1
|
Jin M, Xie M, Dong L, Xue F, Li W, Jiang L, Li J, Zhang M, Song H, Lu Q, Yu Q. Exploration of Positive and Negative Schizophrenia Symptom Heterogeneity and Establishment of Symptom-Related miRNA-mRNA Regulatory Network: Based on Transcriptome Sequencing Data. Mol Neurobiol 2024; 61:5992-6012. [PMID: 38267752 DOI: 10.1007/s12035-024-03942-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Schizophrenia (SCZ) symptoms can be classified as positive and negative ones, each of which has distinct traits and possibly differences in gene expression and regulation. The co-expression networks linked to PANSS (Positive and Negative Syndrome Scale) scores were identified by weighted gene co-expression network analysis (WGCNA) using the expression profiles of miRNA and mRNA in the peripheral blood of first-episode SCZ patients. The heterogeneity between positive and negative symptoms was demonstrated using gene functional enrichment, gene-medication interaction, and immune cell composition analysis. Then, target gene prediction and correlation analysis of miRNA and mRNA constructed a symptom-related miRNA-mRNA regulatory network, screened regulatory pairs, and predicted binding sites. A total of six mRNA co-expression modules, two miRNA co-expression modules, and ten hub genes were screened to be significantly associated with positive symptoms; five mRNA co-expression modules and eight hub genes were correlated with negative symptoms. Positive symptom-related modules were significantly enriched in axon guidance, actin skeleton regulation, and sphingolipid signaling pathway, while negative symptom-related modules were significantly enriched in adaptive immune response, leukocyte migration, dopaminergic synapses, etc. The development of positive symptoms may have been influenced by potential regulatory pairings such as miR-98-5p-EIF3J, miR-98-5p-SOCS4, let-7b-5p-CLUH, miR-454-3p-GTF2H1, and let-7b-5p-SNX17. Additionally, immune cells were substantially connected with several hub genes for symptoms. Positive and negative symptoms in SCZ individuals were heterogeneous to some extent. miRNAs such as let-7b-5p and miR-98-5p might contribute to the incidence of positive symptoms by targeting mRNAs, while the immune system's role in developing negative symptoms may be more nuanced.
Collapse
Affiliation(s)
- Mengdi Jin
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Mengtong Xie
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Lin Dong
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Fengyu Xue
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Weizhen Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Lintong Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Junnan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Min Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Haideng Song
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Qingxing Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China
| | - Qiong Yu
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
2
|
Bodai L, Borosta R, Ferencz Á, Kovács M, Zsindely N. The Role of miR-137 in Neurodegenerative Disorders. Int J Mol Sci 2024; 25:7229. [PMID: 39000336 PMCID: PMC11241563 DOI: 10.3390/ijms25137229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/16/2024] Open
Abstract
Neurodegenerative diseases affect an increasing part of the population of modern societies, burdening healthcare systems and causing immense suffering at the personal level. The pathogenesis of several of these disorders involves dysregulation of gene expression, which depends on several molecular processes ranging from transcription to protein stability. microRNAs (miRNAs) are short non-coding RNA molecules that modulate gene expression by suppressing the translation of partially complementary mRNAs. miR-137 is a conserved, neuronally enriched miRNA that is implicated in neurodegeneration. Here, we review the current body of knowledge about the role that miR-137 plays in five prominent neurodegenerative disorders, including Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis, and multiple sclerosis. The presented data indicate that, rather than having a general neuroprotective role, miR-137 modulates the pathology of distinct disorders differently.
Collapse
Affiliation(s)
- László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Roberta Borosta
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Ágnes Ferencz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Mercédesz Kovács
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
- Department of Genetics, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary
| |
Collapse
|
3
|
Nagaraj S, Quintanilla-Sánchez C, Ando K, Lopez-Gutierrez L, Doeraene E, Kosa AC, Aydin E, Brion JP, Leroy K. Downregulation of hsa-miR-132 and hsa-miR-129: non-coding RNA molecular signatures of Alzheimer's disease. Front Mol Neurosci 2024; 17:1423340. [PMID: 38984196 PMCID: PMC11231994 DOI: 10.3389/fnmol.2024.1423340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 06/05/2024] [Indexed: 07/11/2024] Open
Abstract
Alzheimer's disease (AD) affects the elderly population by causing memory impairments, cognitive and behavioral abnormalities. Currently, no curative treatments exist, emphasizing the need to explore therapeutic options that modify the progression of the disease. MicroRNAs (miRNAs), as non-coding RNAs, demonstrate multifaceted targeting potential and are known to be dysregulated in AD pathology. This mini review focuses on two promising miRNAs, hsa-miR-132 and hsa-miR-129, which consistently exhibit differential regulation in AD. By employing computational predictions and referencing published RNA sequencing dataset, we elucidate the intricate miRNA-mRNA target relationships associated with hsa-miR-132 and hsa-miR-129. Our review consistently identifies the downregulation of hsa-miR-132 and hsa-miR-129 in AD brains as a non-coding RNA molecular signature across studies conducted over the past 15 years in AD research.
Collapse
Affiliation(s)
- Siranjeevi Nagaraj
- Alzheimer and Other Tauopathies Research Group, Faculty of Medicine, ULB Center for Diabetes Research, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | | | | | | | | | | | - Karelle Leroy
- Alzheimer and Other Tauopathies Research Group, Faculty of Medicine, ULB Center for Diabetes Research, ULB Neuroscience Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
4
|
何 丽, 张 春, 王 静. [Expression relationship and significance of NEAT1 and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer disease]. BEIJING DA XUE XUE BAO. YI XUE BAN = JOURNAL OF PEKING UNIVERSITY. HEALTH SCIENCES 2024; 56:207-212. [PMID: 38595235 PMCID: PMC11004957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To explore the expression relationship and significance of long chain non-coding RNA nuclear-enriched abundant transcript 1 (LncRNA NEAT1) and miR-27a-3p in serum and cerebrospinal fluid of patients with Alzheimer disease (AD). METHODS Sixty-six AD patients received by the department of neurology of our hospital from October 2019 to September 2021 were gathered, according to the clinical dementia rating scale score, they were grouped into mild group (≤1 point, n=41) and moderate-to-severe group (>1 point, n=25). Another 66 cases of serum and cerebrospinal fluid samples from outpatient physical examination personnel were regarded as the control group. The general information on all subjects was recorded and cognition was assessed; real-time quantitative PCR was performed to measure the expression levels of miR-27a-3p and NEAT1 in serum and cerebrospinal fluid; enzyme-linked immunosorbent assay was performed to measure the protein levels of β-amyloid precursor protein cleaving enzyme 1 (BACE1), β-amyloid (Aβ) 40 and Aβ42 in cerebrospinal fluid; Spearman' s method was performed to analyze the correlation of serum miR-27a-3p and NEAT1 levels with mini-mental state examination (MMSE) and montreal cognitive assessment (MoCA) scores; Pearson method was performed to analyze the correlation between serum miR-27a-3p and NEAT1 levels and Aβ deposition standard uptake value ratio (SUVR) and cerebrospinal fluid miR-27a-3p, NEAT1, BACE1, Aβ42 and Aβ40 levels. RESULTS The MMSE score [21 (17, 25), 9(7, 11) vs. 27 (21, 34)], MoCA score [17 (12, 21), 10 (7, 13) vs. 27 (21, 31)], serum miR-27a-3p level (0.55±0.13, 0.46±0.06 vs. 0.97±0.22), cerebrospinal fluid miR-27a-3p (0.48±0.10, 0.35±0.10 vs. 1.03±0.31), Aβ42 levels [(303.55±36.77) ng/L, (231.45±34.14) ng/L vs. (499.99±53.63) ng/L] and Aβ42/Aβ40 ratio (0.030±0.008, 0.022±0.007 vs. 0.048±0.010) of AD patients in mild group and moderate-to-severe group were all lower than those in the control group, and the moderate-to-severe group were lower than the mild group (all P < 0.05); the serum NEAT1 level (2.31±0.64, 3.13±0.76 vs. 1.05±0.20), SUVR (1.50±0.29, 1.76±0.52 vs. 0.74±0.15), and cerebrospinal fluid NEAT1 (3.51±1.24, 4.30±1.65 vs. 1.01±0.23) and BACE1 levels [(55.78±5.98) μg/L, (72.32±16.08) μg/L vs. (21.39±3.73) μg/L] were higher than those in the control group, and the moderate-to-severe group were higher than the mild group (all P < 0.05). Serum NEAT1 level in AD patients was positively correlated with SUVR, cerebrospinal fluid NEAT1 and BACE1 (r=0.350, 0.606, 0.341, P < 0.05), and negatively correlated with MMSE score and MoCA score (r=-0.473, -0.482, all P < 0.05); serum miR-27a-3p level was positively correlated with cerebrospinal fluid miR-27a-3p level, MMSE score and MoCA score (r=0.695, 0.424, 0.412, all P < 0.05), and negatively correlated with SUVR and cerebrospinal fluid BACE1 level (r=-0.521, -0.447, all P < 0.05). CONCLUSION The expression trends of NEAT1 and miR-27a-3p in the serum and cerebrospinal fluid of AD patients are consistent, the level of NEAT1 is increased, and the level of miR-27a-3p is decreased. The levels of the two are negatively correlated, which is related to the degree of Aβ deposition in the brain of AD patients and is involved in the progression of AD.
Collapse
Affiliation(s)
- 丽杰 何
- 天津市第五中心医院检验科,天津 300450Department of Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - 春艳 张
- 天津市第五中心医院天津市早产儿器官发育表观遗传重点实验室,天津 300450Tianjin Key Laboratory of Organ Development Epigenetics of Premature Infants, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - 静 王
- 天津市第五中心医院检验科,天津 300450Department of Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China
| |
Collapse
|
5
|
Du Y, Li R, Fu D, Zhang B, Cui A, Shao Y, Lai Z, Chen R, Chen B, Wang Z, Zhang W, Chu L. Multi-omics technologies and molecular biomarkers in brain tumor-related epilepsy. CNS Neurosci Ther 2024; 30:e14717. [PMID: 38641945 PMCID: PMC11031674 DOI: 10.1111/cns.14717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/04/2024] [Accepted: 03/29/2024] [Indexed: 04/21/2024] Open
Abstract
BACKGROUND Brain tumors are one of the leading causes of epilepsy, and brain tumor-related epilepsy (BTRE) is recognized as the major cause of intractable epilepsy, resulting in huge treatment cost and burden to patients, their families, and society. Although optimal treatment regimens are available, the majority of patients with BTRE show poor resolution of symptoms. BTRE has a very complex and multifactorial etiology, which includes several influencing factors such as genetic and molecular biomarkers. Advances in multi-omics technologies have enabled to elucidate the pathophysiological mechanisms and related biomarkers of BTRE. Here, we reviewed multi-omics technology-based research studies on BTRE published in the last few decades and discussed the present status, development, opportunities, challenges, and prospects in treating BTRE. METHODS First, we provided a general review of epilepsy, BTRE, and multi-omics techniques. Next, we described the specific multi-omics (including genomics, transcriptomics, epigenomics, proteomics, and metabolomics) techniques and related molecular biomarkers for BTRE. We then presented the associated pathogenetic mechanisms of BTRE. Finally, we discussed the development and application of novel omics techniques for diagnosing and treating BTRE. RESULTS Genomics studies have shown that the BRAF gene plays a role in BTRE development. Furthermore, the BRAF V600E variant was found to induce epileptogenesis in the neuronal cell lineage and tumorigenesis in the glial cell lineage. Several genomics studies have linked IDH variants with glioma-related epilepsy, and the overproduction of D2HG is considered to play a role in neuronal excitation that leads to seizure occurrence. The high expression level of Forkhead Box O4 (FOXO4) was associated with a reduced risk of epilepsy occurrence. In transcriptomics studies, VLGR1 was noted as a biomarker of epileptic onset in patients. Several miRNAs such as miR-128 and miRNA-196b participate in BTRE development. miR-128 might be negatively associated with the possibility of tumor-related epilepsy development. The lncRNA UBE2R2-AS1 inhibits the growth and invasion of glioma cells and promotes apoptosis. Quantitative proteomics has been used to determine dynamic changes of protein acetylation in epileptic and non-epileptic gliomas. In another proteomics study, a high expression of AQP-4 was detected in the brain of GBM patients with seizures. By using quantitative RT-PCR and immunohistochemistry assay, a study revealed that patients with astrocytomas and oligoastrocytomas showed high BCL2A1 expression and poor seizure control. By performing immunohistochemistry, several studies have reported the relationship between D2HG overproduction and seizure occurrence. Ki-67 overexpression in WHO grade II gliomas was found to be associated with poor postoperative seizure control. According to metabolomics research, the PI3K/AKT/mTOR pathway is associated with the development of glioma-related epileptogenesis. Another metabolomics study found that SV2A, P-gb, and CAD65/67 have the potential to function as biomarkers for BTRE. CONCLUSIONS Based on the synthesized information, this review provided new research perspectives and insights into the early diagnosis, etiological factors, and personalized treatment of BTRE.
Collapse
Affiliation(s)
- Yaoqiang Du
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Rusong Li
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Danqing Fu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Biqin Zhang
- Cancer Center, Department of HematologyZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Ailin Cui
- Cancer Center, Department of Ultrasound MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Yutian Shao
- Zhejiang BioAsia Life Science InstitutePinghuChina
| | - Zeyu Lai
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Rongrong Chen
- School of Clinical MedicineHangzhou Normal UniversityHangzhouChina
| | - Bingyu Chen
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Zhen Wang
- Laboratory Medicine Center, Department of Transfusion MedicineZhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical CollegeHangzhouChina
| | - Wei Zhang
- The Second School of Clinical MedicineZhejiang Chinese Medical UniversityHangzhouChina
| | - Lisheng Chu
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
- Department of PhysiologyZhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
6
|
Vijayan M, Reddy PH. Unveiling the Role of Novel miRNA PC-5P-12969 in Alleviating Alzheimer's Disease. J Alzheimers Dis 2024; 98:1329-1348. [PMID: 38552115 DOI: 10.3233/jad-231281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Background The intricate and complex molecular mechanisms that underlie the progression of Alzheimer's disease (AD) have prompted a concerted and vigorous research endeavor aimed at uncovering potential avenues for therapeutic intervention. Objective This study aims to elucidate the role of miRNA PC-5P-12969 in the pathogenesis of AD. Methods We assessed the differential expression of miRNA PC-5P-12969 in postmortem AD brains, AD animal and cell models using real-time reverse-transcriptase RT-PCR, we also checked the gene and protein expression of GSK3α and APP. Results Our investigation revealed a notable upregulation of miRNA PC-5P-12969 in postmortem brains of AD patients, in transgenic mouse models of AD, and in mutant APP overexpressing-HT22 cells. Additionally, our findings indicate that overexpression of miRNA PC-5P-12969 exerts a protective effect on cell survival, while concurrently mitigating apoptotic cell death. Further-more, we established a robust and specific interaction between miRNA PC-5P-12969 and GSK3α. Our luciferase reporter assays provided confirmation of the binding between miRNA PC-5P-12969 and the 3'-UTR of the GSK3α gene. Manipulation of miRNA PC-5P-12969 levels in cellular models of AD yielded noteworthy alterations in the gene and protein expression levels of both GSK3α and APP. Remarkably, the manipulation of miRNA PC-5P-12969 levels yielded significant enhancements in mitochondrial respiration and ATP production, concurrently with a reduction in mitochondrial fragmentation, thus unveiling a potential regulatory role of miRNA PC-5P-12969 in these vital cellular processes. Conclusions In summary, this study sheds light on the crucial role of miRNA PC-5P-12969 and its direct interaction with GSK3α in the context of AD.
Collapse
Affiliation(s)
- Murali Vijayan
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology Department, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language and Hearing Sciences Departments, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Nutritional Sciences Department, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
7
|
Besli N, Sarikamis B, Kalkan Cakmak R, Kilic U. Exosomal Circular Ribonucleic Acid-Microribonucleic Acid Expression Profile from Plasma in Alzheimer's Disease Patients by Bioinformatics and Integrative Analysis. Eurasian J Med 2023; 55:218-227. [PMID: 37909192 PMCID: PMC10724788 DOI: 10.5152/eurasianjmed.2023.23029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 02/06/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVE Alzheimer's disease is a neurodegenerative sickness and increasing with age throughout the world. A substantial body of evidence suggests the role of exosomal noncoding ribonucleic acids in the development of Alzheimer's disease, but the regulatory mechanisms mediated by these noncoding ribonucleic acids remain extensively unknown. Using plasma samples from Alzheimer's disease patients, this study explored the exosomal circular ribonucleic acid-microribonucleic acid profiles. MATERIALS AND METHODS The ArrayExpress platform was used to convey data from 3 samples from each group (healthy, mild cognitive impairment, and Alzheimer's disease). Using plasma exosomes, differentially expressed microribonucleic acids and differentially expressed circular ribonucleic acids were compared between the Alzheimer's disease and mild cognitive impairment groups. Afterward, to define pathways, gene ontologies, and networks, differentially expressed microribonucleic acids and differentially expressed circular ribonucleic acids common to both mild cognitive impairment and Alzheimer's disease groups were analyzed. Eventually, the selection of hub genes and protein-protein interaction network was analyzed. RESULTS A total of common 19 (7 upregulated and 12 downregulated) differentially expressed microribonucleic acids and 24 differentially expressed circular ribonucleic acids were recognized. A total of 4559 target genes were predicted for upregulated differentially expressed microribonucleic acids, while 6504 target genes were identified for downregulated differentially expressed microribonucleic acids, and most of the target genes involved in the phosphoinositide 3-kinases-Akt pathway and that were mostly regulated by hsa-mir-374a-3p, mir-196a-5p, let-205-5p, mir-185-3p, mir-374a-5p, mir-615-3p, let-7c-5p, mir-185-5p. Additionally, 9 hub genes (HSP90AA, ACTB, MAPK1, GSK3B, CCNE2, CDK6, AKT1, IGF1R, CCND1) were revealed as the genes considerably related to Alzheimer's disease by a protein-protein interaction network using the cytohubba in Cytoscape software. CONCLUSION Our findings provide a new perspective on how microribonucleic acids could connect with circular ribonucleic acids in the pathogenesis of Alzheimer's disease.
Collapse
Affiliation(s)
- Nail Besli
- Department of Medical Biology, University of Health and Sciences Institute of Health Sciences, İstanbul, Turkey
| | - Bahar Sarikamis
- Department of Medical Biology, University of Health and Sciences Institute of Health Sciences, İstanbul, Turkey
| | - Rabia Kalkan Cakmak
- Department of Medical Biology, University of Health and Sciences Institute of Health Sciences, İstanbul, Turkey; Department of Medical Biology, University of Health Sciences Hamidiye Faculty of Medicine, İstanbul, Turkey
| | - Ulkan Kilic
- Department of Medical Biology, University of Health and Sciences Institute of Health Sciences, İstanbul, Turkey; Department of Medical Biology, University of Health Sciences Hamidiye Faculty of Medicine, İstanbul, Turkey
| |
Collapse
|
8
|
Hershberger CE, Louis S, Busch RM, Vegh D, Najm I, Bazeley P, Eng C, Jehi L, Rotroff DM. Molecular subtypes of epilepsy associated with post-surgical seizure recurrence. Brain Commun 2023; 5:fcad251. [PMID: 37881482 PMCID: PMC10597540 DOI: 10.1093/braincomms/fcad251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 08/07/2023] [Accepted: 09/29/2023] [Indexed: 10/27/2023] Open
Abstract
Approximately 50% of individuals who undergo resective epilepsy surgery experience seizure recurrence. The heterogenous post-operative outcomes are not fully explained by clinical, imaging and electrophysiological variables. We hypothesized that molecular features may be useful in understanding surgical response, and that individuals with epilepsy can be classified into molecular subtypes that are associated with seizure freedom or recurrence after surgical resection. Pre-operative blood samples, brain tissue and post-operative seizure outcomes were collected from a cohort of 40 individuals with temporal lobe epilepsy, 23 of whom experienced post-operative seizure recurrence. Messenger RNA and microRNA extracted from the blood and tissue samples were sequenced. The messenger RNA and microRNA expression levels from the blood and brain were each subjected to a novel clustering approach combined with multiple logistic regression to separate individuals into genetic clusters that identify novel subtypes associated with post-operative seizure outcomes. We then compared the microRNAs and messenger RNAs from patient blood and brain tissue that were significantly associated with each subtype to identify signatures that are similarly over- or under-represented for an outcome and more likely to represent endophenotypes with common molecular aetiology. These target microRNAs and messenger RNAs were further characterized by pathway analysis to assess their functional role in epilepsy. Using blood-derived microRNA and messenger RNA expression levels, we identified two subtypes of epilepsy that were significantly associated with seizure recurrence (clusters A1 and B4) (adjusted P < 0.20). A total of 551 microRNAs and 2486 messenger RNAs were associated with clusters A1 and B4, respectively (adjusted P < 0.05). Clustering of brain-tissue messenger RNA expression levels revealed an additional subtype (C2) associated with seizure recurrence that had high overlap of dysregulated messenger RNA transcripts with cluster B4. Clusters A1, B4 and C2 also shared significant overlap of subjects, which altogether suggests a coordinated mechanism by which microRNA and messenger RNA transcripts may be related to seizure recurrence. Epileptic subtypes A1, B4 and C2 reveal both known and novel microRNA and messenger RNA targets in seizure recurrence. Furthermore, targets identified in A1 and B4 are quantifiable in pre-operative blood samples and could potentially serve as biomarkers for surgical resection outcomes.
Collapse
Affiliation(s)
- Courtney E Hershberger
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Shreya Louis
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Robyn M Busch
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Deborah Vegh
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Imad Najm
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Peter Bazeley
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Personalized Genetic Healthcare, Community Care and Population Health, Cleveland Clinic, Cleveland, OH 44195, USA
- Department of Genetics and Genome Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44195, USA
| | - Lara Jehi
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Epilepsy Center, Neurological Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Daniel M Rotroff
- Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Cleveland Clinic Lerner College of Medicine, Cleveland Clinic, Cleveland, OH 44195, USA
- Endocrinology and Metabolism Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Quantitative Metabolic Research, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Tian M, Shen J, Qi Z, Feng Y, Fang P. Bioinformatics analysis and prediction of Alzheimer's disease and alcohol dependence based on Ferroptosis-related genes. Front Aging Neurosci 2023; 15:1201142. [PMID: 37520121 PMCID: PMC10373307 DOI: 10.3389/fnagi.2023.1201142] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Background Alzheimer's disease (AD) is a neurodegenerative disease whose origins have not been universally accepted. Numerous studies have demonstrated the relationship between AD and alcohol dependence; however, few studies have combined the origins of AD, alcohol dependence, and programmed cell death (PCD) to analyze the mechanistic relationship between the development of this pair of diseases. We demonstrated in previous studies the relationship between psychiatric disorders and PCD, and in the same concerning neurodegeneration-related AD, we found an interesting link with the Ferroptosis pathway. In the present study, we explored the bioinformatic interactions between AD, alcohol dependence, and Ferroptosis and tried to elucidate and predict the development of AD from this aspect. Methods We selected the Alzheimer's disease dataset GSE118553 and alcohol dependence dataset GSE44456 from the Gene Expression Omnibus (GEO) database. Ferroptosis-related genes were gathered through Gene Set Enrichment Analysis (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and relevant literature, resulting in a total of 88 related genes. For the AD and alcohol dependence datasets, we conducted Limma analysis to identify differentially expressed genes (DEGs) and performed functional enrichment analysis on the intersection set. Furthermore, we used ferroptosis-related genes and the DEGs to perform machine learning crossover analysis, employing Least Absolute Shrinkage and Selection Operator (LASSO) regression to identify candidate immune-related central genes. This analysis was also used to construct protein-protein interaction networks (PPI) and artificial neural networks (ANN), as well as to plot receiver operating characteristic (ROC) curves for diagnosing AD and alcohol dependence. We analyzed immune cell infiltration to explore the role of immune cell dysregulation in AD. Subsequently, we conducted consensus clustering analysis of AD using three relevant candidate gene models and examined the immune microenvironment and functional pathways between different subgroups. Finally, we generated a network of gene-gene interactions and miRNA-gene interactions using Networkanalyst. Results The crossover of AD and alcohol dependence DEG contains 278 genes, and functional enrichment analysis showed that both AD and alcohol dependence were strongly correlated with Ferroptosis, and then crossed them with Ferroptosis-related genes to obtain seven genes. Three candidate genes were finally identified by machine learning to build a diagnostic prediction model. After validation by ANN and PPI analysis, ROC curves were plotted to assess the diagnostic value of AD and alcohol dependence. The results showed a high diagnostic value of the predictive model. In the immune infiltration analysis, functional metabolism and immune microenvironment of AD patients were significantly associated with Ferroptosis. Finally, analysis of target genes and miRNA-gene interaction networks showed that hsa-mir-34a-5p and has-mir-106b-5p could simultaneously regulate the expression of both CYBB and ACSL4. Conclusion We obtained a diagnostic prediction model with good effect by comprehensive analysis, and validation of ROC in AD and alcohol dependence data sets showed good diagnostic, predictive value for both AD (AUC 0. 75, CI 0.91-0.60), and alcohol dependence (AUC 0.81, CI 0.95-0.68). In the consensus clustering grouping, we identified variability in the metabolic and immune microenvironment between subgroups as a likely cause of the different prognosis, which was all related to Ferroptosis function. Finally, we discovered that hsa-mir-34a-5p and has-mir-106b-5p could simultaneously regulate the expression of both CYBB and ACSL4.
Collapse
Affiliation(s)
- Mei Tian
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Nanjing, China
| | - Jing Shen
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Nanjing, China
| | - Zhiqiang Qi
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Feng
- Medicine and Health, The University of New South Wales, Kensington, NSW, Australia
- Melbourne Medical School, The University of Melbourne, Parkville, VIC, Australia
| | - Peidi Fang
- The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
10
|
Boukhalfa W, Jmel H, Kheriji N, Gouiza I, Dallali H, Hechmi M, Kefi R. Decoding the genetic relationship between Alzheimer's disease and type 2 diabetes: potential risk variants and future direction for North Africa. Front Aging Neurosci 2023; 15:1114810. [PMID: 37342358 PMCID: PMC10277480 DOI: 10.3389/fnagi.2023.1114810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/11/2023] [Indexed: 06/22/2023] Open
Abstract
Introduction Alzheimer's disease (AD) and Type 2 diabetes (T2D) are both age-associated diseases. Identification of shared genes could help develop early diagnosis and preventive strategies. Although genetic background plays a crucial role in these diseases, we noticed an underrepresentation tendency of North African populations in omics studies. Materials and methods First, we conducted a comprehensive review of genes and pathways shared between T2D and AD through PubMed. Then, the function of the identified genes and variants was investigated using annotation tools including PolyPhen2, RegulomeDB, and miRdSNP. Pathways enrichment analyses were performed with g:Profiler and EnrichmentMap. Next, we analyzed variant distributions in 16 worldwide populations using PLINK2, R, and STRUCTURE software. Finally, we performed an inter-ethnic comparison based on the minor allele frequency of T2D-AD common variants. Results A total of 59 eligible papers were included in our study. We found 231 variants and 363 genes shared between T2D and AD. Variant annotation revealed six single nucleotide polymorphisms (SNP) with a high pathogenic score, three SNPs with regulatory effects on the brain, and six SNPs with potential effects on miRNA-binding sites. The miRNAs affected were implicated in T2D, insulin signaling pathways, and AD. Moreover, replicated genes were significantly enriched in pathways related to plasma protein binding, positive regulation of amyloid fibril deposition, microglia activation, and cholesterol metabolism. Multidimensional screening performed based on the 363 shared genes showed that main North African populations are clustered together and are divergent from other worldwide populations. Interestingly, our results showed that 49 SNP associated with T2D and AD were present in North African populations. Among them, 11 variants located in DNM3, CFH, PPARG, ROHA, AGER, CLU, BDNF1, CST9, and PLCG1 genes display significant differences in risk allele frequencies between North African and other populations. Conclusion Our study highlighted the complexity and the unique molecular architecture of North African populations regarding T2D-AD shared genes. In conclusion, we emphasize the importance of T2D-AD shared genes and ethnicity-specific investigation studies for a better understanding of the link behind these diseases and to develop accurate diagnoses using personalized genetic biomarkers.
Collapse
Affiliation(s)
- Wided Boukhalfa
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Haifa Jmel
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Nadia Kheriji
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
| | - Ismail Gouiza
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
- Faculty of Medicine of Tunis, Tunis, Tunisia
- University of Angers, MitoLab Team, Unité MitoVasc, UMR CNRS 6015, INSERM U1083, SFR ICAT, Angers, France
| | - Hamza Dallali
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Mariem Hechmi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| | - Rym Kefi
- Laboratory of Biomedical Genomics and Oncogenetics, Institut Pasteur de Tunis, Tunis, Tunisia
- Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|
11
|
MicroRNAs and MAPKs: Evidence of These Molecular Interactions in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24054736. [PMID: 36902178 PMCID: PMC10003111 DOI: 10.3390/ijms24054736] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder known to be the leading cause of dementia worldwide. Many microRNAs (miRNAs) were found deregulated in the brain or blood of AD patients, suggesting a possible key role in different stages of neurodegeneration. In particular, mitogen-activated protein kinases (MAPK) signaling can be impaired by miRNA dysregulation during AD. Indeed, the aberrant MAPK pathway may facilitate the development of amyloid-beta (Aβ) and Tau pathology, oxidative stress, neuroinflammation, and brain cell death. The aim of this review was to describe the molecular interactions between miRNAs and MAPKs during AD pathogenesis by selecting evidence from experimental AD models. Publications ranging from 2010 to 2023 were considered, based on PubMed and Web of Science databases. According to obtained data, several miRNA deregulations may regulate MAPK signaling in different stages of AD and conversely. Moreover, overexpressing or silencing miRNAs involved in MAPK regulation was seen to improve cognitive deficits in AD animal models. In particular, miR-132 is of particular interest due to its neuroprotective functions by inhibiting Aβ and Tau depositions, as well as oxidative stress, through ERK/MAPK1 signaling modulation. However, further investigations are required to confirm and implement these promising results.
Collapse
|
12
|
Srivastava S, Garg I, Singh Y, Meena R, Ghosh N, Kumari B, Kumar V, Eslavath MR, Singh S, Dogra V, Bargotya M, Bhattar S, Gupta U, Jain S, Hussain J, Varshney R, Ganju L. Evaluation of altered miRNA expression pattern to predict COVID-19 severity. Heliyon 2023; 9:e13388. [PMID: 36743852 PMCID: PMC9889280 DOI: 10.1016/j.heliyon.2023.e13388] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 01/20/2023] [Accepted: 01/29/2023] [Indexed: 02/04/2023] Open
Abstract
Outbreak of COVID-19 pandemic in December 2019 affected millions of people globally. After substantial research, several biomarkers for COVID-19 have been validated however no specific and reliable biomarker for the prognosis of patients with COVID-19 infection exists. Present study was designed to identify specific biomarkers to predict COVID-19 severity and tool for formulating treatment. A small cohort of subjects (n = 43) were enrolled and categorized in four study groups; Dead (n = 16), Severe (n = 10) and Moderate (n = 7) patients and healthy controls (n = 10). Small RNA sequencing was done on Illumina platform after isolation of microRNA from peripheral blood. Differential expression (DE) of miRNA (patients groups compared to control) revealed 118 down-regulated and 103 up-regulated known miRNAs with fold change (FC) expression ≥2 folds and p ≤ 0.05. DE miRNAs were then subjected to functional enrichment and network analysis. Bioinformatic analysis resulted in 31 miRNAs (24 Down-regulated; 7 up-regulated) significantly associated with COVID-19 having AUC>0.8 obtained from ROC curve. Seventeen out of 31 DE miRNAs have been linked to COVID-19 in previous studies. Three miRNAs, hsa-miR-147b-5p and hsa-miR-107 (down-regulated) and hsa-miR-1299 (up-regulated) showed significant unique DE in Dead patients. Another set of 4 miRNAs, hsa-miR-224-5p (down-regulated) and hsa-miR-4659b-3p, hsa-miR-495-3p and hsa-miR-335-3p were differentially up-regulated uniquely in Severe patients. Members of three miRNA families, hsa-miR-20, hsa-miR-32 and hsa-miR-548 were significantly down-regulated in all patients group in comparison to healthy controls. Thus a distinct miRNA expression profile was observed in Dead, Severe and Moderate COVID-19 patients. Present study suggests a panel of miRNAs which identified in COVID-19 patients and could be utilized as potential diagnostic biomarkers for predicting COVID-19 severity.
Collapse
Affiliation(s)
- Swati Srivastava
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Iti Garg
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India,Corresponding author
| | - Yamini Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Ramesh Meena
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Nilanjana Ghosh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Babita Kumari
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vinay Kumar
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Malleswara Rao Eslavath
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Sayar Singh
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Vikas Dogra
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Mona Bargotya
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Sonali Bhattar
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Utkarsh Gupta
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Shruti Jain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Javid Hussain
- Pulmonary Medicine, Rajiv Gandhi Super Speciality Hospital (RGSSH), Delhi, India
| | - Rajeev Varshney
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| | - Lilly Ganju
- Genomics Division, Defence Institute of Physiology and Allied Science (DIPAS), Lucknow Road, Timarpur, Delhi, 110054, India
| |
Collapse
|
13
|
Vogrinc D, Gregorič Kramberger M, Emeršič A, Čučnik S, Goričar K, Dolžan V. Genetic Polymorphisms in Oxidative Stress and Inflammatory Pathways as Potential Biomarkers in Alzheimer's Disease and Dementia. Antioxidants (Basel) 2023; 12:antiox12020316. [PMID: 36829875 PMCID: PMC9952323 DOI: 10.3390/antiox12020316] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 01/12/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Oxidative stress and neuroinflammation are important processes involved in Alzheimer's disease (AD) and mild cognitive impairment (MCI). Numerous risk factors, including genetic background, can affect the complex interplay between those mechanisms in the aging brain and can also affect typical AD hallmarks: amyloid plaques and neurofibrillary tangles. Our aim was to evaluate the association of polymorphisms in oxidative stress- and inflammation-related genes with cerebrospinal fluid (CSF) biomarker levels and cognitive test results. The study included 54 AD patients, 14 MCI patients with pathological CSF biomarker levels, 20 MCI patients with normal CSF biomarker levels and 62 controls. Carriers of two polymorphic IL1B rs16944 alleles had higher CSF Aβ1-42 levels (p = 0.025), while carriers of at least one polymorphic NFE2L2 rs35652124 allele had lower CSF Aβ1-42 levels (p = 0.040). Association with IL1B rs16944 remained significant in the AD group (p = 0.029). Additionally, MIR146A rs2910164 was associated with Aβ42/40 ratio (p = 0.043) in AD. Significant associations with cognitive test scores were observed for CAT rs1001179 (p = 0.022), GSTP1 rs1138272 (p = 0.005), KEAP1 rs1048290 and rs9676881 (both p = 0.019), as well as NFE2L2 rs35652124 (p = 0.030). In the AD group, IL1B rs1071676 (p = 0.004), KEAP1 rs1048290 and rs9676881 (both p = 0.035) remained associated with cognitive scores. Polymorphisms in antioxidative and inflammation genes might be associated with CSF biomarkers and cognitive test scores and could serve as additional biomarkers contributing to early diagnosis of dementia.
Collapse
Affiliation(s)
- David Vogrinc
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Milica Gregorič Kramberger
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Andreja Emeršič
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
| | - Saša Čučnik
- Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Department of Rheumatology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Katja Goričar
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Vita Dolžan
- Pharmacogenetics Laboratory, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence:
| |
Collapse
|
14
|
Ma S, Xia T, Wang X, Wang H. Identification and validation of biomarkers based on cellular senescence in mild cognitive impairment. Front Aging Neurosci 2023; 15:1139789. [PMID: 37187578 PMCID: PMC10176455 DOI: 10.3389/fnagi.2023.1139789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/30/2023] [Indexed: 05/17/2023] Open
Abstract
Background Mild cognitive impairment (MCI), a syndrome defined as decline of cognitive function greater than expected for an individual's age and education level, occurs in up to 22.7% of elderly patients in United States, causing the heavy psychological and economic burdens to families and society. Cellular senescence (CS) is a stress response that accompanies permanent cell-cycle arrest, which has been reported to be a fundamental pathological mechanism of many age-related diseases. This study aims to explore biomarkers and potential therapeutic targets in MCI based on CS. Methods The mRNA expression profiles of peripheral blood samples from patients in MCI and non-MCI group were download from gene expression omnibus (GEO) database (GSE63060 for training and GSE18309 for external validation), CS-related genes were obtained from CellAge database. Weighted gene co-expression network analysis (WGCNA) was conducted to discover the key relationships behind the co-expression modules. The differentially expressed CS-related genes would be obtained through overlapping among the above datasets. Then, pathway and GO enrichment analyses were performed to further elucidate the mechanism of MCI. The protein-protein interaction network was used to extract hub genes and the logistic regression was performed to distinguish the MCI patients from controls. The hub gene-drug network, hub gene-miRNA network as well as transcription factor-gene regulatory network were used to analyze potential therapeutic targets for MCI. Results Eight CS-related genes were identified as key gene signatures in MCI group, which were mainly enriched in the regulation of response to DNA damage stimulus, Sin3 complex and transcription corepressor activity. The receiver operating characteristic curves of logistic regression diagnostic model were constructed and presented great diagnostic value in both training and validation set. Conclusion Eight CS-related hub genes - SMARCA4, GAPDH, SMARCB1, RUNX1, SRC, TRIM28, TXN, and PRPF19 - serve as candidate biomarkers for MCI and display the excellent diagnostic value. Furthermore, we also provide a theoretical basis for targeted therapy against MCI through the above hub genes.
Collapse
Affiliation(s)
- Songmei Ma
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Department of Anesthesiology, The First People’s Hospital of Shangqiu, Shangqiu, Henan, China
| | - Tong Xia
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Xinyi Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
| | - Haiyun Wang
- Department of Anesthesiology, The Third Central Clinical College of Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Tianjin, China
- Artificial Cell Engineering Technology Research Center, Tianjin, China
- Tianjin Institute of Hepatobiliary Disease, Tianjin, China
- *Correspondence: Haiyun Wang,
| |
Collapse
|
15
|
Dobricic V, Schilling M, Schulz J, Zhu LS, Zhou CW, Fuß J, Franzenburg S, Zhu LQ, Parkkinen L, Lill CM, Bertram L. Differential microRNA expression analyses across two brain regions in Alzheimer's disease. Transl Psychiatry 2022; 12:352. [PMID: 36038535 PMCID: PMC9424308 DOI: 10.1038/s41398-022-02108-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/02/2022] [Accepted: 08/08/2022] [Indexed: 11/09/2022] Open
Abstract
Dysregulation of microRNAs (miRNAs) is involved in the pathogenesis of neurodegenerative diseases, including Alzheimer's disease (AD). Hitherto, sample sizes from differential miRNA expression studies in AD are exceedingly small aggravating any biological inference. To overcome this limitation, we investigated six candidate miRNAs in a large collection of brain samples. Brain tissue was derived from superior temporal gyrus (STG) and entorhinal cortex (EC) from 99 AD patients and 91 controls. MiRNA expression was examined by qPCR (STG) or small RNA sequencing (EC). Brain region-dependent differential miRNA expression was investigated in a transgenic AD mouse model using qPCR and FISH. Total RNA sequencing was used to assess differential expression of miRNA target genes. MiR-129-5p, miR-132-5p, and miR-138-5p were significantly downregulated in AD vs. controls both in STG and EC, while miR-125b-5p and miR-501-3p showed no evidence for differential expression in this dataset. In addition, miR-195-5p was significantly upregulated in EC but not STG in AD patients. The brain region-specific pattern of miR-195-5p expression was corroborated in vivo in transgenic AD mice. Total RNA sequencing identified several novel and functionally interesting target genes of these miRNAs involved in synaptic transmission (GABRB1), the immune-system response (HCFC2) or AD-associated differential methylation (SLC16A3). Using two different methods (qPCR and small RNA-seq) in two separate brain regions in 190 individuals we more than doubled the available sample size for most miRNAs tested. Differential gene expression analyses confirm the likely involvement of miR-129-5p, miR-132-5p, miR-138-5p, and miR-195-5p in AD pathogenesis and highlight several novel potentially relevant target mRNAs.
Collapse
Affiliation(s)
- Valerija Dobricic
- grid.4562.50000 0001 0057 2672Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Marcel Schilling
- grid.4562.50000 0001 0057 2672Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Jessica Schulz
- grid.4562.50000 0001 0057 2672Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany
| | - Ling-Shuang Zhu
- grid.33199.310000 0004 0368 7223Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao-Wen Zhou
- grid.33199.310000 0004 0368 7223Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Janina Fuß
- grid.412468.d0000 0004 0646 2097Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Sören Franzenburg
- grid.412468.d0000 0004 0646 2097Institute of Clinical Molecular Biology, Kiel University and University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Ling-Qiang Zhu
- grid.33199.310000 0004 0368 7223Department of Pathophysiology, Key Lab of Neurological Disorder of Education Ministry, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Laura Parkkinen
- grid.4991.50000 0004 1936 8948Nuffield Department of Clinical Neurosciences, Oxford Parkinson’s Disease Centre, University of Oxford, Oxford, UK
| | - Christina M. Lill
- grid.4562.50000 0001 0057 2672Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany ,grid.7445.20000 0001 2113 8111Aging and Epidemiology Unit (AGE), School of Public Health, Imperial College London, London, UK ,grid.5949.10000 0001 2172 9288Institute of Epidemiology and Social Medicine, University of Münster, Münster, Germany
| | - Lars Bertram
- Lübeck Interdisciplinary Platform for Genome Analytics (LIGA), University of Lübeck, Lübeck, Germany. .,Center for Lifespan Changes in Brain and Cognition (LCBC), Department of Psychology, University of Oslo, Oslo, Norway.
| |
Collapse
|
16
|
Integrative analysis of expression profile indicates the ECM receptor and LTP dysfunction in the glioma-related epilepsy. BMC Genomics 2022; 23:430. [PMID: 35676651 PMCID: PMC9175475 DOI: 10.1186/s12864-022-08665-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022] Open
Abstract
Background Seizures are a common symptom in glioma patients, and they can cause brain dysfunction. However, the mechanism by which glioma-related epilepsy (GRE) causes alterations in brain networks remains elusive. Objective To investigate the potential pathogenic mechanism of GRE by analyzing the dynamic expression profiles of microRNA/ mRNA/ lncRNA in brain tissues of glioma patients. Methods Brain tissues of 16 patients with GRE and 9 patients with glioma without epilepsy (GNE) were collected. The total RNA was dephosphorylated, labeled, and hybridized to the Agilent Human miRNA Microarray, Release 19.0, 8 × 60 K. The cDNA was labeled and hybridized to the Agilent LncRNA + mRNA Human Gene Expression Microarray V3.0, 4 × 180 K. The raw data was extracted from hybridized images using Agilent Feature Extraction, and quantile normalization was performed using the Agilent GeneSpring. P-value < 0.05 and absolute fold change > 2 were considered the threshold of differential expression data. Data analyses were performed using R and Bioconductor. Results We found that 3 differentially expressed miRNAs (miR-10a-5p, miR-10b-5p, miR-629-3p), 6 differentially expressed lncRNAs (TTN-AS1, LINC00641, SNHG14, LINC00894, SNHG1, OIP5-AS1), and 49 differentially expressed mRNAs play a vitally critical role in developing GRE. The expression of GABARAPL1, GRAMD1B, and IQSEC3 were validated more than twofold higher in the GRE group than in the GNE group in the validation cohort. Pathways including ECM receptor interaction and long-term potentiation (LTP) may contribute to the disease’s progression. Meanwhile, We built a lncRNA-microRNA-Gene regulatory network with structural and functional significance. Conclusion These findings can offer a fresh perspective on GRE-induced brain network changes. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08665-8.
Collapse
|
17
|
Weisz HA, Boone DR, Coggins WS, Edwards GA, Willey HE, Widen SG, Siegel D, Nelson AT, Prough DS, Hellmich HL. Mechanistic insights gained from cell and molecular analysis of the neuroprotective potential of bioactive natural compounds in an immortalized hippocampal cell line. PLoS One 2022; 17:e0267682. [PMID: 35657963 PMCID: PMC9165808 DOI: 10.1371/journal.pone.0267682] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 04/14/2022] [Indexed: 11/19/2022] Open
Abstract
Evaluating novel compounds for neuroprotective effects in animal models of traumatic brain injury (TBI) is a protracted, labor-intensive and costly effort. However, the present lack of effective treatment options for TBI, despite decades of research, shows the critical need for alternative methods for screening new drug candidates with neuroprotective properties. Because natural products have been a leading source of new therapeutic agents for human diseases, we used an in vitro model of stretch injury to rapidly assess pro-survival effects of three bioactive compounds, two isolated from natural products (clovanemagnolol [CM], vinaxanthone [VX]) and the third, a dietary compound (pterostilbene [PT]) found in blueberries. The stretch injury experiments were not used to validate drug efficacy in a comprehensive manner but used primarily, as proof-of-principle, to demonstrate that the neuroprotective potential of each bioactive agent can be quickly assessed in an immortalized hippocampal cell line in lieu of comprehensive testing in animal models of TBI. To gain mechanistic insights into potential molecular mechanisms of neuroprotective effects, we performed a pathway-specific PCR array analysis of the effects of CM on the rat hippocampus and microRNA sequencing analysis of the effects of VX and PT on cultured hippocampal progenitor neurons. We show that the neuroprotective properties of these natural compounds are associated with altered expression of several genes or microRNAs that have functional roles in neurodegeneration or cell survival. Our approach could help in quickly assessing multiple natural products for neuroprotective properties and expedite the process of new drug discovery for TBI therapeutics.
Collapse
Affiliation(s)
- Harris A. Weisz
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Deborah R. Boone
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - William S. Coggins
- Department of Neurosurgery, The University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Gabrielle A. Edwards
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Hannah E. Willey
- Tulane University School of Medicine, New Orleans, Louisiana, United States of America
| | - Steven G. Widen
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Dionicio Siegel
- Skaggs School of Pharmacy and Pharmaceutical Sciences, The University of California San Diego, San Diego, California, United States of America
| | - Andrew T. Nelson
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Donald S. Prough
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Helen L. Hellmich
- Department of Anesthesiology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
18
|
Lukiw WJ. Fission Impossible: Stabilized miRNA-Based Analogs in Neurodegenerative Disease. Front Neurosci 2022; 16:875957. [PMID: 35592255 PMCID: PMC9111010 DOI: 10.3389/fnins.2022.875957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/04/2022] [Indexed: 01/18/2023] Open
Affiliation(s)
- Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, United States
- Department of Neurology, Louisiana State University Health Science Center, New Orleans, LA, United States
- *Correspondence: Walter J. Lukiw
| |
Collapse
|
19
|
Nguyen TPN, Kumar M, Fedele E, Bonanno G, Bonifacino T. MicroRNA Alteration, Application as Biomarkers, and Therapeutic Approaches in Neurodegenerative Diseases. Int J Mol Sci 2022; 23:ijms23094718. [PMID: 35563107 PMCID: PMC9104163 DOI: 10.3390/ijms23094718] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 01/27/2023] Open
Abstract
MicroRNAs (miRNAs) are essential post-transcriptional gene regulators involved in various neuronal and non-neuronal cell functions and play a key role in pathological conditions. Numerous studies have demonstrated that miRNAs are dysregulated in major neurodegenerative diseases, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, amyotrophic lateral sclerosis, or Huntington’s disease. Hence, in the present work, we constructed a comprehensive overview of individual microRNA alterations in various models of the above neurodegenerative diseases. We also provided evidence of miRNAs as promising biomarkers for prognostic and diagnostic approaches. In addition, we summarized data from the literature about miRNA-based therapeutic applications via inhibiting or promoting miRNA expression. We finally identified the overlapping miRNA signature across the diseases, including miR-128, miR-140-5p, miR-206, miR-326, and miR-155, associated with multiple etiological cellular mechanisms. However, it remains to be established whether and to what extent miRNA-based therapies could be safely exploited in the future as effective symptomatic or disease-modifying approaches in the different human neurodegenerative disorders.
Collapse
Affiliation(s)
- T. P. Nhung Nguyen
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Mandeep Kumar
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
| | - Ernesto Fedele
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
- Correspondence:
| | - Giambattista Bonanno
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Tiziana Bonifacino
- Pharmacology and Toxicology Unit, Department of Pharmacy, University of Genoa, Viale Cembrano 4, 16148 Genoa, Italy; (T.P.N.N.); (M.K.); (G.B.); (T.B.)
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R), 56122 Genoa, Italy
| |
Collapse
|
20
|
Nguyen LD, Chau RK, Krichevsky AM. Small Molecule Drugs Targeting Non-Coding RNAs as Treatments for Alzheimer's Disease and Related Dementias. Genes (Basel) 2021; 12:2005. [PMID: 34946953 PMCID: PMC8701955 DOI: 10.3390/genes12122005] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 12/24/2022] Open
Abstract
Despite the enormous burden of Alzheimer's disease and related dementias (ADRD) on patients, caregivers, and society, only a few treatments with limited efficacy are currently available. While drug development conventionally focuses on disease-associated proteins, RNA has recently been shown to be druggable for therapeutic purposes as well. Approximately 70% of the human genome is transcribed into non-protein-coding RNAs (ncRNAs) such as microRNAs, long ncRNAs, and circular RNAs, which can adopt diverse structures and cellular functions. Many ncRNAs are specifically enriched in the central nervous system, and their dysregulation is implicated in ADRD pathogenesis, making them attractive therapeutic targets. In this review, we first detail why targeting ncRNAs with small molecules is a promising therapeutic strategy for ADRD. We then outline the process from discovery to validation of small molecules targeting ncRNAs in preclinical studies, with special emphasis on primary high-throughput screens for identifying lead compounds. Screening strategies for specific ncRNAs will also be included as examples. Key challenges-including selecting appropriate ncRNA targets, lack of specificity of small molecules, and general low success rate of neurological drugs and how they may be overcome-will be discussed throughout the review.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Rachel K Chau
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
21
|
Walgrave H, Zhou L, De Strooper B, Salta E. The promise of microRNA-based therapies in Alzheimer's disease: challenges and perspectives. Mol Neurodegener 2021; 16:76. [PMID: 34742333 PMCID: PMC8572071 DOI: 10.1186/s13024-021-00496-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 10/17/2021] [Indexed: 02/06/2023] Open
Abstract
Multi-pathway approaches for the treatment of complex polygenic disorders are emerging as alternatives to classical monotarget therapies and microRNAs are of particular interest in that regard. MicroRNA research has come a long way from their initial discovery to the cumulative appreciation of their regulatory potential in healthy and diseased brain. However, systematic interrogation of putative therapeutic or toxic effects of microRNAs in (models of) Alzheimer's disease is currently missing and fundamental research findings are yet to be translated into clinical applications. Here, we review the literature to summarize the knowledge on microRNA regulation in Alzheimer's pathophysiology and to critically discuss whether and to what extent these increasing insights can be exploited for the development of microRNA-based therapeutics in the clinic.
Collapse
Affiliation(s)
- Hannah Walgrave
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
| | - Lujia Zhou
- Division of Janssen Pharmaceutica NV, Discovery Neuroscience, Janssen Research and Development, Beerse, Belgium
| | - Bart De Strooper
- VIB Center for Brain & Disease Research, Leuven, KU, Leuven, Belgium
- Department of Neurosciences, Leuven Brain Institute, Leuven, Belgium
- UK Dementia Research Institute at University College London, London, UK
| | - Evgenia Salta
- Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Systematic Search for Novel Circulating Biomarkers Associated with Extracellular Vesicles in Alzheimer's Disease: Combining Literature Screening and Database Mining Approaches. J Pers Med 2021; 11:jpm11100946. [PMID: 34683087 PMCID: PMC8538213 DOI: 10.3390/jpm11100946] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 12/12/2022] Open
Abstract
miRNAs play an important role in neurodegenerative diseases. Many miRNA-target gene interactions (MTI) have been experimentally confirmed and associated with Alzheimer’s disease (AD). miRNAs may also be contained within extracellular vesicles (EVs), mediators of cellular communication and a potential source of circulating biomarkers in body fluids. Therefore, EV-associated miRNAs (EV-miRNAs) in peripheral blood could support earlier and less invasive AD diagnostics. We aimed to prioritize EV-related miRNA with AD-related genes and to identify the most promising candidates for novel AD biomarkers. A list of unique EV-miRNAs from the literature was combined with a known set of AD risk genes and enriched for MTI. Additionally, miRNAs associated with the AD phenotype were combined with all known target genes in MTI enrichment. Expression in different sample types was analyzed to identify AD-associated miRNAs with the greatest potential as AD circulating biomarkers. Four common MTI were observed between EV-miRNAs and AD-associated miRNAs: hsa-miR-375–APH1B, hsa-miR-107–CDC42SE2, hsa-miR-375–CELF2, and hsa-miR-107–IL6. An additional 61 out of 169 unique miRNAs (36.1%) and seven out of 84 unique MTI (8.3%), observed in the body fluids of AD patients, were proposed as very strong AD-circulating biomarker candidates. Our analysis summarized several potential novel AD biomarkers, but further studies are needed to evaluate their potential in clinical practice.
Collapse
|