1
|
Attanasio M, Mazza M, Le Donne I, Nigri A, Valenti M. Salience Network in Autism: preliminary results on functional connectivity analysis in resting state. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01949-y. [PMID: 39673625 DOI: 10.1007/s00406-024-01949-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/20/2024] [Indexed: 12/16/2024]
Abstract
The literature suggests that alterations in functional connectivity (FC) of the Salience Network (SN) may contribute to the manifestation of some clinical features of Autism Spectrum Disorder (ASD). The SN plays a key role in integrating external sensory information with internal emotional and bodily information. An atypical FC of this network could explain some symptomatic features of ASD such as difficulties in self-awareness and emotion processing and provide new insights into the neurobiological basis of autism. Using the Autism Brain Imaging Data Exchange II we investigated the resting-state FC of core regions of SN and its association with autism symptomatology in 29 individuals with ASD compared with 29 typically developing (TD) individuals. In ASD compared to TD individuals, seed-based connectivity analysis showed a reduced FC between the rostral prefrontal cortex and left cerebellum and an increased FC between the right supramarginal gyrus and the regions of the middle temporal gyrus and angular gyrus. Finally, we found that the clinical features of ASD are mainly associated with an atypical FC of the anterior insula and the involvement of dysfunctional mechanisms for emotional and social information processing. These findings expand the knowledge about the differences in the FC of SN between ASD and TD, highlighting atypical FC between structures that play key roles in social cognition and complex cognitive processes. Such anomalies could explain difficulties in processing salient stimuli, especially those of a socio-affective nature, with an impact on emotional and behavioral regulation.
Collapse
Affiliation(s)
- Margherita Attanasio
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy.
| | - Monica Mazza
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Reference Regional Centre for Autism, Abruzzo Region, Local Health Unit ASL 1, L'Aquila, Italy
| | - Ilenia Le Donne
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Anna Nigri
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Marco Valenti
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
- Reference Regional Centre for Autism, Abruzzo Region, Local Health Unit ASL 1, L'Aquila, Italy
| |
Collapse
|
2
|
Guo X, Wang X, Zhou R, Cui D, Liu J, Gao L. Altered Temporospatial Variability of Dynamic Amplitude of Low-Frequency Fluctuation in Children with Autism Spectrum Disorder. J Autism Dev Disord 2024:10.1007/s10803-024-06661-3. [PMID: 39663323 DOI: 10.1007/s10803-024-06661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/16/2024] [Indexed: 12/13/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with altered brain activity. However, little is known about the integrated temporospatial variation of dynamic spontaneous brain activity in ASD. In the present study, resting-state functional magnetic resonance imaging data were analyzed for 105 ASD and 102 demographically-matched typically developmental controls (TC) children obtained from the Autism Brain Imaging Data Exchange database. Using the sliding-window approach, temporal, spatial, and temporospatial variability of dynamic amplitude of low-frequency fluctuation (tvALFF, svALFF, and tsvALFF) were calculated for each participant. Group-comparisons were further performed at global, network, and brain region levels to quantify differences between ASD and TC groups. The relationship between temporospatial dynamic amplitude of low-frequency fluctuation variation alterations and clinical symptoms of ASD was finally explored by a support vector regression model. Relative to TC, we found enhanced tvALFF in visual network (Vis), somatomotor network (SMT), and salience/ventral attention network (SVA) of ASD, and weakened tvALFF in dorsal attention network (DAN) of ASD. Besides, ASD showed decreased svALFF in Vis, SVA, and limbic network (Limbic), and increased svALFF in DAN and default mode network (DMN). Elevated tsvALFF was found in the Vis, SMT, and DMN of ASD. More importantly, the altered tsvALFF from the DMN can predict the symptom severity of ASD. These findings demonstrate altered temporospatial dynamics of the spontaneous brain activity in ASD and provide novel insights into the neural mechanism underlying ASD.
Collapse
Affiliation(s)
- Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Xueting Wang
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Rongjuan Zhou
- Finance Department, Maternity and Child Health Hospital of Qinhuangdao, Qinhuangdao, China
| | - Dong Cui
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China
| | - Junfeng Liu
- Department of Neurology, West China Hospital Sichuan University, Chengdu, China
| | - Le Gao
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, 066004, China.
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, 066004, China.
| |
Collapse
|
3
|
Yang Y, Tang D, Wang Z, Liu Y, Chen F, Jie B, Ni T, Xu C, Li J, Wang C. Identification of high-functioning autism spectrum disorders based on gray-white matter functional network connectivity. J Psychiatr Res 2024; 178:107-113. [PMID: 39128219 DOI: 10.1016/j.jpsychires.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 08/04/2024] [Accepted: 08/05/2024] [Indexed: 08/13/2024]
Abstract
In the field of autism spectrum disorder (ASD), research on functional connectivity between gray matter and white matter remains under-researched. To address this gap, this study innovatively introduced a nested cross-validation method that integrates gray-white matter functional connectivity with an F-Score algorithm. This method calculates the correlation based on signals extracted from functional magnetic resonance imaging data using gray matter and white matter brain region templates. After applying the method to a New York University Langone Medical Center dataset consisting of 55 individuals with high-functioning ASD and 52 healthy subjects, we achieved a classification accuracy of 72.94%. This study found abnormal functional connectivity, primarily involving the left anterior prefrontal cortex and right superior corona radiata, left retrosplenial cortex and left superior corona radiata, as well as the left ventral anterior cingulate cortex and body of corpus callosum. Besides, we discovered that these abnormal connections are closely related to social impairment and restrictive and repetitive behaviors in ASD. In conclusion, this study provides a gray-white matter functional connectivity perspective for the diagnosis and understanding of ASD.
Collapse
Affiliation(s)
- Yang Yang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Detao Tang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Zhiwei Wang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Yifei Liu
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Fulong Chen
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China.
| | - Biao Jie
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Tianjiao Ni
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Chenglong Xu
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Jintao Li
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| | - Chao Wang
- School of Computer and Information, Anhui Normal University, WuHu, 241002, Anhui, China; Anhui Engineering Research Center of Medical Big Data Intelligent System, WuHu, 241002, Anhui, China
| |
Collapse
|
4
|
Zhang H, Peng D, Tang S, Bi A, Long Y. Aberrant Flexibility of Dynamic Brain Network in Patients with Autism Spectrum Disorder. Bioengineering (Basel) 2024; 11:882. [PMID: 39329624 PMCID: PMC11428581 DOI: 10.3390/bioengineering11090882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Autism spectrum disorder (ASD) is a collection of neurodevelopmental disorders whose pathobiology remains elusive. This study aimed to investigate the possible neural mechanisms underlying ASD using a dynamic brain network model and a relatively large-sample, multi-site dataset. Resting-state functional magnetic resonance imaging data were acquired from 208 ASD patients and 227 typical development (TD) controls, who were drawn from the multi-site Autism Brain Imaging Data Exchange (ABIDE) database. Brain network flexibilities were estimated and compared between the ASD and TD groups at both global and local levels, after adjusting for sex, age, head motion, and site effects. The results revealed significantly increased brain network flexibilities (indicating a decreased stability) at the global level, as well as at the local level within the default mode and sensorimotor areas in ASD patients than TD participants. Additionally, significant ASD-related decreases in flexibilities were also observed in several occipital regions at the nodal level. Most of these changes were significantly correlated with the Autism Diagnostic Observation Schedule (ADOS) total score in the entire sample. These results suggested that ASD is characterized by significant changes in temporal stabilities of the functional brain network, which can further strengthen our understanding of the pathobiology of ASD.
Collapse
Affiliation(s)
- Hui Zhang
- The Department of Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Dehong Peng
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Shixiong Tang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Anyao Bi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yicheng Long
- Department of Psychiatry, and National Clinical Research Center for Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| |
Collapse
|
5
|
Qian S, Yang Q, Cai C, Dong J, Cai S. Spatial-Temporal Characteristics of Brain Activity in Autism Spectrum Disorder Based on Hidden Markov Model and Dynamic Graph Theory: A Resting-State fMRI Study. Brain Sci 2024; 14:507. [PMID: 38790485 PMCID: PMC11118919 DOI: 10.3390/brainsci14050507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Autism spectrum disorder (ASD) is a common neurodevelopmental disorder. Functional magnetic resonance imaging (fMRI) can be used to measure the temporal correlation of blood-oxygen-level-dependent (BOLD) signals in the brain to assess the brain's intrinsic connectivity and capture dynamic changes in the brain. In this study, the hidden Markov model (HMM) and dynamic graph (DG) theory are used to study the spatial-temporal characteristics and dynamics of brain networks based on dynamic functional connectivity (DFC). By using HMM, we identified three typical brain states for ASD and healthy control (HC). Furthermore, we explored the correlation between HMM time-varying properties and clinical autism scale scores. Differences in brain topological characteristics and dynamics between ASD and HC were compared by DG analysis. The experimental results indicate that ASD is more inclined to enter a strongly connected HMM brain state, leading to the isolation of brain networks and alterations in the topological characteristics of brain networks, such as default mode network (DMN), ventral attention network (VAN), and visual network (VN). This work suggests that using different data-driven methods based on DFC to study brain network dynamics would have better information complementarity, which can provide a new direction for the extraction of neuro-biomarkers in the early diagnosis of ASD.
Collapse
Affiliation(s)
| | | | | | | | - Shuhui Cai
- Fujian Provincial Key Laboratory of Plasma and Magnetic Resonance, Department of Electronic Science, Xiamen University, Xiamen 361005, China; (S.Q.); (Q.Y.); (C.C.); (J.D.)
| |
Collapse
|
6
|
Shan X, Uddin LQ, Ma R, Xu P, Xiao J, Li L, Huang X, Feng Y, He C, Chen H, Duan X. Disentangling the Individual-Shared and Individual-Specific Subspace of Altered Brain Functional Connectivity in Autism Spectrum Disorder. Biol Psychiatry 2024; 95:870-880. [PMID: 37741308 DOI: 10.1016/j.biopsych.2023.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/25/2023] [Accepted: 09/15/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Despite considerable effort toward understanding the neural basis of autism spectrum disorder (ASD) using case-control analyses of resting-state functional magnetic resonance imaging data, findings are often not reproducible, largely due to biological and clinical heterogeneity among individuals with ASD. Thus, exploring the individual-shared and individual-specific altered functional connectivity (AFC) in ASD is important to understand this complex, heterogeneous disorder. METHODS We considered 254 individuals with ASD and 295 typically developing individuals from the Autism Brain Imaging Data Exchange to explore the individual-shared and individual-specific subspaces of AFC. First, we computed AFC matrices of individuals with ASD compared with typically developing individuals. Then, common orthogonal basis extraction was used to project AFC of ASD onto 2 subspaces: an individual-shared subspace, which represents altered connectivity patterns shared across ASD, and an individual-specific subspace, which represents the remaining individual characteristics after eliminating the individual-shared altered connectivity patterns. RESULTS Analysis yielded 3 common components spanning the individual-shared subspace. Common components were associated with differences of functional connectivity at the group level. AFC in the individual-specific subspace improved the prediction of clinical symptoms. The default mode network-related and cingulo-opercular network-related magnitudes of AFC in the individual-specific subspace were significantly correlated with symptom severity in social communication deficits and restricted, repetitive behaviors in ASD. CONCLUSIONS Our study decomposed AFC of ASD into individual-shared and individual-specific subspaces, highlighting the importance of capturing and capitalizing on individual-specific brain connectivity features for dissecting heterogeneity. Our analysis framework provides a blueprint for parsing heterogeneity in other prevalent neurodevelopmental conditions.
Collapse
Affiliation(s)
- Xiaolong Shan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lucina Q Uddin
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California
| | - Rui Ma
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Pengfei Xu
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinming Xiao
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Lei Li
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Xinyue Huang
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Yu Feng
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China
| | - Changchun He
- College of Blockchain Industry, Chengdu University of Information Technology, Chengdu, China
| | - Huafu Chen
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| | - Xujun Duan
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People's Hospital, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, China; Ministry of Education Key Lab for Neuroinformation, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
7
|
Fradkin Y, De Taboada L, Naeser M, Saltmarche A, Snyder W, Steingold E. Transcranial photobiomodulation in children aged 2-6 years: a randomized sham-controlled clinical trial assessing safety, efficacy, and impact on autism spectrum disorder symptoms and brain electrophysiology. Front Neurol 2024; 15:1221193. [PMID: 38737349 PMCID: PMC11086174 DOI: 10.3389/fneur.2024.1221193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 03/11/2024] [Indexed: 05/14/2024] Open
Abstract
Background Small pilot studies have suggested that transcranial photobiomodulation (tPBM) could help reduce symptoms of neurological conditions, such as depression, traumatic brain injury, and autism spectrum disorder (ASD). Objective To examine the impact of tPBM on the symptoms of ASD in children aged two to six years. Method We conducted a randomized, sham-controlled clinical trial involving thirty children aged two to six years with a prior diagnosis of ASD. We delivered pulses of near-infrared light (40 Hz, 850 nm) noninvasively to selected brain areas twice a week for eight weeks, using an investigational medical device designed for this purpose (Cognilum™, JelikaLite Corp., New York, United States). We used the Childhood Autism Rating Scale (CARS, 2nd Edition) to assess and compare the ASD symptoms of participants before and after the treatment course. We collected electroencephalogram (EEG) data during each session from those participants who tolerated wearing the EEG cap. Results The difference in the change in CARS scores between the two groups was 7.23 (95% CI 2.357 to 12.107, p = 0.011). Seventeen of the thirty participants completed at least two EEGs and time-dependent trends were detected. In addition, an interaction between Active versus Sham and Scaled Time was observed in delta power (Coefficient = 7.521, 95% CI -0.517 to 15.559, p = 0.07) and theta power (Coefficient = -8.287, 95% CI -17.199 to 0.626, p = 0.07), indicating a potential trend towards a greater reduction in delta power and an increase in theta power over time with treatment in the Active group, compared to the Sham group. Furthermore, there was a significant difference in the condition (Treatment vs. Sham) in the power of theta waves (net_theta) (Coefficient = 9.547, 95% CI 0.027 to 19.067, p = 0.049). No moderate or severe side effects or adverse effects were reported or observed during the trial. Conclusion These results indicate that tPBM may be a safe and effective treatment for ASD and should be studied in more depth in larger studies.Clinical trial registration: https://clinicaltrials.gov/ct2/show/NCT04660552, identifier NCT04660552.
Collapse
Affiliation(s)
- Yuliy Fradkin
- Robert Wood Johnson Medical School, Rutgers University, New Brunswick, NJ, United States
| | | | - Margaret Naeser
- Chobanian and Avedisian School of Medicine, Boston University, Boston, MA, United States
| | | | | | | |
Collapse
|
8
|
Zhao F, Lv K, Ye S, Chen X, Chen H, Fan S, Mao N, Ren Y. Integration of temporal & spatial properties of dynamic functional connectivity based on two-directional two-dimensional principal component analysis for disease analysis. PeerJ 2024; 12:e17078. [PMID: 38618569 PMCID: PMC11011592 DOI: 10.7717/peerj.17078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 02/19/2024] [Indexed: 04/16/2024] Open
Abstract
Dynamic functional connectivity, derived from resting-state functional magnetic resonance imaging (rs-fMRI), has emerged as a crucial instrument for investigating and supporting the diagnosis of neurological disorders. However, prevalent features of dynamic functional connectivity predominantly capture either temporal or spatial properties, such as mean and global efficiency, neglecting the significant information embedded in the fusion of spatial and temporal attributes. In addition, dynamic functional connectivity suffers from the problem of temporal mismatch, i.e., the functional connectivity of different subjects at the same time point cannot be matched. To address these problems, this article introduces a novel feature extraction framework grounded in two-directional two-dimensional principal component analysis. This framework is designed to extract features that integrate both spatial and temporal properties of dynamic functional connectivity. Additionally, we propose to use Fourier transform to extract temporal-invariance properties contained in dynamic functional connectivity. Experimental findings underscore the superior performance of features extracted by this framework in classification experiments compared to features capturing individual properties.
Collapse
Affiliation(s)
- Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Ke Lv
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Shixin Ye
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Xiaobo Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Hongyu Chen
- School Hospital, Shandong Technology and Business University, Yantai, China
| | - Sizhe Fan
- Canada Qingdao Secondary School (CQSS), Qingdao, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Yande Ren
- Department of Radiology, The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
9
|
Li N, Xiao J, Mao N, Cheng D, Chen X, Zhao F, Shi Z. Joint learning of multi-level dynamic brain networks for autism spectrum disorder diagnosis. Comput Biol Med 2024; 171:108054. [PMID: 38350396 DOI: 10.1016/j.compbiomed.2024.108054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/08/2024] [Accepted: 01/26/2024] [Indexed: 02/15/2024]
Abstract
Graph convolutional networks (GCNs), with their powerful ability to model non-Euclidean graph data, have shown advantages in learning representations of brain networks. However, considering the complexity, multilayeredness, and spatio-temporal dynamics of brain activities, we have identified two limitations in current GCN-based research on brain networks: 1) Most studies have focused on unidirectional information transmission across brain network levels, neglecting joint learning or bidirectional information exchange among networks. 2) Most of the existing models determine node neighborhoods by thresholding or simply binarizing the brain network, which leads to the loss of edge weight information and weakens the model's sensitivity to important information in the brain network. To address the above issues, we propose a multi-level dynamic brain network joint learning architecture based on GCN for autism spectrum disorder (ASD) diagnosis. Specifically, firstly, constructing different-level dynamic brain networks. Then, utilizing joint learning based on GCN for interactive information exchange among these multi-level brain networks. Finally, designing an edge self-attention mechanism to assign different edge weights to inter-node connections, which allows us to pick out the crucial features for ASD diagnosis. Our proposed method achieves an accuracy of 81.5 %. The results demonstrate that our method enables bidirectional transfer of high-order and low-order information, facilitating information complementarity between different levels of brain networks. Additionally, the use of edge weights enhances the representation capability of ASD-related features.
Collapse
Affiliation(s)
- Na Li
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China; Department of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, China
| | - Jinjie Xiao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Yantai, China
| | - Dapeng Cheng
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Xiaobo Chen
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, China.
| | - Zhenghao Shi
- Department of Computer Science and Engineering, Xi'an University of Technology, Xi'an, Shanxi, China.
| |
Collapse
|
10
|
Liu J, Liu QR, Wu ZM, Chen QR, Chen J, Wang Y, Cao XL, Dai MX, Dong C, Liu Q, Zhu J, Zhang LL, Li Y, Wang YF, Liu L, Yang BR. Specific brain imaging alterations underlying autistic traits in children with attention-deficit/hyperactivity disorder. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:20. [PMID: 37986005 PMCID: PMC10658985 DOI: 10.1186/s12993-023-00222-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/07/2023] [Indexed: 11/22/2023]
Abstract
BACKGROUND Autistic traits (ATs) are frequently reported in children with Attention-Deficit/Hyperactivity Disorder (ADHD). This study aimed to examine ATs in children with ADHD from both behavioral and neuroimaging perspectives. METHODS We used the Autism Spectrum Screening Questionnaire (ASSQ) to assess and define subjects with and without ATs. For behavioral analyses, 67 children with ADHD and ATs (ADHD + ATs), 105 children with ADHD but without ATs (ADHD - ATs), and 44 typically developing healthy controls without ATs (HC - ATs) were recruited. We collected resting-state functional magnetic resonance imaging (rs-fMRI) data and analyzed the mean amplitude of low-frequency fluctuation (mALFF) values (an approach used to depict different spontaneous brain activities) in a sub-sample. The imaging features that were shared between ATs and ADHD symptoms or that were unique to one or the other set of symptoms were illustrated as a way to explore the "brain-behavior" relationship. RESULTS Compared to ADHD-ATs, the ADHD + ATs group showed more global impairment in all aspects of autistic symptoms and higher hyperactivity/impulsivity (HI). Partial-correlation analysis indicated that HI was significantly positively correlated with all aspects of ATs in ADHD. Imaging analyses indicated that mALFF values in the left middle occipital gyrus (MOG), left parietal lobe (PL)/precuneus, and left middle temporal gyrus (MTG) might be specifically related to ADHD, while those in the right MTG might be more closely associated with ATs. Furthermore, altered mALFF in the right PL/precuneus correlated with both ADHD and ATs, albeit in diverse directions. CONCLUSIONS The co-occurrence of ATs in children with ADHD manifested as different behavioral characteristics and specific brain functional alterations. Assessing ATs in children with ADHD could help us understand the heterogeneity of ADHD, further explore its pathogenesis, and promote clinical interventions.
Collapse
Affiliation(s)
- Juan Liu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qian-Rong Liu
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Zhao-Min Wu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiao-Ru Chen
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jing Chen
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yuan Wang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Xiao-Lan Cao
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Mei-Xia Dai
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Chao Dong
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Qiao Liu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Jun Zhu
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Lin-Lin Zhang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Ying Li
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China
| | - Yu-Feng Wang
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China
| | - Lu Liu
- Peking University Sixth Hospital/Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Beijing, China.
| | - Bin-Rang Yang
- Children's Healthcare and Mental Health Center, Shenzhen Children's Hospital, Shenzhen, Guangdong, China.
| |
Collapse
|
11
|
Rechtman E, Navarro E, de Water E, Tang CY, Curtin P, Papazaharias DM, Ambrosi C, Mascaro L, Cagna G, Gasparotti R, Invernizzi A, Reichenberg A, Austin C, Arora M, Smith DR, Lucchini RG, Wright RO, Placidi D, Horton MK. Early-Life Critical Windows of Susceptibility to Manganese Exposure and Sex-Specific Changes in Brain Connectivity in Late Adolescence. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2023; 3:460-469. [PMID: 37519473 PMCID: PMC10382697 DOI: 10.1016/j.bpsgos.2022.03.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 03/16/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022] Open
Abstract
Background Early-life environmental exposures during critical windows (CWs) of development can impact life course health. Exposure to neuroactive metals such as manganese (Mn) during prenatal and early postnatal CWs may disrupt typical brain development, leading to persistent behavioral changes. Males and females may be differentially vulnerable to Mn, presenting distinctive CWs to Mn exposure. Methods We used magnetic resonance imaging to investigate sex-specific associations between early-life Mn uptake and intrinsic functional connectivity in adolescence. A total of 71 participants (15-23 years old; 53% female) from the Public Health Impact of Manganese Exposure study completed a resting-state functional magnetic resonance imaging scan. We estimated dentine Mn concentrations at prenatal, postnatal, and early childhood periods using laser ablation-inductively coupled plasma-mass spectrometry. We performed seed-based correlation analyses to investigate the moderating effect of sex on the associations between Mn and intrinsic functional connectivity adjusting for age and socioeconomic status. Results We identified significant sex-specific associations between dentine Mn at all time points and intrinsic functional connectivity in brain regions involved in cognitive and motor function: 1) prenatal: dorsal striatum, occipital/frontal lobes, and middle frontal gyrus; 2) postnatal: right putamen and cerebellum; and 3) early childhood: putamen and occipital, frontal, and temporal lobes. Network associations differed depending on exposure timing, suggesting that different brain networks may present distinctive CWs to Mn. Conclusions These findings suggest that the developing brain is vulnerable to Mn exposure, with effects lasting through late adolescence, and that females and males are not equally vulnerable to these effects. Future studies should investigate cognitive and motor outcomes related to these associations.
Collapse
Affiliation(s)
- Elza Rechtman
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Esmeralda Navarro
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erik de Water
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, Minnesota
| | - Cheuk Y. Tang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul Curtin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Demetrios M. Papazaharias
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Claudia Ambrosi
- ASST Spedali Civili Hospital, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Lorella Mascaro
- ASST Spedali Civili Hospital, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppa Cagna
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Gasparotti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Azzurra Invernizzi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Abraham Reichenberg
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Christine Austin
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donald R. Smith
- Department of Microbiology and Environmental Toxicology, University of California Santa Cruz, Santa Cruz, California
| | - Roberto G. Lucchini
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
- Department of Environmental Health Sciences, Robert Stempel College of Public Health and Social Work, Florida International University, Miami, Florida
| | - Robert O. Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Donatella Placidi
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Megan K. Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
12
|
Hinojosa MG, Johansson Y, Cediel-Ulloa A, Ivanova E, Gabring N, Gliga A, Forsby A. Evaluation of mRNA markers in differentiating human SH-SY5Y cells for estimation of developmental neurotoxicity. Neurotoxicology 2023; 97:65-77. [PMID: 37210002 DOI: 10.1016/j.neuro.2023.05.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 05/17/2023] [Indexed: 05/22/2023]
Abstract
Current guidelines for developmental neurotoxicity (DNT) evaluation are based on animal models. These have limitations so more relevant, efficient and robust approaches for DNT assessment are needed. We have used the human SH-SY5Y neuroblastoma cell model to evaluate a panel of 93 mRNA markers that are frequent in Neuronal diseases and functional annotations and also differentially expressed during retinoic acid-induced differentiation in the cell model. Rotenone, valproic acid (VPA), acrylamide (ACR) and methylmercury chloride (MeHg) were used as DNT positive compounds. Tolbutamide, D-mannitol and clofibrate were used as DNT negative compounds. To determine concentrations for exposure for gene expression analysis, we developed a pipeline for neurite outgrowth assessment by live-cell imaging. In addition, cell viability was measured by the resazurin assay. Gene expression was analyzed by RT-qPCR after 6 days of exposure during differentiation to concentrations of the DNT positive compounds that affected neurite outgrowth, but with no or minimal effect on cell viability. Methylmercury affected cell viability at lower concentrations than neurite outgrowth, hence the cells were exposed with the highest non-cytotoxic concentration. Rotenone (7.3nM) induced 32 differentially expressed genes (DEGs), ACR (70µM) 8 DEGs, and VPA (75µM) 16 DEGs. No individual genes were significantly dysregulated by all 3 DNT positive compounds (p<0.05), but 9 genes were differentially expressed by 2 of them. Methylmercury (0.8nM) was used to validate the 9 DEGs. The expression of SEMA5A (encoding semaphorin 5A) and CHRNA7 (encoding nicotinic acetylcholine receptor subunit α7) was downregulated by all 4 DNT positive compounds. None of the DNT negative compounds dysregulated any of the 9 DEGs in common for the DNT positive compounds. We suggest that SEMA5A or CHRNA7 should be further evaluated as biomarkers for DNT studies in vitro since they also are involved in neurodevelopmental adverse outcomes in humans.
Collapse
Affiliation(s)
- M G Hinojosa
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - Y Johansson
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - A Cediel-Ulloa
- Department of Organismal Biology, Environmental Toxicology, Uppsala University, 752 36, Uppsala, Sweden
| | - E Ivanova
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - N Gabring
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| | - A Gliga
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, 171 77, Sweden
| | - A Forsby
- Department of Biochemistry and Biophysics, Stockholm University, 106 91, Stockholm, Sweden
| |
Collapse
|
13
|
Zhang Z, Li K, Hu X. Mapping nonlinear brain dynamics by phase space embedding with fMRI data. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
ElNakieb Y, Ali MT, Elnakib A, Shalaby A, Mahmoud A, Soliman A, Barnes GN, El-Baz A. Understanding the Role of Connectivity Dynamics of Resting-State Functional MRI in the Diagnosis of Autism Spectrum Disorder: A Comprehensive Study. BIOENGINEERING (BASEL, SWITZERLAND) 2023; 10:bioengineering10010056. [PMID: 36671628 PMCID: PMC9855190 DOI: 10.3390/bioengineering10010056] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/22/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023]
Abstract
In addition to the standard observational assessment for autism spectrum disorder (ASD), recent advancements in neuroimaging and machine learning (ML) suggest a rapid and objective alternative using brain imaging. This work presents a pipelined framework, using functional magnetic resonance imaging (fMRI) that allows not only an accurate ASD diagnosis but also the identification of the brain regions contributing to the diagnosis decision. The proposed framework includes several processing stages: preprocessing, brain parcellation, feature representation, feature selection, and ML classification. For feature representation, the proposed framework uses both a conventional feature representation and a novel dynamic connectivity representation to assist in the accurate classification of an autistic individual. Based on a large publicly available dataset, this extensive research highlights different decisions along the proposed pipeline and their impact on diagnostic accuracy. A large publicly available dataset of 884 subjects from the Autism Brain Imaging Data Exchange I (ABIDE-I) initiative is used to validate our proposed framework, achieving a global balanced accuracy of 98.8% with five-fold cross-validation and proving the potential of the proposed feature representation. As a result of this comprehensive study, we achieve state-of-the-art accuracy, confirming the benefits of the proposed feature representation and feature engineering in extracting useful information as well as the potential benefits of utilizing ML and neuroimaging in the diagnosis and understanding of autism.
Collapse
Affiliation(s)
- Yaser ElNakieb
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Mohamed T. Ali
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Elnakib
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Shalaby
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Ahmed Soliman
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
| | - Gregory Neal Barnes
- Department of Neurology, Pediatric Research Institute, University of Louisville, Louisville, KY 40202, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY 40292, USA
- Correspondence:
| |
Collapse
|
15
|
Parellada M, Andreu-Bernabeu Á, Burdeus M, San José Cáceres A, Urbiola E, Carpenter LL, Kraguljac NV, McDonald WM, Nemeroff CB, Rodriguez CI, Widge AS, State MW, Sanders SJ. In Search of Biomarkers to Guide Interventions in Autism Spectrum Disorder: A Systematic Review. Am J Psychiatry 2023; 180:23-40. [PMID: 36475375 PMCID: PMC10123775 DOI: 10.1176/appi.ajp.21100992] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The aim of this study was to catalog and evaluate response biomarkers correlated with autism spectrum disorder (ASD) symptoms to improve clinical trials. METHODS A systematic review of MEDLINE, Embase, and Scopus was conducted in April 2020. Seven criteria were applied to focus on original research that includes quantifiable response biomarkers measured alongside ASD symptoms. Interventional studies or human studies that assessed the correlation between biomarkers and ASD-related behavioral measures were included. RESULTS A total of 5,799 independent records yielded 280 articles for review that reported on 940 biomarkers, 755 of which were unique to a single publication. Molecular biomarkers were the most frequently assayed, including cytokines, growth factors, measures of oxidative stress, neurotransmitters, and hormones, followed by neurophysiology (e.g., EEG and eye tracking), neuroimaging (e.g., functional MRI), and other physiological measures. Studies were highly heterogeneous, including in phenotypes, demographic characteristics, tissues assayed, and methods for biomarker detection. With a median total sample size of 64, almost all of the reviewed studies were only powered to identify biomarkers with large effect sizes. Reporting of individual-level values and summary statistics was inconsistent, hampering mega- and meta-analysis. Biomarkers assayed in multiple studies yielded mostly inconsistent results, revealing a "replication crisis." CONCLUSIONS There is currently no response biomarker with sufficient evidence to inform ASD clinical trials. This review highlights methodological imperatives for ASD biomarker research necessary to make definitive progress: consistent experimental design, correction for multiple comparisons, formal replication, sharing of sample-level data, and preregistration of study designs. Systematic "big data" analyses of multiple potential biomarkers could accelerate discovery.
Collapse
Affiliation(s)
- Mara Parellada
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Álvaro Andreu-Bernabeu
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Mónica Burdeus
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Antonia San José Cáceres
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Elena Urbiola
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Linda L Carpenter
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Nina V Kraguljac
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - William M McDonald
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Charles B Nemeroff
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Carolyn I Rodriguez
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Alik S Widge
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Matthew W State
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| | - Stephan J Sanders
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry and Mental Health, Hospital General Universitario Gregorio Marañón, Madrid (Parellada, Andreu-Bernabeu, Burdeus, San José Cáceres, Urbiola); CIBERSAM, Spain (Parellada, Burdeus, San José Cáceres); School of Medicine, Universidad Complutense, Madrid (Parellada); Department of Psychiatry and Human Behavior, Warren Alpert Medical School, Brown University, and Butler Hospital, Providence, R.I. (Carpenter); Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham (Kraguljac); Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta (McDonald); Department of Psychiatry and Behavioral Sciences, Mulva Clinic for the Neurosciences, Institute of Early Life Adversity Research, Dell Medical School, University of Texas at Austin (Nemeroff); Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford (Rodriguez); Veterans Affairs Palo Alto Health Care System, Palo Alto, Calif. (Rodriguez); Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis (Widge); Department of Psychiatry and Behavioral Sciences, UCSF Weill Institute for Neurosciences, University of California, San Francisco (State, Sanders)
| |
Collapse
|
16
|
Pourmotahari F, Doosti H, Borumandnia N, Tabatabaei SM, Alavi Majd H. Group-level comparison of brain connectivity networks. BMC Med Res Methodol 2022; 22:273. [PMID: 36253728 PMCID: PMC9575214 DOI: 10.1186/s12874-022-01712-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 08/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Functional connectivity (FC) studies are often performed to discern different patterns of brain connectivity networks between healthy and patient groups. Since many neuropsychiatric disorders are related to the change in these patterns, accurate modelling of FC data can provide useful information about disease pathologies. However, analysing functional connectivity data faces several challenges, including the correlations of the connectivity edges associated with network topological characteristics, the large number of parameters in the covariance matrix, and taking into account the heterogeneity across subjects. METHODS This study provides a new statistical approach to compare the FC networks between subgroups that consider the network topological structure of brain regions and subject heterogeneity. RESULTS The power based on the heterogeneity structure of identity scaled in a sample size of 25 exhibited values greater than 0.90 without influencing the degree of correlation, heterogeneity, and the number of regions. This index had values above 0.80 in the small sample size and high correlation. In most scenarios, the type I error was close to 0.05. Moreover, the application of this model on real data related to autism was also investigated, which indicated no significant difference in FC networks between healthy and patient individuals. CONCLUSIONS The results from simulation data indicated that the proposed model has high power and near-nominal type I error rates in most scenarios.
Collapse
Affiliation(s)
- Fatemeh Pourmotahari
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hassan Doosti
- Department of Mathematics and Statistics, Macquarie University, Macquarie, Australia
| | - Nasrin Borumandnia
- Urology and Nephrology Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyyed Mohammad Tabatabaei
- Department of Medical Informatics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Alavi Majd
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
17
|
Shing N, Walker MC, Chang P. The Role of Aberrant Neural Oscillations in the Hippocampal-Medial Prefrontal Cortex Circuit in Neurodevelopmental and Neurological Disorders. Neurobiol Learn Mem 2022; 195:107683. [PMID: 36174886 DOI: 10.1016/j.nlm.2022.107683] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
The hippocampus (HPC) and medial prefrontal cortex (mPFC) have well-established roles in cognition, emotion, and sensory processing. In recent years, interests have shifted towards developing a deeper understanding of the mechanisms underlying interactions between the HPC and mPFC in achieving these functions. Considerable research supports the idea that synchronized activity between the HPC and the mPFC is a general mechanism by which brain functions are regulated. In this review, we summarize current knowledge on the hippocampal-medial prefrontal cortex (HPC-mPFC) circuit in normal brain function with a focus on oscillations and highlight several neurodevelopmental and neurological disorders associated with aberrant HPC-mPFC circuitry. We further discuss oscillatory dynamics across the HPC-mPFC circuit as potentially useful biomarkers to assess interventions for neurodevelopmental and neurological disorders. Finally, advancements in brain stimulation, gene therapy and pharmacotherapy are explored as promising therapies for disorders with aberrant HPC-mPFC circuit dynamics.
Collapse
Affiliation(s)
- Nathanael Shing
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK; Department of Medicine, University of Central Lancashire, Preston, PR17BH, UK
| | - Matthew C Walker
- Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, WC1N 3BG, UK
| | - Pishan Chang
- Department of Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT.
| |
Collapse
|
18
|
Zhang Y, Zhang S, Chen B, Jiang L, Li Y, Dong L, Feng R, Yao D, Li F, Xu P. Predicting the Symptom Severity in Autism Spectrum Disorder Based on EEG Metrics. IEEE Trans Neural Syst Rehabil Eng 2022; 30:1898-1907. [PMID: 35788457 DOI: 10.1109/tnsre.2022.3188564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Autism spectrum disorder (ASD) is associated with the impaired integrating and segregating of related information that is expanded within the large-scale brain network. The varying ASD symptom severities have been explored, relying on their behaviors and related brain activity, but how to effectively predict ASD symptom severity needs further exploration. In this study, we aim to investigate whether the ASD symptom severity could be predicted with electroencephalography (EEG) metrics. Based on a publicly available dataset, the EEG brain networks were constructed, and four types of EEG metrics were calculated. Then, we statistically compared the brain network differences among ASD children with varying severities, i.e., high/low autism diagnostic observation schedule (ADOS) scores, as well as with the typically developing (TD) children. Thereafter, the EEG metrics were utilized to validate whether they could facilitate the prediction of the ASD symptom severity. The results demonstrated that both high- and low-scoring ASD children showed the decreased long-range frontal-occipital connectivity, increased anterior frontal connectivity and altered network properties. Furthermore, we found that the four types of EEG metrics are significantly correlated with the ADOS scores, and their combination can serve as the features to effectively predict the ASD symptom severity. The current findings will expand our knowledge of network dysfunction in ASD children and provide new EEG metrics for predicting the symptom severity.
Collapse
|
19
|
Qin B, Wang L, Cai J, Li T, Zhang Y. Functional Brain Networks in Preschool Children With Autism Spectrum Disorders. Front Psychiatry 2022; 13:896388. [PMID: 35859600 PMCID: PMC9289162 DOI: 10.3389/fpsyt.2022.896388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/23/2022] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVE The present study aims to investigate the functional brain network characteristics of preschool children with autism spectrum disorder (ASD) through functional connectivity (FC) calculations using resting-state functional MRI (rs-fMRI) and graph theory analysis to better understand the pathogenesis of ASD and provide imaging evidence for the early assessment of this condition. METHODS A prospective study of preschool children including 32 with ASD (ASD group) and 22 healthy controls (HC)group was conducted in which all subjects underwent rs-fMRI scans, and then the differences in FC between the two groups was calculated, followed by graph-theoretic analysis to obtain the FC properties of the network. RESULTS In the calculation of FC, compared with the children in the HC group, significant increases or decreases in subnetwork connectivity was found in the ASD group. There were 25 groups of subnetworks with enhanced FC, of which the medial prefrontal and posterior cingulate gyrus and angular gyrus were all important components of the default mode network (DMN). There were 11 groups of subnetworks with weakened FC, including the hippocampus, parahippocampal gyrus, superior frontal gyrus, inferior temporal gyrus, precuneus, amygdala, and perirhinal cortex, with the hippocampus and parahippocampal gyrus predominating. In the network properties determined by graph theory, the clustering coefficient and local efficiency of the functional network was increased in the ASD group; specifically, compared with those in the HC group, nodes in the left subinsular frontal gyrus and the right middle temporal gyrus had increased efficiency, and nodes in the left perisylvian cortex, the left lingual gyrus, and the right hippocampus had decreased efficiency. CONCLUSION Alterations in functional brain networks are evident in preschool children with ASD and can be detected with sleep rs-fMRI, which is important for understanding the pathogenesis of ASD and assessing this condition early.
Collapse
Affiliation(s)
- Bin Qin
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Clinical Big Data and Drug Evaluation, Medical Data Science, Academy of Chongqing Medical University, Chongqing, China
| | - Longlun Wang
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Jinhua Cai
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Li
- Children Nutrition Research Center, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yun Zhang
- Department of Radiology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, China.,Chongqing Engineering Research Center for Clinical Big Data and Drug Evaluation, Medical Data Science, Academy of Chongqing Medical University, Chongqing, China
| |
Collapse
|
20
|
Xu S, Li M, Yang C, Fang X, Ye M, Wu Y, Yang B, Huang W, Li P, Ma X, Fu S, Yin Y, Tian J, Gan Y, Jiang G. Abnormal Degree Centrality in Children with Low-Function Autism Spectrum Disorders: A Sleeping-State Functional Magnetic Resonance Imaging Study. Neuropsychiatr Dis Treat 2022; 18:1363-1374. [PMID: 35818374 PMCID: PMC9270980 DOI: 10.2147/ndt.s367104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/23/2022] [Indexed: 12/04/2022] Open
Abstract
PURPOSE This study used the graph-theory approach, degree centrality (DC) to analyze whole-brain functional networks at the voxel level in children with ASD, and investigated whether DC changes were correlated with any clinical variables in ASD children. METHODS The current study included 86 children with ASD and 54 matched healthy subjects Aged 2-5.5 years. Next, chloral hydrate induced sleeping-state functional magnetic resonance imaging (ss-fMRI) datasets were acquired from these ASD and healthy subjects. For a given voxel, the DC was calculated by calculating the number of functional connections with significantly positive correlations at the individual level. Group differences were tested using two-sample t-tests (p < 0.01, AlphaSim corrected). Finally, relationships between abnormal DCs and clinical variables were investigated via Pearson's correlation analysis. RESULTS Children with ASD exhibited low DC values in the right middle frontal gyrus (MFG) (p < 0.01, AlphaSim corrected). Furthermore, significantly negative correlations were established between the decreased average DC values within the right MFG in ASD children and the total ABC scores, as well as with two ABC subscales measuring highly relevant impairments in ASD (ie, stereotypes and object-use behaviors and difficulties in language). CONCLUSION Taken together, the results of our ss-fMRI study suggest that abnormal DC may represent an important contribution to elucidation of the neuropathophysiological mechanisms of preschoolers with ASD.
Collapse
Affiliation(s)
- Shoujun Xu
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Chunlan Yang
- Department of Hematology and Oncology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiangling Fang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Miaoting Ye
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Yunfan Wu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Binrang Yang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Wenxian Huang
- Department of Department of Children Healthcare, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Peng Li
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Xiaofen Ma
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Shishun Fu
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yi Yin
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Junzhang Tian
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| | - Yungen Gan
- Department of Radiology, Shenzhen Children's Hospital, Shenzhen, People's Republic of China
| | - Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, People's Republic of China
| |
Collapse
|
21
|
Fereshetyan K, Chavushyan V, Danielyan M, Yenkoyan K. Assessment of behavioral, morphological and electrophysiological changes in prenatal and postnatal valproate induced rat models of autism spectrum disorder. Sci Rep 2021; 11:23471. [PMID: 34873263 PMCID: PMC8648736 DOI: 10.1038/s41598-021-02994-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/25/2021] [Indexed: 11/23/2022] Open
Abstract
Autism spectrum disorders (ASD) are neurodevelopmental disorders, that are characterized by core symptoms, such as alterations of social communication and restrictive or repetitive behavior. The etiology and pathophysiology of disease is still unknown, however, there is a strong interaction between genetic and environmental factors. An intriguing point in autism research is identification the vulnerable time periods of brain development that lack compensatory homeostatic corrections. Valproic acid (VPA) is an antiepileptic drug with a pronounced teratogenic effect associated with a high risk of ASD, and its administration to rats during the gestation is used for autism modeling. It has been hypothesized that valproate induced damage and functional alterations of autism target structures may occur and evolve during early postnatal life. Here, we used prenatal and postnatal administrations of VPA to investigate the main behavioral features which are associated with autism spectrum disorders core symptoms were tested in early juvenile and adult rats. Neuroanatomical lesion of autism target structures and electrophysiological studies in specific neural circuits. Our results showed that prenatal and early postnatal administration of valproate led to the behavioral alterations that were similar to ASD. Postnatally treated group showed tendency to normalize in adulthood. We found pronounced structural changes in the brain target regions of prenatally VPA-treated groups, and an absence of abnormalities in postnatally VPA-treated groups, which confirmed the different severity of VPA across different stages of brain development. The results of this study clearly show time dependent effect of VPA on neurodevelopment, which might be explained by temporal differences of brain regions' development process. Presumably, postnatal administration of valproate leads to the dysfunction of synaptic networks that is recovered during the lifespan, due to the brain plasticity and compensatory ability of circuit refinement. Therefore, investigations of compensatory homeostatic mechanisms activated after VPA administration and directed to eliminate the defects in postnatal brain, may elucidate strategies to improve the course of disease.
Collapse
Affiliation(s)
- Katarine Fereshetyan
- grid.427559.80000 0004 0418 5743Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025 Yerevan, Armenia ,grid.427559.80000 0004 0418 5743Department of Biochemistry, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia
| | - Vergine Chavushyan
- grid.427559.80000 0004 0418 5743Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025 Yerevan, Armenia ,grid.501896.3Laboratory of Neuroendocrine Relations, L. A. Orbeli Institute of Physiology NAS, Yerevan, Armenia
| | - Margarita Danielyan
- grid.427559.80000 0004 0418 5743Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025 Yerevan, Armenia ,grid.501896.3Laboratory of Histochemistry and Electromicroscopy, L. A. Orbeli Institute of Physiology NAS, Yerevan, Armenia
| | - Konstantin Yenkoyan
- Neuroscience Laboratory, Cobrain Center, Yerevan State Medical University named after M. Heratsi, 2 Koryun Str., 0025, Yerevan, Armenia. .,Department of Biochemistry, Yerevan State Medical University named after M. Heratsi, Yerevan, Armenia.
| |
Collapse
|
22
|
Mechanisms of the Effects of Parental Emotional Warmth on Extraversion in Children and Adolescents. Neuroscience 2021; 467:134-141. [PMID: 34038771 DOI: 10.1016/j.neuroscience.2021.05.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/30/2021] [Accepted: 05/19/2021] [Indexed: 01/06/2023]
Abstract
The purpose of this study is to probe into the influence mechanism of parental emotional warmth (PEW) on extraversion for children and adolescents, as well as the moderating and mediating role of brain functional activity. Thirty-two children and adolescents underwent functional magnetic resonance imaging (fMRI) scans and completed Egna Minnen av Barndoms Uppfostran (EMBU) and Eysenck Personality Questionnaire (EPQ). Small-worldness (SW) of brain networks, fractional amplitude of low-frequency fluctuations (fALFF), and region-of-interest to region-of-interest (ROI-ROI) functional connectivity were calculated to study intrinsic neuronal activity. We found that PEW had a positive direct effect on extraversion, and all participants in the current study showed an efficient small-world structure. The positive association between PEW and extraversion was mediated by SW. Furthermore, the fALFF and extraversion were significantly and negatively correlated in the right precuneus and dorsolateral superior frontal gyrus. The mediating effect of SW was moderated by the functional connectivity between the right precuneus and the right dorsolateral superior frontal gyrus. The indirect effect was significant with lower level of the functional connectivity between the right precuneus and the right dorsolateral superior frontal gyrus. These findings indicate that SW of brain networks may be a key factor that accounts for the positive association between PEW and extraversion in children and adolescents and the level of the functional connectivity between the right precuneus and the right dorsolateral superior frontal gyrus could moderate the relationship.
Collapse
|
23
|
Haghighat H, Mirzarezaee M, Araabi BN, Khadem A. Functional Networks Abnormalities in Autism Spectrum Disorder: Age-Related Hypo and Hyper Connectivity. Brain Topogr 2021; 34:306-322. [PMID: 33905003 DOI: 10.1007/s10548-021-00831-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 03/03/2021] [Indexed: 11/30/2022]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder characterized by defects in social interaction. The past functional connectivity studies using resting-state fMRI have found both patterns of hypo-connectivity and hyper-connectivity in ASD and proposed the age as an important factor on functional connectivity disorders. However, this influence is not clearly characterized yet. Previous studies have often examined the functional connectivity disorders in particular brain regions in an age group or a mixture of age groups. The present study compares whole-brain within-connectivity and between-connectivity between ASD individuals and typically developing (TD) controls in three age groups including children (< 11 years), adolescents (11-18 years), and adults (> 18 years), each comprising 21 ASD individuals and 21 TD controls. The age groups were matched for age, Full IQ, and gender. Independent component analysis and dual regression were used to investigate within-connectivity. The full and partial correlations between ICs were used to investigate between-connectivity. Examination of the within-connectivity showed hyper-connectivity, especially in cerebellum and brainstem in ASD children but both hyper/hypo connectivity in adolescents and ASD adults. In ASD children, difference in the between-connectivity among default mode network (DMN), salience-executive network and fronto-parietal network were observed. There was also a negative correlation between DMN and temporal network. Full correlation comparison between ASD adolescents and TD individuals showed significant differences between cerebellum and DMN. Our results supported just the hyper-connectivity in childhood, but both hypo and hyper-connectivity after childhood and hypothesized that abnormal resting connections in ASD exist in the regions of the brain known to be involved in social cognition.
Collapse
Affiliation(s)
- Hossein Haghighat
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mitra Mirzarezaee
- Department of Computer Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Babak Nadjar Araabi
- Control and Intelligent Processing Center of Excellence, School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran
| | - Ali Khadem
- Department of Biomedical Engineering, Faculty of Electrical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| |
Collapse
|
24
|
Wang J, Wang X, Wang R, Duan X, Chen H, He C, Zhai J, Wu L, Chen H. Atypical Resting-State Functional Connectivity of Intra/Inter-Sensory Networks Is Related to Symptom Severity in Young Boys With Autism Spectrum Disorder. Front Physiol 2021; 12:626338. [PMID: 33868000 PMCID: PMC8044873 DOI: 10.3389/fphys.2021.626338] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/16/2021] [Indexed: 11/21/2022] Open
Abstract
Autism spectrum disorder (ASD) has been reported to have altered brain connectivity patterns in sensory networks, assessed using resting-state functional magnetic imaging (rs-fMRI). However, the results have been inconsistent. Herein, we aimed to systematically explore the interaction between brain sensory networks in 3–7-year-old boys with ASD (N = 29) using independent component analysis (ICA). Participants were matched for age, head motion, and handedness in the MRI scanner. We estimated the between-group differences in spatial patterns of the sensory resting-state networks (RSNs). Subsequently, the time series of each RSN were extracted from each participant’s preprocessed data and associated estimates of interaction strength between intra- and internetwork functional connectivity (FC) and symptom severity in children with ASD. The auditory network (AN), higher visual network (HVN), primary visual network (PVN), and sensorimotor network (SMN) were identified. Relative to TDs, individuals with ASD showed increased FC in the AN and SMN, respectively. Higher positive connectivity between the PVN and HVN in the ASD group was shown. The strength of such connections was associated with symptom severity. The current study might suggest that the abnormal connectivity patterns of the sensory network regions may underlie impaired higher-order multisensory integration in ASD children, and be associated with social impairments.
Collapse
Affiliation(s)
- Jia Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Xiaomin Wang
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China.,Pediatric Health Care Section, Ningbo Women & Children's Hospital, Ningbo, China
| | - Runshi Wang
- Ministry of Education (MOE), Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Xujun Duan
- Ministry of Education (MOE), Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Heng Chen
- School of Medicine, Guizhou University, Guiyang, China
| | - Changchun He
- Ministry of Education (MOE), Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| | - Jinhe Zhai
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Lijie Wu
- Department of Children's and Adolescent Health, Public Health College of Harbin Medical University, Harbin, China
| | - Huafu Chen
- Ministry of Education (MOE), Key Lab for NeuroInformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China.,School of Life Sciences and Technology, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
25
|
Kuschner ES, Kim M, Bloy L, Dipiero M, Edgar JC, Roberts TPL. MEG-PLAN: a clinical and technical protocol for obtaining magnetoencephalography data in minimally verbal or nonverbal children who have autism spectrum disorder. J Neurodev Disord 2021; 13:8. [PMID: 33485311 PMCID: PMC7827989 DOI: 10.1186/s11689-020-09350-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 12/10/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Neuroimaging research on individuals who have autism spectrum disorder (ASD) has historically been limited primarily to those with age-appropriate cognitive and language performance. Children with limited abilities are frequently excluded from such neuroscience research given anticipated barriers like tolerating the loud sounds associated with magnetic resonance imaging and remaining still during data collection. To better understand brain function across the full range of ASD there is a need to (1) include individuals with limited cognitive and language performance in neuroimaging research (non-sedated, awake) and (2) improve data quality across the performance range. The purpose of this study was to develop, implement, and test the feasibility of a clinical/behavioral and technical protocol for obtaining magnetoencephalography (MEG) data. Participants were 38 children with ASD (8-12 years) meeting the study definition of minimally verbal/nonverbal language. MEG data were obtained during a passive pure-tone auditory task. RESULTS Based on stakeholder feedback, the MEG Protocol for Low-language/cognitive Ability Neuroimaging (MEG-PLAN) was developed, integrating clinical/behavioral and technical components to be implemented by an interdisciplinary team (clinicians, behavior specialists, scientists, and technologists). Using MEG-PLAN, a 74% success rate was achieved for acquiring MEG data, with a 71% success rate for evaluable and analyzable data. Exploratory analyses suggested nonverbal IQ and adaptive skills were related to reaching the point of acquirable data. No differences in group characteristics were observed between those with acquirable versus evaluable/analyzable data. Examination of data quality (evaluable trial count) was acceptable. Moreover, results were reproducible, with high intraclass correlation coefficients for pure-tone auditory latency. CONCLUSIONS Children who have ASD who are minimally verbal/nonverbal, and often have co-occurring cognitive impairments, can be effectively and comfortably supported to complete an electrophysiological exam that yields valid and reproducible results. MEG-PLAN is a protocol that can be disseminated and implemented across research teams and adapted across technologies and neurodevelopmental disorders to collect electrophysiology and neuroimaging data in previously understudied groups of individuals.
Collapse
Affiliation(s)
- Emily S Kuschner
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA. .,Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Mina Kim
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Luke Bloy
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Marissa Dipiero
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - J Christopher Edgar
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| | - Timothy P L Roberts
- Lurie Family Foundations MEG Imaging Center, Department of Radiology, The Children's Hospital of Philadelphia, 2716 South Street, 5th Floor, Room 5251, Philadelphia, PA, 19146, USA
| |
Collapse
|
26
|
An fMRI Feature Selection Method Based on a Minimum Spanning Tree for Identifying Patients with Autism. Symmetry (Basel) 2020. [DOI: 10.3390/sym12121995] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder originating in infancy and childhood that may cause language barriers and social difficulties. However, in the diagnosis of ASD, the current machine learning methods still face many challenges in determining the location of biomarkers. Here, we proposed a novel feature selection method based on the minimum spanning tree (MST) to seek neuromarkers for ASD. First, we constructed an undirected graph with nodes of candidate features. At the same time, a weight calculation method considering both feature redundancy and discriminant ability was introduced. Second, we utilized the Prim algorithm to construct the MST from the initial graph structure. Third, the sum of the edge weights of all connected nodes was sorted for each node in the MST. Then, N features corresponding to the nodes with the first N smallest sum were selected as classification features. Finally, the support vector machine (SVM) algorithm was used to evaluate the discriminant performance of the aforementioned feature selection method. Comparative experiments results show that our proposed method has improved the ASD classification performance, i.e., the accuracy, sensitivity, and specificity were 86.7%, 87.5%, and 85.7%, respectively.
Collapse
|
27
|
Sanchez-Alonso S, Aslin RN. Predictive modeling of neurobehavioral state and trait variation across development. Dev Cogn Neurosci 2020; 45:100855. [PMID: 32942148 PMCID: PMC7501421 DOI: 10.1016/j.dcn.2020.100855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/26/2020] [Accepted: 09/04/2020] [Indexed: 11/24/2022] Open
Abstract
A key goal of human neurodevelopmental research is to map neural and behavioral trajectories across both health and disease. A growing number of developmental consortia have begun to address this gap by providing open access to cross-sectional and longitudinal 'big data' repositories. However, it remains challenging to develop models that enable prediction of both within-subject and between-subject neurodevelopmental variation. Here, we present a conceptual and analytical perspective of two essential ingredients for mapping neurodevelopmental trajectories: state and trait components of variance. We focus on mapping variation across a range of neural and behavioral measurements and consider concurrent alterations of state and trait variation across development. We present a quantitative framework for combining both state- and trait-specific sources of neurobehavioral variation across development. Specifically, we argue that non-linear mixed growth models that leverage state and trait components of variance and consider environmental factors are necessary to comprehensively map brain-behavior relationships. We discuss this framework in the context of mapping language neurodevelopmental changes in early childhood, with an emphasis on measures of functional connectivity and their reliability for establishing robust neurobehavioral relationships. The ultimate goal is to statistically unravel developmental trajectories of neurobehavioral relationships that involve a combination of individual differences and age-related changes.
Collapse
|
28
|
Lee Masson H, Op de Beeck H, Boets B. Reduced task-dependent modulation of functional network architecture for positive versus negative affective touch processing in autism spectrum disorders. Neuroimage 2020; 219:117009. [PMID: 32504816 DOI: 10.1016/j.neuroimage.2020.117009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 02/08/2023] Open
Abstract
Individuals with autism spectrum disorders (ASD) experience impairments in social communication and interaction, and often show difficulties with receiving and offering touch. Despite the high prevalence of abnormal reactions to touch in ASD, and the importance of touch communication in human relationships, the neural mechanisms underlying atypical touch processing in ASD remain largely unknown. To answer this question, we provided both pleasant and unpleasant touch stimulation to male adults with and without ASD during functional neuroimaging. By employing generalized psychophysiological interaction analysis combined with an independent component analysis approach, we characterize stimulus-dependent changes in functional connectivity patterns for processing two tactile stimuli that evoke different emotions (i.e., pleasant vs. unpleasant touch). Results reveal that neurotypical male adults showed extensive stimulus-sensitive modulations of the functional network architecture in response to the different types of touch, both at the level of brain regions and large-scale networks. Conversely, far fewer stimulus-sensitive modulations were observed in the ASD group. These aberrant functional connectivity profiles in the ASD group were marked by hypo-connectivity of the parietal operculum and major pain networks and hyper-connectivity between the semantic and limbic networks. Lastly, individuals presenting more social deficits and a more negative attitude towards social touch showed greater hyper-connectivity between the limbic and semantic networks. These findings suggest that reduced stimulus-related modulation of this functional network architecture is associated with abnormal processing of touch in ASD.
Collapse
Affiliation(s)
- Haemy Lee Masson
- Brain and Cognition, KU Leuven, 3000, Leuven, Belgium; Center for Developmental Psychiatry, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; Leuven Autism Research (LAuRes) Consortium, KU Leuven, 3000, Leuven, Belgium.
| | - Hans Op de Beeck
- Brain and Cognition, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium
| | - Bart Boets
- Center for Developmental Psychiatry, KU Leuven, 3000, Leuven, Belgium; Leuven Brain Institute, KU Leuven, 3000, Leuven, Belgium; Leuven Autism Research (LAuRes) Consortium, KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|
29
|
Lu H. Developing and aging: A tale of two stages. CNS Neurosci Ther 2019; 26:281-282. [PMID: 31721450 PMCID: PMC6978226 DOI: 10.1111/cns.13264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/12/2023] Open
Affiliation(s)
- Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.,Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.,The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|