1
|
Kumfu S, Sripetchwandee J, Thonusin C, Maneechote C, Arunsak B, Chunchai T, Kongkaew A, Chattipakorn SC, Chattipakorn N. Mitochondrial dynamic modulators attenuate iron overload-mediated cardiac toxicity via decreased mitochondrial fission, mitophagy/autophagy, and apoptosis in iron-overloaded rats. Arch Biochem Biophys 2025; 767:110354. [PMID: 39988036 DOI: 10.1016/j.abb.2025.110354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 01/12/2025] [Accepted: 02/20/2025] [Indexed: 02/25/2025]
Abstract
One of the leading causes of death for individuals with iron overload is iron overload cardiomyopathy (IOC). Iron overload causes cardiac mitochondrial dysfunction, which ultimately results in heart failure and death. The potential mechanism of iron overload-induced mitochondrial dysfunction involves the disequilibrium between cardiac mitochondrial fission and fusion. Nevertheless, the information regarding cardiac mitochondrial dynamics under iron overload conditions remains limited. The roles of mitochondrial dynamics were identified in IOC. To induce iron overload, male Wistar rats were injected with iron dextran for four weeks. Then, while continuing iron dextran injection, four groups of iron-overloaded rats were given injections of either vehicle, mitochondrial fusion promoter (M1), mitochondrial division inhibitor 1 (Mdivi-1), or iron chelator deferoxamine (DFO) for two weeks. In the non-iron loaded (control) group, rats received vehicles without iron dextran injection. Cardiac function, mitochondrial function, mitochondrial dynamics, mitophagy/autophagy, and apoptosis were assessed at the end of treatment. The increased expression of mitochondrial fission-, mitophagy/autophagy-, and apoptosis-related proteins were correlated with impaired mitochondrial and cardiac functions in iron-overloaded rats. Interestingly, both mitochondrial dynamics modulators reduced cardiac mitochondrial fission, mitophagy/autophagy, and apoptosis, as well as restored cardiac function to be comparable to those treated with iron chelator DFO. Our findings indicated that the imbalance of mitochondrial dynamics is a potential mechanism responsible for cardiomyocyte death induced by IOC, and this could be a novel target for interventions for IOC via either the promotion of mitochondrial fusion or the inhibition of mitochondrial fission.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
2
|
Li S, Li S, Yang D, Zhang J, Wang S, Zeng Z, Cai Q, Zhou Q. NRF2-mediated osteoblast anti-ferroptosis effect promotes induced membrane osteogenesis. Bone 2025; 192:117384. [PMID: 39732449 DOI: 10.1016/j.bone.2024.117384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 12/06/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
Induced membrane technique (IMT) is a new method for repairing segmental bone defects. However, the mechanism of its defect repair is not clear. In recent years, several studies have gradually indicated that ferroptosis is closely related to bone remodeling. Therefore, this study mainly explored the impact of NRF2-mediated osteoblast anti-ferroptosis on bone mineralization within the induced membrane. Male Sprague-Dawley rats aged 12-14 weeks were randomly divided into four groups (n = 12): Model group, DMF (NRF2 agonist) group, ML385 (NRF2 inhibitor) group and Sham group. Except for Sham group, an IMT model of the right femur was established in all other groups. After 4 weeks and 8 weeks of treatment with DMF and ML385, compared to Model group, DMF group showed significantly higher levels of bone volume fraction (BV/TV), osteogenic factors and NRF2/ARE pathway-related factors (NRF2, GPX4, HO-1 and SLC7A11), while ferroptosis-related indicators (total iron, 4-HNE and MDA) were significantly lower. Conversely, ML385 group exhibited significantly higher ferroptosis-related indicators and lower levels of NRF2/ARE pathway-related factors and osteogenesis. In vitro, erastin could induce ferroptosis in osteoblasts. Compared to Erastin group, Erastin+oe-NRF2 (NRF2 overexpression) group showed significantly increased cell viability, mineralization ability, and levels of NRF2/ARE pathway-related factors, along with reduced ferroptosis effects. However, Erastin+si-NRF2 (NRF2 small interfering) group displayed enhanced ferroptosis effects and significantly reduced cell viability, mineralization ability, and levels of NRF2/ARE pathway-related factors. In conclusion, in the bone grafting area of the induced membrane, there existed ferroptosis caused by iron overload. Activating the anti-ferroptosis effect of osteoblasts mediated by the NRF2/ARE signaling cascade could promote growth and mineralization of bone grafts within the induced membrane.
Collapse
Affiliation(s)
- Shuyuan Li
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shuying Li
- School of Pharmaceutical Sciences, Zhejiang Chinese Medicinal University, Hangzhou 311400, China
| | - Dawen Yang
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jingtao Zhang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Songyang Wang
- Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Zhanpeng Zeng
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qunbin Cai
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qishi Zhou
- First Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
3
|
Cheng J, Ma X, Tao J, Jiang X, Chen P, Duan X. Neuroprotective effects of ethanol extraction from Rubia yunnanensis Diels on chronic cerebral hypoperfusion: modulation of the System Xc-/GSH/GPX4 axis to alleviate oxidative stress and ferroptosis. Front Pharmacol 2025; 16:1552228. [PMID: 40070574 PMCID: PMC11893507 DOI: 10.3389/fphar.2025.1552228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 02/04/2025] [Indexed: 03/14/2025] Open
Abstract
Introduction Vascular dementia (VD) is a neurodegenerative disease caused by chronic cerebral hypoperfusion (CCH), which considerably impact patients' quality of life. Ethanol extraction from Rubia yunnanensis (RY-A) has gained attention for its potential neuroprotective effects, but its effects and mechanisms of action on CCH are unknown. Methods After 30 days of RY-A gavage treatment in a CCH rat model, its effects were evaluated using the Morris water maze test, cerebral blood flow measurements, and HE staining of the brain. These findings, combined with serum medicinal chemistry, RNA-seq, and metabolomics analyses, revealed the active compounds and mechanisms of RY-A in CCH rats. The results were further validated using assay kits and Western blot techniques. Results RY-A treatment significantly attenuated neurological damage and improved cognitive function in CCH rats. Ultra-high-performance liquid chromatography high-resolution mass spectrometry identified 511 blood-entry compounds of RY-A. RNA-seq and metabolomic analysis showed that RY-A might help to normalize changes in gene and metabolite expression caused by CCH. RY-A induced neuroprotective effects by increasing the production of key proteins involved in ferroptosis inhibition, such as SLC7A11, SLC3A2, GSS, and GPX4, while increasing antioxidant enzyme activities and alleviating oxidative stress. Conclusion RY-A inhibited oxidative stress and ferroptosis by activating the System Xc-/GSH/GPX4 pathway and balancing iron metabolism, thereby attenuating CCH-induced neurological damage and cognitive deficits.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaohua Duan
- Yunnan Key Laboratory of Dai and Yi Medicines, Yunnan University of Chinese Medicine, Kunming, Yunnan, China
| |
Collapse
|
4
|
Cao W, Hu Y, Yu X, Long T, Sun B, Lei S, Xie P, Yu W. Cynaroside: a potential therapeutic agent targeting arachidonate 15-lipoxygenase to mitigate cerebral ischemia/reperfusion injury. Front Neurol 2025; 15:1490640. [PMID: 40026597 PMCID: PMC11867947 DOI: 10.3389/fneur.2024.1490640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 11/11/2024] [Indexed: 03/05/2025] Open
Abstract
Introduction Due to the anti-inflammatory and antioxidant properties of cynaroside (Cyn), it may be useful in the treatment of cerebral ischemia/reperfusion injury (I/R). This study aims to evaluate the effect of Cyn on cerebral ischemia/reperfusion injury. Methods Transient middle cerebral artery occlusion model (tMCAO) and oxygen and glucose deprivation/reperfusion (OGD/R) microglia models were used to evaluate the effect of Cyn. The direct interaction between Cyn and Alox15 was investigated through bioinformatics, molecular docking and biolayer interferometry. Results tMCAO mice treated with Cyn show improved neurological deficits, reduced infarct volume and edema, and inhibition of microglial activation. In addition, Cyn inhibited tMCAO-induced Alox15 expression. Cyn significantly reduced the overproduction of the M1 microglia-regulated pro-inflammatory cytokines NLRP3, ASC, and cleaved caspase-1, as well as the overproduction of IL-1β and IL-18, induced by tMCAO or OGD/R. Cyn also inhibits the expression of Tfrc, COX2, and Acsl4 in tMCAO and OGD/R-treated mice and BV-2 cells. Discussion These results suggest that Cyn may attenuate cerebral ischemia/reperfusion injury by inhibiting Alox15 to reduce inflammation and reduce ferroptosis. This study reveals the underlying molecular mechanism of Cyn in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
- Key Laboratory of Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Yufeng Hu
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Xingyu Yu
- Class 5, Nursing, Grade 2023, Guizhou Medical University, Guiyang, China
| | - Tingting Long
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Baofei Sun
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, China
- Key Laboratory of Human Brain Bank for Functions and Diseases of Department of Education of Guizhou Province, Guizhou Medical University, Guiyang, China
| | - Shan Lei
- Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, China
| | - Peng Xie
- Key Laboratory of Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, China
| | - Wenfeng Yu
- Key Laboratory of Molecular Biology, School of Basic Medical, Guizhou Medical University, Guiyang, China
| |
Collapse
|
5
|
S G, S M F, G K R. Zerumbone-mediated post-ischemic neuroprotection: Reduction of ferroptosis through TFR1 downregulation in vitro. Mol Biol Rep 2025; 52:201. [PMID: 39904939 DOI: 10.1007/s11033-025-10301-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/24/2025] [Indexed: 02/06/2025]
Abstract
Emerging studies have identified ferroptosis as a promising therapeutic target, the inhibition of which is hypothesized to mitigate brain injury and subsequent neuronal death following stroke. Zerumbone, a phytochemical sesquiterpene isolated from Zingiber zerumbet Smith, exhibit diverse therapeutic properties across a range of neurological disorders. This study aimed to elucidate the postischemic neuroprotective effects and regulatory impact of zerumbone on ferroptosis-mediated cell death following oxygen‒glucose deprivation/reperfusion (OGD/R) injury. We employed an in vitro OGD/R SH-SY5Y cell model of stroke to evaluate the postischemic neuroprotective effects of zerumbone, a lead molecule identified through literature studies. Moreover, assays were performed to assess how zerumbone affects lipid peroxide levels, intracellular reactive oxygen species (ROS), and mitochondrial membrane integrity. Furthermore, molecular docking simulations were carried out to determine the targets, and western blotting was performed to examine TFR1 protein expression. Zerumbone (0.5 µM) treatment at 1-hour postischemia increased cell viability (72.11 ± 0.98) and mitigated OGD/R-induced ischemic injury. Zerumbone significantly decreased intracellular ROS levels and lipid peroxide production while increasing mitochondrial membrane integrity, suggesting that zerumbone ameliorated OGD/R-induced ischemic injury by inhibiting ferroptosis in vitro. This finding was corroborated by our western blot analysis, which revealed that the antiferroptotic role of zerumbone was distinctly mediated through the downregulation of transferrin receptor 1 (TFR1) protein expression. This communication, for the first time, highlights the feasibility of zerumbone as a promising adjunctive neuroprotective agent against ferroptosis cell death in the context of cerebral stroke. This study lays the groundwork for subsequent in-depth investigations to fully elucidate its therapeutic potential in ischemic stroke treatment.
Collapse
Affiliation(s)
- Gokul S
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, India
| | - Fayaz S M
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, India
| | - Rajanikant G K
- Department of Bioscience and Engineering, National Institute of Technology Calicut, Calicut, India.
| |
Collapse
|
6
|
Sun KY, Bai XY, Zhang L, Zhang X, Hu QQ, Song YX, Qiang RR, Zhang N, Zou JL, Yang YL, Xiang Y. A new strategy for the treatment of intracerebral hemorrhage: Ferroptosis. Exp Neurol 2024; 382:114961. [PMID: 39288829 DOI: 10.1016/j.expneurol.2024.114961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/28/2024] [Accepted: 09/13/2024] [Indexed: 09/19/2024]
Abstract
Intracerebral hemorrhage, is a cerebrovascular disease with high morbidity, mortality, and disability. Due to the lack of effective clinical treatments, the development of new drugs to treat intracerebral hemorrhage is necessary. In recent years, ferroptosis has been found to play an important role in the pathophysiological process of intracerebral hemorrhage, which can be treated by inhibiting ferroptosis and thus intracerebral hemorrhage. This article aims to explain the mechanism of ferroptosis and its relationship to intracerebral hemorrhage. In the meantime, it briefly discusses the molecules identified to alleviate intracerebral hemorrhage by inhibiting ferroptosis, along with other clinical agents that are expected to treat intracerebral hemorrhage through this mechanism. In addition, a brief overview of the morphological alterations of different forms of cell death and their role in ICH is provided. Finally, the challenges that may arise in translating ferroptosis inhibitors from basic research to clinical use are presented. This article serves as a reference and provides insights to aid in the treatment of intracerebral hemorrhage in the clinic.
Collapse
Affiliation(s)
- Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, China
| | - Lei Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Xin Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Qian Qian Hu
- School of Medicine, Yan'an University, Yan'an, China
| | - Yu Xuan Song
- School of Medicine, Yan'an University, Yan'an, China
| | | | - Ning Zhang
- School of Medicine, Yan'an University, Yan'an, China
| | - Jia Lun Zou
- School of Medicine, Yan'an University, Yan'an, China
| | - Yan Ling Yang
- School of Medicine, Yan'an University, Yan'an, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, China; College of Physical Education, Yan'an University, Yan'an, China.
| |
Collapse
|
7
|
Duan X, Yan L, Zhang W. An Effective Treatment of Fulminant Hepatic Failure: A Single-Center Retrospective Study. EXP CLIN TRANSPLANT 2024; 22:859-864. [PMID: 39663792 DOI: 10.6002/ect.2024.0168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
OBJECTIVES Fulminant hepatic failure is a critical condition with a high mortality rate. Currently, liver transplantation is considered one of the most effective treatment methods, but the shortage of organ resources has presented a major obstacle. The use of marginal donor livers, including those from syphilis-positive donors, offers new opportunities. This study reviewed and analyzed data from our center to summarize the management experience of using syphilis-positive donor livers to treat fulminant hepatic failure. MATERIALS AND METHODS From January 2016 to December 2021, 17 adult patients with fulminant hepatic failure received liver transplants from syphilis-positive donors at our center. Given the imbalance in several baseline variables, propensity score matching was used. We compared outcomes, including complications, hospital stay, recovery of liver function, and survival rates between groups of patients with syphilis-positive and syphilis-negative grafts. We also reviewed treatment of recipients of syphilis-positive livers. RESULTS No significant differences were shown in complications and hospital stays between recipients of syphilis-positive and syphilis-negative grafts. Both groups showed similar trends in liver function recovery. Patient and graft survival rates were comparable between the groups. Benzathine penicillin effectively protected recipients from syphilis. CONCLUSIONS Use of liver grafts from syphilis-positive donors did not increase morbidity and mortality in recipients. Liver transplant can effectively treat patients with fulminant hepatic failure. In addition, prophylactic use of benzathine penicillin was beneficial.
Collapse
Affiliation(s)
- Xin Duan
- From the Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, PR China
| | | | | |
Collapse
|
8
|
Li C, Jiang M, Chen Z, Hu Q, Liu Z, Wang J, Yin X, Wang J, Wu M. The neuroprotective effects of normobaric oxygen therapy after stroke. CNS Neurosci Ther 2024; 30:e14858. [PMID: 39009510 PMCID: PMC11250159 DOI: 10.1111/cns.14858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/29/2024] [Accepted: 07/03/2024] [Indexed: 07/17/2024] Open
Abstract
BACKGROUND Stroke, including ischemic and hemorrhagic stroke, is a severe and prevalent acute cerebrovascular disease. The development of hypoxia following stroke can trigger a cascade of pathological events, including mitochondrial dysfunction, energy deficiency, oxidative stress, neuroinflammation, and excitotoxicity, all of which are often associated with unfavorable prognosis. Nonetheless, a noninvasive intervention, referred to as normobaric hyperoxia (NBO), is known to have neuroprotective effects against stroke. RESULTS NBO can exert neuroprotective effects through various mechanisms, such as the rescue of hypoxic tissues, preservation of the blood-brain barrier, reduction of brain edema, alleviation of neuroinflammation, improvement of mitochondrial function, mitigation of oxidative stress, reduction of excitotoxicity, and inhibition of apoptosis. These mechanisms may help improve the prognosis of stroke patients. CONCLUSIONS This review summarizes the mechanism by which hypoxia causes brain injury and how NBO can act as a neuroprotective therapy to treat stroke. We conclude that NBO has significant potential for treating stroke and may represent a novel therapeutic strategy.
Collapse
Affiliation(s)
- Chuan Li
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Min Jiang
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| | - Zhiying Chen
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Qiongqiong Hu
- Department of NeurologyZhengzhou Central Hospital, Zhengzhou UniversityZhengzhouHenanChina
| | - Ziying Liu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Junmin Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Xiaoping Yin
- Department of NeurologyAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
| | - Jian Wang
- Department of Human AnatomySchool of Basic Medical Sciences, Zhengzhou UniversityZhengzhouHenanChina
| | - Moxin Wu
- Department of Medical LaboratoryAffiliated Hospital of Jiujiang UniversityJiujiangJiangxiChina
- Jiujiang Clinical Precision Medicine Research CenterJiujiangJiangxiChina
| |
Collapse
|
9
|
Duan WL, Ma YP, Wang XJ, Ma CS, Han B, Sheng ZM, Dong H, Zhang LY, Li PA, Zhang BG, He MT. N6022 attenuates cerebral ischemia/reperfusion injury-induced microglia ferroptosis by promoting Nrf2 nuclear translocation and inhibiting the GSNOR/GSTP1 axis. Eur J Pharmacol 2024; 972:176553. [PMID: 38574838 DOI: 10.1016/j.ejphar.2024.176553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 03/28/2024] [Indexed: 04/06/2024]
Abstract
Stroke poses a significant risk of mortality, particularly among the elderly population. The pathophysiological process of ischemic stroke is complex, and it is crucial to elucidate its molecular mechanisms and explore potential protective drugs. Ferroptosis, a newly recognized form of programmed cell death distinct from necrosis, apoptosis, and autophagy, is closely associated with the pathophysiology of ischemic stroke. N6022, a selective inhibitor of S-nitrosoglutathione reductase (GSNOR), is a "first-in-class" drug for asthma with potential therapeutic applications. However, it remains unclear whether N6022 exerts protective effects in ischemic stroke, and the precise mechanisms of its action are unknown. This study aimed to investigate whether N6022 mitigates cerebral ischemia/reperfusion (I/R) injury by reducing ferroptosis and to elucidate the underlying mechanisms. Accordingly, we established an oxygen-glucose deprivation/reperfusion (OGD/R) cell model and a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to mimic cerebral I/R injury. Our data, both in vitro and in vivo, demonstrated that N6022 effectively protected against I/R-induced brain damage and neurological deficits in mice, as well as OGD/R-induced BV2 cell damage. Mechanistically, N6022 promoted Nrf2 nuclear translocation, enhancing intracellular antioxidant capacity of SLC7A11-GPX4 system. Furthermore, N6022 interfered with the interaction of GSNOR with GSTP1, thereby boosting the antioxidant capacity of GSTP1 and attenuating ferroptosis. These findings provide novel insights, showing that N6022 attenuates microglial ferroptosis induced by cerebral I/R injury through the promotion of Nrf2 nuclear translocation and inhibition of the GSNOR/GSTP1 axis.
Collapse
Affiliation(s)
- Wan-Li Duan
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Ya-Ping Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Xue-Jie Wang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Chang-Sheng Ma
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Bo Han
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Zhi-Mei Sheng
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Hao Dong
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - Li-Ying Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China
| | - P Andy Li
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA
| | - Bao-Gang Zhang
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China.
| | - Mao-Tao He
- Department of Diagnostic Pathology, School of Basic Medical Sciences, Shandong Second Medical University, Weifang, 261041, China; Department of Pathology, Affiliated Hospital of Shandong Second Medical University, Weifang, 261041, Shandong, China; Department of Pharmaceutical Sciences, Biomanufacturing Research Institute and Technological Enterprise (BRITE), College of Arts and Sciences, North Carolina Central University, Durham, NC, 27707, USA.
| |
Collapse
|
10
|
Lou T, Wu H, Feng M, Liu L, Yang X, Pan M, Wei Z, Zhang Y, Shi L, Qu B, Yang H, Cong S, Chen K, Liu J, Li Y, Jia Z, Xiao H. Integration of metabolomics and transcriptomics reveals that Da Chuanxiong Formula improves vascular cognitive impairment via ACSL4/GPX4 mediated ferroptosis. JOURNAL OF ETHNOPHARMACOLOGY 2024; 325:117868. [PMID: 38325668 DOI: 10.1016/j.jep.2024.117868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Da Chuanxiong Formula (DCX) is a traditional herbal compound composed of Gastrodia elata Bl. and Ligusticum chuanxiong Hort, which could significantly enhance blood circulation and neuroprotection, showing promise in treating Vascular Cognitive Impairment (VCI). AIM OF STUDY This study aims to elucidate the potential of DCX in treating VCI and its underlying mechanism. MATERIALS AND METHODS Firstly, the cognitive behavior level, blood flow changes, and brain pathology changes were evaluated through techniques such as the Morris water maze, step-down, laser speckle, coagulation analysis, and pathological staining to appraise the DCX efficacy. Then, the DCX targeting pathways were decoded by merging metabolomics with transcriptomics. Finally, the levels of reactive oxygen species (ROS), Fe2+, and lipid peroxidation related to the targeting signaling pathways of DCX were detected by kit, and the expression levels of mRNAs or proteins related to ferroptosis were determined by qPCR or Western blot assays respectively. RESULTS DCX improved cognitive abilities and cerebral perfusion significantly, and mitigated pathological damage in the hippocampal region of VCI model rats. Metabolomics revealed that DCX was able to call back 33 metabolites in plasma and 32 metabolites in brain samples, and the majority of the differential metabolites are phospholipid metabolites. Transcriptomic analysis revealed that DCX regulated a total of 3081 genes, with the ferroptosis pathway exhibiting the greatest impact. DCX inhibited ferroptosis of VCI rates by decreasing the levels of ferrous iron, ROS, and malondialdehyde (MDA) while increasing the level of superoxide dismutase (SOD) and glutathione (GSH) in VCI rats. Moreover, the mRNA and protein levels of ACSL4, LPCAT3, ALOX15, and GPX4, which are related to lipid metabolism in ferroptosis, were also regulated by DCX. CONCLUSION Our research findings indicated that DCX could inhibit ferroptosis through the ACSL4/GPX4 signaling pathway, thereby exerting its therapeutic benefits on VCI.
Collapse
Affiliation(s)
- Tianyu Lou
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Hao Wu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Menghan Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Lirong Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqin Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mingxia Pan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zuying Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Yinhuan Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Department of Pharmacy, China-Japan Friendship Hospital, Beijing, China
| | - Lixia Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Biqiong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Haolan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shiyu Cong
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Kui Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Liu
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueting Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixin Jia
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongbin Xiao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China; Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
11
|
Liu C, Wang G, Han W, Tian Q, Li M. Ferroptosis: a potential therapeutic target for stroke. Neural Regen Res 2024; 19:988-997. [PMID: 37862200 PMCID: PMC10749612 DOI: 10.4103/1673-5374.385284] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/05/2023] [Accepted: 08/03/2023] [Indexed: 10/22/2023] Open
Abstract
Ferroptosis is a form of regulated cell death characterized by massive iron accumulation and iron-dependent lipid peroxidation, differing from apoptosis, necroptosis, and autophagy in several aspects. Ferroptosis is regarded as a critical mechanism of a series of pathophysiological reactions after stroke because of iron overload caused by hemoglobin degradation and iron metabolism imbalance. In this review, we discuss ferroptosis-related metabolisms, important molecules directly or indirectly targeting iron metabolism and lipid peroxidation, and transcriptional regulation of ferroptosis, revealing the role of ferroptosis in the progression of stroke. We present updated progress in the intervention of ferroptosis as therapeutic strategies for stroke in vivo and in vitro and summarize the effects of ferroptosis inhibitors on stroke. Our review facilitates further understanding of ferroptosis pathogenesis in stroke, proposes new targets for the treatment of stroke, and suggests that more efforts should be made to investigate the mechanism of ferroptosis in stroke.
Collapse
Affiliation(s)
- Chengli Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Guijun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Wenrui Han
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qi Tian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Mingchang Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Zhang L, Bai XY, Sun KY, Li X, Zhang ZQ, Liu YD, Xiang Y, Liu XL. A New Perspective in the Treatment of Ischemic Stroke: Ferroptosis. Neurochem Res 2024; 49:815-833. [PMID: 38170383 DOI: 10.1007/s11064-023-04096-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/14/2023] [Accepted: 12/24/2023] [Indexed: 01/05/2024]
Abstract
Ischemic stroke is a common neurological disease. Currently, there are no Food and Drug Administration-approved drugs that can maximize the improvement in ischemic stroke-induced nerve damage. Hence, treating ischemic stroke remains a clinical challenge. Ferroptosis has been increasingly studied in recent years, and it is closely related to the pathophysiological process of ischemic stroke. Iron overload, reactive oxygen species accumulation, lipid peroxidation, and glutamate accumulation associated with ferroptosis are all present in ischemic stroke. This article focuses on describing the relationship between ferroptosis and ischemic stroke and summarizes the relevant substances that ameliorate ischemic stroke-induced neurological damage by inhibiting ferroptosis. Finally, the problems in the treatment of ischemic stroke targeting ferroptosis are discussed, hoping to provide a new direction for its treatment.
Collapse
Affiliation(s)
- Lei Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xin Yue Bai
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Ke Yao Sun
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xuan Li
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Zhao Qi Zhang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yi Ding Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Yang Xiang
- School of Medicine, Yan'an University, Yan'an, 716000, China
| | - Xiao Long Liu
- School of Medicine, Yan'an University, Yan'an, 716000, China.
| |
Collapse
|
13
|
Zhang Y, Zou Z, Liu S, Chen F, Li M, Zou H, Liu H, Ding J. Edaravone-loaded poly(amino acid) nanogel inhibits ferroptosis for neuroprotection in cerebral ischemia injury. Asian J Pharm Sci 2024; 19:100886. [PMID: 38590795 PMCID: PMC10999513 DOI: 10.1016/j.ajps.2024.100886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/29/2023] [Accepted: 01/11/2024] [Indexed: 04/10/2024] Open
Abstract
Neurological injury caused by ischemic stroke is a major cause of permanent disability and death. The currently available neuroprotective drugs fail to achieve desired therapeutic efficacy mainly due to short circulation half-life and poor blood-brain barrier (BBB) permeability. For that, an edaravone-loaded pH/glutathione (pH/GSH) dual-responsive poly(amino acid) nanogel (NG/EDA) was developed to improve the neuroprotection of EDA. The nanogel was triggered by acidic and EDA-induced high-level GSH microenvironments, which enabled the selective and sustained release of EDA at the site of ischemic injury. NG/EDA exhibited a uniform sub-spherical morphology with a mean hydrodynamic diameter of 112.3 ± 8.2 nm. NG/EDA efficiently accumulated at the cerebral ischemic injury site of permanent middle cerebral artery occlusion (pMCAO) mice, showing an efficient BBB crossing feature. Notably, NG/EDA with 50 µM EDA significantly increased neuron survival (29.3%) following oxygen and glucose deprivation by inhibiting ferroptosis. In addition, administering NG/EDA for 7 d significantly reduced infarct volume to 22.2% ± 7.2% and decreased neurobehavioral scores from 9.0 ± 0.6 to 2.0 ± 0.8. Such a pH/GSH dual-responsive nanoplatform might provide a unique and promising modality for neuroprotection in ischemic stroke and other central nervous system diseases.
Collapse
Affiliation(s)
- Yunhan Zhang
- Key Laboratory of Pathobiology Ministry of Education, Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130061, China
| | - Zhulin Zou
- Key Laboratory of Pathobiology Ministry of Education, Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130061, China
| | - Shuang Liu
- Key Laboratory of Pathobiology Ministry of Education, Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130061, China
| | - Fangfang Chen
- Department of Gastrointestinal, Colorectal, and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Minglu Li
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haoyang Zou
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Haiyan Liu
- Key Laboratory of Pathobiology Ministry of Education, Department of Anatomy, College of Basic Medical Sciences, Jilin University, Changchun 130061, China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| |
Collapse
|
14
|
Wang X, Li M, Wang F, Mao G, Wu J, Han R, Sheng R, Qin Z, Ni H. TIGAR reduces neuronal ferroptosis by inhibiting succinate dehydrogenase activity in cerebral ischemia. Free Radic Biol Med 2024; 216:89-105. [PMID: 38494143 DOI: 10.1016/j.freeradbiomed.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 01/12/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
Ischemia Stroke (IS) is an acute neurological condition with high morbidity, disability, and mortality due to a severe reduction in local cerebral blood flow to the brain and blockage of oxygen and glucose supply. Oxidative stress induced by IS predisposes neurons to ferroptosis. TP53-induced glycolysis and apoptosis regulator (TIGAR) inhibits the intracellular glycolytic pathway to increase pentose phosphate pathway (PPP) flux, promotes NADPH production and thus generates reduced glutathione (GSH) to scavenge reactive oxygen species (ROS), and thus shows strong antioxidant effects to ameliorate cerebral ischemia/reperfusion injury. However, in the current study, prolonged ischemia impaired the PPP, and TIGAR was unable to produce NADPH but was still able to reduce neuronal ferroptosis and attenuate ischemic brain injury. Ferroptosis is a form of cell death caused by free radical-driven lipid peroxidation, and the vast majority of ROS leading to oxidative stress are generated by mitochondrial succinate dehydrogenase (SDH) driving reverse electron transfer (RET) via the mitochondrial electron transport chain. Overexpression of TIGAR significantly inhibited hypoxia-induced enhancement of SDH activity, and TIGAR deficiency further enhanced SDH activity. We also found that the inhibitory effect of TIGAR on SDH activity was related to its mitochondrial translocation under hypoxic conditions. TIGAR may inhibit SDH activity by mediating post-translational modifications (acetylation and succinylation) of SDH A through interaction with SDH A. SDH activity inhibition reduces neuronal ferroptosis by decreasing ROS production, eliminating MitoROS levels and attenuating lipid peroxide accumulation. Notably, TIGAR-mediated inhibition of SDH activity and ferroptosis was not dependent on the PPP-NADPH-GPX4 pathways. In conclusion, mitochondrial translocation of TIGAR in prolonged ischemia is an important pathway to reduce neuronal ferroptosis and provide sustainable antioxidant defense for the brain under prolonged ischemia, further complementing the mechanism of TIGAR resistance to oxidative stress induced by IS.
Collapse
Affiliation(s)
- Xinxin Wang
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Mei Li
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Fan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Guanghui Mao
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Junchao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rong Han
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Rui Sheng
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China
| | - Zhenghong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases, Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, 215123, China; Institute of Heath Technology, Global Institute of Software Technology, Qingshan Road, Suzhou Science & Technology Tower, Hi-Tech Area, Suzhou, 215163, China.
| | - Hong Ni
- Department of Brain Research, Institute of Pediatric Research, Children's Hospital of Soochow University, Suzhou, 215025, China.
| |
Collapse
|
15
|
Chen T, Ding L, Zhao M, Song S, Hou J, Li X, Li M, Yin K, Li X, Wang Z. Recent advances in the potential effects of natural products from traditional Chinese medicine against respiratory diseases targeting ferroptosis. Chin Med 2024; 19:49. [PMID: 38519984 PMCID: PMC10958864 DOI: 10.1186/s13020-024-00918-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 03/07/2024] [Indexed: 03/25/2024] Open
Abstract
Respiratory diseases, marked by structural changes in the airways and lung tissues, can lead to reduced respiratory function and, in severe cases, respiratory failure. The side effects of current treatments, such as hormone therapy, drugs, and radiotherapy, highlight the need for new therapeutic strategies. Traditional Chinese Medicine (TCM) offers a promising alternative, leveraging its ability to target multiple pathways and mechanisms. Active compounds from Chinese herbs and other natural sources exhibit anti-inflammatory, antioxidant, antitumor, and immunomodulatory effects, making them valuable in preventing and treating respiratory conditions. Ferroptosis, a unique form of programmed cell death (PCD) distinct from apoptosis, necrosis, and others, has emerged as a key area of interest. However, comprehensive reviews on how natural products influence ferroptosis in respiratory diseases are lacking. This review will explore the therapeutic potential and mechanisms of natural products from TCM in modulating ferroptosis for respiratory diseases like acute lung injury (ALI), asthma, pulmonary fibrosis (PF), chronic obstructive pulmonary disease (COPD), lung ischemia-reperfusion injury (LIRI), pulmonary hypertension (PH), and lung cancer, aiming to provide new insights for research and clinical application in TCM for respiratory health.
Collapse
Affiliation(s)
- Tian Chen
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Lu Ding
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130021, China
| | - Meiru Zhao
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Siyu Song
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China
| | - Juan Hou
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xueyan Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Min Li
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Kai Yin
- College of Integrated Traditional Chinese and Western Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Xiangyan Li
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| | - Zeyu Wang
- Northeast Asia Research Institute of Traditional Chinese Medicine, Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Ministry of Education, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, 130117, China.
| |
Collapse
|
16
|
Li P, Chen JM, Ge SH, Sun ML, Lu JD, Liu F, Wang LL, Zhang X, Wang XP. Pentoxifylline protects against cerebral ischaemia-reperfusion injury through ferroptosis regulation via the Nrf2/SLC7A11/GPX4 signalling pathway. Eur J Pharmacol 2024; 967:176402. [PMID: 38331339 DOI: 10.1016/j.ejphar.2024.176402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 02/06/2024] [Indexed: 02/10/2024]
Abstract
OBJECTIVE To investigate whether pentoxifylline (PTX) attenuates cerebral ischaemia-reperfusion injury (IRI) in rats by inhibiting ferroptosis and to explore the underlying molecular mechanisms. METHODS Cerebral IRI was induced in male Sprague-Dawley (SD) rats using middle cerebral artery occlusion (MCAO). The effects of PTX on cerebral ischaemia-reperfusion brain samples were detected through neurological deficit score, staining and electron microscopy; levels of ferroptosis biomarkers from brain samples were detected using kits. Additionally, the expression levels of nuclear factor erythroid 2-related factor 2 (Nrf2), transferrin receptor protein 1, divalent metal transporter 1, solute carrier family 7 member 11 (SLC7A11) and glutathione peroxidase 4 (GPX4) were determined by immunohistochemistry, real-time quantitative polymerase chain reaction and western blotting. RESULTS Pre-treatment with PTX was found to improve neurological function, evidenced by reduced neurological deficit scores, decreased infarct volume and alleviated pathological features post-MCAO. This improvement was accompanied by reduced lipid peroxidation levels and mitigated mitochondrial damage. Notably, PTX's inhibitory effect on ferroptosis was characterised by enhanced Nrf2 nuclear translocation and regulation of ferroptosis-related proteins. Moreover, inhibition of Nrf2 using ML385 (an Nrf2-specific inhibitor) reversed PTX's neuroprotective effect on MCAO-induced ferroptosis via the SLC7A11/GPX4 signalling pathway. CONCLUSIONS Ferroptosis is evident following cerebral ischaemia-reperfusion in rats. Pentoxifylline confers protection against IRI in rats by inhibiting ferroptosis through the Nrf2/SLC7A11/GPX4 signalling pathway.
Collapse
Affiliation(s)
- Pei Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China; Department of Neurology, Tangshan Gongren Hospital, Tangshan, 063000, Hebei, China
| | - Jun-Min Chen
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Shi-Hao Ge
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Mei-Lin Sun
- Department of Neurology, Xingtai People's Hospital, Xingtai, 054001, Hebei, China
| | - Jun-Dong Lu
- Department of Neurology, Baoding First Central Hospital, Baoding, 071000, Hebei, China
| | - Fan Liu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Le-Le Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xin Zhang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Xiao-Peng Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
17
|
Shen J, Hao C, Yuan S, Chen W, Tong T, Chen Y, Shahzad Aslam M, Yan S, Li J, Zeng J, Liu S, Chen Y, Jiang Y, Li P, Meng X. Acupuncture alleviates CUMS-induced depression-like behaviors of rats by regulating oxidative stress, neuroinflammation and ferroptosis. Brain Res 2024; 1826:148715. [PMID: 38142722 DOI: 10.1016/j.brainres.2023.148715] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 12/11/2023] [Indexed: 12/26/2023]
Abstract
BACKGROUND The treatment of depression with acupuncture has been documented. The mechanism behind acupuncture's curative and preventative effects is still unknown. METHODS The current study examined the effects of acupuncture on depression-like behaviors in a rat model of chronic unpredictable mild stress (CUMS), while also exploring its potential mechanisms. A total of six groups of rats were randomly assigned: control, CUMS, acupuncture, fluoxetine, acupoint catgut embedding and sham acupoint catgut embedding. Fluoxetine (2.1 mg/kg) and acupoint catgut embedding were used for comparative research to acupuncture. The modelling evaluation is measured by body weight and behavior tests. Western blotting and reverse transcription-polymerase chain reaction were used to detect the proteins and mRNA expression of Silent information regulator 1 (Sirt1)/ nuclear factor-erythroid 2-related factor 2 (Nrf2)/ heme oxygenase-1 (HO-1)/ Glutathione peroxidase 4 (GPX4) pathway in the hippocampus. The expression of oxidative stress (OS)-related proteins and inflammatory cytokines in the serum was detected with ELISA. Immunofluorescence showed microglia and astrocytes activity in the hippocampus. RESULTS Acupuncture and fluoxetine could alleviate CUMS-induced depression-like behaviors. Acupuncture was also found to effectively reverse the levels of MDA, SOD, GSH, GSH-PX and T-AOC, IL-1β, IL-6 and TNF-α in the serum of CUMS-induced rats. Rats with CUMS showed decreased levels of Sirt1, Nrf2, HO-1 and GPX4 in the hippocampus, while acupuncture treatment could partly reverse the diminished effects. In addition, acupuncture treatment significantly reduced the activation of hippocampal microglia and astrocytes in CUMS-induced rats. CONCLUSION The study's findings indicate that acupuncture has the potential to mitigate depression-like behaviors in rats induced with CUMS by mitigating OS and reducing neuroinflammation.
Collapse
Affiliation(s)
- Junliang Shen
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Chongyao Hao
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Shiwei Yuan
- Longyan Hospital of Traditional Chinese Medicine Affiliated Xiamen University, Longyan, Fujian, PR China
| | - Wenjie Chen
- The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, PR China
| | - Tao Tong
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Yiping Chen
- First Clinical College, Yunnan University of Chinese Medicine, Kunming, Yunnan, PR China
| | | | - Simin Yan
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Jianguo Li
- Second Clinical College, Shanxi University of Traditional Chinese Medicine, Taiyuan, Shanxi, PR China
| | - Jingyu Zeng
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Siyu Liu
- Longyan Hospital of Traditional Chinese Medicine Affiliated Xiamen University, Longyan, Fujian, PR China
| | - Yiwen Chen
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Yanqin Jiang
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China
| | - Peng Li
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, PR China.
| | - Xianjun Meng
- Department of Traditional Chinese Medicine, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, PR China.
| |
Collapse
|
18
|
Chen W, Zhou X, Meng M, Pan X, Huang L, Chen C. Hyperbaric oxygen improves cerebral ischemia-reperfusion injury in rats via inhibition of ferroptosis. J Stroke Cerebrovasc Dis 2023; 32:107395. [PMID: 37839303 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 09/05/2023] [Accepted: 09/26/2023] [Indexed: 10/17/2023] Open
Abstract
BACKGROUND Our previous study found that hyperbaric oxygen (HBO) attenuated cognitive impairment in mice induced by cerebral ischemia-reperfusion injury (CIRI). However, its mechanism of action is not fully understood. In this study, we aimed to establish a rat model of cerebral ischemia-reperfusion, explore the possible role of ferroptosis in the pathogenesis of CIRI, and observe the effect of HBO on ferroptosis-mediated CIRI. METHODS Sprague Dawley (SD) rats were randomly divided into control, model, Ferrostatin-1 (Fer-1), HBO and Fer-1+ HBO groups. Morris water maze, myelin basic protein (MBP) and β-tubulin immunoreactivity were assessed to evaluate the neuroprotective effects of HBO on cerebral ischemia reperfusion injury. Ferroptosis were examined to investigate the mechanism underlying the effects of HBO. RESULTS Our result showed that Fer-1 and HBO improved learning and memory ability in the navigation trail and probe trail of the Morris water maze and increased MBP and β-tubulin immunoreactivity of the cortex in the model rats. The levels of ferritin, malondialdehyde (MDA) and glutathione (GSH) in the serum were also reversed by Fer-1 and HBO treatment. Mitochondrial cristae dissolution and vacuolization were observed in the model group by transmission electron microscopy and these conditions were improved in the Fer-1 and HBO groups. Furthermore, Fer-1 and HBO treatment reversed Prostaglandin-Endoperoxide Synthase 2 (PTGS2), Iron Responsive Element Binding Protein 2 (IREB2), acyl-CoA synthetase long chain family member 4 (ACSL4) and Solute Carrier Family 7 Member 11 (SLC7A11) mRNA levels and Transferrin Receptor 1 (TFR1), ferritin light chain (FTL), ferritin heavy chain 1 (FTH1), glutathione peroxidase 4 (GPX4), Nuclear factor E2-related factor 2 (Nrf2), lysophosphatidylcholine acyltransferase 3 (LPCAT3), c-Jun N-terminal kinase (JNK), phosphorylated c-Jun N-terminal kinase (P-JNK) phosphorylated Extracellular signal-regulated protein kinase (P-ERK) and mitogen-activated protein kinase/extracellular signal-regulated kinase (MEK) protein levels. The above changes were more pronounced in Fer-1+ HBOGroup. DISCUSSION The results of the present study indicated that HBO improves cerebral ischemia-reperfusion injury in rats, which may be related to inhibition of ferroptosis. This also means that ferroptosis may become a new target of HBO against CIRI.
Collapse
Affiliation(s)
- Wan Chen
- Department of Emergency, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Xing Zhou
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Mingyu Meng
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Xiaorong Pan
- Department of Hyperbaric Oxygen, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Luying Huang
- Department of Department of Respiratory and Critical Care Medicine, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China
| | - Chunxia Chen
- Department of Pharmacy, The People's Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi 530021, PR China.
| |
Collapse
|
19
|
Wu H, Li H, Huo H, Li X, Zhu H, Zhao L, Liao J, Tang Z, Guo J. Effects of terbuthylazine on myocardial oxidative stress and ferroptosis via Nrf2/HO-1 signaling pathway in broilers. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 197:105698. [PMID: 38072553 DOI: 10.1016/j.pestbp.2023.105698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 12/18/2023]
Abstract
Terbuthylazine (TBA) is one of the most commonly used and effective herbicides. However, due to its affinity for soil organic matter and water solubility, TBA can lead to biological health concerns. This study exposed broilers to TBA (0 mg/kg bw, 0.4 mg/kg bw, 4 mg/kg bw) for 28 days. The results showed significant pathological damage in broiler myocardial tissue, such as widening of the interstitial space, rupture of muscle fibers, and deposition of myocardial collagen fibers. In addition, Under the 0.4 mg/kg bw TBA exposure, myocardial oxidative stress was observed in broilers, which was accompanied by the activation of Nrf2/HO-1 pathway and the increased protein and mRNA levels of NQO1, NOX2 and SOD2 antioxidant enzymes. However, Nrf2/HO-1 protein and mRNA levels were reversed at 4 mg/kg bw TBA exposure. Meanwhile, the Nrf2/HO-1 mediated antioxidant defense was impaired. In contrast with the low dose, the protein and gene expression levels of NQO1, NOX2, and SOD2 were reduced in 4 mg/kg bw TBA group. The expression of GPX4 and SLC7A11 was significantly downregulated at both protein and mRNA levels. Beyond that, ACSL4 expression was significantly up-regulated, and the protein result was consistent with the mRNA expression, demonstrating the occurrence of ferroptosis. In general, TBA exposure activated the Nrf2/HO-1 pathway, resulting in ferroptosis. This study links ferroptosis to the Nrf2/HO-1 pathway, providing new insights into the potential role of TBA in myocardial toxicity.
Collapse
Affiliation(s)
- Haitong Wu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haoye Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Haihua Huo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Xinrun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Heyun Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Lijiao Zhao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianzhao Liao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| | - Jianying Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Kumfu S, Sripetchwandee J, Thonusin C, Sumneang N, Maneechote C, Arunsak B, Chunchai T, Oo TT, Kongkaew A, Chattipakorn SC, Chattipakorn N. Ferroptosis inhibitor improves cardiac function more effectively than inhibitors of apoptosis and necroptosis through cardiac mitochondrial protection in rats with iron-overloaded cardiomyopathy. Toxicol Appl Pharmacol 2023; 479:116727. [PMID: 37863361 DOI: 10.1016/j.taap.2023.116727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 10/12/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023]
Abstract
Iron overload cardiomyopathy (IOC) is the leading cause of death in cases of iron overload in patients. Previous studies demonstrated that iron overload led to cardiomyocyte dysfunction and death through multiple pathways including apoptosis, necroptosis and ferroptosis. However, the dominant cell death pathway in the iron-overloaded heart needs clarification. We tested the hypothesis that ferroptosis, an iron-dependent cell death, plays a dominant role in IOC, and ferroptosis inhibitor exerts greater efficacy than inhibitors of apoptosis and necroptosis on improving cardiac function in iron-overloaded rats. Iron dextran was injected intraperitoneally into male Wistar rats for four weeks to induce iron overload. Then, the rats were divided into 5 groups: treated with vehicle, apoptosis inhibitor (z-VAD-FMK), necroptosis inhibitor (Necrostatin-1), ferroptosis inhibitor (Ferrostatin-1) or iron chelator (deferoxamine) for 2 weeks. Cardiac function, mitochondrial function, apoptosis, necroptosis and ferroptosis were determined. The increased expression of apoptosis-, necroptosis- and ferroptosis-related proteins, were associated with impaired cardiac and mitochondrial function in iron-overloaded rats. All cell death inhibitors attenuated cardiac apoptosis, necroptosis and ferroptosis in iron-overloaded rats. Ferrostatin-1 was more effective than the other drugs in diminishing mitochondrial dysfunction and Bax/Bcl-2 ratio. Moreover, both Ferrostatin-1 and deferoxamine reversed iron overload-induced cardiac dysfunction as indicated by restored left ventricular ejection fraction and E/A ratio, whereas z-VAD-FMK and Necrostatin-1 only partially improved this parameter. These results indicated that ferroptosis could be the predominant form of cardiomyocyte death in IOC, and that inhibiting ferroptosis might be a potential novel treatment for IOC.
Collapse
Affiliation(s)
- Sirinart Kumfu
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Jirapas Sripetchwandee
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chanisa Thonusin
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Natticha Sumneang
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Chayodom Maneechote
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Busarin Arunsak
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Titikorn Chunchai
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Thura Tun Oo
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Aphisek Kongkaew
- Research Administration Section, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Siriporn C Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Cardiac Electrophysiology Unit, Department of Physiology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand; Center of Excellence in Cardiac Electrophysiology Research, Chiang Mai University, Chiang Mai, Thailand.
| |
Collapse
|
21
|
Zhang J, Cai W, Wei X, Shi Y, Zhang K, Hu C, Wan J, Luo K, Shen W. Moxibustion ameliorates cerebral ischemia-reperfusion injury by regulating ferroptosis in rats. Clin Exp Pharmacol Physiol 2023; 50:779-788. [PMID: 37417429 DOI: 10.1111/1440-1681.13801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 07/08/2023]
Abstract
Moxibustion is an effective treatment for the clinical management of acute cerebral infarction. However, its exact mechanism of action is still not fully understood. This study aimed to investigate the protective effect of moxibustion on cerebral ischemia-reperfusion injury (CIRI) in rats. Middle cerebral artery occlusion/reperfusion (MCAO/R) was used to construct a CIRI rat model, all animals were randomly divided into four groups including sham operation group, MCAO/R group (MCAO/R), moxibustion therapy + MCAO/R (Moxi) and ferrostatin-1 + MCAO/R (Fer-1) group. In the Moxi group, moxibustion treatment was initiated 24 h after modeling, once a day for 30 mins each time for 7 days. Moreover, the Fer-1 group received intraperitoneal injections of Fer-1 12 h after modeling, once a day for a total of 7 days. The results showed that moxibustion could reduce nerve function damage and neuronal death. Additionally, moxibustion could reduce the production of lipid peroxides such as lipid peroxide, malondialchehyche and ACSL4 to regulate lipid metabolism, promote the production of glutathione and glutathione peroxidase 4 and reduce the expression of hepcidin by inhibiting the production of inflammatory factor interleukin-6, therefore, downregulating the expression of SLC40A1, reducing the iron level in the cerebral cortex, reducing the accumulation of reactive oxygen species and inhibiting ferroptosis. Based on our studies, it can be concluded that moxibustion has the ability to inhibit ferroptosis of nerve cells post CIRI and plays a protective role in the brain. This protective role can be attributed to the regulation of iron metabolism of nerve cells, reduction of iron deposition in the hippocampus and lowering the level of lipid peroxidation.
Collapse
Affiliation(s)
- JingRuo Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Acupuncture and Moxibustion, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Wa Cai
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xifang Wei
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yanbo Shi
- Central Laboratory of Molecular Medicine Research Center, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Kun Zhang
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Hu
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jie Wan
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kaitao Luo
- Department of Acupuncture and Moxibustion, Jiaxing Hospital of TCM, Zhejiang Chinese Medicine University, Jiaxing, China
| | - Weidong Shen
- Department of Acupuncture, Shanghai Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
22
|
Weidinger A, Milivojev N, Hosmann A, Duvigneau JC, Szabo C, Törö G, Rauter L, Vaglio-Garro A, Mkrtchyan GV, Trofimova L, Sharipov RR, Surin AM, Krasilnikova IA, Pinelis VG, Tretter L, Moldzio R, Bayır H, Kagan VE, Bunik VI, Kozlov AV. Oxoglutarate dehydrogenase complex controls glutamate-mediated neuronal death. Redox Biol 2023; 62:102669. [PMID: 36933393 PMCID: PMC10031542 DOI: 10.1016/j.redox.2023.102669] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/03/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Brain injury is accompanied by neuroinflammation, accumulation of extracellular glutamate and mitochondrial dysfunction, all of which cause neuronal death. The aim of this study was to investigate the impact of these mechanisms on neuronal death. Patients from the neurosurgical intensive care unit suffering aneurysmal subarachnoid hemorrhage (SAH) were recruited retrospectively from a respective database. In vitro experiments were performed in rat cortex homogenate, primary dissociated neuronal cultures, B35 and NG108-15 cell lines. We employed methods including high resolution respirometry, electron spin resonance, fluorescent microscopy, kinetic determination of enzymatic activities and immunocytochemistry. We found that elevated levels of extracellular glutamate and nitric oxide (NO) metabolites correlated with poor clinical outcome in patients with SAH. In experiments using neuronal cultures we showed that the 2-oxoglutarate dehydrogenase complex (OGDHC), a key enzyme of the glutamate-dependent segment of the tricarboxylic acid (TCA) cycle, is more susceptible to the inhibition by NO than mitochondrial respiration. Inhibition of OGDHC by NO or by succinyl phosphonate (SP), a highly specific OGDHC inhibitor, caused accumulation of extracellular glutamate and neuronal death. Extracellular nitrite did not substantially contribute to this NO action. Reactivation of OGDHC by its cofactor thiamine (TH) reduced extracellular glutamate levels, Ca2+ influx into neurons and cell death rate. Salutary effect of TH against glutamate toxicity was confirmed in three different cell lines. Our data suggest that the loss of control over extracellular glutamate, as described here, rather than commonly assumed impaired energy metabolism, is the critical pathological manifestation of insufficient OGDHC activity, leading to neuronal death.
Collapse
Affiliation(s)
- Adelheid Weidinger
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Nadja Milivojev
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Arthur Hosmann
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - J Catharina Duvigneau
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Csaba Szabo
- University of Fribourg, Section of Science and Medicine, Department of Oncology, Microbiology and Immunology, Section of Pharmacology, Fribourg, Switzerland; Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Gabor Törö
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | - Laurin Rauter
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria
| | - Annette Vaglio-Garro
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Garik V Mkrtchyan
- A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia
| | - Lidia Trofimova
- Biological Faculty, Department of Biophysics, Lomonosov Moscow State University, Moscow, Russia
| | - Rinat R Sharipov
- Institute of General Pathology and Pathophysiology, Laboratory of Fundamental and Applied Problems of Pain, Moscow, Russia
| | - Alexander M Surin
- Institute of General Pathology and Pathophysiology, Laboratory of Fundamental and Applied Problems of Pain, Moscow, Russia; National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Irina A Krasilnikova
- National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Vsevolod G Pinelis
- National Medical Research Center of Children's Health, Russian Ministry of Health, Laboratory of Neurobiology and Brain Development, Moscow, Russia
| | - Laszlo Tretter
- Department of Biochemistry, Semmelweis University, Budapest, Hungary
| | - Rudolf Moldzio
- Institute for Medical Biochemistry, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Hülya Bayır
- Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Chemistry and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA; Department of Critical Care Medicine, Safar Center for Resuscitation Research, Children's Neuroscience Institute, Children's Hospital of Pittsburgh, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerian E Kagan
- Departments of Environmental and Occupational Health, Pharmacology and Chemical Biology, Chemistry and Center for Free Radical and Antioxidant Health University of Pittsburgh, Pittsburgh, PA, USA
| | - Victoria I Bunik
- A. N. Belozersky Institute of Physicochemical Biology, Lomonosov Moscow State University, 119234, Moscow, Russia; Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia; Department of Biochemistry, Sechenov University, Moscow, Russia
| | - Andrey V Kozlov
- Ludwig Boltzmann Institute for Traumatology, The Research Center in Cooperation with AUVA, Vienna, Austria; Austrian Cluster for Tissue Regeneration, Vienna, Austria.
| |
Collapse
|
23
|
Sanguigno L, Guida N, Anzilotti S, Cuomo O, Mascolo L, Serani A, Brancaccio P, Pennacchio G, Licastro E, Pignataro G, Molinaro P, Annunziato L, Formisano L. Stroke by inducing HDAC9-dependent deacetylation of HIF-1 and Sp1, promotes TfR1 transcription and GPX4 reduction, thus determining ferroptotic neuronal death. Int J Biol Sci 2023; 19:2695-2710. [PMID: 37324938 PMCID: PMC10266075 DOI: 10.7150/ijbs.80735] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/30/2023] [Indexed: 06/17/2023] Open
Abstract
Background: The inhibition of histone deacetylase 9 (HDAC9) represents a promising druggable target for stroke intervention. Indeed, HDAC9 is overexpressed in neurons after brain ischemia where exerts a neurodetrimental role. However, mechanisms of HDAC9-dependent neuronal cell death are not yet well established. Methods: Brain ischemia was obtained in vitro by primary cortical neurons exposed to glucose deprivation plus reoxygenation (OGD/Rx) and in vivo by transient middle cerebral artery occlusion. Western blot and quantitative real-time polymerase chain reaction were used to evaluate transcript and protein levels. Chromatin immunoprecipitation was used to evaluate the binding of transcription factors to the promoter of target genes. Cell viability was measured by MTT and LDH assays. Ferroptosis was evaluated by iron overload and 4-hydroxynonenal (4-HNE) release. Results: Our results showed that HDAC9 binds to hypoxia-inducible factor 1 (HIF-1) and specificity protein 1 (Sp1), two transcription activators of transferrin 1 receptor (TfR1) and glutathione peroxidase 4 (GPX4) genes, respectively, in neuronal cells exposed to OGD/Rx. Consequently, HDAC9 induced: (1) an increase in protein level of HIF-1 by deacetylation and deubiquitination, thus promoting the transcription of the pro-ferroptotic TfR1 gene; and (2) a reduction in Sp1 protein levels by deacetylation and ubiquitination, thus resulting in a down-regulation of the anti-ferroptotic GPX4 gene. Supporting these results, the silencing of HDAC9 partially prevented either HIF-1 increase and Sp1 reduction after OGD/Rx. Interestingly, silencing of the neurodetrimental factors, HDAC9, HIF-1, or TfR1 or the overexpression of the prosurvival factors Sp1 or GPX4 significantly reduced a well-known marker of ferroptosis 4-HNE after OGD/Rx. More important, in vivo, intracerebroventricular injection of siHDAC9 reduced 4-HNE levels after stroke by preventing: (1) HIF-1 and TfR1 increase and thus the augmented intracellular iron overload; and (2) a reduction of Sp1 and its target gene GPX4. Conclusions: Collectively, results obtained suggest that HDAC9 mediates post-traslational modifications of HIF-1 and Sp1 that, in turn, increases TfR1 and decreases GPX4 expression, thus promoting neuronal ferroptosis in in vitro and in vivo models of stroke.
Collapse
Affiliation(s)
- Luca Sanguigno
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Natascia Guida
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Serenella Anzilotti
- Division of Pharmacology, Department of Science and Technology, University of Sannio, 82100 Benevento, Italy
| | - Ornella Cuomo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Luigi Mascolo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Angelo Serani
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Paola Brancaccio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Giuseppina Pennacchio
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Ester Licastro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Giuseppe Pignataro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | - Pasquale Molinaro
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| | | | - Luigi Formisano
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, Via Pansini, 5, 80131, Naples, Italy
| |
Collapse
|
24
|
Fang G, Shen Y, Liao D. ENPP2 alleviates hypoxia/reoxygenation injury and ferroptosis by regulating oxidative stress and mitochondrial function in human cardiac microvascular endothelial cells. Cell Stress Chaperones 2023; 28:253-263. [PMID: 37052764 PMCID: PMC10167086 DOI: 10.1007/s12192-023-01324-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 04/14/2023] Open
Abstract
This study aimed to elucidate the molecular mechanisms of hypoxia/reoxygenation (H/R) injury in human cardiac microvascular endothelial cells (HCMECs) by regulating ferroptosis. H/R model was established with HCMECs and before the reperfusion, ferroptosis inhibitor ferrostatin-1 or ferroptosis inducer erastin was all administered. Wound-healing assay was performed to detect the migration ability of cells in each group, and the angiogenesis ability was determined by tube formation assay. The level of reactive oxygen species (ROS) was detected by flow cytometry. Transmission electron microscopy (TEM) was used to observe the state of mitochondria. The expressions of related proteins in HCMECs were assessed by Western blot. From the results, H/R injury could inhibit the migration and angiogenesis, induce the ROS production, and cause the mitochondrial damage of HCMECs. Ferroptosis activator erastin could aggravate H/R injury in HCMECs, while the ferroptosis inhibitor ferrostatin-1 could reverse the effects of H/R on HCMECs. Western blot results showed that H/R or/and erastin treatment could significantly induce ACSL4, HGF, VEGF, p-ERK, and uPA protein expression and inhibit GPX4 expression. The addition of ferrostatin-1 resulted in the opposite trend of the proteins expression above to erastin treatment. What is more, overexpression of ENPP2 markedly suppressed the damaging effect of H/R on HCMECs and reversed the effects of H/R or erastin treatment on the expression of related proteins. These results demonstrated a great therapeutic efficacy of ENPP2 overexpression in preventing the development of H/R injury through inhibiting oxidative stress and ferroptosis.
Collapse
Affiliation(s)
- Guanhua Fang
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| | - Yanming Shen
- Fujian Medical University, Fuzhou, 350001 Fujian China
| | - Dongshan Liao
- Department of Cardiovascular Surgery, Union Hospital, Fujian Medical University, Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University), Fujian Province University, Fuzhou, 350001 Fujian China
| |
Collapse
|
25
|
Chen L, Huang J, Yao ZM, Sun XR, Tong XH, Hu M, Zhang Y, Dong SY. Procyanidins Alleviated Cerebral Ischemia/Reperfusion Injury by Inhibiting Ferroptosis via the Nrf2/HO-1 Signaling Pathway. Molecules 2023; 28:molecules28083582. [PMID: 37110816 PMCID: PMC10143264 DOI: 10.3390/molecules28083582] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/01/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
Procyanidins (PCs), which are organic antioxidants, suppress oxidative stress, exhibit anti-apoptotic properties, and chelate metal ions. The potential defense mechanism of PCs against cerebral ischemia/reperfusion injury (CIRI) was investigated in this study. Pre-administration for 7 days of a PC enhanced nerve function and decreased cerebellar infarct volume in a mouse middle cerebral artery embolization paradigm. In addition, mitochondrial ferroptosis was enhanced, exhibited by mitochondrial shrinkage and roundness, increased membrane density, and reduced or absent ridges. The level of Fe2+ and lipid peroxidation that cause ferroptosis was significantly reduced by PC administration. According to the Western blot findings, PCs altered the expression of proteins associated with ferroptosis, promoting the expression of GPX4 and SLC7A11 while reducing the expression of TFR1, hence inhibiting ferroptosis. Moreover, the treatment of PCs markedly elevated the expression of HO-1 and Nuclear-Nrf2. The PCs' ability to prevent ferroptosis due to CIRI was decreased by the Nrf2 inhibitor ML385. Our findings showed that the protective effect of PCs may be achieved via activation of the Nrf2/HO-1 pathway and inhibiting ferroptosis. This study provides a new perspective on the treatment of CIRI with PCs.
Collapse
Affiliation(s)
- Lei Chen
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Zi-Meng Yao
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Xiao-Rong Sun
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Xu-Hui Tong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Miao Hu
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
| | - Ying Zhang
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
| | - Shu-Ying Dong
- Department of Pharmacology, School of Pharmacy, Bengbu Medical College, Bengbu 233030, China
- Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu 233030, China
- Key Laboratory of Cardiovascular and Cerebrovascular Diseases, Bengbu Medical College, Bengbu 233030, China
| |
Collapse
|
26
|
Yang J, Guo Q, Wang L, Yu S. POU Domain Class 2 Transcription Factor 2 Inhibits Ferroptosis in Cerebral Ischemia Reperfusion Injury by Activating Sestrin2. Neurochem Res 2023; 48:658-670. [PMID: 36306010 DOI: 10.1007/s11064-022-03791-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/12/2022] [Accepted: 10/12/2022] [Indexed: 02/07/2023]
Abstract
Cerebral ischemia reperfusion injury (CIRI) is the commonest cause of brain dysfunction. Up-regulation of POU domain class 2 transcription factor 2 (POU2F2) has been reported in patients with cerebral ischemia, while the role of POU2F2 in CIRI remains elusive. Middle cerebral artery occlusion/reperfusion (MCAO/R) in mice and oxygen and glucose deprivation/reperfusion (OGD/R) in mouse primary cortical neurons were used as models of CIRI injury in vivo and in vitro. Lentivirus-mediated POU2F2 knockdown further impaired CIRI induced by MCAO/R in mice, which was accompanied by increased-neurological deficits, cerebral infarct volume and neuronal loss. Our evidence suggested that POU2F2 deficiency deteriorated oxidative stress and ferroptosis according to the phenomenon such as the abatement of SOD, GSH, glutathione peroxidase 4 (GPX4) activity and accumulation of ROS, lipid ROS, 4-hydroxynonenal (4-HNE) and MDA. In vivo, primary cortical neurons with POU2F2 knockdown also showed worse neuronal damage, oxidative stress and ferroptosis. Sestrin2 (Sesn2) was reported as a neuroprotection gene and involved in ferroptosis mechanism. Up-regulation of Sesn2 was observed in the ischemic penumbra and OGD/R-induced neuronal cells. Further, we proved that POU2F2, as a transcription factor, could bind to Sesn2 promoter and positively regulate its expression. Sesn2 overexpression relieved oxidative stress and ferroptosis induced by POU2F2 knockdown in OGD/R-treated neurons. This research demonstrated that CIRI induced a compensatory increase of POU2F2 and Sesn2. Down-regulated POU2F2 exacerbated CIRI through the acceleration of oxidative stress and ferroptosis possibly by decreasing Sesn2 expression, which offers new sights into therapeutic mechanisms for CIRI.
Collapse
Affiliation(s)
- Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province, China
| | - Qian Guo
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China
| | - Lu Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China
| | - Shan Yu
- Department of Neurology, China-Japan Union Hospital of Jilin University, No. 126, Xiantai Street, Changchun, Jilin Province, China.
| |
Collapse
|
27
|
Liu X, Du Y, Liu J, Cheng L, He W, Zhang W. Ferrostatin-1 alleviates cerebral ischemia/reperfusion injury through activation of the AKT/GSK3β signaling pathway. Brain Res Bull 2023; 193:146-157. [PMID: 36596364 DOI: 10.1016/j.brainresbull.2022.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 12/13/2022] [Accepted: 12/20/2022] [Indexed: 01/02/2023]
Abstract
Ischemic stroke is the major cause of disability and death worldwide, but post-stroke neuronal death and related mechanisms remain unclear. Ferroptosis, a newly identified type of regulated cell death, has been shown to be associated with neurological disorders, yet the exact relationship between ferroptosis and ischemic stroke has not been elucidated. The purpose of this study is to investigate the effects of ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) on neuronal injury after cerebral ischemia/reperfusion (I/R) and the underlying mechanism. In this study, we demonstrated that ferroptosis does occur in the stroke model. We found that Fer-1 reduced the levels of iron and malondialdehyde, and increased the content of glutathione and the expression of solute carrier family 7 member 11 and glutathione peroxidase 4 in cerebral I/R models. Additionally, Fer-1 significantly reduced the infarct volume and improved neurobehavioral outcomes. Moreover, we found that Fer-1 increased the levels of phosphorylated AKT and GSK3β following cerebral I/R. To further investigate the functional role of the AKT in the neuroprotective effects of Fer-1, MCAO models and oxygen-glucose deprivation-induced HT22 cells were pretreated with the AKT inhibitor MK-2206 before treatment with Fer-1 and the protective effects of Fer-1 were reversed. In conclusion, Fer-1 has protective effects on cerebral I/R injury by activating the AKT/GSK3β pathway, indicating that ferroptosis may become a novel target in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Xinyao Liu
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Yue Du
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Jian Liu
- Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, Beijing, China.
| | - Linggang Cheng
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wen He
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Wei Zhang
- Department of Ultrasound, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
28
|
Mitroshina EV, Saviuk M, Vedunova MV. Necroptosis in CNS diseases: Focus on astrocytes. Front Aging Neurosci 2023; 14:1016053. [PMID: 36778591 PMCID: PMC9911465 DOI: 10.3389/fnagi.2022.1016053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
In the last few years, necroptosis, a recently described type of cell death, has been reported to play an important role in the development of various brain pathologies. Necroptosis is a cell death mechanism that has morphological characteristics similar to necrosis but is mediated by fundamentally different molecular pathways. Necroptosis is initiated by signaling through the interaction of RIP1/RIP3/MLKL proteins (receptor-interacting protein kinase 1/receptor-interacting protein kinase 3/mixed lineage kinase domain-like protein). RIPK1 kinase is usually inactive under physiological conditions. It is activated by stimulation of death receptors (TNFR1, TNFR2, TLR3, and 4, Fas-ligand) by external signals. Phosphorylation of RIPK1 results in the formation of its complex with death receptors. Further, complexes with the second member of the RIP3 and MLKL cascade appear, and the necroptosome is formed. There is enough evidence that necroptosis plays an important role in the pathogenesis of brain ischemia and neurodegenerative diseases. In recent years, a point of view that both neurons and glial cells can play a key role in the development of the central nervous system (CNS) pathologies finds more and more confirmation. Astrocytes play complex roles during neurodegeneration and ischemic brain damage initiating both impair and protective processes. However, the cellular and molecular mechanisms that induce pathogenic activity of astrocytes remain veiled. In this review, we consider these processes in terms of the initiation of necroptosis. On the other hand, it is important to remember that like other types of programmed cell death, necroptosis plays an important role for the organism, as it induces a strong immune response and is involved in the control of cancerogenesis. In this review, we provide an overview of the complex role of necroptosis as an important pathogenetic component of neuronal and astrocyte death in neurodegenerative diseases, epileptogenesis, and ischemic brain damage.
Collapse
|
29
|
Xu S, Li X, Wang Y. Regulation of the p53‑mediated ferroptosis signaling pathway in cerebral ischemia stroke (Review). Exp Ther Med 2023; 25:113. [PMID: 36793330 PMCID: PMC9922943 DOI: 10.3892/etm.2023.11812] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 12/16/2022] [Indexed: 01/27/2023] Open
Abstract
Stroke is one of the most threatening diseases worldwide, particularly in countries with larger populations; it is associated with high morbidity, mortality and disability rates. As a result, extensive research efforts are being made to address these issues. Stroke can include either hemorrhagic stroke (blood vessel ruptures) or ischemic stroke (blockage of an artery). Whilst the incidence of stroke is higher in the elderly population (≥65), it is also increasing in the younger population. Ischemic stroke accounts for ~85% of all stroke cases. The pathogenesis of cerebral ischemic injury can include inflammation, excitotoxic injury, mitochondrial dysfunction, oxidative stress, ion imbalance and increased vascular permeability. All of the aforementioned processes have been extensively studied, providing insights into the disease. Other clinical consequences observed include brain edema, nerve injury, inflammation, motor deficits and cognitive impairment, which not only cause disabilities obstructing daily life but also increase the mortality rates. Ferroptosis is a type of cell death that is characterized by iron accumulation and increased lipid peroxidation in cells. In particular, ferroptosis has been previously implicated in ischemia-reperfusion injury in the central nervous system. It has also been identified as a mechanism involved in cerebral ischemic injury. The tumor suppressor p53 has been reported to modulate the ferroptotic signaling pathway, which both positively and negatively affects the prognosis of cerebral ischemia injury. The present review summarizes the recent findings on the molecular mechanisms of ferroptosis under the regulation of p53 underlying cerebral ischemia injury. Understanding of the p53/ferroptosis signaling pathway may provide insights into developing methods for improving the diagnosis, treatment and even prevention of stroke.
Collapse
Affiliation(s)
- Shuangli Xu
- Department of Emergency, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Xuewei Li
- Department of Rheumatology and Immunology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yanqiang Wang
- Department of Neurology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China,Correspondence to: Dr Yanqiang Wang, Department of Neurology, Affiliated Hospital of Weifang Medical University, 2,428 Yuhe Road, Kuiwen, Weifang, Shandong 261031, P.R. China
| |
Collapse
|
30
|
Xu S, Li X, Li Y, Li X, Lv E, Zhang X, Shi Y, Wang Y. Neuroprotective effect of Dl-3-n-butylphthalide against ischemia-reperfusion injury is mediated by ferroptosis regulation via the SLC7A11/GSH/GPX4 pathway and the attenuation of blood-brain barrier disruption. Front Aging Neurosci 2023; 15:1028178. [PMID: 36909944 PMCID: PMC9995665 DOI: 10.3389/fnagi.2023.1028178] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/07/2023] [Indexed: 02/25/2023] Open
Abstract
Background Stroke is one of the most severe diseases worldwide, resulting in physical and mental problems. Dl-3-n-butylphthalide, a compound derived from celery seed, has been approved for treating ischemic stroke in China. No study has evaluated how Dl-3-n-butylphthalide affects the ferroptosis SLC7A11/GSH/GPX4 signal pathway and blood-brain barrier (BBB) PDGFRβ/PI3K/Akt signal pathways in the rat middle cerebral artery occlusion/reperfusion (MCAO/R) model of ischemic stroke. Methods Sprague-Dawley rats were used to develop the MCAO/R model. Our study used three incremental doses (10, 20, and 30) of Dl-3-n-butylphthalide injected intraperitoneally 24 h after MCAO/R surgery. The neuroprotective effect and success of the model were evaluated using the neurofunction score, brain water content determination, and triphenyl-tetrazolium chloride-determined infarction area changes. Pathological changes in the brain tissue and the degree of apoptosis were examined by hematoxylin and eosin, Nissl, and terminal deoxynucleotidyl transferase dUTP nick end labeling staining. In addition, pathway proteins and RNA expression levels were studied to verify the effects of Dl-3-n-butyphthalide on both pathways. At the same time, commercial kits were used to detect glutathione, reactive oxygen species, and malondialdehyde, to detect oxidative stress in brain tissues. Results The middle dose of Dl-3-n-butylphthalide not only improved MCAO-induced brain dysfunction and alleviated pathological damage, brain inflammatory response, oxidative stress, and apoptosis but also protected against ferroptosis and reduced BBB damage. These changes resulted in improved neurological function in the cerebral cortex. Conclusion We speculate that Dl-3-n-butylphthalide has a neuroprotective effect on focal cerebral ischemia/reperfusion, which may be mediated through ferroptosis-dependent SLC7A11/GSH/GPX4 signal pathway and PDGFRβ/PI3/Akt signal pathway.
Collapse
Affiliation(s)
- Shuangli Xu
- Emergency Department, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Xuewei Li
- Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yutian Li
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Xiangling Li
- Department of Internal Medicine, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - E Lv
- Department of Histology and Embryology, Weifang Medical University, Weifang, Shandong, China
| | - Xiaojun Zhang
- Department II of Neurology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Youkui Shi
- Emergency Department, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| | - Yanqiang Wang
- Department of Rheumatology, The Affiliated Hospital of Weifang Medical University, Weifang, Shandong, China
| |
Collapse
|
31
|
Wang Y, Wang C. Quantitative reactive cysteinome profiling reveals a functional link between ferroptosis and proteasome-mediated degradation. Cell Death Differ 2023; 30:125-136. [PMID: 35974250 PMCID: PMC9883465 DOI: 10.1038/s41418-022-01050-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 02/01/2023] Open
Abstract
Ferroptosis is a unique type of cell death that is hallmarked with the imbalanced redox homeostasis as triggered by iron-dependent lipid peroxidation. Cysteines often play critical roles in proteins to help maintain a healthy cellular environment by dynamically switching between their reduced and oxidized forms, however, how the global redox landscape of cysteinome is perturbed upon ferroptosis remains unknown to date. By using a quantitative chemical proteomic strategy, we systematically profiled the dynamic changes of cysteinome in ferroptotic cells and identified a list of candidate sites whose redox states are precisely regulated under ferroptosis-inducing and rescuing conditions. In particular, C106 of the protein/nucleic acid deglycase DJ-1 acts as an intriguing sensor switch for the ferroptotic condition, whose oxidation results in the disruption of its interaction with the 20S proteasome and leads to a marked activation in the proteasome system. Our chemoproteomic profiling and associated functional studies reveal a novel functional link between ferroptosis and the proteasome-mediated protein degradation. It also suggests proteasome as a promising target for developing treatment strategies for ferroptosis-related diseases.
Collapse
Affiliation(s)
- Yankun Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Chu Wang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China.
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
32
|
Guo YL, Zhai QY, Ye YH, Ren YQ, Song ZH, Ge KL, Cheng BH. Neuroprotective effects of neural stem cells pretreated with neuregulin1β on PC12 cells exposed to oxygen-glucose deprivation/reoxygenation. Neural Regen Res 2023; 18:618-625. [DOI: 10.4103/1673-5374.350207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
33
|
Fan G, Liu M, Liu J, Huang Y. The initiator of neuroexcitotoxicity and ferroptosis in ischemic stroke: Glutamate accumulation. Front Mol Neurosci 2023; 16:1113081. [PMID: 37033381 PMCID: PMC10076579 DOI: 10.3389/fnmol.2023.1113081] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Glutamate plays an important role in excitotoxicity and ferroptosis. Excitotoxicity occurs through over-stimulation of glutamate receptors, specifically NMDAR, while in the non-receptor-mediated pathway, high glutamate concentrations reduce cystine uptake by inhibiting the System Xc-, leading to intracellular glutathione depletion and resulting in ROS accumulation, which contributes to increased lipid peroxidation, mitochondrial damage, and ultimately ferroptosis. Oxidative stress appears to crosstalk between excitotoxicity and ferroptosis, and it is essential to maintain glutamate homeostasis and inhibit oxidative stress responses in vivo. As researchers work to develop natural compounds to further investigate the complex mechanisms and regulatory functions of ferroptosis and excitotoxicity, new avenues will be available for the effective treatment of ischaemic stroke. Therefore, this paper provides a review of the molecular mechanisms and treatment of glutamate-mediated excitotoxicity and ferroptosis.
Collapse
Affiliation(s)
- Genhao Fan
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Menglin Liu
- Graduate School, Tianjin University of Chinese Medicine, Tianjin, China
| | - Jia Liu
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
| | - Yuhong Huang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Tianjin University of Chinese Medicine, Tianjin, China
- *Correspondence: Yuhong Huang,
| |
Collapse
|
34
|
MicroRNA-27a Regulates Ferroptosis Through SLC7A11 to Aggravate Cerebral ischemia-reperfusion Injury. Neurochem Res 2022; 48:1370-1381. [PMID: 36456793 DOI: 10.1007/s11064-022-03826-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/25/2022] [Accepted: 11/14/2022] [Indexed: 12/04/2022]
Abstract
Cerebral ischemia-reperfusion (I/R) injury is an inevitable issue in the treatment of ischemic stroke, which has a high disability rate and seriously threatens the living quality of patients. Previous studies have demonstrated that ferroptosis, which plays a crucial role in ischemia-reperfusion injury, can be accelerated by microRNA-27a (miR-27a). However, the mechanism by which miR-27a regulates ferroptosis in cerebral ischemia-reperfusion injury remains unknown. In this study, Male Sprague-Dawley rats were subjected to a middle cerebral artery occlusion (MCAO), then restored blood flow. Neurological function score and TTC staining were used to evaluate brain tissue injury and the infarct volume. The relative expression level of miR-27a was detected by qPCR. The relative expression levels of glutathione peroxidase 4(GPx4), solute carrier family 7 member 11 (SLC7A11) proteins were analyzed by Western Blot. The contents of GSH, Fe and malonaldehyde (MDA) were detected by corresponding detection kits, and the target gene of miR-27a was confirmed by dual luciferase reporter gene technique. It was found the relative expression level of miR-27a was increased and ferroptosis was aggravated as reperfusion time went by. Also, brain tissue injury and ferroptosis were exacerbated with agomiR-27a intervention, while these effects were reversed with antagomiR-27a intervention. In addition, the combined intervention of agomiR-27a and Fer-1 alleviated the brain tissue injury and ferroptosis. The results of dual luciferase reporter gene technique indicated SLC7A11 as the target gene of miR-27a. In the current study, miR-27a upregulates ferroptosis to aggravate cerebral ischemia-reperfusion injury by SLC7A11.
Collapse
|
35
|
Luo L, Huang F, Zhong S, Ding R, Su J, Li X. Astaxanthin attenuates ferroptosis via Keap1-Nrf2/HO-1 signaling pathways in LPS-induced acute lung injury. Life Sci 2022; 311:121091. [DOI: 10.1016/j.lfs.2022.121091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022]
|
36
|
Yi S, Wang L, Wang H, Ho MS, Zhang S. Pathogenesis of α-Synuclein in Parkinson's Disease: From a Neuron-Glia Crosstalk Perspective. Int J Mol Sci 2022; 23:14753. [PMID: 36499080 PMCID: PMC9739123 DOI: 10.3390/ijms232314753] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder. The classical behavioral defects of PD patients involve motor symptoms such as bradykinesia, tremor, and rigidity, as well as non-motor symptoms such as anosmia, depression, and cognitive impairment. Pathologically, the progressive loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the accumulation of α-synuclein (α-syn)-composed Lewy bodies (LBs) and Lewy neurites (LNs) are key hallmarks. Glia are more than mere bystanders that simply support neurons, they actively contribute to almost every aspect of neuronal development and function; glial dysregulation has been implicated in a series of neurodegenerative diseases including PD. Importantly, amounting evidence has added glial activation and neuroinflammation as new features of PD onset and progression. Thus, gaining a better understanding of glia, especially neuron-glia crosstalk, will not only provide insight into brain physiology events but also advance our knowledge of PD pathologies. This review addresses the current understanding of α-syn pathogenesis in PD, with a focus on neuron-glia crosstalk. Particularly, the transmission of α-syn between neurons and glia, α-syn-induced glial activation, and feedbacks of glial activation on DA neuron degeneration are thoroughly discussed. In addition, α-syn aggregation, iron deposition, and glial activation in regulating DA neuron ferroptosis in PD are covered. Lastly, we summarize the preclinical and clinical therapies, especially targeting glia, in PD treatments.
Collapse
Affiliation(s)
| | | | | | - Margaret S. Ho
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shiping Zhang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
37
|
Chen C, Chen W, Zhou X, Li Y, Pan X, Chen X. Hyperbaric oxygen protects HT22 cells and PC12 cells from damage caused by oxygen-glucose deprivation/reperfusion via the inhibition of Nrf2/System Xc-/GPX4 axis-mediated ferroptosis. PLoS One 2022; 17:e0276083. [PMID: 36355759 PMCID: PMC9648730 DOI: 10.1371/journal.pone.0276083] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 09/28/2022] [Indexed: 11/12/2022] Open
Abstract
This study was to investigate the protective effect of hyperbaric oxygen (HBO) on HT22 and PC12 cell damage caused by oxygen-glucose deprivation/reperfusion-induced ferroptosis. A 2-h oxygen-glucose deprivation and 24-h reperfusion model on HT22 and PC12 cells was used to simulate cerebral ischemia-reperfusion injury. Cell viabilities were detected by Cell Counting Kit-8 (CCK-8) method. The levels of reactive oxygen species (ROS) and lipid reactive oxygen species (Lipid ROS) were detected by fluorescent probes Dihydroethidium (DHE) and C11 BODIPY 581/591. Iron Colorimetric Assay Kit, malondialdehyde (MDA) and glutathione (GSH) activity assay kits were used to detect intracellular iron ion, MDA and GSHcontent. Cell ferroptosis-related ultrastructures were visualized using transmission electron microscopy (TEM). Furthermore, PCR and Western blot analyses were used to detect the expressions of ferroptosis-related genes and proteins. After receiving oxygen-glucose deprivation/reperfusion, the viabilities of HT22 and PC12 cells were significantly decreased; ROS, Lipid ROS, iron ions and MDA accumulation occurred in the cells; GSH contents decreased; TEM showed that cells were ruptured and blebbed, mitochondria atrophied and became smaller, mitochondrial ridges were reduced or even disappeared, and apoptotic bodies appeared. And the expressions of Nrf2, SLC7A11 and GPX4 genes were reduced; the expressions of p-Nrf2/Nrf2, xCT and GPX4 proteins were reduced. Notably, these parameters were significantly reversed by HBO, indicating that HBO can protect HT22 cells and PC12 cells from damage caused by oxygen-glucosedeprivation/reperfusion via the inhibition of Nrf2/System Xc-/GPX4 axis-mediated ferroptosis.
Collapse
Affiliation(s)
- Chunxia Chen
- Department of Pharmacy, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Wan Chen
- Department of Emergency, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Xing Zhou
- Department of Pharmacy, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Yaoxuan Li
- Department of Neurology, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, China
| | - Xiaorong Pan
- Department of Hyperbaric Oxygen, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| | - Xiaoyu Chen
- Department of Pharmacy, The People’s Hospital of Guangxi Zhuang Autonomous Region & Guangxi Academy of Medical Sciences, Nanning, Guangxi, P. R. China
| |
Collapse
|
38
|
Riche K, Lenard NR. Quercetin's Effects on Glutamate Cytotoxicity. Molecules 2022; 27:7620. [PMID: 36364448 PMCID: PMC9657878 DOI: 10.3390/molecules27217620] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 11/03/2022] [Accepted: 11/04/2022] [Indexed: 08/13/2023] Open
Abstract
The potentially therapeutic effects of the naturally abundant plant flavonoid quercetin have been extensively studied. An extensive body of literature suggests that quercetin's powerful antioxidant effects may relate to its ability to treat disease. Glutamate excitotoxicity occurs when a neuron is overstimulated by the neurotransmitter glutamate and causes dysregulation of intracellular calcium concentrations. Quercetin has been shown to be preventative against many forms of neuronal cell death resulting from glutamate excitotoxicity, such as oncosis, intrinsic apoptosis, mitochondrial permeability transition, ferroptosis, phagoptosis, lysosomal cell death, parthanatos, and death by reactive oxygen species (ROS)/reactive nitrogen species (RNS) generation. The clinical importance for the attenuation of glutamate excitotoxicity arises from the need to deter the continuous formation of tissue infarction caused by various neurological diseases, such as ischemic stroke, seizures, neurodegenerative diseases, and trauma. This review aims to summarize what is known concerning glutamate physiology and glutamate excitotoxic pathophysiology and provide further insight into quercetin's potential to hinder neuronal death caused by cell death pathways activated by glutamate excitotoxicity. Quercetin's bioavailability may limit its use clinically, however. Thus, future research into ways to increase its bioavailability are warranted.
Collapse
Affiliation(s)
| | - Natalie R. Lenard
- Department of Biology, School of Arts and Sciences, Franciscan Missionaries of Our Lady University, 5414 Brittany Drive, Baton Rouge, LA 70808, USA
| |
Collapse
|
39
|
Shi Y, Han L, Zhang X, Xie L, Pan P, Chen F. Selenium Alleviates Cerebral Ischemia/Reperfusion Injury by Regulating Oxidative Stress, Mitochondrial Fusion and Ferroptosis. Neurochem Res 2022; 47:2992-3002. [PMID: 35725978 PMCID: PMC9470641 DOI: 10.1007/s11064-022-03643-8] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/29/2022]
Abstract
To clarify the potential role of selenium (Se) on cerebral ischemia/reperfusion (I/R) injury, we utilized mouse middle cerebral artery occlusion (MCAO) followed by reperfusion as an animal model and oxygen-glucose deprivation and reoxygenation (OGD/R) to treat N2a cells as a cell model, respectively. MCAO model was established in mice and then divided into different groups with or without Se treatment. TTC staining was used to observe whether the cerebral I/R modeling was successful, and the apoptosis level was determined by TUNEL staining. The expression of GPx-4 and p22phox was assessed by western blot. In vitro experiments, the OGD/R induced oxidative stress in N2a cells was assessed by levels of GSH/GSSG, malondialdehyde, superoxide dismutase and iron content, respectively. QRT-PCR was used to detect the mRNA levels of Cox-2, Fth1, Mfn1 and mtDNA in N2a cells. JC-1 staining and flow cytometry was performed to detect the mitochondrial membrane potential. Se treatment alleviated cerebral I/R injury and improved the survival rate of mice. Additionally, Se treatment apparently attenuated oxidative stress and inhibited iron accumulation in MCAO model mice and OGD/R model of N2a cells. In terms of its mechanism, Se could up-regulate Mfn1 expression to alleviate oxidative stress and ferroptosis by promoting mitochondrial fusion in vivo and vitro. These findings suggest that Se may have great potential in alleviating cerebral I/R injury.
Collapse
Affiliation(s)
- Yuanyuan Shi
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Lijian Han
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Xianxian Zhang
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Lili Xie
- Department of Neurology, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Pinglei Pan
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| | - Fei Chen
- Department of Central Laboratory, The Yancheng School of Clinical Medicine of Nanjing Medical University (Yancheng Third People’s Hospital), Yancheng, 224008 Jiangsu China
| |
Collapse
|
40
|
Liu W, Wang L, Liu C, Dai Z, Li T, Tang B. Edaravone Ameliorates Cerebral Ischemia–Reperfusion Injury by Downregulating Ferroptosis <i>via</i> the Nrf2/FPN Pathway in Rats. Biol Pharm Bull 2022; 45:1269-1275. [DOI: 10.1248/bpb.b22-00186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Wenpeng Liu
- Medical School, Hunan University of Chinese Medicine
| | - Linlin Wang
- Medical School, Hunan University of Chinese Medicine
| | - Canwen Liu
- Medical School, Hunan University of Chinese Medicine
| | - Ziwei Dai
- Medical School, Hunan University of Chinese Medicine
| | - Tenglong Li
- The Second Affiliated Hospital of Hunan University of Chinese Medicine
| | - Biao Tang
- Medical School, Hunan University of Chinese Medicine
| |
Collapse
|
41
|
Li M, Meng Z, Yu S, Li J, Wang Y, Yang W, Wu H. Baicalein ameliorates cerebral ischemia-reperfusion injury by inhibiting ferroptosis via regulating GPX4/ACSL4/ACSL3 axis. Chem Biol Interact 2022; 366:110137. [DOI: 10.1016/j.cbi.2022.110137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/23/2022] [Accepted: 08/26/2022] [Indexed: 01/18/2023]
|
42
|
Han Y, Yuan M, Guo YS, Shen XY, Gao ZK, Bi X. The role of enriched environment in neural development and repair. Front Cell Neurosci 2022; 16:890666. [PMID: 35936498 PMCID: PMC9350910 DOI: 10.3389/fncel.2022.890666] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
In addition to genetic information, environmental factors play an important role in the structure and function of nervous system and the occurrence and development of some nervous system diseases. Enriched environment (EE) can not only promote normal neural development through enhancing neuroplasticity but also play a nerve repair role in restoring functional activities during CNS injury by morphological and cellular and molecular adaptations in the brain. Different stages of development after birth respond to the environment to varying degrees. Therefore, we systematically review the pro-developmental and anti-stress value of EE during pregnancy, pre-weaning, and “adolescence” and analyze the difference in the effects of EE and its sub-components, especially with physical exercise. In our exploration of potential mechanisms that promote neurodevelopment, we have found that not all sub-components exert maximum value throughout the developmental phase, such as animals that do not respond to physical activity before weaning, and that EE is not superior to its sub-components in all respects. EE affects the developing and adult brain, resulting in some neuroplastic changes in the microscopic and macroscopic anatomy, finally contributing to enhanced learning and memory capacity. These positive promoting influences are particularly prominent regarding neural repair after neurobiological disorders. Taking cerebral ischemia as an example, we analyzed the molecular mediators of EE promoting repair from various dimensions. We found that EE does not always lead to positive effects on nerve repair, such as infarct size. In view of the classic issues such as standardization and relativity of EE have been thoroughly discussed, we finally focus on analyzing the essentiality of the time window of EE action and clinical translation in order to devote to the future research direction of EE and rapid and reasonable clinical application.
Collapse
Affiliation(s)
- Yu Han
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Mei Yuan
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Yi-Sha Guo
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - Xin-Ya Shen
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhen-Kun Gao
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- Department of Graduate School, Shanghai University of Medicine and Health Sciences Affiliated Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xia Bi
- Department of Rehabilitation Medicine, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- *Correspondence: Xia Bi
| |
Collapse
|
43
|
Knockdown of CBX7 inhibits ferroptosis in rats with cerebral ischemia and improves cognitive dysfunction by activating the Nrf2/HO-1 pathway. J Biosci 2022. [DOI: 10.1007/s12038-022-00275-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Huang Y, Liu J, He J, Hu Z, Tan F, Zhu X, Yuan F, Jiang Z. UBIAD1 alleviates ferroptotic neuronal death by enhancing antioxidative capacity by cooperatively restoring impaired mitochondria and Golgi apparatus upon cerebral ischemic/reperfusion insult. Cell Biosci 2022; 12:42. [PMID: 35379328 PMCID: PMC8981649 DOI: 10.1186/s13578-022-00776-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/19/2022] [Indexed: 12/13/2022] Open
Abstract
Background Neuronal death due to over-oxidative stress responses defines the pathology of cerebral ischemic/reperfusion (I/R) insult. Ferroptosis is a form of oxidative cell death that is induced by disruption of the balance between antioxidants and pro-oxidants in cells. However, the potential mechanisms responsible for cerebral I/R-induced ferroptotic neuronal death have not been conclusively determined. UBIAD1, is a newly identified antioxidant enzyme that catalyzes coenzyme Q10 (CoQ10) and vitamin K2 biosynthesis in the Golgi apparatus membrane and mitochondria, respectively. Even though UBIAD1 is a significant mediator of apoptosis in cerebral I/R challenge, its roles in ferroptotic neuronal death remain undefined. Therefore, we investigated whether ferroptotic neuronal death is involved in cerebral I/R injury. Further, we evaluated the functions and possible mechanisms of UBIAD1 in cerebral I/R-induced ferroptotic neuronal death, with a major focus on mitochondrial and Golgi apparatus dysfunctions. Results Ferroptosis occurred in cerebral I/R. Ferroptotic neuronal death promoted cerebral I/R-induced brain tissue injury and neuronal impairment. UBIAD1 was expressed in cerebral tissues and was localized in neurons, astrocytes, and microglia. Under cerebral I/R conditions overexpressed UBIAD1 significantly suppressed lipid peroxidation and ferroptosis. Moreover, upregulated UBIAD1 protected against brain tissue damage and neuronal death by alleviating I/R-mediated lipid peroxidation and ferroptosis. However, UBIAD1 knockdown reversed these changes. Enhanced UBIAD1-mediated ferroptosis elevated the antioxidative capacity by rescuing mitochondrial and Golgi apparatus dysfunction in cerebral I/R-mediated neuronal injury. They improved the morphology and biofunctions of the mitochondria and Golgi apparatus, thereby elevating the levels of SOD, T-AOC and production of CoQ10, endothelial nitric oxide synthase (eNOS)-regulated nitric oxide (NO) generation as well as suppressed MDA generation. Conclusions The neuroprotective agent, UBIAD1, modulates I/R-mediated ferroptosis by restoring mitochondrial and Golgi apparatus dysfunction in damaged brain tissues and neurons, thereby enhancing antioxidative capacities. Moreover, the rescue of impaired mitochondrial and Golgi apparatus as a possible mechanism of regulating ferroptotic neuronal death is a potential treatment strategy for ischemic stroke. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00776-9.
Collapse
Affiliation(s)
- Yan Huang
- NHC Key Laboratory of Birth Defect for Research and Prevention (Hunan Provincial Maternal and Child Health Care Hospital), Changsha, Hunan, 410008, People's Republic of China.,Hunan Provincial Maternal and Child Health Care Hospital, Changsha, Hunan, 410008, People's Republic of China.,Hunan Provincial Key Laboratory of Neurorestoration, Hunan Normal University, Changsha, Hunan, 410081, People's Republic of China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Xuelin Zhu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China
| | - Fulai Yuan
- Health Management Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People's Republic of China.
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, 139 Renming Road, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
45
|
Peng W, Ouyang Y, Wang S, Hou J, Zhu Z, Yang Y, Zhou R, Pi R. L-F001, a Multifunctional Fasudil-Lipoic Acid Dimer Prevents RSL3-Induced Ferroptosis via Maintaining Iron Homeostasis and Inhibiting JNK in HT22 Cells. Front Cell Neurosci 2022; 16:774297. [PMID: 35431808 PMCID: PMC9008309 DOI: 10.3389/fncel.2022.774297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 03/09/2022] [Indexed: 12/31/2022] Open
Abstract
Ferroptosis, an iron-dependent form of non-apoptotic cell death, plays important roles in cerebral ischemia. Previously we have found that L-F001, a novel fasudil-lipoic acid dimer with good pharmacokinetic characters has good neuroprotection against toxin-induced cell death in vitro and in vivo. Here, we investigated the protective effects of L-F001 against a Glutathione peroxidase 4 (GPX4) inhibitor Ras-selective lethality 3 (RSL3) -induced ferroptosis in HT22 cells. We performed MTT, Transmission Electron Microscope (TEM), Western blot, and immunofluorescence analyses to determine the protective effects of L-F001 treatment. RSL3 treatment significantly reduced HT22 cell viability and L-F001 significantly protected RSL3-induced cell death in a concentration-dependent manner and significantly attenuated Mitochondrial shrinkage observed by TEM. Meanwhile, L-F001 significantly decreased RSL3-induced ROS and lipid peroxidation levels in HT22 cells. Moreover L-F001could restore GPX4 and glutamate-cysteine ligase modifier subunit (GCLM) levels, and significantly deceased Cyclooxygenase (COX-2) levels to rescue the lipid peroxidation imbalance. In addition, FerroOrange fluorescent probe and Western blot analysis revealed that L-F001 treatment decreased the total number of intracellular Fe2+ and restore Ferritin heavy chain 1 (FTH1) level in RSL3-induced HT22 cells. Finally, L-F001 could reduce RSL3-induced c-Jun N-terminal kinase (JNK) activation, which might be a potential drug target for LF-001. Considering that L-F001 has a good anti-ferroptosis effect, our results showed that L-F001 might be a multi-target agent for the therapy of ferroptosis-related diseases, such as cerebral ischemia.
Collapse
Affiliation(s)
- Weijia Peng
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ying Ouyang
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Ying Ouyang
| | - Shuyi Wang
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Jiawei Hou
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Zeyu Zhu
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Yang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Ruiyu Zhou
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rongbiao Pi
- School of Medicine, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
46
|
Fan J, Chen M, Cao S, Yao Q, Zhang X, Du S, Qu H, Cheng Y, Ma S, Zhang M, Huang Y, Zhang N, Shi K, Zhan S. Identification of a ferroptosis-related gene pair biomarker with immune infiltration landscapes in ischemic stroke: a bioinformatics-based comprehensive study. BMC Genomics 2022; 23:59. [PMID: 35033021 PMCID: PMC8761271 DOI: 10.1186/s12864-022-08295-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/29/2021] [Indexed: 12/14/2022] Open
Abstract
Background Ischemic stroke (IS) is a principal contributor to long-term disability in adults. A new cell death mediated by iron is ferroptosis, characterized by lethal aggregation of lipid peroxidation. However, a paucity of ferroptosis-related biomarkers early identify IS until now. This study investigated potential ferroptosis-related gene pair biomarkers in IS and explored their roles in immune infiltration. Results In total, we identified 6 differentially expressed ferroptosis-related genes (DEFRGs) in the metadata cohort. Of these genes, 4 DEFRGs were incorporated into the competitive endogenous RNA (ceRNA) network, including 78 lncRNA-miRNA and 16 miRNA-mRNA interactions. Based on relative expression values of DEFRGs, we constructed gene pairs. An integrated scheme consisting of machine learning algorithms, ceRNA network, and gene pair was proposed to screen the key DEFRG biomarkers. The receiver operating characteristic (ROC) curve witnessed that the diagnostic performance of DEFRG pair CDKN1A/JUN was superior to that of single gene. Moreover, the CIBERSORT algorithm exhibited immune infiltration landscapes: plasma cells, resting NK cells, and resting mast cells infiltrated less in IS samples than controls. Spearman correlation analysis confirmed a significant correlation between plasma cells and CDKN1A/JUN (CDKN1A: r = − 0.503, P < 0.001, JUN: r = − 0.330, P = 0.025). Conclusions Our findings suggested that CDKN1A/JUN could be a robust and promising gene-pair diagnostic biomarker for IS, regulating ferroptosis during IS progression via C9orf106/C9orf139-miR-22-3p-CDKN1A and GAS5-miR-139-5p/miR-429-JUN axes. Meanwhile, plasma cells might exert a vital interplay in IS immune microenvironment, providing an innovative insight for IS therapeutic target. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08295-0.
Collapse
Affiliation(s)
- Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Mengying Chen
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuai Cao
- Department of Orthopedics, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Qingling Yao
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Xiaodong Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuang Du
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Huiyang Qu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yuxuan Cheng
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuyin Ma
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Meijuan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Yizhou Huang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Nan Zhang
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Kaili Shi
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China
| | - Shuqin Zhan
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, No. 157 West Five Road, Xi'an, 710004, China.
| |
Collapse
|
47
|
Ramos-Languren LE, Avila-Luna A, García-Díaz G, Rodríguez-Labrada R, Vázquez-Mojena Y, Parra-Cid C, Montes S, Bueno-Nava A, González-Piña R. Glutamate, Glutamine, GABA and Oxidative Products in the Pons Following Cortical Injury and Their Role in Motor Functional Recovery. Neurochem Res 2021; 46:3179-3189. [PMID: 34387812 DOI: 10.1007/s11064-021-03417-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 07/27/2021] [Accepted: 08/03/2021] [Indexed: 11/26/2022]
Abstract
Brain injury leads to an excitatory phase followed by an inhibitory phase in the brain. The clinical sequelae caused by cerebral injury seem to be a response to remote functional inhibition of cerebral nuclei located far from the motor cortex but anatomically related to the injury site. It appears that such functional inhibition is mediated by an increase in lipid peroxidation (LP). To test this hypothesis, we report data from 80 rats that were allocated to the following groups: the sham group (n = 40), in which rats received an intracortical infusion of artificial cerebrospinal fluid (CSF); the injury group (n = 20), in which rats received CSF containing ferrous chloride (FeCl2, 50 mM); and the recovery group (n = 20), in which rats were injured and allowed to recover. Beam-walking, sensorimotor and spontaneous motor activity tests were performed to evaluate motor performance after injury. Lipid fluorescent products (LFPs) were measured in the pons. The total pontine contents of glutamate (GLU), glutamine (GLN) and gamma-aminobutyric acid (GABA) were also measured. In injured rats, the motor deficits, LFPs and total GABA and GLN contents in the pons were increased, while the GLU level was decreased. In contrast, in recovering rats, none of the studied variables were significantly different from those in sham rats. Thus, motor impairment after cortical injury seems to be mediated by an inhibitory pontine response, and functional recovery may result from a pontine restoration of the GLN-GLU-GABA cycle, while LP may be a primary mechanism leading to remote pontine inhibition after cortical injury.
Collapse
Affiliation(s)
- Laura E Ramos-Languren
- Faculty of Psychology, Coordination of Psychobiology and Neurosciences, National Autonomous University of Mexico, Av. Universidad 3040 Col, Copilco Universidad Alcaldía Coyoacán, 04510, Mexico City, Mexico
| | - Alberto Avila-Luna
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Gabriela García-Díaz
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico
| | - Roberto Rodríguez-Labrada
- School of Physical Culture, University of Holguín, Avenida XX Aniversario, 80100, Holguín, Cuba
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Yaimee Vázquez-Mojena
- Cuban Centre for Neurosciences, Calle 190 entre 25 y 27, Playa, 11300, Havana City, Cuba
| | - Carmen Parra-Cid
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Sergio Montes
- Reynosa-Aztlan Multidisciplinary Unit, Autonomous University of Tamaulipas, Fuente de Diana, Aztlán, 88740, Tamaulipas, Mexico
| | - Antonio Bueno-Nava
- National Institute of Rehabilitation LGII, Calz. Mexico-Xochimilco #289 Col. Arenal de Guadalupe Alcaldía Tlalpan, 14389, Mexico City, Mexico
| | - Rigoberto González-Piña
- Laboratory of Aging Biology, National Geriatric Institute, Av. Contreras 428 Col. San Jerónimo Lídice Alcaldía Magdalena Contreras, 10200, Mexico City, Mexico.
- Section of Postgraduate Studies and Research, High Medical School, IPN. Salvador Diaz Miron Alcaldia Miguel Hidalgo, 11340, Mexico City, Mexico.
- Department of Special Education, University of the Americas Mexico City College, Puebla # 223 Col. Roma Alcaldía Cuauhtemoc, 06700, Mexico City, Mexico.
| |
Collapse
|
48
|
Zhou Y, Liao J, Mei Z, Liu X, Ge J. Insight into Crosstalk between Ferroptosis and Necroptosis: Novel Therapeutics in Ischemic Stroke. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9991001. [PMID: 34257829 PMCID: PMC8257382 DOI: 10.1155/2021/9991001] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/30/2021] [Accepted: 06/14/2021] [Indexed: 12/16/2022]
Abstract
Ferroptosis is a nonapoptotic form of cell death characterized by iron-dependent accumulation of lipid hydroperoxides to lethal levels. Necroptosis, an alternative form of programmed necrosis, is regulated by receptor-interacting protein (RIP) 1 activation and by RIP3 and mixed-lineage kinase domain-like (MLKL) phosphorylation. Ferroptosis and necroptosis both play important roles in the pathological progress in ischemic stroke, which is a complex brain disease regulated by several cell death pathways. In the past few years, increasing evidence has suggested that the crosstalk occurs between necroptosis and ferroptosis in ischemic stroke. However, the potential links between ferroptosis and necroptosis in ischemic stroke have not been elucidated yet. Hence, in this review, we overview and analyze the mechanism underlying the crosstalk between necroptosis and ferroptosis in ischemic stroke. And we find that iron overload, one mechanism of ferroptosis, leads to mitochondrial permeability transition pore (MPTP) opening, which aggravates RIP1 phosphorylation and contributes to necroptosis. In addition, heat shock protein 90 (HSP90) induces necroptosis and ferroptosis by promoting RIP1 phosphorylation and suppressing glutathione peroxidase 4 (GPX4) activation. In this work, we try to deliver a new perspective in the exploration of novel therapeutic targets for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Yue Zhou
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jun Liao
- Medical School, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Zhigang Mei
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- Third-Grade Pharmacological Laboratory on Chinese Medicine Approved by State Administration of Traditional Chinese Medicine, Medical College of China Three Gorges University, Yichang, Hubei 443002, China
| | - Xun Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Jinwen Ge
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
- School of Medicine, Shaoyang University, Shaoyang, Hunan 422000, China
| |
Collapse
|
49
|
Gou X, Xu D, Li F, Hou K, Fang W, Li Y. Pyroptosis in stroke-new insights into disease mechanisms and therapeutic strategies. J Physiol Biochem 2021; 77:511-529. [PMID: 33942252 DOI: 10.1007/s13105-021-00817-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 04/13/2021] [Indexed: 02/07/2023]
Abstract
Stroke is a common disease with high mortality and disability worldwide. Different forms of cell deaths, including apoptosis and necrosis, occur in ischemic or hemorrhagic brain tissue, among which pyroptosis, a newly discovered inflammation-related programmed cell death, is generally divided into two main pathways, the canonical inflammasome pathway and the non-canonical inflammasome pathway. Caspase-mediated pyroptosis requires the assembly of inflammasomes such as NLRP3, which leads to the release of inflammatory cytokines IL-1β and IL-18 through the pores formed in the plasma membrane by GSDMD followed by neuroinflammation. Recently, pyroptosis and its relationship with inflammation have attracted more and more attention in the study of cerebral ischemia or hemorrhage. In addition, many inhibitors of pyroptosis targeting caspase, NLRP3, and the upstream pathway have been found to reduce brain tissue damage after stroke. In this review, we mainly introduce the pathology of stroke, the molecular mechanism, and process of pyroptosis, as well as the pivotal roles of pyroptosis in stroke, in order to provide new insights for the treatment of stroke.
Collapse
Affiliation(s)
- Xue Gou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Dan Xu
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Fengyang Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China
| | - Kai Hou
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.,Department of Pharmacy, Zhongda Hospital, Southeast University, Nanjing, China
| | - Weirong Fang
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.
| | - Yunman Li
- State Key Laboratory of Natural Medicines, Department of Physiology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
50
|
Zheng H, Jiang J, Xu S, Liu W, Xie Q, Cai X, Zhang J, Liu S, Li R. Nanoparticle-induced ferroptosis: detection methods, mechanisms and applications. NANOSCALE 2021; 13:2266-2285. [PMID: 33480938 DOI: 10.1039/d0nr08478f] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although ferroptosis is an iron-dependent cell death mechanism involved in the development of some severe diseases (e.g., Parkinsonian syndrome, stroke and tumours), the combination of nanotechnology with ferroptosis for the treatment of these diseases has attracted substantial research interest. However, it is challenging to differentiate nanoparticle-induced ferroptosis from other types of cell deaths (e.g., apoptosis, pyroptosis, and necrosis), elucidate the detailed mechanisms and identify the key property of nanoparticles responsible for ferroptotic cell deaths. Therefore, a summary of these aspects from current research on nano-ferroptosis is important and timely. In this review, we endeavour to summarize some convincing techniques that can be employed to specifically examine ferroptotic cell deaths. Then, we discuss the molecular initiating events of nanosized ferroptosis inducers and the cascade signals in cells, and therefore elaborate the ferroptosis mechanisms. Besides, the key physicochemical properties of nano-inducers are also discussed to acquire a fundamental understanding of nano-structure-activity relationships (nano-SARs) involved in ferroptosis, which may facilitate the design of nanomaterials to deliberately tune ferroptosis. Finally, future perspectives on the fundamental understanding of nanoparticle-induced ferroptosis and its applications are provided.
Collapse
Affiliation(s)
- Huizhen Zheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Jun Jiang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Shujuan Xu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Qianqian Xie
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| | - Xiaoming Cai
- School of Public Health, Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jie Zhang
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Road, Beijing 100085, China
| | - Ruibin Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiological Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, Jiangsu, China.
| |
Collapse
|