodegeneration. In this review, we summarized the progression of the neuroimmune response in PD based on recent studies and focused on the use of mesenchymal stem cell (MSC) therapy and challenges as a strategy of disease-modifying therapy with multiple targets.
Collapse
Affiliation(s)
- Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China
| | - Xuan Li
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China
| | - Zhengwen He
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University/Hunan Cancer Hospital, Changsha, 410000, Hunan, China.
| | - Ming Lu
- The National and Local Joint Engineering Laboratory of Animal Peptide Drug Development, College of Life Sciences, Hunan Normal University, Changsha, 410006, Hunan, China.
- Hunan Provincial Key Laboratory of Neurorestoratology, The Second Affiliated Hospital (the 921st Hospital of PLA), Hunan Normal University, Changsha, 410003, Hunan, China.
| |
Collapse
|
27
|
Zhang Y, Zhang C, He XZ, Li ZH, Meng JC, Mao RT, Li X, Xue R, Gui Q, Zhang GX, Wang LH. Interaction Between the Glymphatic System and α-Synuclein in Parkinson's Disease. Mol Neurobiol 2023; 60:2209-2222. [PMID: 36637746 DOI: 10.1007/s12035-023-03212-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/04/2023] [Indexed: 01/14/2023]
Abstract
The glymphatic system contributes to the clearance of amyloid-β from the brain and is disrupted in Alzheimer's disease. However, whether the system is involved in the removal of α-synuclein (α-syn) and whether it is suppressed in Parkinson's disease (PD) remain largely unknown. In mice receiving the intranigral injection of recombinant human α-syn, we found that the glymphatic suppression via aquaporin-4 (AQP4) gene deletion or acetazolamide treatment reduced the clearance of injected α-syn from the brain. In mice overexpressing the human A53T-α-syn, we revealed that AQP4 deficiency accelerated the accumulation of α-syn, facilitated the loss of dopaminergic neurons, and accelerated PD-like symptoms. We also found that the overexpression of A53T-α-syn reduced the expression/polarization of AQP4 and suppressed the glymphatic activity of mice. The study demonstrates a close interaction between the AQP4-mediated glymphatic system and parenchymal α-syn, indicating that restoring the glymphatic activity is a potential therapeutic target to delay PD progression.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Cui Zhang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Xu-Zhong He
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Zhen-Hua Li
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Jing-Cai Meng
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Rui-Ting Mao
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Xin Li
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Rong Xue
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Qian Gui
- Department of Neurology, Suzhou Municipal Hospital, 26 Dao-Qian Street, Suzhou, 215002, People's Republic of China
| | - Guo-Xing Zhang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China
| | - Lin-Hui Wang
- Department of Physiology and Neurobiology, Suzhou Medical College of Soochow University, 199 Ren-Ai Road, Suzhou, 215123, People's Republic of China.
| |
Collapse
|
28
|
Lee RMQ, Koh TW. Genetic modifiers of synucleinopathies-lessons from experimental models. OXFORD OPEN NEUROSCIENCE 2023; 2:kvad001. [PMID: 38596238 PMCID: PMC10913850 DOI: 10.1093/oons/kvad001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/04/2023] [Accepted: 03/07/2023] [Indexed: 04/11/2024]
Abstract
α-Synuclein is a pleiotropic protein underlying a group of progressive neurodegenerative diseases, including Parkinson's disease and dementia with Lewy bodies. Together, these are known as synucleinopathies. Like all neurological diseases, understanding of disease mechanisms is hampered by the lack of access to biopsy tissues, precluding a real-time view of disease progression in the human body. This has driven researchers to devise various experimental models ranging from yeast to flies to human brain organoids, aiming to recapitulate aspects of synucleinopathies. Studies of these models have uncovered numerous genetic modifiers of α-synuclein, most of which are evolutionarily conserved. This review discusses what we have learned about disease mechanisms from these modifiers, and ways in which the study of modifiers have supported ongoing efforts to engineer disease-modifying interventions for synucleinopathies.
Collapse
Affiliation(s)
- Rachel Min Qi Lee
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
| | - Tong-Wey Koh
- Temasek Life Sciences Laboratory, 1 Research Link, Singapore, 117604, Singapore
- Department of Biological Sciences, National University of Singapore, Block S3 #05-01, 16 Science Drive 4, Singapore, 117558, Singapore
| |
Collapse
|
29
|
Zhang J. Investigating neurological symptoms of infectious diseases like COVID-19 leading to a deeper understanding of neurodegenerative disorders such as Parkinson's disease. Front Neurol 2022; 13:968193. [PMID: 36570463 PMCID: PMC9768197 DOI: 10.3389/fneur.2022.968193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 08/08/2022] [Indexed: 12/12/2022] Open
Abstract
Apart from common respiratory symptoms, neurological symptoms are prevalent among patients with COVID-19. Research has shown that infection with SARS-CoV-2 accelerated alpha-synuclein aggregation, induced Lewy-body-like pathology, caused dopaminergic neuron senescence, and worsened symptoms in patients with Parkinson's disease (PD). In addition, SARS-CoV-2 infection can induce neuroinflammation and facilitate subsequent neurodegeneration in long COVID, and increase individual vulnerability to PD or parkinsonism. These findings suggest that a post-COVID-19 parkinsonism might follow the COVID-19 pandemic. In order to prevent a possible post-COVID-19 parkinsonism, this paper reviewed neurological symptoms and related findings of COVID-19 and related infectious diseases (influenza and prion disease) and neurodegenerative disorders (Alzheimer's disease, PD and amyotrophic lateral sclerosis), and discussed potential mechanisms underlying the neurological symptoms and the relationship between the infectious diseases and the neurodegenerative disorders, as well as the therapeutic and preventive implications in the neurodegenerative disorders. Infections with a relay of microbes (SARS-CoV-2, influenza A viruses, gut bacteria, etc.) and prion-like alpha-synuclein proteins over time may synergize to induce PD. Therefore, a systematic approach that targets these pathogens and the pathogen-induced neuroinflammation and neurodegeneration may provide cures for neurodegenerative disorders. Further, antiviral/antimicrobial drugs, vaccines, immunotherapies and new therapies (e.g., stem cell therapy) need to work together to treat, manage or prevent these disorders. As medical science and technology advances, it is anticipated that better vaccines for SARS-CoV-2 variants, new antiviral/antimicrobial drugs, effective immunotherapies (alpha-synuclein antibodies, vaccines for PD or parkinsonism, etc.), as well as new therapies will be developed and made available in the near future, which will help prevent a possible post-COVID-19 parkinsonism in the 21st century.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Neurology, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| |
Collapse
|
30
|
Shippey LE, Campbell SG, Hill AF, Smith DP. Propagation of Parkinson's disease by extracellular vesicle production and secretion. Biochem Soc Trans 2022; 50:1303-1314. [PMID: 36111783 PMCID: PMC9704536 DOI: 10.1042/bst20220204] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 12/13/2024]
Abstract
Parkinson's disease (PD) is a common neurodegenerative condition affecting a significant number of individuals globally, resulting in the presentation of debilitating motor and non-motor symptoms, including bradykinesia, resting tremor, as well as mood and sleep disorders. The pathology of PD has been observed to spread through the central nervous system resulting in progressive brain degeneration and a poor prognosis. Aggregated forms of the protein α-synuclein, particularly intermediary aggregates, referred to as oligomers, or preformed fibrils, have been implicated as the causative agent in the degeneration of neuronal processes, including the dysfunction of axonal transport, mitochondrial activity, and ultimately cellular death. Extracellular vesicles (EVs) have been strongly implicated in the propagation of PD pathology. Current observations suggest that aggregated α-synuclein is transported between neurons via small EVs in a series of exocytosis and endocytosis cellular processes leading to the observed spread of neurotoxicity and cellular death. Despite some understanding of the role of EVs in neurodegeneration, the exact mechanism by which these lipidic particles participate in the progression of Parkinson's pathology is not entirely understood. Here we review the current understanding of the role of EVs in the propagation of PD and explore their potential as a therapeutic target.
Collapse
Affiliation(s)
- Laura E. Shippey
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, U.K
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Susan G. Campbell
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, U.K
| | - Andrew F. Hill
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
- Institute for Health and Sport, Victoria University, Footscray, Australia
| | - David P. Smith
- Department of Biosciences and Chemistry, Sheffield Hallam University, Sheffield, U.K
| |
Collapse
|
31
|
Quaternary structure of patient-homogenate amplified α-synuclein fibrils modulates seeding of endogenous α-synuclein. Commun Biol 2022; 5:1040. [PMID: 36180728 PMCID: PMC9525671 DOI: 10.1038/s42003-022-03948-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Accepted: 09/02/2022] [Indexed: 11/08/2022] Open
Abstract
Parkinson's disease (PD) and Multiple System Atrophy (MSA) are progressive and unremitting neurological diseases that are neuropathologically characterized by α-synuclein inclusions. Increasing evidence supports the aggregation of α-synuclein in specific brain areas early in the disease course, followed by the spreading of α-synuclein pathology to multiple brain regions. However, little is known about how the structure of α-synuclein fibrils influence its ability to seed endogenous α-synuclein in recipient cells. Here, we aggregated α-synuclein by seeding with homogenates of PD- and MSA-confirmed brain tissue, determined the resulting α-synuclein fibril structures by cryo-electron microscopy, and characterized their seeding potential in mouse primary oligodendroglial cultures. The combined analysis shows that the two patient material-amplified α-synuclein fibrils share a similar protofilament fold but differ in their inter-protofilament interface and their ability to recruit endogenous α-synuclein. Our study indicates that the quaternary structure of α-synuclein fibrils modulates the seeding of α-synuclein pathology inside recipient cells. It thus provides an important advance in the quest to understand the connection between the structure of α-synuclein fibrils, cellular seeding/spreading, and ultimately the clinical manifestations of different synucleinopathies.
Collapse
|
32
|
Boyd RJ, Avramopoulos D, Jantzie LL, McCallion AS. Neuroinflammation represents a common theme amongst genetic and environmental risk factors for Alzheimer and Parkinson diseases. J Neuroinflammation 2022; 19:223. [PMID: 36076238 PMCID: PMC9452283 DOI: 10.1186/s12974-022-02584-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 08/23/2022] [Indexed: 11/21/2022] Open
Abstract
Multifactorial diseases are characterized by inter-individual variation in etiology, age of onset, and penetrance. These diseases tend to be relatively common and arise from the combined action of genetic and environmental factors; however, parsing the convoluted mechanisms underlying these gene-by-environment interactions presents a significant challenge to their study and management. For neurodegenerative disorders, resolving this challenge is imperative, given the enormous health and societal burdens they impose. The mechanisms by which genetic and environmental effects may act in concert to destabilize homeostasis and elevate risk has become a major research focus in the study of common disease. Emphasis is further being placed on determining the extent to which a unifying biological principle may account for the progressively diminishing capacity of a system to buffer disease phenotypes, as risk for disease increases. Data emerging from studies of common, neurodegenerative diseases are providing insights to pragmatically connect mechanisms of genetic and environmental risk that previously seemed disparate. In this review, we discuss evidence positing inflammation as a unifying biological principle of homeostatic destabilization affecting the risk, onset, and progression of neurodegenerative diseases. Specifically, we discuss how genetic variation associated with Alzheimer disease and Parkinson disease may contribute to pro-inflammatory responses, how such underlying predisposition may be exacerbated by environmental insults, and how this common theme is being leveraged in the ongoing search for effective therapeutic interventions.
Collapse
Affiliation(s)
- Rachel J Boyd
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dimitri Avramopoulos
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Lauren L Jantzie
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
- Department of Neurology, Kennedy Krieger Institute, Baltimore, MD, 21205, USA
| | - Andrew S McCallion
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
33
|
Rational Generation of Monoclonal Antibodies Selective for Pathogenic Forms of Alpha-Synuclein. Biomedicines 2022; 10:biomedicines10092168. [PMID: 36140270 PMCID: PMC9496384 DOI: 10.3390/biomedicines10092168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Misfolded toxic forms of alpha-synuclein (α-Syn) have been implicated in the pathogenesis of synucleinopathies, including Parkinson’s disease (PD), dementia with Lewy bodies (DLB), and multiple system atrophy (MSA). The α-Syn oligomers and soluble fibrils have been shown to mediate neurotoxicity and cell-to-cell propagation of pathology. To generate antibodies capable of selectively targeting pathogenic forms of α-Syn, computational modeling was used to predict conformational epitopes likely to become exposed on oligomers and small soluble fibrils, but not on monomers or fully formed insoluble fibrils. Cyclic peptide scaffolds reproducing these conformational epitopes exhibited neurotoxicity and seeding activity, indicating their biological relevance. Immunization with the conformational epitopes gave rise to monoclonal antibodies (mAbs) with the desired binding profile showing selectivity for toxic α-Syn oligomers and soluble fibrils, with little or no reactivity with monomers, physiologic tetramers, or Lewy bodies. Recognition of naturally occurring soluble α-Syn aggregates in brain extracts from DLB and MSA patients was confirmed by surface plasmon resonance (SPR). In addition, the mAbs inhibited the seeding activity of sonicated pre-formed fibrils (PFFs) in a thioflavin-T fluorescence-based aggregation assay. In neuronal cultures, the mAbs protected primary rat neurons from toxic α-Syn oligomers, reduced the uptake of PFFs, and inhibited the induction of pathogenic phosphorylated aggregates of endogenous α-Syn. Protective antibodies selective for pathogenic species of α-Syn, as opposed to pan α-Syn reactivity, are expected to provide enhanced safety and therapeutic potency by preserving normal α-Syn function and minimizing the diversion of active antibody from the target by the more abundant non-toxic forms of α-Syn in the circulation and central nervous system.
Collapse
|
34
|
Xie A, Ensink E, Li P, Gordevičius J, Marshall LL, George S, Pospisilik JA, Aho VTE, Houser MC, Pereira PAB, Rudi K, Paulin L, Tansey MG, Auvinen P, Brundin P, Brundin L, Labrie V, Scheperjans F. Bacterial Butyrate in Parkinson's Disease Is Linked to Epigenetic Changes and Depressive Symptoms. Mov Disord 2022; 37:1644-1653. [PMID: 35723531 PMCID: PMC9545646 DOI: 10.1002/mds.29128] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 05/08/2022] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The gut microbiome and its metabolites can impact brain health and are altered in Parkinson's disease (PD) patients. It has been recently demonstrated that PD patients have reduced fecal levels of the potent epigenetic modulator butyrate and its bacterial producers. OBJECTIVES Here, we investigate whether the changes in the gut microbiome and associated metabolites are related to PD symptoms and epigenetic markers in leucocytes and neurons. METHODS Stool, whole blood samples, and clinical data were collected from 55 PD patients and 55 controls. We performed DNA methylation analysis on whole blood samples and analyzed the results in relation to fecal short-chain fatty acid concentrations and microbiota composition. In another cohort, prefrontal cortex neurons were isolated from control and PD brains. We identified genome-wide DNA methylation by targeted bisulfite sequencing. RESULTS We show that lower fecal butyrate and reduced counts of genera Roseburia, Romboutsia, and Prevotella are related to depressive symptoms in PD patients. Genes containing butyrate-associated methylation sites include PD risk genes and significantly overlap with sites epigenetically altered in PD blood leucocytes, predominantly neutrophils, and in brain neurons, relative to controls. Moreover, butyrate-associated methylated-DNA regions in PD overlap with those altered in gastrointestinal (GI), autoimmune, and psychiatric diseases. CONCLUSIONS Decreased levels of bacterially produced butyrate are related to epigenetic changes in leucocytes and neurons from PD patients and to the severity of their depressive symptoms. PD shares common butyrate-dependent epigenetic changes with certain GI and psychiatric disorders, which could be relevant for their epidemiological relation. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aoji Xie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Elizabeth Ensink
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Peipei Li
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Juozas Gordevičius
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Lee L Marshall
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | - Sonia George
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA
| | | | - Velma T E Aho
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Madelyn C Houser
- Nell Hodgson Woodruff School of Nursing, Emory University, Atlanta, Georgia, USA.,Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Pedro A B Pereira
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland.,Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Knut Rudi
- Faculty of Chemistry, Biotechnology and Food Science (KBM), Norwegian University of Life Sciences, Ås, Norway
| | - Lars Paulin
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Malú G Tansey
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA.,Department of Neuroscience and Neurology, Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Petri Auvinen
- Institute of Biotechnology, DNA Sequencing and Genomics Laboratory, University of Helsinki, Helsinki, Finland
| | - Patrik Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Lena Brundin
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Viviane Labrie
- Department for Neurodegenerative Science, Parkinson's Disease Center, Van Andel Institute, Grand Rapids, Michigan, USA.,Division of Psychiatry and Behavioral Medicine, College of Human Medicine, Michigan State University, Grand Rapids, Michigan, USA
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital, and Clinicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
35
|
Rahman MU, Bilal M, Shah JA, Kaushik A, Teissedre PL, Kujawska M. CRISPR-Cas9-Based Technology and Its Relevance to Gene Editing in Parkinson's Disease. Pharmaceutics 2022; 14:1252. [PMID: 35745824 PMCID: PMC9229276 DOI: 10.3390/pharmaceutics14061252] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/12/2022] Open
Abstract
Parkinson's disease (PD) and other chronic and debilitating neurodegenerative diseases (NDs) impose a substantial medical, emotional, and financial burden on individuals and society. The origin of PD is unknown due to a complex combination of hereditary and environmental risk factors. However, over the last several decades, a significant amount of available data from clinical and experimental studies has implicated neuroinflammation, oxidative stress, dysregulated protein degradation, and mitochondrial dysfunction as the primary causes of PD neurodegeneration. The new gene-editing techniques hold great promise for research and therapy of NDs, such as PD, for which there are currently no effective disease-modifying treatments. As a result, gene therapy may offer new treatment options, transforming our ability to treat this disease. We present a detailed overview of novel gene-editing delivery vehicles, which is essential for their successful implementation in both cutting-edge research and prospective therapeutics. Moreover, we review the most recent advancements in CRISPR-based applications and gene therapies for a better understanding of treating PD. We explore the benefits and drawbacks of using them for a range of gene-editing applications in the brain, emphasizing some fascinating possibilities.
Collapse
Affiliation(s)
- Mujeeb ur Rahman
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| | - Muhammad Bilal
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China;
| | - Junaid Ali Shah
- College of Life Sciences, Jilin University, Changchun 130012, China;
- Fergana Medical Institute of Public Health Uzbekistan, Fergana 150110, Uzbekistan
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Health System Engineering, Department of Environmental Engineering, Florida Polytechnic University, Lakeland, FL 33805, USA;
- School of Engineering, University of Petroleum and Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pierre-Louis Teissedre
- Institut des Sciences de la Vigne et du Vin, Université de Bordeaux, EA 4577, Œnologie, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France;
- Institut des Sciences de la Vigne et du Vin, INRA, USC 1366 INRA, IPB, 210 Chemin de Leysotte, F-33140 Villenave d’Ornon, France
| | - Małgorzata Kujawska
- Department of Toxicology, Faculty of Pharmacy, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznan, Poland;
| |
Collapse
|
36
|
Amin R, Quispe C, Docea AO, Alibek Y, Kulbayeva M, Durna Daştan S, Calina D, Sharifi-Rad J. The role of Tumour Necrosis Factor in neuroinflammation associated with Parkinson's disease and targeted therapies. Neurochem Int 2022; 158:105376. [PMID: 35667491 DOI: 10.1016/j.neuint.2022.105376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 12/21/2022]
Abstract
Neurodegenerative disorders Parkinson's disease is a progressive neurodegenerative disorder associated with neuroinflammatory responses that lead to the neurodegeneration of the dopaminergic neurons. These neuroinflammatory mechanisms involve various cytokines produced by the activated glial cells. Tumour Necrosis factor α (TNF α) is one of the major mediators of the neuroinflammation associated with neurodegeneration. TNF α has a dual role of neuroprotection and neurotoxicity in the brain. The effective pathways of TNF involve various signalling pathways transduced by the receptors TNFR1 and TNFR2. Effective therapeutic strategies have been produced targeting the neurotoxic behaviour of the Tumour Necrosis Factor and the associated neurodegeneration which includes the use of Dominant Negative Tumour Necrosis Factor (DN-TNF) inhibitors like XENP 345 and XPro®1595 and peroxisome proliferator receptor gamma (PPAR-γ) agonists.
Collapse
Affiliation(s)
- Ruhul Amin
- Faculty of Pharmaceutical Science, Assam Down Town University, Panikhaiti, Guwahati, Assam, India.
| | - Cristina Quispe
- Facultad de Ciencias de la Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, Iquique, 1110939, Chile.
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania
| | - Ydyrys Alibek
- Biomedical Research Centre, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Marzhan Kulbayeva
- Department of Biophysics, Biomedicine and Neuroscience, Al-Farabi Kazakh National University, Al-Farabi av. 71, 050040, Almaty, Kazakhstan.
| | - Sevgi Durna Daştan
- Department of Biology, Faculty of Science, Sivas Cumhuriyet University, 58140, Sivas, Turkey; Beekeeping Development Application and Research Center, Sivas Cumhuriyet University, 58140, Sivas, Turkey.
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, 200349, Craiova, Romania.
| | | |
Collapse
|
37
|
Günaydın C, Çelik ZB, Bilge SS. CIITA expression is regulated by histone deacetylase enzymes and has a role in α-synuclein pre-formed fibril-induced antigen presentation in murine microglial cell line. Immunopharmacol Immunotoxicol 2022; 44:447-455. [PMID: 35291899 DOI: 10.1080/08923973.2022.2054427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AIM Parkinson's disease(PD) is a chronic neurodegenerative disorder related with several genetic and epigenetic factors. In the context of epigenetic factors, histone acetylation is one of the most associated mechanisms with Parkinson's disease progression. This study investigates the effects of the increased histone acetylation on antigen presentation in microglial cells which were induced by pre-formed fibrils of α-synuclein(pFF α-synuclein). METHODS Parkinson's disease model was created with pFF α-synuclein administration to the BV-2 microglial cells. BV-2 cells were co-treated with CUDC-907 and TMP-195 to increase histone acetylation in the presence of α-synuclein. Antigen representation was evaluated by determining expression levels of major histocompatibility complex-II(MHC-II) and class-II major histocompatibility complex(CIITA). RESULTS Our results showed that pFF α-synuclein significantly increased MHC-II expression, and that effect was most severe at 6 hours of administration of α-synuclein. Increasing histone acetylation via CUDC-907 and TMP-195 enhanced MHC-II levels expression, which was more severe in CUDC-907. Additionally, CIITA expression levels were significantly increased with pFF α-synuclein administration and intensified with the co-treatment of CUDC-907 and TMP-195. Furthermore, pFF α-synuclein caused a time-dependent increase in the IFN-gamma(IFN-ɣ) and interleukin-16(IL-16) levels, and that increase was potentiated with CUDC-907 and TMP-195. CONCLUSION Changes in MHC-II and CIITA expression indicate that histone acetylation increases the antigen presentation properties of microglial cells after pFF α-synuclein or histone deacetylase inhibitor(HDACi) administration. Our results show that microglial antigen presentation might have an essential role in the pathology of Parkinson's disease, and α-synuclein likely to play a primary role in this mechanism.
Collapse
Affiliation(s)
- Caner Günaydın
- Samsun University, School of Medicine, Department of Pharmacology, Samsun, Turkey
| | - Z Betül Çelik
- Ondokuz Mayıs University, School of Medicine, Department of Histology and Embryology, Samsun, Turkey
| | - S Sırrı Bilge
- Ondokuz Mayıs University, School of Medicine, Department of Pharmacology, Samsun, Turkey
| |
Collapse
|
38
|
Ryskalin L, Biagioni F, Morucci G, Busceti CL, Frati A, Puglisi-Allegra S, Ferrucci M, Fornai F. Spreading of Alpha Synuclein from Glioblastoma Cells towards Astrocytes Correlates with Stem-like Properties. Cancers (Basel) 2022; 14:cancers14061417. [PMID: 35326570 PMCID: PMC8946011 DOI: 10.3390/cancers14061417] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/08/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary The present study questions whether cells from glioblastoma multiforme (GBM), which overexpress α-synuclein (α-syn), may alter neighboring non-tumoral astrocyte cell lines. The occurrence of α-syn in GBM correlates with the expression of the stem cell marker nestin. When astrocytes are co-cultured with GBM cells in a trans-well apparatus the occurrence of α-syn and nestin rises remarkably. The increase in α-syn in co-cultured astrocytes is more pronounced at the plasma membrane, which mimics the placement of α-syn in GBM cells. When the mTOR inhibitor rapamycin is administered, GBM-induced expression of α-syn and nestin within co-cultured astrocytes is occluded, and morphological alterations are reverted. In the presence of rapamycin the sub-cellular placement of α-syn is modified being allocated within whorls and vacuoles instead of the plasma membrane. The effects induced by rapamycin occur both in baseline GBM cells and within astrocytes primed by co-cultured GBM cells. Abstract Evidence has been recently provided showing that, in baseline conditions, GBM cells feature high levels of α-syn which are way in excess compared with α-syn levels measured within control astrocytes. These findings are consistent along various techniques. In fact, they are replicated by using antibody-based protein detection, such as immuno-fluorescence, immuno-peroxidase, immunoblotting and ultrastructural stoichiometry as well as by measuring α-syn transcript levels at RT-PCR. The present manuscript further questions whether such a high amount of α-syn may be induced within astrocytes, which are co-cultured with GBM cells in a trans-well system. In astrocytes co-cultured with GBM cells, α-syn overexpression is documented. Such an increase is concomitant with increased expression of the stem cell marker nestin, along with GBM-like shifting in cell morphology. This concerns general cell morphology, subcellular compartments and profuse convolutions at the plasma membrane. Transmission electron microscopy (TEM) allows us to assess the authentic amount and sub-cellular compartmentalization of α-syn and nestin within baseline GBM cells and the amount, which is induced within co-cultured astrocytes, as well as the shifting of ultrastructure, which is reminiscent of GBM cells. These phenomena are mitigated by rapamycin administration, which reverts nestin- and α-syn-related overexpression and phenotypic shifting within co-cultured astrocytes towards baseline conditions of naïve astrocytes. The present study indicates that: (i) α-syn increases in astrocyte co-cultured with GBM cells; (ii) α-syn increases in astrocytes along with the stem cell marker nestin; (iii) α-syn increases along with a GBM-like shift of cell morphology; (iv) all these changes are replicated in different GBM cell lines and are reverted by the mTOR inhibitor rapamycin. The present findings indicate that α-syn does occur in high amount within GBM cells and may transmit to neighboring astrocytes as much as a stem cell phenotype. This suggests a mode of tumor progression for GBM cells, which may transform, rather than merely substitute, surrounding tissue; such a phenomenon is sensitive to mTOR inhibition.
Collapse
Affiliation(s)
- Larisa Ryskalin
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Francesca Biagioni
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Gabriele Morucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Carla L. Busceti
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Alessandro Frati
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Neurosurgery Division, Human Neurosciences Department, Sapienza University, 00135 Roma, Italy
| | - Stefano Puglisi-Allegra
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
| | - Michela Ferrucci
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
| | - Francesco Fornai
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via Roma 55, 56126 Pisa, Italy; (L.R.); (G.M.); (M.F.)
- Istituto di Ricovero e Cura a Carattere Scientifico (I.R.C.C.S.) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy; (F.B.); (C.L.B.); (A.F.); (S.P.-A.)
- Correspondence: ; Tel.: +39-050-2218601
| |
Collapse
|
39
|
Pathological Relevance of Post-Translationally Modified Alpha-Synuclein (pSer87, pSer129, nTyr39) in Idiopathic Parkinson's Disease and Multiple System Atrophy. Cells 2022; 11:cells11050906. [PMID: 35269528 PMCID: PMC8909017 DOI: 10.3390/cells11050906] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 02/04/2023] Open
Abstract
Aggregated alpha-synuclein (α-synuclein) is the main component of Lewy bodies (LBs), Lewy neurites (LNs), and glial cytoplasmic inclusions (GCIs), which are pathological hallmarks of idiopathic Parkinson's disease (IPD) and multiple system atrophy (MSA). Initiating factors that culminate in forming LBs/LNs/GCIs remain elusive. Several species of α-synuclein exist, including phosphorylated and nitrated forms. It is unclear which α-synuclein post-translational modifications (PTMs) appear within aggregates throughout disease pathology. Herein we aimed to establish the predominant α-synuclein PTMs in postmortem IPD and MSA pathology using immunohistochemistry. We examined the patterns of three α-synuclein PTMs (pS87, pS129, nY39) simultaneously in pathology-affected regions of 15 IPD cases, 5 MSA cases, and 6 neurologically normal controls. All antibodies recognized LBs, LNs, and GCIs, albeit to a variable extent. pS129 α-synuclein antibody was particularly immunopositive for LNs and synaptic dot-like structures, followed by nY39 α-synuclein antibody. GCIs, neuronal inclusions, and small threads were positive for nY39 α-synuclein in MSA. Quantification of the LB scores revealed that pS129 α-synuclein was the dominant and earliest α-synuclein PTM, followed by nY39 α-synuclein, while lower amounts of pSer87 α-synuclein appeared later in disease progression in PD. These results may have implications for novel biomarker and therapeutic developments.
Collapse
|
40
|
Picca A, Guerra F, Calvani R, Coelho-Junior HJ, Bucci C, Marzetti E. Circulating extracellular vesicles: friends and foes in neurodegeneration. Neural Regen Res 2022; 17:534-542. [PMID: 34380883 PMCID: PMC8504375 DOI: 10.4103/1673-5374.320972] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 04/21/2021] [Indexed: 12/01/2022] Open
Abstract
Extracellular vesicles have been identified as pivotal mediators of intercellular communication with critical roles in physiological and pathological conditions. Via this route, several molecules (e.g., nucleic acids, proteins, metabolites) can be transferred to proximal and distant targets to convey specific information. Extracellular vesicle-associated cargo molecules have been proposed as markers of several disease conditions for their potential of tracking down the generating cell. Indeed, circulating extracellular vesicles may represent biomarkers of dysfunctional cellular quality control systems especially in conditions characterized by the accrual of intracellular misfolded proteins. Furthermore, the identification of extracellular vesicles as tools for the delivery of nucleic acids or other cargo molecules to diseased tissues makes these circulating shuttles possible targets for therapeutic development. The increasing interest in the study of extracellular vesicles as biomarkers resides mainly in the fact that the identification of peripheral levels of extracellular vesicle-associated proteins might reflect molecular events occurring in hardly accessible tissues, such as the brain, thereby serving as a "brain liquid biopsy". The exploitation of extracellular vesicles for diagnostic and therapeutic purposed might offer unprecedented opportunities to develop personalized approaches. Here, we discuss the bright and dark sides of extracellular vesicles in the setting of two main neurodegenerative diseases (i.e., Parkinson's and Alzheimer's diseases). A special focus will be placed on the possibility of using extracellular vesicles as biomarkers for the two conditions to enable disease tracking and treatment monitoring.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Aging Research Center, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet and Stockholm University, Stockholm, Sweden
| | - Hélio José Coelho-Junior
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, Università del Salento, Lecce, Italy
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “Agostino Gemelli” IRCCS, Rome, Italy
- Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, Rome, Italy
| |
Collapse
|
41
|
Interactions of intrinsically disordered proteins with the unconventional chaperone human serum albumin: From mechanisms of amyloid inhibition to therapeutic opportunities. Biophys Chem 2022; 282:106743. [PMID: 35093643 DOI: 10.1016/j.bpc.2021.106743] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/09/2021] [Accepted: 12/09/2021] [Indexed: 12/29/2022]
Abstract
Human Serum Albumin (HSA), the most abundant protein in plasma, serves a diverse repertoire of biological functions including regulation of oncotic pressure and redox potential, transport of serum solutes, but also chaperoning of misfolded proteins. Here we review how HSA interacts with a wide spectrum of client proteins including intrinsically disordered proteins (IDPs) such as Aβ, the islet amyloid peptide (IAPP), alpha synuclein and stressed globular proteins such as insulin. The comparative analysis of the HSA chaperone - client interactions reveals that the amyloid-inhibitory function of HSA arises from at least four emerging mechanisms. Two mechanisms (the monomer stabilizer model and the monomer competitor model) involve the direct binding of HSA to either IDP monomers or oligomers, while other mechanisms (metal chelation and membrane protection) rely on the indirect modulation by HSA of other factors that drive IDP aggregation. While HSA is not the only extracellular chaperone, given its abundance, HSA is likely to account for a significant fraction of the chaperoning effects in plasma, thus opening new therapeutic opportunities in the context of the peripheral sink hypothesis.
Collapse
|
42
|
Spathopoulou A, Edenhofer F, Fellner L. Targeting α-Synuclein in Parkinson's Disease by Induced Pluripotent Stem Cell Models. Front Neurol 2022; 12:786835. [PMID: 35145469 PMCID: PMC8821105 DOI: 10.3389/fneur.2021.786835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/24/2021] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease (PD) is a progressive, neurodegenerative disorder characterized by motor and non-motor symptoms. To date, no specific treatment to halt disease progression is available, only medication to alleviate symptoms can be prescribed. The main pathological hallmark of PD is the development of neuronal inclusions, positive for α-synuclein (α-syn), which are termed Lewy bodies (LBs) or Lewy neurites. However, the cause of the inclusion formation and the loss of neurons remain largely elusive. Various genetic determinants were reported to be involved in PD etiology, including SNCA, DJ-1, PRKN, PINK1, LRRK2, and GBA. Comprehensive insights into pathophysiology of PD critically depend on appropriate models. However, conventional model organisms fall short to faithfully recapitulate some features of this complex disease and as a matter-of-fact access to physiological tissue is limiting. The development of disease models replicating PD that are close to human physiology and dynamic enough to analyze the underlying molecular mechanisms of disease initiation and progression, as well as the generation of new treatment options, is an important and overdue step. Recently, the establishment of induced pluripotent stem cell (iPSC)-derived neural models, particularly from genetic PD-variants, developed into a promising strategy to investigate the molecular mechanisms regarding formation of inclusions and neurodegeneration. As these iPSC-derived neurons can be generated from accessible biopsied samples of PD patients, they carry pathological alterations and enable the possibility to analyze the differences compared to healthy neurons. This review focuses on iPSC models carrying genetic PD-variants of α-syn that will be especially helpful in elucidating the pathophysiological mechanisms of PD. Furthermore, we discuss how iPSC models can be instrumental in identifying cellular targets, potentially leading to the development of new therapeutic treatments. We will outline the enormous potential, but also discuss the limitations of iPSC-based α-syn models.
Collapse
|
43
|
Hatton SL, Pandey MK. Fat and Protein Combat Triggers Immunological Weapons of Innate and Adaptive Immune Systems to Launch Neuroinflammation in Parkinson's Disease. Int J Mol Sci 2022; 23:1089. [PMID: 35163013 PMCID: PMC8835271 DOI: 10.3390/ijms23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/12/2022] [Accepted: 01/14/2022] [Indexed: 01/27/2023] Open
Abstract
Parkinson's disease (PD) is the second-most common neurodegenerative disease in the world, affecting up to 10 million people. This disease mainly happens due to the loss of dopaminergic neurons accountable for memory and motor function. Partial glucocerebrosidase enzyme deficiency and the resultant excess accumulation of glycosphingolipids and alpha-synuclein (α-syn) aggregation have been linked to predominant risk factors that lead to neurodegeneration and memory and motor defects in PD, with known and unknown causes. An increasing body of evidence uncovers the role of several other lipids and their association with α-syn aggregation, which activates the innate and adaptive immune system and sparks brain inflammation in PD. Here, we review the emerging role of a number of lipids, i.e., triglyceride (TG), diglycerides (DG), glycerophosphoethanolamines (GPE), polyunsaturated fatty acids (PUFA), sphingolipids, gangliosides, glycerophospholipids (GPL), and cholesterols, and their connection with α-syn aggregation as well as the induction of innate and adaptive immune reactions that trigger neuroinflammation in PD.
Collapse
Affiliation(s)
- Shelby Loraine Hatton
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
| | - Manoj Kumar Pandey
- Cincinnati Children’s Hospital Medical Center, Division of Human Genetics, 3333 Burnet Avenue, Cincinnati, OH 45229, USA;
- Department of Pediatrics, Division of Human Genetics, College of Medicine, University of Cincinnati, 3333 Burnet Avenue, Cincinnati, OH 45229, USA
| |
Collapse
|
44
|
Yan M, Xiong M, Dai L, Zhang X, Zha Y, Deng X, Yu Z, Zhang Z. Cofilin 1 promotes the pathogenicity and transmission of pathological α-synuclein in mouse models of Parkinson's disease. NPJ Parkinsons Dis 2022; 8:1. [PMID: 35013321 PMCID: PMC8748615 DOI: 10.1038/s41531-021-00272-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 12/20/2021] [Indexed: 11/09/2022] Open
Abstract
The pathological hallmark of Parkinson's disease (PD) is the presence of Lewy bodies (LBs) with aggregated α-synuclein being the major component. The abnormal α-synuclein aggregates transfer between cells, recruit endogenous α-synuclein into toxic LBs, and finally trigger neuronal injury. However, the molecular mechanisms mediating the aggregation and transmission of pathological α-synuclein remain unknown. Previously we found that cofilin 1, a member of the actin-binding protein, promotes the aggregation and pathogenicity of α-synuclein in vitro. Here we further investigated the effect of cofilin 1 in mouse models of PD. We found that the mixed fibrils composed of cofilin 1 and α-synuclein are more pathogenic to mice and more prone to propagation than pure α-synuclein fibrils. Overexpression of cofilin 1 enhances the seeding and spreading of α-synuclein aggregates, and induces PD-like behavioral impairments in mice. Together, these results illustrate the important role of cofilin 1 in the pathogenicity and transmission of α-synuclein during the onset and progression of PD.
Collapse
Affiliation(s)
- Mingmin Yan
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
- Department of Neurology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430060, China
| | - Min Xiong
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Lijun Dai
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xingyu Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yunhong Zha
- The People's Hospital of China Three Gorges University, the First People's Hospital of Yichang, Yichang, 443000, China
| | - Xiaorong Deng
- Department of Neurology, Hubei NO. 3 People's Hospital of Jianghan University, Wuhan, 430060, China
| | - Zhui Yu
- Department of Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Zhentao Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
| |
Collapse
|
45
|
The Alpha-Synuclein RT-QuIC Products Generated by the Olfactory Mucosa of Patients with Parkinson’s Disease and Multiple System Atrophy Induce Inflammatory Responses in SH-SY5Y Cells. Cells 2021; 11:cells11010087. [PMID: 35011649 PMCID: PMC8750063 DOI: 10.3390/cells11010087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/22/2021] [Accepted: 12/24/2021] [Indexed: 11/28/2022] Open
Abstract
Parkinson’s disease (PD) and multiple system atrophy (MSA) are caused by two distinct strains of disease-associated α-synuclein (αSynD). Recently, we have shown that olfactory mucosa (OM) samples of patients with PD and MSA can seed the aggregation of recombinant α-synuclein by means of Real-Time Quaking-Induced Conversion (αSyn_RT-QuIC). Remarkably, the biochemical and morphological properties of the final α-synuclein aggregates significantly differed between PD and MSA seeded samples. Here, these aggregates were given to neuron-like differentiated SH-SY5Y cells and distinct inflammatory responses were observed. To deepen whether the morphological features of α-synuclein aggregates were responsible for this variable SH-SY5Y inflammatory response, we generated three biochemically and morphologically distinct α-synuclein aggregates starting from recombinant α-synuclein that were used to seed αSyn_RT-QuIC reaction; the final reaction products were used to stimulate SH-SY5Y cells. Our study showed that, in contrast to OM samples of PD and MSA patients, the artificial aggregates did not transfer their distinctive features to the αSyn_RT-QuIC products and the latter induced analogous inflammatory responses in cells. Thus, the natural composition of the αSynD strains but also other specific factors in OM tissue can substantially modulate the biochemical, morphological and inflammatory features of the αSyn_RT-QuIC products.
Collapse
|
46
|
Leroux É, Perbet R, Buée L, Colin M. [Extracellular vesicles in the central nervous system]. Med Sci (Paris) 2021; 37:1133-1138. [PMID: 34928217 DOI: 10.1051/medsci/2021205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Extracellular Vesicles (EVs) are released by a wide diversity of cells. They contain proteins, RNAs and lipids that will be exchanged between these cells. They represent therefore a major form of intercellular communication in both physiological and pathological conditions. This is particularly relevant in the nervous system where neurons and glial cells form a very dense network where billions of connections are made. In this review, the different roles played by the EVs in a healthy brain to maintain cerebral homeostasis during development, synaptic transmission or axonal myelination will be discussed. In addition, the pathological aspects of EVs presence will also be addressed. In recent years, the EVs have emerged as major players in the spread of neurodegenerative diseases, in neuroinflammation and in tumor development, although they may also be beneficial in some conditions.
Collapse
Affiliation(s)
- Élodie Leroux
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Romain Perbet
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Luc Buée
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| | - Morvane Colin
- Univ. Lille, Inserm U1172, CHU-Lille, LilNCog - Lille neuroscience et cognition, F-59000 Lille, France
| |
Collapse
|
47
|
Glycoconjugate journal special issue on: the glycobiology of Parkinson's disease. Glycoconj J 2021; 39:55-74. [PMID: 34757539 DOI: 10.1007/s10719-021-10024-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 10/19/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder that affects over 10 million aging people worldwide. This condition is characterized by the degeneration of dopaminergic neurons in the pars compacta region of the substantia nigra (SNpc) and by aggregation of proteins, commonly α-synuclein (SNCA). The formation of Lewy bodies that encapsulate aggregated proteins in lipid vesicles is a hallmark of PD. Glycosylation of proteins and neuroinflammation are involved in the pathogenesis. SNCA has many posttranslational modifications and interacts with components of membranes that affect aggregation. The large membrane lipid dolichol accumulates in the brain upon age and has a significant effect on membrane structure. The replacement of dopamine and dopaminergic neurons are at the forefront of therapeutic development. This review examines the role of membrane lipids, glycolipids, glycoproteins and dopamine in the aggregation of SNCA and development of PD. We discuss the SNCA-dopamine-neuromelanin-dolichol axis and the role of membranes in neuronal stem cells that could be a regenerative therapy for PD patients.
Collapse
|
48
|
Gene-corrected p.A30P SNCA patient-derived isogenic neurons rescue neuronal branching and function. Sci Rep 2021; 11:21946. [PMID: 34754035 PMCID: PMC8578337 DOI: 10.1038/s41598-021-01505-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 10/28/2021] [Indexed: 11/09/2022] Open
Abstract
Parkinson's disease (PD) is characterised by the degeneration of A9 dopaminergic neurons and the pathological accumulation of alpha-synuclein. The p.A30P SNCA mutation generates the pathogenic form of the alpha-synuclein protein causing an autosomal-dominant form of PD. There are limited studies assessing pathogenic SNCA mutations in patient-derived isogenic cell models. Here we provide a functional assessment of dopaminergic neurons derived from a patient harbouring the p.A30P SNCA mutation. Using two clonal gene-corrected isogenic cell lines we identified image-based phenotypes showing impaired neuritic processes. The pathological neurons displayed impaired neuronal activity, reduced mitochondrial respiration, an energy deficit, vulnerability to rotenone, and transcriptional alterations in lipid metabolism. Our data describes for the first time the mutation-only effect of the p.A30P SNCA mutation on neuronal function, supporting the use of isogenic cell lines in identifying image-based pathological phenotypes that can serve as an entry point for future disease-modifying compound screenings and drug discovery strategies.
Collapse
|
49
|
Mendes-Pinheiro B, Soares-Cunha C, Marote A, Loureiro-Campos E, Campos J, Barata-Antunes S, Monteiro-Fernandes D, Santos D, Duarte-Silva S, Pinto L, José Salgado A. Unilateral Intrastriatal 6-Hydroxydopamine Lesion in Mice: A Closer Look into Non-Motor Phenotype and Glial Response. Int J Mol Sci 2021; 22:ijms222111530. [PMID: 34768962 PMCID: PMC8584172 DOI: 10.3390/ijms222111530] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/14/2021] [Accepted: 10/19/2021] [Indexed: 12/20/2022] Open
Abstract
Parkinson’s disease (PD) is a prevalent movement disorder characterized by the progressive loss of dopaminergic neurons in substantia nigra pars compacta (SNpc). The 6-hydroxydopamine (6-OHDA) lesion is still one of the most widely used techniques for modeling Parkinson’s disease (PD) in rodents. Despite commonly used in rats, it can be challenging to reproduce a similar lesion in mice. Moreover, there is a lack of characterization of the extent of behavioral deficits and of the neuronal loss/neurotransmitter system in unilateral lesion mouse models. In this study, we present an extensive behavioral and histological characterization of a unilateral intrastriatal 6-OHDA mouse model. Our results indicate significant alterations in balance and fine motor coordination, voluntary locomotion, and in the asymmetry’s degree of forelimb use in 6-OHDA lesioned animals, accompanied by a decrease in self-care and motivational behavior, common features of depressive-like symptomatology. These results were accompanied by a decrease in tyrosine hydroxylase (TH)-labelling and dopamine levels within the nigrostriatal pathway. Additionally, we also identify a marked astrocytic reaction, as well as proliferative and reactive microglia in lesioned areas. These results confirm the use of unilateral intrastriatal 6-OHDA mice for the generation of a mild model of nigrostriatal degeneration and further evidences the recapitulation of key aspects of PD, thereby being suitable for future studies beholding new therapeutical interventions for this disease.
Collapse
Affiliation(s)
- Bárbara Mendes-Pinheiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Carina Soares-Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Ana Marote
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Eduardo Loureiro-Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Jonas Campos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sandra Barata-Antunes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Daniela Monteiro-Fernandes
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Diogo Santos
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Sara Duarte-Silva
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
| | - António José Salgado
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal; (B.M.-P.); (C.S.-C.); (A.M.); (E.L.-C.); (J.C.); (S.B.-A.); (D.M.-F.); (D.S.); (S.D.-S.); (L.P.)
- ICVS/3B’s—PT Government Associate Laboratory, 4805-017 Guimarães, Portugal
- Correspondence: ; Tel.: +351-253-60-49-47
| |
Collapse
|
50
|
Dopaminergic Axons: Key Recitalists in Parkinson's Disease. Neurochem Res 2021; 47:234-248. [PMID: 34637100 DOI: 10.1007/s11064-021-03464-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/20/2022]
Abstract
Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.
Collapse
|