1
|
Romano F, Formenti D, Cardone D, Russo EF, Castiglioni P, Merati G, Merla A, Perpetuini D. Data-Driven Identification of Stroke through Machine Learning Applied to Complexity Metrics in Multimodal Electromyography and Kinematics. ENTROPY (BASEL, SWITZERLAND) 2024; 26:578. [PMID: 39056940 PMCID: PMC11276346 DOI: 10.3390/e26070578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
A stroke represents a significant medical condition characterized by the sudden interruption of blood flow to the brain, leading to cellular damage or death. The impact of stroke on individuals can vary from mild impairments to severe disability. Treatment for stroke often focuses on gait rehabilitation. Notably, assessing muscle activation and kinematics patterns using electromyography (EMG) and stereophotogrammetry, respectively, during walking can provide information regarding pathological gait conditions. The concurrent measurement of EMG and kinematics can help in understanding disfunction in the contribution of specific muscles to different phases of gait. To this aim, complexity metrics (e.g., sample entropy; approximate entropy; spectral entropy) applied to EMG and kinematics have been demonstrated to be effective in identifying abnormal conditions. Moreover, the conditional entropy between EMG and kinematics can identify the relationship between gait data and muscle activation patterns. This study aims to utilize several machine learning classifiers to distinguish individuals with stroke from healthy controls based on kinematics and EMG complexity measures. The cubic support vector machine applied to EMG metrics delivered the best classification results reaching 99.85% of accuracy. This method could assist clinicians in monitoring the recovery of motor impairments for stroke patients.
Collapse
Affiliation(s)
- Francesco Romano
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (F.R.); (D.C.); (A.M.)
| | - Damiano Formenti
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.F.); (P.C.); (G.M.)
| | - Daniela Cardone
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (F.R.); (D.C.); (A.M.)
| | | | - Paolo Castiglioni
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.F.); (P.C.); (G.M.)
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Giampiero Merati
- Department of Biotechnology and Life Sciences, University of Insubria, 21100 Varese, Italy; (D.F.); (P.C.); (G.M.)
- IRCCS Fondazione Don Carlo Gnocchi, 20148 Milan, Italy
| | - Arcangelo Merla
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (F.R.); (D.C.); (A.M.)
- UdA-TechLab, University G. D’Annunzio of Chieti-Pescara, 66100 Chieti, Italy
| | - David Perpetuini
- Department of Engineering and Geology, University G. D’Annunzio of Chieti-Pescara, 65127 Pescara, Italy; (F.R.); (D.C.); (A.M.)
| |
Collapse
|
2
|
Bardel B, Ayache SS, Lefaucheur JP. The contribution of EEG to assess and treat motor disorders in multiple sclerosis. Clin Neurophysiol 2024; 162:174-200. [PMID: 38643612 DOI: 10.1016/j.clinph.2024.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/23/2024]
Abstract
OBJECTIVE Electroencephalography (EEG) can highlight significant changes in spontaneous electrical activity of the brain produced by altered brain network connectivity linked to inflammatory demyelinating lesions and neuronal loss occurring in multiple sclerosis (MS). In this review, we describe the main EEG findings reported in the literature to characterize motor network alteration in term of local activity or functional connectivity changes in patients with MS (pwMS). METHODS A comprehensive literature search was conducted to include articles with quantitative analyses of resting-state EEG recordings (spectrograms or advanced methods for assessing spatial and temporal dynamics, such as coherence, theory of graphs, recurrent quantification, microstates) or dynamic EEG recordings during a motor task, with or without connectivity analyses. RESULTS In this systematic review, we identified 26 original articles using EEG in the evaluation of MS-related motor disorders. Various resting or dynamic EEG parameters could serve as diagnostic biomarkers of motor control impairment to differentiate pwMS from healthy subjects or be related to a specific clinical condition (fatigue) or neuroradiological aspects (lesion load). CONCLUSIONS We highlight some key EEG patterns in pwMS at rest and during movement, both suggesting an alteration or disruption of brain connectivity, more specifically involving sensorimotor networks. SIGNIFICANCE Some of these EEG biomarkers of motor disturbance could be used to design future therapeutic strategies in MS based on neuromodulation approaches, or to predict the effects of motor training and rehabilitation in pwMS.
Collapse
Affiliation(s)
- Benjamin Bardel
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France
| | - Samar S Ayache
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France; Gilbert and Rose-Marie Chagoury School of Medicine, Department of Neurology, 4504 Byblos, Lebanon; Institut de la Colonne Vertébrale et des NeuroSciences (ICVNS), Centre Médico-Chirurgical Bizet, F-75116 Paris, France
| | - Jean-Pascal Lefaucheur
- Univ Paris Est Creteil, Excitabilité Nerveuse et Thérapeutique (ENT), EA 4391, F-94010 Creteil, France; AP-HP, Henri Mondor University Hospital, Department of Clinical Neurophysiology, DMU FIxIT, F-94010 Creteil, France.
| |
Collapse
|
3
|
Rosanne O, Alves de Oliveira A, Falk TH. EEG Amplitude Modulation Analysis across Mental Tasks: Towards Improved Active BCIs. SENSORS (BASEL, SWITZERLAND) 2023; 23:9352. [PMID: 38067725 PMCID: PMC10708818 DOI: 10.3390/s23239352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 12/18/2023]
Abstract
Brain-computer interface (BCI) technology has emerged as an influential communication tool with extensive applications across numerous fields, including entertainment, marketing, mental state monitoring, and particularly medical neurorehabilitation. Despite its immense potential, the reliability of BCI systems is challenged by the intricacies of data collection, environmental factors, and noisy interferences, making the interpretation of high-dimensional electroencephalogram (EEG) data a pressing issue. While the current trends in research have leant towards improving classification using deep learning-based models, our study proposes the use of new features based on EEG amplitude modulation (AM) dynamics. Experiments on an active BCI dataset comprised seven mental tasks to show the importance of the proposed features, as well as their complementarity to conventional power spectral features. Through combining the seven mental tasks, 21 binary classification tests were explored. In 17 of these 21 tests, the addition of the proposed features significantly improved classifier performance relative to using power spectral density (PSD) features only. Specifically, the average kappa score for these classifications increased from 0.57 to 0.62 using the combined feature set. An examination of the top-selected features showed the predominance of the AM-based measures, comprising over 77% of the top-ranked features. We conclude this paper with an in-depth analysis of these top-ranked features and discuss their potential for use in neurophysiology.
Collapse
Affiliation(s)
- Olivier Rosanne
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| | - Alcyr Alves de Oliveira
- Graduate Program in Psychology and Health, Federal University of Health Sciences of Porto Alegre, Porto Alegre 90050-170, Brazil;
| | - Tiago H. Falk
- Institut National de la Recherche Scientifique, University of Quebec, Montreal, QC H5A 1K6, Canada;
| |
Collapse
|
4
|
Gunduz ME, Bucak B, Keser Z. Advances in Stroke Neurorehabilitation. J Clin Med 2023; 12:6734. [PMID: 37959200 PMCID: PMC10650295 DOI: 10.3390/jcm12216734] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Stroke is one of the leading causes of disability worldwide despite recent advances in hyperacute interventions to lessen the initial impact of stroke. Stroke recovery therapies are crucial in reducing the long-term disability burden after stroke. Stroke recovery treatment options have rapidly expanded within the last decade, and we are in the dawn of an exciting era of multimodal therapeutic approaches to improve post-stroke recovery. In this narrative review, we highlighted various promising advances in treatment and technologies targeting stroke rehabilitation, including activity-based therapies, non-invasive and minimally invasive brain stimulation techniques, robotics-assisted therapies, brain-computer interfaces, pharmacological treatments, and cognitive therapies. These new therapies are targeted to enhance neural plasticity as well as provide an adequate dose of rehabilitation and improve adherence and participation. Novel activity-based therapies and telerehabilitation are promising tools to improve accessibility and provide adequate dosing. Multidisciplinary treatment models are crucial for post-stroke neurorehabilitation, and further adjuvant treatments with brain stimulation techniques and pharmacological agents should be considered to maximize the recovery. Among many challenges in the field, the heterogeneity of patients included in the study and the mixed methodologies and results across small-scale studies are the cardinal ones. Biomarker-driven individualized approaches will move the field forward, and so will large-scale clinical trials with a well-targeted patient population.
Collapse
Affiliation(s)
- Muhammed Enes Gunduz
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Bilal Bucak
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| | - Zafer Keser
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; (B.B.); (Z.K.)
| |
Collapse
|
5
|
Amrani El Yaakoubi N, McDonald C, Lennon O. Prediction of Gait Kinematics and Kinetics: A Systematic Review of EMG and EEG Signal Use and Their Contribution to Prediction Accuracy. Bioengineering (Basel) 2023; 10:1162. [PMID: 37892892 PMCID: PMC10604078 DOI: 10.3390/bioengineering10101162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
Human-machine interfaces hold promise in enhancing rehabilitation by predicting and responding to subjects' movement intent. In gait rehabilitation, neural network architectures utilize lower-limb muscle and brain activity to predict continuous kinematics and kinetics during stepping and walking. This systematic review, spanning five databases, assessed 16 papers meeting inclusion criteria. Studies predicted lower-limb kinematics and kinetics using electroencephalograms (EEGs), electromyograms (EMGs), or a combination with kinematic data and anthropological parameters. Long short-term memory (LSTM) and convolutional neural network (CNN) tools demonstrated highest accuracies. EEG focused on joint angles, while EMG predicted moments and torque joints. Useful EEG electrode locations included C3, C4, Cz, P3, F4, and F8. Vastus Lateralis, Rectus Femoris, and Gastrocnemius were the most commonly accessed muscles for kinematic and kinetic prediction using EMGs. No studies combining EEGs and EMGs to predict lower-limb kinematics and kinetics during stepping or walking were found, suggesting a potential avenue for future development in this technology.
Collapse
Affiliation(s)
| | | | - Olive Lennon
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, D04 V1W8 Dublin, Ireland; (N.A.E.Y.)
| |
Collapse
|
6
|
Boscolo Galazzo I, Tonin L, Miladinović A, Storti SF. Editorial: Brain-connectivity-based computer interfaces. Front Hum Neurosci 2023; 17:1281446. [PMID: 37736145 PMCID: PMC10509283 DOI: 10.3389/fnhum.2023.1281446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023] Open
Affiliation(s)
| | - Luca Tonin
- Department of Information Engineering, University of Padua, Padua, Italy
- Padova Neuroscience Center, University of Padua, Padua, Italy
| | | | | |
Collapse
|
7
|
Dillen A, Lathouwers E, Miladinović A, Marusic U, Ghaffari F, Romain O, Meeusen R, De Pauw K. A data-driven machine learning approach for brain-computer interfaces targeting lower limb neuroprosthetics. Front Hum Neurosci 2022; 16:949224. [PMID: 35966996 PMCID: PMC9364873 DOI: 10.3389/fnhum.2022.949224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Prosthetic devices that replace a lost limb have become increasingly performant in recent years. Recent advances in both software and hardware allow for the decoding of electroencephalogram (EEG) signals to improve the control of active prostheses with brain-computer interfaces (BCI). Most BCI research is focused on the upper body. Although BCI research for the lower extremities has increased in recent years, there are still gaps in our knowledge of the neural patterns associated with lower limb movement. Therefore, the main objective of this study is to show the feasibility of decoding lower limb movements from EEG data recordings. The second aim is to investigate whether well-known neuroplastic adaptations in individuals with an amputation have an influence on decoding performance. To address this, we collected data from multiple individuals with lower limb amputation and a matched able-bodied control group. Using these data, we trained and evaluated common BCI methods that have already been proven effective for upper limb BCI. With an average test decoding accuracy of 84% for both groups, our results show that it is possible to discriminate different lower extremity movements using EEG data with good accuracy. There are no significant differences (p = 0.99) in the decoding performance of these movements between healthy subjects and subjects with lower extremity amputation. These results show the feasibility of using BCI for lower limb prosthesis control and indicate that decoding performance is not influenced by neuroplasticity-induced differences between the two groups.
Collapse
Affiliation(s)
- Arnau Dillen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotics Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- Équipes Traitement de l'Information et Systèmes, CY Cergy Paris University, Cergy, France
| | - Elke Lathouwers
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotics Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Aleksandar Miladinović
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
- Institute for Maternal and Child Health - IRCCS Burlo Garofolo, Trieste, Italy
- Department Engineering and Architecture, University of Trieste, Trieste, Italy
| | - Uros Marusic
- Institute for Kinesiology Research, Science and Research Centre Koper, Koper, Slovenia
- Department of Health Sciences, Alma Mater Europaea - ECM, Maribor, Slovenia
| | - Fakhreddine Ghaffari
- Équipes Traitement de l'Information et Systèmes, CY Cergy Paris University, Cergy, France
| | - Olivier Romain
- Équipes Traitement de l'Information et Systèmes, CY Cergy Paris University, Cergy, France
| | - Romain Meeusen
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotics Research Center, Vrije Universiteit Brussel, Brussels, Belgium
| | - Kevin De Pauw
- Human Physiology and Sports Physiotherapy Research Group, Vrije Universiteit Brussel, Brussels, Belgium
- Brussels Human Robotics Research Center, Vrije Universiteit Brussel, Brussels, Belgium
- *Correspondence: Kevin De Pauw
| |
Collapse
|
8
|
Mane R, Wu Z, Wang D. Poststroke motor, cognitive and speech rehabilitation with brain-computer interface: a perspective review. Stroke Vasc Neurol 2022; 7:svn-2022-001506. [PMID: 35853669 PMCID: PMC9811566 DOI: 10.1136/svn-2022-001506] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/17/2022] [Indexed: 01/17/2023] Open
Abstract
Brain-computer interface (BCI) technology translates brain activity into meaningful commands to establish a direct connection between the brain and the external world. Neuroscientific research in the past two decades has indicated a tremendous potential of BCI systems for the rehabilitation of patients suffering from poststroke impairments. By promoting the neuronal recovery of the damaged brain networks, BCI systems have achieved promising results for the recovery of poststroke motor, cognitive, and language impairments. Also, several assistive BCI systems that provide alternative means of communication and control to severely paralysed patients have been proposed to enhance patients' quality of life. In this article, we present a perspective review of the recent advances and challenges in the BCI systems used in the poststroke rehabilitation of motor, cognitive, and communication impairments.
Collapse
Affiliation(s)
| | | | - David Wang
- Neurovascular Division, Department of Neurology, Barrow Neurological Institute, Phoenix, Arizona, USA
| |
Collapse
|
9
|
Asanza V, Peláez E, Loayza F, Lorente-Leyva LL, Peluffo-Ordóñez DH. Identification of Lower-Limb Motor Tasks via Brain-Computer Interfaces: A Topical Overview. SENSORS (BASEL, SWITZERLAND) 2022; 22:2028. [PMID: 35271175 PMCID: PMC8914806 DOI: 10.3390/s22052028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 02/11/2022] [Accepted: 02/23/2022] [Indexed: 02/01/2023]
Abstract
Recent engineering and neuroscience applications have led to the development of brain-computer interface (BCI) systems that improve the quality of life of people with motor disabilities. In the same area, a significant number of studies have been conducted in identifying or classifying upper-limb movement intentions. On the contrary, few works have been concerned with movement intention identification for lower limbs. Notwithstanding, lower-limb neurorehabilitation is a major topic in medical settings, as some people suffer from mobility problems in their lower limbs, such as those diagnosed with neurodegenerative disorders, such as multiple sclerosis, and people with hemiplegia or quadriplegia. Particularly, the conventional pattern recognition (PR) systems are one of the most suitable computational tools for electroencephalography (EEG) signal analysis as the explicit knowledge of the features involved in the PR process itself is crucial for both improving signal classification performance and providing more interpretability. In this regard, there is a real need for outline and comparative studies gathering benchmark and state-of-art PR techniques that allow for a deeper understanding thereof and a proper selection of a specific technique. This study conducted a topical overview of specialized papers covering lower-limb motor task identification through PR-based BCI/EEG signal analysis systems. To do so, we first established search terms and inclusion and exclusion criteria to find the most relevant papers on the subject. As a result, we identified the 22 most relevant papers. Next, we reviewed their experimental methodologies for recording EEG signals during the execution of lower limb tasks. In addition, we review the algorithms used in the preprocessing, feature extraction, and classification stages. Finally, we compared all the algorithms and determined which of them are the most suitable in terms of accuracy.
Collapse
Affiliation(s)
- Víctor Asanza
- Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | - Enrique Peláez
- Facultad de Ingeniería en Electricidad y Computación, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | - Francis Loayza
- Neuroimaging and Bioengineering Laboratory (LNB), Facultad de Ingeniería en Mecánica y Ciencias de la Producción, Escuela Superior Politécnica del Litoral (ESPOL), Campus Gustavo Galindo km 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador;
| | | | - Diego H. Peluffo-Ordóñez
- Faculty of Engineering, Corporación Universitaria Autónoma de Nariño, Pasto 520001, Colombia;
- Modeling, Simulation and Data Analysis (MSDA) Research Program, Mohammed VI Polytechnic University, Ben Guerir 43150, Morocco
| |
Collapse
|
10
|
Naro A, Pignolo L, Calabrò RS. Brain Network Organization Following Post-Stroke Neurorehabilitation. Int J Neural Syst 2022; 32:2250009. [PMID: 35139774 DOI: 10.1142/s0129065722500095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Brain network analysis can offer useful information to guide the rehabilitation of post-stroke patients. We applied functional network connection models based on multiplex-multilayer network analysis (MMN) to explore functional network connectivity changes induced by robot-aided gait training (RAGT) using the Ekso, a wearable exoskeleton, and compared it to conventional overground gait training (COGT) in chronic stroke patients. We extracted the coreness of individual nodes at multiple locations in the brain from EEG recordings obtained before and after gait training in a resting state. We found that patients provided with RAGT achieved a greater motor function recovery than those receiving COGT. This difference in clinical outcome was paralleled by greater changes in connectivity patterns among different brain areas central to motor programming and execution, as well as a recruitment of other areas beyond the sensorimotor cortices and at multiple frequency ranges, contemporarily. The magnitude of these changes correlated with motor function recovery chances. Our data suggest that the use of RAGT as an add-on treatment to COGT may provide post-stroke patients with a greater modification of the functional brain network impairment following a stroke. This might have potential clinical implications if confirmed in large clinical trials.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| | - Loris Pignolo
- Sant'Anna Institute, Via Siris, 11, 88900 Crotone, Italy
| | - Rocco Salvatore Calabrò
- IRCCS Centro Neurolesi Bonino Pulejo, Messina, Italy. Via Palermo, SS 113, Ctr. Casazza, 98124, Messina, Italy
| |
Collapse
|
11
|
Huggins JE, Krusienski D, Vansteensel MJ, Valeriani D, Thelen A, Stavisky S, Norton JJS, Nijholt A, Müller-Putz G, Kosmyna N, Korczowski L, Kapeller C, Herff C, Halder S, Guger C, Grosse-Wentrup M, Gaunt R, Dusang AN, Clisson P, Chavarriaga R, Anderson CW, Allison BZ, Aksenova T, Aarnoutse E. Workshops of the Eighth International Brain-Computer Interface Meeting: BCIs: The Next Frontier. BRAIN-COMPUTER INTERFACES 2022; 9:69-101. [PMID: 36908334 PMCID: PMC9997957 DOI: 10.1080/2326263x.2021.2009654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/15/2021] [Indexed: 12/11/2022]
Abstract
The Eighth International Brain-Computer Interface (BCI) Meeting was held June 7-9th, 2021 in a virtual format. The conference continued the BCI Meeting series' interactive nature with 21 workshops covering topics in BCI (also called brain-machine interface) research. As in the past, workshops covered the breadth of topics in BCI. Some workshops provided detailed examinations of specific methods, hardware, or processes. Others focused on specific BCI applications or user groups. Several workshops continued consensus building efforts designed to create BCI standards and increase the ease of comparisons between studies and the potential for meta-analysis and large multi-site clinical trials. Ethical and translational considerations were both the primary topic for some workshops or an important secondary consideration for others. The range of BCI applications continues to expand, with more workshops focusing on approaches that can extend beyond the needs of those with physical impairments. This paper summarizes each workshop, provides background information and references for further study, presents an overview of the discussion topics, and describes the conclusion, challenges, or initiatives that resulted from the interactions and discussion at the workshop.
Collapse
Affiliation(s)
- Jane E Huggins
- Department of Physical Medicine and Rehabilitation, Department of Biomedical Engineering, Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, United States 325 East Eisenhower, Room 3017; Ann Arbor, Michigan 48108-5744, 734-936-7177
| | - Dean Krusienski
- Department of Biomedical Engineering, Virginia Commonwealth University, Richmond, VA 23219
| | - Mariska J Vansteensel
- UMC Utrecht Brain Center, Dept of Neurosurgery, University Medical Center Utrecht, The Netherlands
| | | | - Antonia Thelen
- eemagine Medical Imaging Solutions GmbH, Berlin, Germany
| | | | - James J S Norton
- National Center for Adaptive Neurotechnologies, US Department of Veterans Affairs, 113 Holland Ave, Albany, NY 12208
| | - Anton Nijholt
- Faculty EEMCS, University of Twente, Enschede, The Netherlands
| | - Gernot Müller-Putz
- Institute of Neural Engineering, GrazBCI Lab, Graz University of Technology, Stremayrgasse 16/4, 8010 Graz, Austria
| | - Nataliya Kosmyna
- Massachusetts Institute of Technology (MIT), Media Lab, E14-548, Cambridge, MA 02139, Unites States
| | | | | | - Christian Herff
- School of Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Christoph Guger
- g.tec medical engineering GmbH/Guger Technologies OG, Austria, Sierningstrasse 14, 4521 Schiedlberg, Austria, +43725122240-0
| | - Moritz Grosse-Wentrup
- Research Group Neuroinformatics, Faculty of Computer Science, Vienna Cognitive Science Hub, Data Science @ Uni Vienna University of Vienna
| | - Robert Gaunt
- Rehab Neural Engineering Labs, Department of Physical Medicine and Rehabilitation, Center for the Neural Basis of Cognition, University of Pittsburgh, Pittsburgh, PA, USA, 3520 5th Ave, Suite 300, Pittsburgh, PA 15213, 412-383-1426
| | - Aliceson Nicole Dusang
- Department of Electrical and Computer Engineering, School of Engineering, Brown University, Carney Institute for Brain Science, Brown University, Providence, RI
- Department of Veterans Affairs Medical Center, Center for Neurorestoration and Neurotechnology, Rehabilitation R&D Service, Providence, RI
- Center for Neurotechnology and Neurorecovery, Neurology, Massachusetts General Hospital, Boston, MA
| | | | - Ricardo Chavarriaga
- IEEE Standards Association Industry Connections group on neurotechnologies for brain-machine interface, Center for Artificial Intelligence, School of Engineering, ZHAW-Zurich University of Applied Sciences, Switzerland, Switzerland
| | - Charles W Anderson
- Department of Computer Science, Molecular, Cellular and Integrative Neurosience Program, Colorado State University, Fort Collins, CO 80523
| | - Brendan Z Allison
- Dept. of Cognitive Science, Mail Code 0515, University of California at San Diego, La Jolla, United States, 619-534-9754
| | - Tetiana Aksenova
- University Grenoble Alpes, CEA, LETI, Clinatec, Grenoble 38000, France
| | - Erik Aarnoutse
- UMC Utrecht Brain Center, Department of Neurology & Neurosurgery, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
12
|
Monoscalco L, Simeoni R, Maccioni G, Giansanti D. Information Security in Medical Robotics: A Survey on the Level of Training, Awareness and Use of the Physiotherapist. Healthcare (Basel) 2022; 10:159. [PMID: 35052322 PMCID: PMC8775601 DOI: 10.3390/healthcare10010159] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 01/03/2022] [Accepted: 01/06/2022] [Indexed: 01/27/2023] Open
Abstract
Cybersecurity is becoming an increasingly important aspect to investigate for the adoption and use of care robots, in term of both patients' safety, and the availability, integrity and privacy of their data. This study focuses on opinions about cybersecurity relevance and related skills for physiotherapists involved in rehabilitation and assistance thanks to the aid of robotics. The goal was to investigate the awareness among insiders about some facets of cybersecurity concerning human-robot interactions. We designed an electronic questionnaire and submitted it to a relevant sample of physiotherapists. The questionnaire allowed us to collect data related to: (i) use of robots and its relationship with cybersecurity in the context of physiotherapy; (ii) training in cybersecurity and robotics for the insiders; (iii) insiders' self-assessment on cybersecurity and robotics in some usage scenarios, and (iv) their experiences of cyber-attacks in this area and proposals for improvement. Besides contributing some specific statistics, the study highlights the importance of both acculturation processes in this field and monitoring initiatives based on surveys. The study exposes direct suggestions for continuation of these types of investigations in the context of scientific societies operating in the rehabilitation and assistance robotics. The study also shows the need to stimulate similar initiatives in other sectors of medical robotics (robotic surgery, care and socially assistive robots, rehabilitation systems, training for health and care workers) involving insiders.
Collapse
Affiliation(s)
- Lisa Monoscalco
- Faculty of Engineering, Tor Vergata University, Via Cracovia, 00133 Rome, Italy;
| | - Rossella Simeoni
- Facoltà di Medicina e Chirurgia, Università Cattolica del Sacro Cuore, Largo Francesco Vito, 1, 00168 Rome, Italy;
| | | | | |
Collapse
|
13
|
Papadopoulos S, Bonaiuto J, Mattout J. An Impending Paradigm Shift in Motor Imagery Based Brain-Computer Interfaces. Front Neurosci 2022; 15:824759. [PMID: 35095410 PMCID: PMC8789741 DOI: 10.3389/fnins.2021.824759] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 12/21/2021] [Indexed: 01/11/2023] Open
Abstract
The development of reliable assistive devices for patients that suffer from motor impairments following central nervous system lesions remains a major challenge in the field of non-invasive Brain-Computer Interfaces (BCIs). These approaches are predominated by electroencephalography and rely on advanced signal processing and machine learning methods to extract neural correlates of motor activity. However, despite tremendous and still ongoing efforts, their value as effective clinical tools remains limited. We advocate that a rather overlooked research avenue lies in efforts to question neurophysiological markers traditionally targeted in non-invasive motor BCIs. We propose an alternative approach grounded by recent fundamental advances in non-invasive neurophysiology, specifically subject-specific feature extraction of sensorimotor bursts of activity recorded via (possibly magnetoencephalography-optimized) electroencephalography. This path holds promise in overcoming a significant proportion of existing limitations, and could foster the wider adoption of online BCIs in rehabilitation protocols.
Collapse
Affiliation(s)
- Sotirios Papadopoulos
- University Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
- *Correspondence: Sotirios Papadopoulos,
| | - James Bonaiuto
- University Lyon 1, Lyon, France
- Institut des Sciences Cognitives Marc Jeannerod, CNRS, UMR 5229, Bron, France
| | - Jérémie Mattout
- University Lyon 1, Lyon, France
- Lyon Neuroscience Research Center, CRNL, INSERM, U1028, CNRS, UMR 5292, Lyon, France
| |
Collapse
|
14
|
Emerging trends in BCI-robotics for motor control and rehabilitation. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021. [DOI: 10.1016/j.cobme.2021.100354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Di Marco R, Rubega M, Lennon O, Formaggio E, Sutaj N, Dazzi G, Venturin C, Bonini I, Ortner R, Cerrel Bazo HA, Tonin L, Tortora S, Masiero S, Del Felice A. Experimental Protocol to Assess Neuromuscular Plasticity Induced by an Exoskeleton Training Session. Methods Protoc 2021; 4:48. [PMID: 34287357 PMCID: PMC8293335 DOI: 10.3390/mps4030048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/01/2021] [Accepted: 07/07/2021] [Indexed: 12/13/2022] Open
Abstract
Exoskeleton gait rehabilitation is an emerging area of research, with potential applications in the elderly and in people with central nervous system lesions, e.g., stroke, traumatic brain/spinal cord injury. However, adaptability of such technologies to the user is still an unmet goal. Despite important technological advances, these robotic systems still lack the fine tuning necessary to adapt to the physiological modification of the user and are not yet capable of a proper human-machine interaction. Interfaces based on physiological signals, e.g., recorded by electroencephalography (EEG) and/or electromyography (EMG), could contribute to solving this technological challenge. This protocol aims to: (1) quantify neuro-muscular plasticity induced by a single training session with a robotic exoskeleton on post-stroke people and on a group of age and sex-matched controls; (2) test the feasibility of predicting lower limb motor trajectory from physiological signals for future use as control signal for the robot. An active exoskeleton that can be set in full mode (i.e., the robot fully replaces and drives the user motion), adaptive mode (i.e., assistance to the user can be tuned according to his/her needs), and free mode (i.e., the robot completely follows the user movements) will be used. Participants will undergo a preparation session, i.e., EMG sensors and EEG cap placement and inertial sensors attachment to measure, respectively, muscular and cortical activity, and motion. They will then be asked to walk in a 15 m corridor: (i) self-paced without the exoskeleton (pre-training session); (ii) wearing the exoskeleton and walking with the three modes of use; (iii) self-paced without the exoskeleton (post-training session). From this dataset, we will: (1) quantitatively estimate short-term neuroplasticity of brain connectivity in chronic stroke survivors after a single session of gait training; (2) compare muscle activation patterns during exoskeleton-gait between stroke survivors and age and sex-matched controls; and (3) perform a feasibility analysis on the use of physiological signals to decode gait intentions.
Collapse
Affiliation(s)
- Roberto Di Marco
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Olive Lennon
- School of Public Health, Physiotherapy and Sports Science, University College Dublin, 4 Dublin, Ireland;
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ngadhnjim Sutaj
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | - Giacomo Dazzi
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Chiara Venturin
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
| | - Ilenia Bonini
- Ospedale Riabilitativo di Alta Specializzazione di Motta di Livenza, 31045 Treviso, Italy; (I.B.); (H.A.C.B.)
| | - Rupert Ortner
- g.tec Medical Engineering GmbH, 4521 Schiedlberg, Austria; (N.S.); (R.O.)
| | | | - Luca Tonin
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Tortora
- Department of Information Engineering, University of Padova, 35131 Padova, Italy; (L.T.); (S.T.)
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | - Alessandra Del Felice
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Belzoni, 160, 35121 Padova, Italy; (E.F.); (G.D.); (C.V.); (S.M.); (A.D.F.)
- Padova Neuroscience Center, University of Padova, 35129 Padova, Italy
| | | |
Collapse
|
16
|
Nedergård H, Arumugam A, Sandlund M, Bråndal A, Häger CK. Effect of robotic-assisted gait training on objective biomechanical measures of gait in persons post-stroke: a systematic review and meta-analysis. J Neuroeng Rehabil 2021; 18:64. [PMID: 33863345 PMCID: PMC8052671 DOI: 10.1186/s12984-021-00857-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Robotic-Assisted Gait Training (RAGT) may enable high-intensive and task-specific gait training post-stroke. The effect of RAGT on gait movement patterns has however not been comprehensively reviewed. The purpose of this review was to summarize the evidence for potentially superior effects of RAGT on biomechanical measures of gait post-stroke when compared with non-robotic gait training alone. METHODS Nine databases were searched using database-specific search terms from their inception until January 2021. We included randomized controlled trials investigating the effects of RAGT (e.g., using exoskeletons or end-effectors) on spatiotemporal, kinematic and kinetic parameters among adults suffering from any stage of stroke. Screening, data extraction and judgement of risk of bias (using the Cochrane Risk of bias 2 tool) were performed by 2-3 independent reviewers. The Grading of Recommendations Assessment Development and Evaluation (GRADE) criteria were used to evaluate the certainty of evidence for the biomechanical gait measures of interest. RESULTS Thirteen studies including a total of 412 individuals (mean age: 52-69 years; 264 males) met eligibility criteria and were included. RAGT was employed either as monotherapy or in combination with other therapies in a subacute or chronic phase post-stroke. The included studies showed a high risk of bias (n = 6), some concerns (n = 6) or a low risk of bias (n = 1). Meta-analyses using a random-effects model for gait speed, cadence, step length (non-affected side) and spatial asymmetry revealed no significant differences between the RAGT and comparator groups, while stride length (mean difference [MD] 2.86 cm), step length (affected side; MD 2.67 cm) and temporal asymmetry calculated in ratio-values (MD 0.09) improved slightly more in the RAGT groups. There were serious weaknesses with almost all GRADE domains (risk of bias, consistency, directness, or precision of the findings) for the included outcome measures (spatiotemporal and kinematic gait parameters). Kinetic parameters were not reported at all. CONCLUSION There were few relevant studies and the review synthesis revealed a very low certainty in current evidence for employing RAGT to improve gait biomechanics post-stroke. Further high-quality, robust clinical trials on RAGT that complement clinical data with biomechanical data are thus warranted to disentangle the potential effects of such interventions on gait biomechanics post-stroke.
Collapse
Affiliation(s)
- Heidi Nedergård
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden.
| | - Ashokan Arumugam
- Department of Physiotherapy, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Marlene Sandlund
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Anna Bråndal
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| | - Charlotte K Häger
- Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, Umeå, Sweden
| |
Collapse
|
17
|
Rubega M, Di Marco R, Zampini M, Formaggio E, Menegatti E, Bonato P, Masiero S, Del Felice A. Muscular and cortical activation during dynamic and static balance in the elderly: A scoping review. AGING BRAIN 2021; 1:100013. [PMID: 36911521 PMCID: PMC9997172 DOI: 10.1016/j.nbas.2021.100013] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/28/2022] Open
Abstract
Falls due to balance impairment are a major cause of injury and disability in the elderly. The study of neurophysiological correlates during static and dynamic balance tasks is an emerging area of research that could lead to novel rehabilitation strategies and reduce fall risk. This review aims to highlight key concepts and identify gaps in the current knowledge of balance control in the elderly that could be addressed by relying on surface electromyographic (EMG) and electroencephalographic (EEG) recordings. The neurophysiological hypotheses underlying balance studies in the elderly as well as the methodologies, findings, and limitations of prior work are herein addressed. The literature shows: 1) a wide heterogeneity in the experimental procedures, protocols, and analyses; 2) a paucity of studies involving the investigation of cortical activity; 3) aging-related alterations of cortical activation during balance tasks characterized by lower cortico-muscular coherence and increased allocation of attentional control to postural tasks in the elderly; and 4) EMG patterns characterized by delayed onset after perturbations, increased levels of activity, and greater levels of muscle co-activation in the elderly compared to younger adults. EMG and EEG recordings are valuable tools to monitor muscular and cortical activity during the performance of balance tasks. However, standardized protocols and analysis techniques should be agreed upon and shared by the scientific community to provide reliable and reproducible results. This will allow researchers to gain a comprehensive knowledge on the neurophysiological changes affecting static and dynamic balance in the elderly and will inform the design of rehabilitative and preventive interventions.
Collapse
Affiliation(s)
- Maria Rubega
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Roberto Di Marco
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Marianna Zampini
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Emanuela Formaggio
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy
| | - Emanuele Menegatti
- Department of Information Engineering, University of Padova, Padova, IT, Italy
| | - Paolo Bonato
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, USA
| | - Stefano Masiero
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy.,Padova Neuroscience Center, University of Padova, Padova, IT, Italy
| | - Alessandra Del Felice
- Department of Neurosciences, Section of Rehabilitation, University of Padova, via Giustiniani 5, 35128 Padova, IT, Italy.,Padova Neuroscience Center, University of Padova, Padova, IT, Italy
| |
Collapse
|
18
|
Giansanti D. The Rehabilitation and the Robotics: Are They Going Together Well? Healthcare (Basel) 2020; 9:healthcare9010026. [PMID: 33396636 PMCID: PMC7823256 DOI: 10.3390/healthcare9010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 12/28/2020] [Indexed: 12/05/2022] Open
Affiliation(s)
- Daniele Giansanti
- Centre Tisp, Istituto Superiore di Sanità, Via Regina Elena 299, 00161 Roma, Italy
| |
Collapse
|