1
|
Vila-Castelar C, Akinci M, Palpatzis E, Aguilar-Dominguez P, Operto G, Kollmorgen G, Quijano-Rubio C, Blennow K, Zetterberg H, Falcon C, Fauria K, Gispert JD, Grau-Rivera O, Suárez-Calvet M, Arenaza-Urquijo EM. Sex/gender effects of glial reactivity on preclinical Alzheimer's disease pathology. Mol Psychiatry 2024:10.1038/s41380-024-02753-9. [PMID: 39384963 DOI: 10.1038/s41380-024-02753-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 10/11/2024]
Abstract
Glial reactivity may contribute to sex/gender differences in Alzheimer's disease (AD) pathophysiology. Here, we investigated the differential effect of cerebrospinal fluid (CSF) glial markers on AD pathology and neurodegeneration by sex/gender among cognitively unimpaired older adults at increased risk of developing AD. We included 397 participants from the ALFA+ cohort with CSF Aβ42/40, p-tau181, sTREM2, YKL40, and GFAP, magnetic resonance imaging-based hippocampal volume (n = 299), and amyloid burden (centiloids) measured with [18F] flutemetamol positron emission tomography (n = 341). We ran multiple linear regression models to assess the association between glial markers, AD pathology and hippocampal volumes and their interaction with sex/gender, using False Discovery Rate to correct for multiple comparisons. Glial markers significantly contributed to explain amyloid burden, tau pathology, and hippocampal volumes, beyond age and/or primary AD pathology in a sex/gender-specific manner. Compared to men, women showed increased amyloid burden (centiloids) and CSF p-tau181 with increasing levels of sTREM2 and YKL40, and YKL40 and GFAP, respectively. Compared to women, men with greater tau burden showed lower hippocampal volumes as CSF YKL40 levels increased. Overall, our findings suggest that glial reactivity may contribute to sex/gender differences in AD progression, mostly, downstream amyloid. Further research identifying sex/gender-specific temporal dynamics in AD development is warranted to inform clinical trials.
Collapse
Affiliation(s)
- Clara Vila-Castelar
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, MA, 02114, USA
| | - Muge Akinci
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Eleni Palpatzis
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Pablo Aguilar-Dominguez
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
| | - Gregory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
| | | | - Clara Quijano-Rubio
- Roche Diagnostics International Ltd, Forrenstrasse 2, 6343, Rotkreuz, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, University of Gothenburg, Wallinsgatan 6, 431 41, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Bla Straket 5, 413 45, Gothenburg, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG, London, UK
- UK Dementia Research Institute at UCL, Tottenham Ct Rd, W1T 7NF, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong Science Park, Shatin, N.T., Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Ave, J5/1 Mezzanine, Madison, WI, WI 53792, USA
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Carrer de Ramon Trias Fargas, 25, 27, Sant Marti, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain
- Hospital del Mar Medical Research Institute, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain
- Servei de Neurologia, Hospital del Mar, Passeig Marítim de la Barceloneta, 25, 29, Ciutat Vella, 08003, Barcelona, Spain
| | - Eider M Arenaza-Urquijo
- Barcelona Institute for Global Health, IS GLOBAL, Carrer del Dr. Aiguader, 88, Ciutat Vella, 08003, Barcelona, Spain.
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Carrer de Wellington, 30, 08005, Barcelona, Spain.
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Instituto de Salud Carlos III, Avenida Monforte de Lemos, 3-5, Pabellón 11, 28029, Madrid, Spain.
| |
Collapse
|
2
|
Genius P, Calle ML, Rodríguez-Fernández B, Minguillon C, Cacciaglia R, Garrido-Martin D, Esteller M, Navarro A, Gispert JD, Vilor-Tejedor N. Compositional structural brain signatures capture Alzheimer's genetic risk on brain structure along the disease continuum. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.08.24307046. [PMID: 38766190 PMCID: PMC11100942 DOI: 10.1101/2024.05.08.24307046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Traditional brain imaging genetics studies have primarily focused on how genetic factors influence the volume of specific brain regions, often neglecting the overall complexity of brain architecture and its genetic underpinnings. METHODS This study analyzed data from participants across the Alzheimer's disease (AD) continuum from the ALFA and ADNI studies. We exploited compositional data analysis to examine relative brain volumetric variations that (i) differentiate cognitively unimpaired (CU) individuals, defined as amyloid-negative (A-) based on CSF profiling, from those at different AD stages, and (ii) associated with increased genetic susceptibility to AD, assessed using polygenic risk scores. RESULTS Distinct brain signatures differentiated CU A-individuals from amyloid-positive MCI and AD. Moreover, disease stage-specific signatures were associated with higher genetic risk of AD. DISCUSSION The findings underscore the complex interplay between genetics and disease stages in shaping brain structure, which could inform targeted preventive strategies and interventions in preclinical AD.
Collapse
|
3
|
Cumplido-Mayoral I, Brugulat-Serrat A, Sánchez-Benavides G, González-Escalante A, Anastasi F, Milà-Alomà M, López-Martos D, Akinci M, Falcón C, Shekari M, Cacciaglia R, Arenaza-Urquijo EM, Minguillón C, Fauria K, Molinuevo JL, Suárez-Calvet M, Grau-Rivera O, Vilaplana V, Gispert JD. The mediating role of neuroimaging-derived biological brain age in the association between risk factors for dementia and cognitive decline in middle-aged and older individuals without cognitive impairment: a cohort study. THE LANCET. HEALTHY LONGEVITY 2024; 5:e276-e286. [PMID: 38555920 DOI: 10.1016/s2666-7568(24)00025-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 04/02/2024] Open
Abstract
BACKGROUND Neuroimaging-based brain-age delta has been shown to be a mediator linking cardiovascular risk factors to cognitive function. We aimed to assess the mediating role of brain-age delta in the association between modifiable risk factors of dementia and longitudinal cognitive decline in middle-aged and older individuals who are asymptomatic, stratified by Alzheimer's disease pathology. We also explored whether the mediation effect is specific to cognitive domain. METHODS In this cohort study, we included participants from the ALFA+ cohort aged between 45 years and 65 years who were cognitively unimpaired and who had available structural MRI, cerebrospinal fluid β-amyloid (Aβ)42 and Aβ40 measurements obtained within 1 year of each other, modifiable risk factors assessment, and cognitive evaluation over 3 years. Participants were recruited from the Barcelonaβeta Brain Research Center (Barcelona, Spain). Included individuals underwent a first assessment between Oct 25, 2016, and Jan 28, 2020, and a follow-up cognitive assessment 3·28 (SD 0·27) years later. We computed brain-age delta and composites of different cognitive function domains (preclinical Alzheimer's cognitive composite [PACC], attention, executive function, episodic memory, visual processing, and language). We used partial least squares path modelling to explore mediation effects in the associations between modifiable risk factors (including cardiovascular, mental health, mood, metabolic or endocrine history, and alcohol use) and changes in cognitive composites. To assess the role of Alzheimer's disease pathology, we computed separate models for Aβ-negative and Aβ-positive individuals. FINDINGS Of the 419 participants enrolled in ALFA+, 302 met our inclusion criteria, of which 108 participants were classified as Aβ-positive and 194 as Aβ-negative. In Aβ-positive individuals, brain-age delta partially mediated (percent mediation proportion 15·73% [95% CI 14·22-16·66]) the association between modifiable risk factors and decline in overall cognition (across cognitive domains). Brain-age delta fully mediated (mediation proportion 28·03% [26·25-29·21]) the effect of modifiable risk factors on the PACC, wherein increased values for risk factors correlated with an older brain-age delta, and, consequently, an older brain-age delta was linked to greater PACC decline. This effect appears to be primarily driven by memory decline. Mediation was not significant in Aβ-negative individuals (3·52% [0·072-4·17]) on PACC, although path coefficients were not significantly different from those in the Aβ-positive group. INTERPRETATION Our findings suggest that brain-age delta captures the association between modifiable risk factors and longitudinal cognitive decline in middle-aged and older people. In asymptomatic middle-aged and older individuals who are Aβ-positive, the pathology might be the strongest driver of cognitive decline, whereas the effect of risk factors is smaller. Our results highlight the potential of brain-age delta as an objective outcome measure for preventive lifestyle interventions targeting cognitive decline. FUNDING La Caixa Foundation, the TriBEKa Imaging Platform, and the Universities and Research Secretariat of the Catalan Government. TRANSLATION For the Spanish translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Anna Brugulat-Serrat
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Global Brain Health Institute, San Francisco, CA, USA
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Armand González-Escalante
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Federica Anastasi
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Department of Veterans Affairs Medical Center, Northern California Institute for Research and Education, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA
| | - David López-Martos
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Muge Akinci
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Barcelona Institute of Global Health, Barcelona, Spain
| | - Carles Falcón
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Biomedicine, Universitat Pompeu Fabra, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | | | - Carolina Minguillón
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; H Lundbeck, Copenhagen, Denmark
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Oriol Grau-Rivera
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable, Instituto de Salud Carlos III, Madrid, Spain; Servei de Neurologia, Hospital del Mar, Barcelona, Spain
| | - Verónica Vilaplana
- Department of Signal Theory and Communications, Universitat Politècnica de Catalunya, Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain; Neuroimagen de Enfermedades Neurodegenerativas y Envejecimiento Saludable, Hospital del Mar Research Institute, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Madrid, Spain; Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain.
| |
Collapse
|
4
|
Kalantari A, Szczepanik M, Heunis S, Mönch C, Hanke M, Wachtler T, Aswendt M. How to establish and maintain a multimodal animal research dataset using DataLad. Sci Data 2023; 10:357. [PMID: 37277500 DOI: 10.1038/s41597-023-02242-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 05/15/2023] [Indexed: 06/07/2023] Open
Abstract
Sharing of data, processing tools, and workflows require open data hosting services and management tools. Despite FAIR guidelines and the increasing demand from funding agencies and publishers, only a few animal studies share all experimental data and processing tools. We present a step-by-step protocol to perform version control and remote collaboration for large multimodal datasets. A data management plan was introduced to ensure data security in addition to a homogeneous file and folder structure. Changes to the data were automatically tracked using DataLad and all data was shared on the research data platform GIN. This simple and cost-effective workflow facilitates the adoption of FAIR data logistics and processing workflows by making the raw and processed data available and providing the technical infrastructure to independently reproduce the data processing steps. It enables the community to collect heterogeneously acquired and stored datasets not limited to a specific category of data and serves as a technical infrastructure blueprint with rich potential to improve data handling at other sites and extend to other research areas.
Collapse
Affiliation(s)
- Aref Kalantari
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany
| | - Michał Szczepanik
- Psychoinformatics Lab, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Stephan Heunis
- Psychoinformatics Lab, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Christian Mönch
- Psychoinformatics Lab, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
| | - Michael Hanke
- Psychoinformatics Lab, Institute of Neuroscience and Medicine, Brain & Behaviour (INM-7), Research Centre Jülich, Jülich, Germany
- Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University, Düsseldorf, Germany
| | - Thomas Wachtler
- Faculty of Biology, Ludwig-Maximilians-Universität München, Planegg-Martinsried, München, Germany
| | - Markus Aswendt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Neurology, Cologne, Germany.
- Cognitive Neuroscience, Institute of Neuroscience and Medicine (INM-3), Research Centre Jülich, Jülich, Germany.
| |
Collapse
|
5
|
Cumplido-Mayoral I, García-Prat M, Operto G, Falcon C, Shekari M, Cacciaglia R, Milà-Alomà M, Lorenzini L, Ingala S, Meije Wink A, Mutsaerts HJMM, Minguillón C, Fauria K, Molinuevo JL, Haller S, Chetelat G, Waldman A, Schwarz AJ, Barkhof F, Suridjan I, Kollmorgen G, Bayfield A, Zetterberg H, Blennow K, Suárez-Calvet M, Vilaplana V, Gispert JD. Biological brain age prediction using machine learning on structural neuroimaging data: Multi-cohort validation against biomarkers of Alzheimer's disease and neurodegeneration stratified by sex. eLife 2023; 12:e81067. [PMID: 37067031 PMCID: PMC10181824 DOI: 10.7554/elife.81067] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 04/10/2023] [Indexed: 04/18/2023] Open
Abstract
Brain-age can be inferred from structural neuroimaging and compared to chronological age (brain-age delta) as a marker of biological brain aging. Accelerated aging has been found in neurodegenerative disorders like Alzheimer's disease (AD), but its validation against markers of neurodegeneration and AD is lacking. Here, imaging-derived measures from the UK Biobank dataset (N=22,661) were used to predict brain-age in 2,314 cognitively unimpaired (CU) individuals at higher risk of AD and mild cognitive impaired (MCI) patients from four independent cohorts with available biomarker data: ALFA+, ADNI, EPAD, and OASIS. Brain-age delta was associated with abnormal amyloid-β, more advanced stages (AT) of AD pathology and APOE-ε4 status. Brain-age delta was positively associated with plasma neurofilament light, a marker of neurodegeneration, and sex differences in the brain effects of this marker were found. These results validate brain-age delta as a non-invasive marker of biological brain aging in non-demented individuals with abnormal levels of biomarkers of AD and axonal injury.
Collapse
Affiliation(s)
- Irene Cumplido-Mayoral
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
| | - Marina García-Prat
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
| | - Grégory Operto
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Carles Falcon
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain
| | - Mahnaz Shekari
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
| | - Raffaele Cacciaglia
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Marta Milà-Alomà
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- Universitat Pompeu FabraBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Luigi Lorenzini
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Silvia Ingala
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Alle Meije Wink
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Henk JMM Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
| | - Carolina Minguillón
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - Karine Fauria
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
| | - Sven Haller
- CIRD Centre d'Imagerie Rive DroiteGenevaSwitzerland
| | - Gael Chetelat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders", Institut Blood and BrainCyceronFrance
| | - Adam Waldman
- Centre for Dementia Prevention, Edinburgh Imaging, and UK Dementia Research Institute at The University of EdinburghEdinburghUnited Kingdom
| | | | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam Neuroscience, Vrije Universiteit AmsterdamAmsterdamNetherlands
- Institutes of Neurology and Healthcare Engineering, University College LondonLondonUnited Kingdom
| | | | | | | | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Hong Kong Center for Neurodegenerative DiseasesHong KongChina
- UK Dementia Research Institute at UCLLondonUnited Kingdom
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, University of GothenburgMölndalSweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University HospitalMölndalSweden
| | - Marc Suárez-Calvet
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- CIBER Fragilidad y Envejecimiento Saludable (CIBERFES)MadridFrance
- Servei de Neurologia, Hospital del MarBarcelonaSpain
| | - Verónica Vilaplana
- Department of Signal Theory and Communications, Universitat Politècnica de CatalunyaBarcelonaSpain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center, Pasqual Maragall FoundationBarcelonaSpain
- IMIM (Hospital del Mar Medical Research Institute)BarcelonaSpain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)MadridSpain
| | | | | | | | | |
Collapse
|
6
|
Teves JB, Gonzalez-Castillo J, Holness M, Spurney M, Bandettini PA, Handwerker DA. The art and science of using quality control to understand and improve fMRI data. Front Neurosci 2023; 17:1100544. [PMID: 37090794 PMCID: PMC10117661 DOI: 10.3389/fnins.2023.1100544] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/17/2023] [Indexed: 04/08/2023] Open
Abstract
Designing and executing a good quality control (QC) process is vital to robust and reproducible science and is often taught through hands on training. As FMRI research trends toward studies with larger sample sizes and highly automated processing pipelines, the people who analyze data are often distinct from those who collect and preprocess the data. While there are good reasons for this trend, it also means that important information about how data were acquired, and their quality, may be missed by those working at later stages of these workflows. Similarly, an abundance of publicly available datasets, where people (not always correctly) assume others already validated data quality, makes it easier for trainees to advance in the field without learning how to identify problematic data. This manuscript is designed as an introduction for researchers who are already familiar with fMRI, but who did not get hands on QC training or who want to think more deeply about QC. This could be someone who has analyzed fMRI data but is planning to personally acquire data for the first time, or someone who regularly uses openly shared data and wants to learn how to better assess data quality. We describe why good QC processes are important, explain key priorities and steps for fMRI QC, and as part of the FMRI Open QC Project, we demonstrate some of these steps by using AFNI software and AFNI’s QC reports on an openly shared dataset. A good QC process is context dependent and should address whether data have the potential to answer a scientific question, whether any variation in the data has the potential to skew or hide key results, and whether any problems can potentially be addressed through changes in acquisition or data processing. Automated metrics are essential and can often highlight a possible problem, but human interpretation at every stage of a study is vital for understanding causes and potential solutions.
Collapse
Affiliation(s)
- Joshua B. Teves
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Javier Gonzalez-Castillo
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Micah Holness
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Megan Spurney
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Peter A. Bandettini
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- Functional MRI Core Facility, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Daniel A. Handwerker
- Section on Functional Imaging Methods, Laboratory of Brain and Cognition, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Daniel A. Handwerker,
| |
Collapse
|
7
|
Diaz-Uriarte R, Gómez de Lope E, Giugno R, Fröhlich H, Nazarov PV, Nepomuceno-Chamorro IA, Rauschenberger A, Glaab E. Ten quick tips for biomarker discovery and validation analyses using machine learning. PLoS Comput Biol 2022; 18:e1010357. [PMID: 35951526 PMCID: PMC9371329 DOI: 10.1371/journal.pcbi.1010357] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Ramon Diaz-Uriarte
- Department of Biochemistry, School of Medicine, Universidad Autónoma de Madrid, Instituto de Investigaciones Biomédicas ‘Alberto Sols’ (UAM-CSIC), Madrid, Spain
| | - Elisa Gómez de Lope
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Holger Fröhlich
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
- Bonn-Aachen International Centre for IT (b-it), Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| | - Petr V. Nazarov
- Department of Cancer Research, Luxembourg Institute of Health, Strassen, Luxembourg
| | | | - Armin Rauschenberger
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
| | - Enrico Glaab
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Luxembourg
- * E-mail:
| |
Collapse
|
8
|
Etzel JA, Brough RE, Freund MC, Kizhner A, Lin Y, Singh MF, Tang R, Tay A, Wang A, Braver TS. The Dual Mechanisms of Cognitive Control dataset, a theoretically-guided within-subject task fMRI battery. Sci Data 2022; 9:114. [PMID: 35351911 PMCID: PMC8964804 DOI: 10.1038/s41597-022-01226-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 02/17/2022] [Indexed: 12/30/2022] Open
Abstract
Cognitive control is a critical higher mental function, which is subject to considerable individual variation, and is impaired in a range of mental health disorders. We describe here the initial release of Dual Mechanisms of Cognitive Control (DMCC) project data, the DMCC55B dataset, with 55 healthy unrelated young adult participants. Each participant performed four well-established cognitive control tasks (AX-CPT, Cued Task-Switching, Sternberg Working Memory, and Stroop) while undergoing functional MRI scanning. The dataset includes a range of state and trait self-report questionnaires, as well as behavioural tasks assessing individual differences in cognitive ability. The DMCC project is on-going and features additional components (e.g., related participants, manipulations of cognitive control mode, resting state fMRI, longitudinal testing) that will be publicly released following study completion. This DMCC55B subset is released early with the aim of encouraging wider use and greater benefit to the scientific community. The DMCC55B dataset is suitable for benchmarking and methods exploration, as well as analyses of task performance and individual differences.
Collapse
Affiliation(s)
- Joset A Etzel
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA.
| | - Rachel E Brough
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
| | - Michael C Freund
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
| | - Alexander Kizhner
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, USA
| | - Yanli Lin
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
| | - Matthew F Singh
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, USA
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, USA
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Piscataway, USA
| | - Rongxiang Tang
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
| | - Allison Tay
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
| | - Anxu Wang
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
- Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, USA
| | - Todd S Braver
- Department of Psychological and Brain Sciences, Washington University in St. Louis, St. Louis, USA
- Department of Radiology, Washington University in St. Louis, St. Louis, USA
- Department of Neuroscience, Washington University in St. Louis, St. Louis, USA
| |
Collapse
|
9
|
Pringle C, Kilday JP, Kamaly-Asl I, Stivaros SM. The role of artificial intelligence in paediatric neuroradiology. Pediatr Radiol 2022; 52:2159-2172. [PMID: 35347371 PMCID: PMC9537195 DOI: 10.1007/s00247-022-05322-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/22/2021] [Accepted: 02/11/2022] [Indexed: 01/17/2023]
Abstract
Imaging plays a fundamental role in the managing childhood neurologic, neurosurgical and neuro-oncological disease. Employing multi-parametric MRI techniques, such as spectroscopy and diffusion- and perfusion-weighted imaging, to the radiophenotyping of neuroradiologic conditions is becoming increasingly prevalent, particularly with radiogenomic analyses correlating imaging characteristics with molecular biomarkers of disease. However, integration into routine clinical practice remains elusive. With modern multi-parametric MRI now providing additional data beyond anatomy, informing on histology, biology and physiology, such metric-rich information can present as information overload to the treating radiologist and, as such, information relevant to an individual case can become lost. Artificial intelligence techniques are capable of modelling the vast radiologic, biological and clinical datasets that accompany childhood neurologic disease, such that this information can become incorporated in upfront prognostic modelling systems, with artificial intelligence techniques providing a plausible approach to this solution. This review examines machine learning approaches than can be used to underpin such artificial intelligence applications, with exemplars for each machine learning approach from the world literature. Then, within the specific use case of paediatric neuro-oncology, we examine the potential future contribution for such artificial intelligence machine learning techniques to offer solutions for patient care in the form of decision support systems, potentially enabling personalised medicine within this domain of paediatric radiologic practice.
Collapse
Affiliation(s)
- Catherine Pringle
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK ,Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK
| | - John-Paul Kilday
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK ,The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Ian Kamaly-Asl
- Children’s Brain Tumour Research Network (CBTRN), Royal Manchester Children’s Hospital, Manchester, UK ,The Centre for Paediatric, Teenage and Young Adult Cancer, Institute of Cancer Sciences, University of Manchester, Manchester, UK
| | - Stavros Michael Stivaros
- Division of Informatics, Imaging, and Data Sciences, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester, UK. .,Department of Paediatric Radiology, Royal Manchester Children's Hospital, Central Manchester University Hospitals NHS Foundation Trust, Oxford Road, Manchester, M13 9WL, UK. .,The Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.
| |
Collapse
|