1
|
Gašperlin Stepančič K, Ramovš A, Ramovš J, Košir A. A novel explainable machine learning-based healthy ageing scale. BMC Med Inform Decis Mak 2024; 24:317. [PMID: 39472925 PMCID: PMC11520378 DOI: 10.1186/s12911-024-02714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Ageing is one of the most important challenges in our society. Evaluating how one is ageing is important in many aspects, from giving personalized recommendations to providing insight for long-term care eligibility. Machine learning can be utilized for that purpose, however, user reservations towards "black-box" predictions call for increased transparency and explainability of results. This study aimed to explore the potential of developing a machine learning-based healthy ageing scale that provides explainable results that could be trusted and understood by informal carers. METHODS In this study, we used data from 696 older adults collected via personal field interviews as part of independent research. Explanatory factor analysis was used to find candidate healthy ageing aspects. For visualization of key aspects, a web annotation application was developed. Key aspects were selected by gerontologists who later used web annotation applications to evaluate healthy ageing for each older adult on a Likert scale. Logistic Regression, Decision Tree Classifier, Random Forest, KNN, SVM and XGBoost were used for multi-classification machine learning. AUC OvO, AUC OvR, F1, Precision and Recall were used for evaluation. Finally, SHAP was applied to best model predictions to make them explainable. RESULTS The experimental results show that human annotations of healthy ageing could be modelled using machine learning where among several algorithms XGBoost showed superior performance. The use of XGBoost resulted in 0.92 macro-averaged AuC OvO and 0.76 macro-averaged F1. SHAP was applied to generate local explanations for predictions and shows how each feature is influencing the prediction. CONCLUSION The resulting explainable predictions make a step toward practical scale implementation into decision support systems. The development of such a decision support system that would incorporate an explainable model could reduce user reluctance towards the utilization of AI in healthcare and provide explainable and trusted insights to informal carers or healthcare providers as a basis to shape tangible actions for improving ageing. Furthermore, the cooperation with gerontology specialists throughout the process also indicates expert knowledge as integrated into the model.
Collapse
Affiliation(s)
| | - Ana Ramovš
- Anton Trstenjak Institute of Gerontology and Intergenerational Relations, Resljeva cesta 7, 1000, Ljubljana, Slovenia
| | - Jože Ramovš
- Anton Trstenjak Institute of Gerontology and Intergenerational Relations, Resljeva cesta 7, 1000, Ljubljana, Slovenia
| | - Andrej Košir
- Laboratory for user-adapted communications and ambient intelligence, Faculty of Electrical Engineering, Tržaška cesta 25, 1000, Ljubljana, Slovenia.
| |
Collapse
|
2
|
Zhou S, Chen J, Wei S, Zhou C, Wang D, Yan X, He X, Yan P. Exploring the correlation between DNA methylation and biological age using an interpretable machine learning framework. Sci Rep 2024; 14:24208. [PMID: 39406876 PMCID: PMC11480495 DOI: 10.1038/s41598-024-75586-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
DNA methylation plays a significant role in regulating transcription and exhibits a systematic change with age. These changes can be used to predict an individual's age. First, to identify methylation sites associated with biological age; second, to construct a biological age prediction model and preliminarily explore the biological significance of methylation-associated genes using machine learning. A biological age prediction model was constructed using human methylation data through data preprocessing, feature selection procedures, statistical analysis, and machine learning techniques. Subsequently, 15 methylation data sets were subjected to in-depth analysis using SHAP, GO enrichment, and KEGG analysis. XGBoost, LightGBM, and CatBoost identified 15 groups of methylation sites associated with biological age. The cg23995914 locus was identified as the most significant contributor to predicting biological age by calculating SHAP values. Furthermore, GO enrichment and KEGG analyses were employed to initially explore the methylated loci's biological significance.
Collapse
Affiliation(s)
- Sheng Zhou
- Department of Public Health and Health, Guizhou Medical University, Guizhou Province, China
| | - Jing Chen
- Guizhou Provincial Drug Administration inspection center, Guiyang, Guizhou Province, China
| | - Shanshan Wei
- Department of Public Health and Health, Guizhou Medical University, Guizhou Province, China
| | - Chengxing Zhou
- School of Biology&Engineering(School of Health Medicine Modern Industry), Guizhou Medical University, Guiyang, Guizhou, China
| | - Die Wang
- College of Anesthesia, Guizhou Medical University, Guizhou Province, China
| | - Xiaofan Yan
- School of Medicine and Health Management, Guizhou Medical University, Guizhou Province, China.
| | - Xun He
- School of Medicine and Health Management, Guizhou Medical University, Guizhou Province, China.
| | - Pengcheng Yan
- School of Clinical Medicine, Guizhou Medical University, Guizhou Province, China.
| |
Collapse
|
3
|
Gaser C, Kalc P, Cole JH. A perspective on brain-age estimation and its clinical promise. NATURE COMPUTATIONAL SCIENCE 2024; 4:744-751. [PMID: 39048692 DOI: 10.1038/s43588-024-00659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 06/12/2024] [Indexed: 07/27/2024]
Abstract
Brain-age estimation has gained increased attention in the neuroscientific community owing to its potential use as a biomarker of brain health. The difference between estimated and chronological age based on neuroimaging data enables a unique perspective on brain development and aging, with multiple open questions still remaining in the brain-age research field. This Perspective presents an overview of current advancements in the field and envisions the future evolution of the brain-age framework before its potential deployment in hospital settings.
Collapse
Affiliation(s)
- Christian Gaser
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany.
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany.
- German Centre for Mental Health (DZPG), Jena-Halle-Magdeburg, Jena, Germany.
| | - Polona Kalc
- Structural Brain Mapping Group, Department of Neurology, Jena University Hospital, Jena, Germany
| | - James H Cole
- Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Queen Square Institute of Neurology, University College London, London, UK
| |
Collapse
|
4
|
Novielli P, Romano D, Magarelli M, Diacono D, Monaco A, Amoroso N, Vacca M, De Angelis M, Bellotti R, Tangaro S. Personalized identification of autism-related bacteria in the gut microbiome using explainable artificial intelligence. iScience 2024; 27:110709. [PMID: 39286497 PMCID: PMC11402656 DOI: 10.1016/j.isci.2024.110709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/05/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Autism spectrum disorder (ASD) affects social interaction and communication. Emerging evidence links ASD to gut microbiome alterations, suggesting that microbial composition may play a role in the disorder. This study employs explainable artificial intelligence (XAI) to examine the contributions of individual microbial species to ASD. By using local explanation embeddings and unsupervised clustering, the research identifies distinct ASD subgroups, underscoring the disorder's heterogeneity. Specific microbial biomarkers associated with ASD are revealed, and the best classifiers achieved an AU-ROC of 0.965 ± 0.005 and an AU-PRC of 0.967 ± 0.008. The findings support the notion that gut microbiome composition varies significantly among individuals with ASD. This work's broader significance lies in its potential to inform personalized interventions, enhancing precision in ASD management and classification. These insights highlight the importance of individualized microbiome profiles for developing tailored therapeutic strategies for ASD.
Collapse
Affiliation(s)
- Pierfrancesco Novielli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Donato Romano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Michele Magarelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Mirco Vacca
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
- Dipartimento Interateneo di Fisica "M. Merlin", Università degli Studi di Bari Aldo Moro, 70125 Bari, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, 70126 Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125 Bari, Italy
| |
Collapse
|
5
|
Han M. Predicted brain age (PBA), promising surrogate indicator for neurodevelopment in preterm baby: how to predict accurately? Eur Radiol 2024; 34:3598-3600. [PMID: 38078998 DOI: 10.1007/s00330-023-10481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 11/05/2023] [Accepted: 11/25/2023] [Indexed: 06/12/2024]
Affiliation(s)
- Miran Han
- Department of Radiology, Ajou University Hospital, Ajou University School of Medicine, 164, World Cup-Ro, Yeongtong-Gu, Suwon, 16499, Republic of Korea.
- Department of Radiology, Graduate School of Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
6
|
Rule AD, Grossardt BR, Weston AD, Garner HW, Kline TL, Chamberlain AM, Allen AM, Erickson BJ, Rocca WA, St Sauver JL. Older Tissue Age Derived From Abdominal Computed Tomography Biomarkers of Muscle, Fat, and Bone Is Associated With Chronic Conditions and Higher Mortality. Mayo Clin Proc 2024; 99:878-890. [PMID: 38310501 PMCID: PMC11153040 DOI: 10.1016/j.mayocp.2023.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 09/12/2023] [Accepted: 09/18/2023] [Indexed: 02/05/2024]
Abstract
OBJECTIVE To determine whether body composition derived from medical imaging may be useful for assessing biologic age at the tissue level because people of the same chronologic age may vary with respect to their biologic age. METHODS We identified an age- and sex-stratified cohort of 4900 persons with an abdominal computed tomography scan from January 1, 2010, to December 31, 2020, who were 20 to 89 years old and representative of the general population in Southeast Minnesota and West Central Wisconsin. We constructed a model for estimating tissue age that included 6 body composition biomarkers calculated from abdominal computed tomography using a previously validated deep learning model. RESULTS Older tissue age associated with intermediate subcutaneous fat area, higher visceral fat area, lower muscle area, lower muscle density, higher bone area, and lower bone density. A tissue age older than chronologic age was associated with chronic conditions that result in reduced physical fitness (including chronic obstructive pulmonary disease, arthritis, cardiovascular disease, and behavioral disorders). Furthermore, a tissue age older than chronologic age was associated with an increased risk of death (hazard ratio, 1.56; 95% CI, 1.33 to 1.84) that was independent of demographic characteristics, county of residency, education, body mass index, and baseline chronic conditions. CONCLUSION Imaging-based body composition measures may be useful in understanding the biologic processes underlying accelerated aging.
Collapse
Affiliation(s)
- Andrew D Rule
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN; Division of Nephrology and Hypertension.
| | - Brandon R Grossardt
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Alexander D Weston
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL
| | - Hillary W Garner
- Division of Musculoskeletal Radiology, Department of Radiology, Mayo Clinic, Jacksonville, FL
| | | | - Alanna M Chamberlain
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN; Department of Cardiovascular Medicine, Mayo Clinic, Rochester, MN
| | - Alina M Allen
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Bradley J Erickson
- Artificial Intelligence Laboratory, Department of Radiology, Mayo Clinic, Rochester, MN
| | - Walter A Rocca
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN; Department of Neurology, Mayo Clinic, Rochester, MN; Women's Health Research Center, Mayo Clinic, Rochester, MN
| | - Jennifer L St Sauver
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN; The Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| |
Collapse
|
7
|
Romano D, Novielli P, Cilli R, Amoroso N, Monaco A, Bellotti R, Tangaro S. Air pollution and mortality for cancer of the respiratory system in Italy: an explainable artificial intelligence approach. Front Public Health 2024; 12:1344865. [PMID: 38774048 PMCID: PMC11106463 DOI: 10.3389/fpubh.2024.1344865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 04/08/2024] [Indexed: 05/24/2024] Open
Abstract
Respiratory system cancer, encompassing lung, trachea and bronchus cancer, constitute a substantial and evolving public health challenge. Since pollution plays a prominent cause in the development of this disease, identifying which substances are most harmful is fundamental for implementing policies aimed at reducing exposure to these substances. We propose an approach based on explainable artificial intelligence (XAI) based on remote sensing data to identify the factors that most influence the prediction of the standard mortality ratio (SMR) for respiratory system cancer in the Italian provinces using environment and socio-economic data. First of all, we identified 10 clusters of provinces through the study of the SMR variogram. Then, a Random Forest regressor is used for learning a compact representation of data. Finally, we used XAI to identify which features were most important in predicting SMR values. Our machine learning analysis shows that NO, income and O3 are the first three relevant features for the mortality of this type of cancer, and provides a guideline on intervention priorities in reducing risk factors.
Collapse
Affiliation(s)
- Donato Romano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Universita' degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare Sezione di Bari, Bari, Italy
| | - Pierfrancesco Novielli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Universita' degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare Sezione di Bari, Bari, Italy
| | - Roberto Cilli
- Istituto Nazionale di Fisica Nucleare Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, “M. Merlin” Universita' degli Studi di Bari Aldo Moro, Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare Sezione di Bari, Bari, Italy
- Dipartimento di Farmacia Scienze, del Farmaco Universita' degli Studi di Bari Aldo Moro, Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, “M. Merlin” Universita' degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica, “M. Merlin” Universita' degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti Universita' degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare Sezione di Bari, Bari, Italy
| |
Collapse
|
8
|
Novielli P, Romano D, Magarelli M, Bitonto PD, Diacono D, Chiatante A, Lopalco G, Sabella D, Venerito V, Filannino P, Bellotti R, De Angelis M, Iannone F, Tangaro S. Explainable artificial intelligence for microbiome data analysis in colorectal cancer biomarker identification. Front Microbiol 2024; 15:1348974. [PMID: 38426064 PMCID: PMC10901987 DOI: 10.3389/fmicb.2024.1348974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024] Open
Abstract
Background Colorectal cancer (CRC) is a type of tumor caused by the uncontrolled growth of cells in the mucosa lining the last part of the intestine. Emerging evidence underscores an association between CRC and gut microbiome dysbiosis. The high mortality rate of this cancer has made it necessary to develop new early diagnostic methods. Machine learning (ML) techniques can represent a solution to evaluate the interaction between intestinal microbiota and host physiology. Through explained artificial intelligence (XAI) it is possible to evaluate the individual contributions of microbial taxonomic markers for each subject. Our work also implements the Shapley Method Additive Explanations (SHAP) algorithm to identify for each subject which parameters are important in the context of CRC. Results The proposed study aimed to implement an explainable artificial intelligence framework using both gut microbiota data and demographic information from subjects to classify a cohort of control subjects from those with CRC. Our analysis revealed an association between gut microbiota and this disease. We compared three machine learning algorithms, and the Random Forest (RF) algorithm emerged as the best classifier, with a precision of 0.729 ± 0.038 and an area under the Precision-Recall curve of 0.668 ± 0.016. Additionally, SHAP analysis highlighted the most crucial variables in the model's decision-making, facilitating the identification of specific bacteria linked to CRC. Our results confirmed the role of certain bacteria, such as Fusobacterium, Peptostreptococcus, and Parvimonas, whose abundance appears notably associated with the disease, as well as bacteria whose presence is linked to a non-diseased state. Discussion These findings emphasizes the potential of leveraging gut microbiota data within an explainable AI framework for CRC classification. The significant association observed aligns with existing knowledge. The precision exhibited by the RF algorithm reinforces its suitability for such classification tasks. The SHAP analysis not only enhanced interpretability but identified specific bacteria crucial in CRC determination. This approach opens avenues for targeted interventions based on microbial signatures. Further exploration is warranted to deepen our understanding of the intricate interplay between microbiota and health, providing insights for refined diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Pierfrancesco Novielli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Donato Romano
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Michele Magarelli
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Pierpaolo Di Bitonto
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Annalisa Chiatante
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giuseppe Lopalco
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Daniele Sabella
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Vincenzo Venerito
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Pasquale Filannino
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Maria De Angelis
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Florenzo Iannone
- Dipartimento di Medicina di Precisione e Rigenerativa e Area Jonica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| |
Collapse
|
9
|
Kalyakulina A, Yusipov I, Moskalev A, Franceschi C, Ivanchenko M. eXplainable Artificial Intelligence (XAI) in aging clock models. Ageing Res Rev 2024; 93:102144. [PMID: 38030090 DOI: 10.1016/j.arr.2023.102144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/07/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
XAI is a rapidly progressing field of machine learning, aiming to unravel the predictions of complex models. XAI is especially required in sensitive applications, e.g. in health care, when diagnosis, recommendations and treatment choices might rely on the decisions made by artificial intelligence systems. AI approaches have become widely used in aging research as well, in particular, in developing biological clock models and identifying biomarkers of aging and age-related diseases. However, the potential of XAI here awaits to be fully appreciated. We discuss the application of XAI for developing the "aging clocks" and present a comprehensive analysis of the literature categorized by the focus on particular physiological systems.
Collapse
Affiliation(s)
- Alena Kalyakulina
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia.
| | - Igor Yusipov
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Research Center for Trusted Artificial Intelligence, The Ivannikov Institute for System Programming of the Russian Academy of Sciences, Moscow 109004, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Alexey Moskalev
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Claudio Franceschi
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| | - Mikhail Ivanchenko
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod 603022, Russia; Department of Applied Mathematics, Institute of Information Technologies, Mathematics and Mechanics, Lobachevsky State University, Nizhny Novgorod 603022, Russia
| |
Collapse
|
10
|
Nambiar A, S H, S S. Model-agnostic explainable artificial intelligence tools for severity prediction and symptom analysis on Indian COVID-19 data. Front Artif Intell 2023; 6:1272506. [PMID: 38111787 PMCID: PMC10726049 DOI: 10.3389/frai.2023.1272506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/07/2023] [Indexed: 12/20/2023] Open
Abstract
Introduction The COVID-19 pandemic had a global impact and created an unprecedented emergency in healthcare and other related frontline sectors. Various Artificial-Intelligence-based models were developed to effectively manage medical resources and identify patients at high risk. However, many of these AI models were limited in their practical high-risk applicability due to their "black-box" nature, i.e., lack of interpretability of the model. To tackle this problem, Explainable Artificial Intelligence (XAI) was introduced, aiming to explore the "black box" behavior of machine learning models and offer definitive and interpretable evidence. XAI provides interpretable analysis in a human-compliant way, thus boosting our confidence in the successful implementation of AI systems in the wild. Methods In this regard, this study explores the use of model-agnostic XAI models, such as SHapley Additive exPlanations values (SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), for COVID-19 symptom analysis in Indian patients toward a COVID severity prediction task. Various machine learning models such as Decision Tree Classifier, XGBoost Classifier, and Neural Network Classifier are leveraged to develop Machine Learning models. Results and discussion The proposed XAI tools are found to augment the high performance of AI systems with human interpretable evidence and reasoning, as shown through the interpretation of various explainability plots. Our comparative analysis illustrates the significance of XAI tools and their impact within a healthcare context. The study suggests that SHAP and LIME analysis are promising methods for incorporating explainability in model development and can lead to better and more trustworthy ML models in the future.
Collapse
Affiliation(s)
- Athira Nambiar
- Department of Computational Intelligence, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, India
| | | | | |
Collapse
|
11
|
Champendal M, Müller H, Prior JO, Dos Reis CS. A scoping review of interpretability and explainability concerning artificial intelligence methods in medical imaging. Eur J Radiol 2023; 169:111159. [PMID: 37976760 DOI: 10.1016/j.ejrad.2023.111159] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/26/2023] [Accepted: 10/19/2023] [Indexed: 11/19/2023]
Abstract
PURPOSE To review eXplainable Artificial Intelligence/(XAI) methods available for medical imaging/(MI). METHOD A scoping review was conducted following the Joanna Briggs Institute's methodology. The search was performed on Pubmed, Embase, Cinhal, Web of Science, BioRxiv, MedRxiv, and Google Scholar. Studies published in French and English after 2017 were included. Keyword combinations and descriptors related to explainability, and MI modalities were employed. Two independent reviewers screened abstracts, titles and full text, resolving differences through discussion. RESULTS 228 studies met the criteria. XAI publications are increasing, targeting MRI (n = 73), radiography (n = 47), CT (n = 46). Lung (n = 82) and brain (n = 74) pathologies, Covid-19 (n = 48), Alzheimer's disease (n = 25), brain tumors (n = 15) are the main pathologies explained. Explanations are presented visually (n = 186), numerically (n = 67), rule-based (n = 11), textually (n = 11), and example-based (n = 6). Commonly explained tasks include classification (n = 89), prediction (n = 47), diagnosis (n = 39), detection (n = 29), segmentation (n = 13), and image quality improvement (n = 6). The most frequently provided explanations were local (78.1 %), 5.7 % were global, and 16.2 % combined both local and global approaches. Post-hoc approaches were predominantly employed. The used terminology varied, sometimes indistinctively using explainable (n = 207), interpretable (n = 187), understandable (n = 112), transparent (n = 61), reliable (n = 31), and intelligible (n = 3). CONCLUSION The number of XAI publications in medical imaging is increasing, primarily focusing on applying XAI techniques to MRI, CT, and radiography for classifying and predicting lung and brain pathologies. Visual and numerical output formats are predominantly used. Terminology standardisation remains a challenge, as terms like "explainable" and "interpretable" are sometimes being used indistinctively. Future XAI development should consider user needs and perspectives.
Collapse
Affiliation(s)
- Mélanie Champendal
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland; Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland.
| | - Henning Müller
- Informatics Institute, University of Applied Sciences Western Switzerland (HES-SO Valais) Sierre, CH, Switzerland; Medical faculty, University of Geneva, CH, Switzerland.
| | - John O Prior
- Faculty of Biology and Medicine, University of Lausanne, Lausanne, CH, Switzerland; Nuclear Medicine and Molecular Imaging Department, Lausanne University Hospital (CHUV), Lausanne, CH, Switzerland.
| | - Cláudia Sá Dos Reis
- School of Health Sciences HESAV, HES-SO, University of Applied Sciences Western Switzerland, Lausanne, CH, Switzerland.
| |
Collapse
|
12
|
Papoutsoglou G, Tarazona S, Lopes MB, Klammsteiner T, Ibrahimi E, Eckenberger J, Novielli P, Tonda A, Simeon A, Shigdel R, Béreux S, Vitali G, Tangaro S, Lahti L, Temko A, Claesson MJ, Berland M. Machine learning approaches in microbiome research: challenges and best practices. Front Microbiol 2023; 14:1261889. [PMID: 37808286 PMCID: PMC10556866 DOI: 10.3389/fmicb.2023.1261889] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Microbiome data predictive analysis within a machine learning (ML) workflow presents numerous domain-specific challenges involving preprocessing, feature selection, predictive modeling, performance estimation, model interpretation, and the extraction of biological information from the results. To assist decision-making, we offer a set of recommendations on algorithm selection, pipeline creation and evaluation, stemming from the COST Action ML4Microbiome. We compared the suggested approaches on a multi-cohort shotgun metagenomics dataset of colorectal cancer patients, focusing on their performance in disease diagnosis and biomarker discovery. It is demonstrated that the use of compositional transformations and filtering methods as part of data preprocessing does not always improve the predictive performance of a model. In contrast, the multivariate feature selection, such as the Statistically Equivalent Signatures algorithm, was effective in reducing the classification error. When validated on a separate test dataset, this algorithm in combination with random forest modeling, provided the most accurate performance estimates. Lastly, we showed how linear modeling by logistic regression coupled with visualization techniques such as Individual Conditional Expectation (ICE) plots can yield interpretable results and offer biological insights. These findings are significant for clinicians and non-experts alike in translational applications.
Collapse
Affiliation(s)
- Georgios Papoutsoglou
- Department of Computer Science, University of Crete, Heraklion, Greece
- JADBio Gnosis DA S.A., Science and Technology Park of Crete, Heraklion, Greece
| | - Sonia Tarazona
- Department of Applied Statistics and Operations Research and Quality, Polytechnic University of Valencia, Valencia, Spain
| | - Marta B. Lopes
- Center for Mathematics and Applications (NOVA Math), NOVA School of Science and Technology, Caparica, Portugal
- Research and Development Unit for Mechanical and Industrial Engineering (UNIDEMI), Department of Mechanical and Industrial Engineering, NOVA School of Science and Technology, Caparica, Portugal
| | - Thomas Klammsteiner
- Department of Ecology, Universität Innsbruck, Innsbruck, Austria
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Eliana Ibrahimi
- Department of Biology, University of Tirana, Tirana, Albania
| | - Julia Eckenberger
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Pierfrancesco Novielli
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- National Institute for Nuclear Physics, Bari Division, Bari, Italy
| | - Alberto Tonda
- UMR 518 MIA-PS, INRAE, Paris-Saclay University, Palaiseau, France
- Complex Systems Institute of Paris Ile-de-France (ISC-PIF) - UAR 3611 CNRS, Paris, France
| | - Andrea Simeon
- BioSense Institute, University of Novi Sad, Novi Sad, Serbia
| | - Rajesh Shigdel
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Stéphane Béreux
- MetaGenoPolis, INRAE, Paris-Saclay University, Jouy-en-Josas, France
- MaIAGE, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| | - Giacomo Vitali
- MetaGenoPolis, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| | - Sabina Tangaro
- Department of Soil, Plant, and Food Sciences, University of Bari Aldo Moro, Bari, Italy
- National Institute for Nuclear Physics, Bari Division, Bari, Italy
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Andriy Temko
- Department of Electrical and Electronic Engineering, University College Cork, Cork, Ireland
| | - Marcus J. Claesson
- School of Microbiology, University College Cork, Cork, Ireland
- APC Microbiome Ireland, Cork, Ireland
| | - Magali Berland
- MetaGenoPolis, INRAE, Paris-Saclay University, Jouy-en-Josas, France
| |
Collapse
|
13
|
Bernard D, Doumard E, Ader I, Kemoun P, Pagès J, Galinier A, Cussat‐Blanc S, Furger F, Ferrucci L, Aligon J, Delpierre C, Pénicaud L, Monsarrat P, Casteilla L. Explainable machine learning framework to predict personalized physiological aging. Aging Cell 2023; 22:e13872. [PMID: 37300327 PMCID: PMC10410015 DOI: 10.1111/acel.13872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 04/17/2023] [Accepted: 05/03/2023] [Indexed: 06/12/2023] Open
Abstract
Attaining personalized healthy aging requires accurate monitoring of physiological changes and identifying subclinical markers that predict accelerated or delayed aging. Classic biostatistical methods most rely on supervised variables to estimate physiological aging and do not capture the full complexity of inter-parameter interactions. Machine learning (ML) is promising, but its black box nature eludes direct understanding, substantially limiting physician confidence and clinical usage. Using a broad population dataset from the National Health and Nutrition Examination Survey (NHANES) study including routine biological variables and after selection of XGBoost as the most appropriate algorithm, we created an innovative explainable ML framework to determine a Personalized physiological age (PPA). PPA predicted both chronic disease and mortality independently of chronological age. Twenty-six variables were sufficient to predict PPA. Using SHapley Additive exPlanations (SHAP), we implemented a precise quantitative associated metric for each variable explaining physiological (i.e., accelerated or delayed) deviations from age-specific normative data. Among the variables, glycated hemoglobin (HbA1c) displays a major relative weight in the estimation of PPA. Finally, clustering profiles of identical contextualized explanations reveal different aging trajectories opening opportunities to specific clinical follow-up. These data show that PPA is a robust, quantitative and explainable ML-based metric that monitors personalized health status. Our approach also provides a complete framework applicable to different datasets or variables, allowing precision physiological age estimation.
Collapse
Affiliation(s)
- David Bernard
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRSToulouseFrance
| | - Emmanuel Doumard
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Isabelle Ader
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Philippe Kemoun
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- Oral Medicine Department and Hospital of ToulouseToulouse Institute of Oral Medicine and Science, CHU de ToulouseToulouseFrance
| | - Jean‐Christophe Pagès
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- UFR Santé, Département Médecine, Institut Fédératif de Biologie, CHU de ToulouseToulouseFrance
| | - Anne Galinier
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- UFR Santé, Département Médecine, Institut Fédératif de Biologie, CHU de ToulouseToulouseFrance
| | - Sylvain Cussat‐Blanc
- Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRSToulouseFrance
- Artificial and Natural Intelligence Toulouse Institute ANITIToulouseFrance
| | - Felix Furger
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Luigi Ferrucci
- Biomedical Research Centre, National Institute on AgingNIHBaltimoreMarylandUSA
| | - Julien Aligon
- Université Toulouse 1 – Capitole, Institute of Research in Informatics (IRIT) of Toulouse, CNRSToulouseFrance
| | | | - Luc Pénicaud
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| | - Paul Monsarrat
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
- Oral Medicine Department and Hospital of ToulouseToulouse Institute of Oral Medicine and Science, CHU de ToulouseToulouseFrance
- Artificial and Natural Intelligence Toulouse Institute ANITIToulouseFrance
| | - Louis Casteilla
- RESTORE Research CenterUniversité de Toulouse, INSERM 1301, CNRS 5070, EFS, ENVTFrance
| |
Collapse
|
14
|
Dong Z, Wang J, Li Y, Deng Y, Zhou W, Zeng X, Gong D, Liu J, Pan J, Shang R, Xu Y, Xu M, Zhang L, Zhang M, Tao X, Zhu Y, Du H, Lu Z, Yao L, Wu L, Yu H. Explainable artificial intelligence incorporated with domain knowledge diagnosing early gastric neoplasms under white light endoscopy. NPJ Digit Med 2023; 6:64. [PMID: 37045949 PMCID: PMC10097818 DOI: 10.1038/s41746-023-00813-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
White light endoscopy is the most pivotal tool for detecting early gastric neoplasms. Previous artificial intelligence (AI) systems were primarily unexplainable, affecting their clinical credibility and acceptability. We aimed to develop an explainable AI named ENDOANGEL-ED (explainable diagnosis) to solve this problem. A total of 4482 images and 296 videos with focal lesions from 3279 patients from eight hospitals were used for training, validating, and testing ENDOANGEL-ED. A traditional sole deep learning (DL) model was trained using the same dataset. The performance of ENDOANGEL-ED and sole DL was evaluated on six levels: internal and external images, internal and external videos, consecutive videos, and man-machine comparison with 77 endoscopists in videos. Furthermore, a multi-reader, multi-case study was conducted to evaluate the ENDOANGEL-ED's effectiveness. A scale was used to compare the overall acceptance of endoscopists to traditional and explainable AI systems. The ENDOANGEL-ED showed high performance in the image and video tests. In man-machine comparison, the accuracy of ENDOANGEL-ED was significantly higher than that of all endoscopists in internal (81.10% vs. 70.61%, p < 0.001) and external videos (88.24% vs. 78.49%, p < 0.001). With ENDOANGEL-ED's assistance, the accuracy of endoscopists significantly improved (70.61% vs. 79.63%, p < 0.001). Compared with the traditional AI, the explainable AI increased the endoscopists' trust and acceptance (4.42 vs. 3.74, p < 0.001; 4.52 vs. 4.00, p < 0.001). In conclusion, we developed a real-time explainable AI that showed high performance, higher clinical credibility, and acceptance than traditional DL models and greatly improved the diagnostic ability of endoscopists.
Collapse
Affiliation(s)
- Zehua Dong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Junxiao Wang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yanxia Li
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yunchao Deng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Zhou
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoquan Zeng
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Dexin Gong
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jun Liu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jie Pan
- Department of Gastroenterology, Wenzhou Central Hospital, Wenzhou, China
| | - Renduo Shang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Youming Xu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lihui Zhang
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mengjiao Zhang
- Department of Gastroenterology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Tao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yijie Zhu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hongliu Du
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zihua Lu
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liwen Yao
- Renmin Hospital of Wuhan University, Wuhan, China
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lianlian Wu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Honggang Yu
- Renmin Hospital of Wuhan University, Wuhan, China.
- Key Laboratory of Hubei Province for Digestive System Disease, Renmin Hospital of Wuhan University, Wuhan, China.
- Hubei Provincial Clinical Research Center for Digestive Disease Minimally Invasive Incision, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
15
|
Detecting the socio-economic drivers of confidence in government with eXplainable Artificial Intelligence. Sci Rep 2023; 13:839. [PMID: 36646810 PMCID: PMC9841965 DOI: 10.1038/s41598-023-28020-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 01/10/2023] [Indexed: 01/18/2023] Open
Abstract
The European Quality of Government Index (EQI) measures the perceived level of government quality by European Union citizens, combining surveys on corruption, impartiality and quality of provided services. It is, thus, an index based on individual subjective evaluations. Understanding the most relevant objective factors affecting the EQI outcomes is important for both evaluators and policy makers, especially in view of the fact that perception of government integrity contributes to determine the level of civic engagement. In our research, we employ methods of Artificial Intelligence and complex systems physics to measure the impact on the perceived government quality of multifaceted variables, describing territorial development and citizen well-being, from an economic, social and environmental viewpoint. Our study, focused on a set of regions in European Union at a subnational scale, leads to identifying the territorial and demographic drivers of citizens' confidence in government institutions. In particular, we find that the 2021 EQI values are significantly related to two indicators: the first one is the difference between female and male labour participation rates, and the second one is a proxy of wealth and welfare such as the average number of rooms per inhabitant. This result corroborates the idea of a central role played by labour gender equity and housing policies in government confidence building. In particular, the relevance of the former indicator in EQI prediction results from a combination of positive conditions such as equal job opportunities, vital labour market, welfare and availability of income sources, while the role of the latter is possibly amplified by the lockdown policies related to the COVID-19 pandemics. The analysis is based on combining regression, to predict EQI from a set of publicly available indicators, with the eXplainable Artificial Intelligence approach, that quantifies the impact of each indicator on the prediction. Such a procedure does not require any ad-hoc hypotheses on the functional dependence of EQI on the indicators used to predict it. Finally, using network science methods concerning community detection, we investigate how the impact of relevant indicators on EQI prediction changes throughout European regions. Thus, the proposed approach enables to identify the objective factors at the basis of government quality perception by citizens in different territorial contexts, providing the methodological basis for the development of a quantitative tool for policy design.
Collapse
|
16
|
Togo MV, Mastrolorito F, Ciriaco F, Trisciuzzi D, Tondo AR, Gambacorta N, Bellantuono L, Monaco A, Leonetti F, Bellotti R, Altomare CD, Amoroso N, Nicolotti O. TIRESIA: An eXplainable Artificial Intelligence Platform for Predicting Developmental Toxicity. J Chem Inf Model 2023; 63:56-66. [PMID: 36520016 DOI: 10.1021/acs.jcim.2c01126] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Herein, a robust and reproducible eXplainable Artificial Intelligence (XAI) approach is presented, which allows prediction of developmental toxicity, a challenging human-health endpoint in toxicology. The application of XAI as an alternative method is of the utmost importance with developmental toxicity being one of the most animal-intensive areas of regulatory toxicology. In this work, the established CAESAR (Computer Assisted Evaluation of industrial chemical Substances According to Regulations) training set made of 234 chemicals for model learning is employed. Two test sets, including as a whole 585 chemicals, were instead used for validation and generalization purposes. The proposed framework favorably compares with the state-of-the-art approaches in terms of accuracy, sensitivity, and specificity, thus resulting in a reliable support system for developmental toxicity ensuring informativeness, uncertainty estimation, generalization, and transparency. Based on the eXtreme Gradient Boosting (XGB) algorithm, our predictive model provides easy interpretative keys based on specific molecular descriptors and structural alerts enabling one to distinguish toxic and nontoxic chemicals. Inspired by the Organisation for Economic Co-operation and Development (OECD) principles for the validation of Quantitative Structure-Activity Relationships (QSARs) for regulatory purposes, the results are summarized in a standard report in portable document format, enclosing also details concerned with a density-based model applicability domain and SHAP (SHapley Additive exPlanations) explainability, the latter particularly useful to better understand the effective roles played by molecular features. Notably, our model has been implemented in TIRESIA (Toxicology Intelligence and Regulatory Evaluations for Scientific and Industry Applications), a free of charge web platform available at http://tiresia.uniba.it.
Collapse
Affiliation(s)
- Maria Vittoria Togo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Fabrizio Mastrolorito
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Fulvio Ciriaco
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, 70125, Bari, Italy
| | - Daniela Trisciuzzi
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Anna Rita Tondo
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Nicola Gambacorta
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Loredana Bellantuono
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, 70124Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy.,Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Francesco Leonetti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy.,Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Cosimo Damiano Altomare
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| | - Nicola Amoroso
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy.,Istituto Nazionale di Fisica Nucleare, Sezione di Bari, 70125Bari, Italy
| | - Orazio Nicolotti
- Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, 70125Bari, Italy
| |
Collapse
|
17
|
Bellantuono L, Monaco A, Amoroso N, Lacalamita A, Pantaleo E, Tangaro S, Bellotti R. Worldwide impact of lifestyle predictors of dementia prevalence: An eXplainable Artificial Intelligence analysis. Front Big Data 2022; 5:1027783. [PMID: 36567754 PMCID: PMC9772995 DOI: 10.3389/fdata.2022.1027783] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/23/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Dementia is an umbrella term indicating a group of diseases that affect the cognitive sphere. Dementia is not a mere individual health issue, since its interference with the ability to carry out daily activities entails a series of collateral problems, comprising exclusion of patients from civil rights and welfare, unpaid caregiving work, mostly performed by women, and an additional burden on the public healthcare systems. Thus, gender and wealth inequalities (both among individuals and among countries) tend to amplify the social impact of such a disease. Since at present there is no cure for dementia but only drug treatments to slow down its progress and mitigate the symptoms, it is essential to work on prevention and early diagnosis, identifying the risk factors that increase the probability of its onset. The complex and multifactorial etiology of dementia, resulting from an interplay between genetics and environmental factors, can benefit from a multidisciplinary approach that follows the "One Health" guidelines of the World Health Organization. Methods In this work, we apply methods of Artificial Intelligence and complex systems physics to investigate the possibility to predict dementia prevalence throughout world countries from a set of variables concerning individual health, food consumption, substance use and abuse, healthcare system efficiency. The analysis uses publicly available indicator values at a country level, referred to a time window of 26 years. Results Employing methods based on eXplainable Artificial Intelligence (XAI) and complex networks, we identify a group of lifestyle factors, mostly concerning nutrition, that contribute the most to dementia incidence prediction. Discussion The proposed approach provides a methodological basis to develop quantitative tools for action patterns against such a disease, which involves issues deeply related with sustainable, such as good health and resposible food consumption.
Collapse
Affiliation(s)
- Loredana Bellantuono
- Dipartimento di Biomedicina Traslazionale e Neuroscienze (DiBraiN), Università degli Studi di Bari Aldo Moro, Bari, Italy,Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy,Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy,*Correspondence: Alfonso Monaco
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy,Dipartimento di Farmacia-Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Antonio Lacalamita
- Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ester Pantaleo
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy,Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy,Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy,Dipartimento Interateneo di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
18
|
Tafuri B, Lombardi A, Nigro S, Urso D, Monaco A, Pantaleo E, Diacono D, De Blasi R, Bellotti R, Tangaro S, Logroscino G. The impact of harmonization on radiomic features in Parkinson's disease and healthy controls: A multicenter study. Front Neurosci 2022; 16:1012287. [PMID: 36300169 PMCID: PMC9589497 DOI: 10.3389/fnins.2022.1012287] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 09/20/2022] [Indexed: 11/29/2022] Open
Abstract
Radiomics is a challenging development area in imaging field that is greatly capturing interest of radiologists and neuroscientists. However, radiomics features show a strong non-biological variability determined by different facilities and imaging protocols, limiting the reproducibility and generalizability of analysis frameworks. Our study aimed to investigate the usefulness of harmonization to reduce site-effects on radiomics features over specific brain regions. We selected T1-weighted magnetic resonance imaging (MRI) by using the MRI dataset Parkinson's Progression Markers Initiative (PPMI) from different sites with healthy controls (HC) and Parkinson's disease (PD) patients. First, the investigation of radiomics measure discrepancies were assessed on healthy brain regions-of-interest (ROIs) via a classification pipeline based on LASSO feature selection and support vector machine (SVM) model. Then, a ComBat-based harmonization approach was applied to correct site-effects. Finally, a validation step on PD subjects evaluated diagnostic accuracy before and after harmonization of radiomics data. Results on healthy subjects demonstrated a dependence from site-effects that could be corrected with ComBat harmonization. LASSO regressor after harmonization was unable to select any feature to distinguish controls by site. Moreover, harmonized radiomics features achieved an area under the receiving operating characteristic curve (AUC) of 0.77 (compared to AUC of 0.71 for raw radiomics measures) in distinguish Parkinson's patients from HC. We found a not-negligible site-effect studying radiomics of HC pre- and post-harmonization of features. Our validation study on PD patients demonstrated a significant influence of non-biological noise source in diagnostic performances. Finally, harmonization of multicenter radiomic data represent a necessary step to make analysis pipelines reliable and replicable for multisite neuroimaging studies.
Collapse
Affiliation(s)
- Benedetta Tafuri
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Angela Lombardi
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Salvatore Nigro
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Istituto di Nanotecnologia, Consiglio Nazionale delle Ricerche (CNR-NANOTEC), Lecce, Italy
| | - Daniele Urso
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Department of Neurosciences, King’s College London, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
| | - Ester Pantaleo
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
| | - Roberto De Blasi
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Dipartimento di Radiologia, Pia Fondazione Cardinale G. Panico, Lecce, Italy
| | - Roberto Bellotti
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento Interateneo di Fisica M. Merlin, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Bari, Bari, Italy
- Dipartimento di Scienze del Suolo, Della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Giancarlo Logroscino
- Dipartimento di Ricerca Clinica in Neurologia, Centro per le Malattie Neurodegenerative e l’Invecchiamento Cerebrale, Pia Fondazione Cardinale G. Panico, Università degli Studi di Bari Aldo Moro, Lecce, Italy
- Dipartimento di Scienze Mediche di Base, Neuroscienze e Organi di Senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
| |
Collapse
|
19
|
Explainable artificial intelligence (XAI) detects wildfire occurrence in the Mediterranean countries of Southern Europe. Sci Rep 2022; 12:16349. [PMID: 36175583 PMCID: PMC9523070 DOI: 10.1038/s41598-022-20347-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/12/2022] [Indexed: 11/24/2022] Open
Abstract
The impacts and threats posed by wildfires are dramatically increasing due to climate change. In recent years, the wildfire community has attempted to estimate wildfire occurrence with machine learning models. However, to fully exploit the potential of these models, it is of paramount importance to make their predictions interpretable and intelligible. This study is a first attempt to provide an eXplainable artificial intelligence (XAI) framework for estimating wildfire occurrence using a Random Forest model with Shapley values for interpretation. Our findings accurately detected regions with a high presence of wildfires (area under the curve 81.3%) and outlined the drivers empowering occurrence, such as the Fire Weather Index and Normalized Difference Vegetation Index. Furthermore, our analysis suggests the presence of anomalous hotspots. In contexts where human and natural spheres constantly intermingle and interact, the XAI framework, suitably integrated into decision support systems, could support forest managers to prevent and mitigate future wildfire disasters and develop strategies for effective fire management, response, recovery, and resilience.
Collapse
|
20
|
Khojaste-Sarakhsi M, Haghighi SS, Ghomi SF, Marchiori E. Deep learning for Alzheimer's disease diagnosis: A survey. Artif Intell Med 2022; 130:102332. [DOI: 10.1016/j.artmed.2022.102332] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/29/2022] [Accepted: 05/30/2022] [Indexed: 11/28/2022]
|
21
|
Lombardi A, Diacono D, Amoroso N, Biecek P, Monaco A, Bellantuono L, Pantaleo E, Logroscino G, De Blasi R, Tangaro S, Bellotti R. A robust framework to investigate the reliability and stability of explainable artificial intelligence markers of Mild Cognitive Impairment and Alzheimer's Disease. Brain Inform 2022; 9:17. [PMID: 35882684 PMCID: PMC9325942 DOI: 10.1186/s40708-022-00165-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/03/2022] [Indexed: 11/11/2022] Open
Abstract
In clinical practice, several standardized neuropsychological tests have been designed to assess and monitor the neurocognitive status of patients with neurodegenerative diseases such as Alzheimer's disease. Important research efforts have been devoted so far to the development of multivariate machine learning models that combine the different test indexes to predict the diagnosis and prognosis of cognitive decline with remarkable results. However, less attention has been devoted to the explainability of these models. In this work, we present a robust framework to (i) perform a threefold classification between healthy control subjects, individuals with cognitive impairment, and subjects with dementia using different cognitive indexes and (ii) analyze the variability of the explainability SHAP values associated with the decisions taken by the predictive models. We demonstrate that the SHAP values can accurately characterize how each index affects a patient's cognitive status. Furthermore, we show that a longitudinal analysis of SHAP values can provide effective information on Alzheimer's disease progression.
Collapse
Affiliation(s)
- Angela Lombardi
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Domenico Diacono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Nicola Amoroso
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento di Farmacia - Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Przemysław Biecek
- Faculty of Mathematics and Information Science, Warsaw University of Technology, Warsaw, Poland
- Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, Warsaw, Poland
| | - Alfonso Monaco
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Loredana Bellantuono
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento di Scienze mediche di base, Neuroscienze e Organi di senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Ester Pantaleo
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| | - Giancarlo Logroscino
- Dipartimento di Scienze mediche di base, Neuroscienze e Organi di senso, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Pia Fondazione “Card. G. Panico”, Tricase, Italy
| | | | - Sabina Tangaro
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, Università degli Studi di Bari Aldo Moro, Bari, Italy
| | - Roberto Bellotti
- Dipartimento di Fisica, Università degli Studi di Bari Aldo Moro, Bari, Italy
- Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Bari, Italy
| |
Collapse
|
22
|
Accurate Evaluation of Feature Contributions for Sentinel Lymph Node Status Classification in Breast Cancer. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12147227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The current guidelines recommend the sentinel lymph node biopsy to evaluate the lymph node involvement for breast cancer patients with clinically negative lymph nodes on clinical or radiological examination. Machine learning (ML) models have significantly improved the prediction of lymph nodes status based on clinical features, thus avoiding expensive, time-consuming and invasive procedures. However, the classification of sentinel lymph node status represents a typical example of an unbalanced classification problem. In this work, we developed a ML framework to explore the effects of unbalanced populations on the performance and stability of feature ranking for sentinel lymph node status classification in breast cancer. Our results indicate state-of-the-art AUC (Area under the Receiver Operating Characteristic curve) values on a hold-out set (67%) while providing particularly stable features related to tumor size, histological subtype and estrogen receptor expression, which should therefore be considered as potential biomarkers.
Collapse
|
23
|
Explanations of Machine Learning Models in Repeated Nested Cross-Validation: An Application in Age Prediction Using Brain Complexity Features. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136681] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
SHAP (Shapley additive explanations) is a framework for explainable AI that makes explanations locally and globally. In this work, we propose a general method to obtain representative SHAP values within a repeated nested cross-validation procedure and separately for the training and test sets of the different cross-validation rounds to assess the real generalization abilities of the explanations. We applied this method to predict individual age using brain complexity features extracted from MRI scans of 159 healthy subjects. In particular, we used four implementations of the fractal dimension (FD) of the cerebral cortex—a measurement of brain complexity. Representative SHAP values highlighted that the most recent implementation of the FD had the highest impact over the others and was among the top-ranking features for predicting age. SHAP rankings were not the same in the training and test sets, but the top-ranking features were consistent. In conclusion, we propose a method—and share all the source code—that allows a rigorous assessment of the SHAP explanations of a trained model in a repeated nested cross-validation setting.
Collapse
|
24
|
Yang E, Zhang H, Guo X, Zang Z, Liu Z, Liu Y. A multivariate multi-step LSTM forecasting model for tuberculosis incidence with model explanation in Liaoning Province, China. BMC Infect Dis 2022; 22:490. [PMID: 35606725 PMCID: PMC9128107 DOI: 10.1186/s12879-022-07462-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 05/10/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tuberculosis (TB) is the respiratory infectious disease with the highest incidence in China. We aim to design a series of forecasting models and find the factors that affect the incidence of TB, thereby improving the accuracy of the incidence prediction. RESULTS In this paper, we developed a new interpretable prediction system based on the multivariate multi-step Long Short-Term Memory (LSTM) model and SHapley Additive exPlanation (SHAP) method. Four accuracy measures are introduced into the system: Root Mean Square Error, Mean Absolute Error, Mean Absolute Percentage Error, and symmetric Mean Absolute Percentage Error. The Autoregressive Integrated Moving Average (ARIMA) model and seasonal ARIMA model are established. The multi-step ARIMA-LSTM model is proposed for the first time to examine the performance of each model in the short, medium, and long term, respectively. Compared with the ARIMA model, each error of the multivariate 2-step LSTM model is reduced by 12.92%, 15.94%, 15.97%, and 14.81% in the short term. The 3-step ARIMA-LSTM model achieved excellent performance, with each error decreased to 15.19%, 33.14%, 36.79%, and 29.76% in the medium and long term. We provide the local and global explanation of the multivariate single-step LSTM model in the field of incidence prediction, pioneering. CONCLUSIONS The multivariate 2-step LSTM model is suitable for short-term prediction and obtained a similar performance as previous studies. The 3-step ARIMA-LSTM model is appropriate for medium-to-long-term prediction and outperforms these models. The SHAP results indicate that the five most crucial features are maximum temperature, average relative humidity, local financial budget, monthly sunshine percentage, and sunshine hours.
Collapse
Affiliation(s)
- Enbin Yang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Hao Zhang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
- College of Software, Jilin University, Changchun, 130012 China
| | - Xinsheng Guo
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Zinan Zang
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
| | - Zhen Liu
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Graduate School of Engineering, Nagasaki Institute of Applied Science, 536 Aba-machi, Nagasaki, 851-0193 Japan
| | - Yuanning Liu
- College of Computer Science and Technology, Jilin University, Changchun, 130012 China
- Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, 130012 China
- College of Software, Jilin University, Changchun, 130012 China
| |
Collapse
|
25
|
Venerito V, Emmi G, Cantarini L, Leccese P, Fornaro M, Fabiani C, Lascaro N, Coladonato L, Mattioli I, Righetti G, Malandrino D, Tangaro S, Palermo A, Urban ML, Conticini E, Frediani B, Iannone F, Lopalco G. Validity of Machine Learning in Predicting Giant Cell Arteritis Flare After Glucocorticoids Tapering. Front Immunol 2022; 13:860877. [PMID: 35450069 PMCID: PMC9017227 DOI: 10.3389/fimmu.2022.860877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background Inferential statistical methods failed in identifying reliable biomarkers and risk factors for relapsing giant cell arteritis (GCA) after glucocorticoids (GCs) tapering. A ML approach allows to handle complex non-linear relationships between patient attributes that are hard to model with traditional statistical methods, merging them to output a forecast or a probability for a given outcome. Objective The objective of the study was to assess whether ML algorithms can predict GCA relapse after GCs tapering. Methods GCA patients who underwent GCs therapy and regular follow-up visits for at least 12 months, were retrospectively analyzed and used for implementing 3 ML algorithms, namely, Logistic Regression (LR), Decision Tree (DT), and Random Forest (RF). The outcome of interest was disease relapse within 3 months during GCs tapering. After a ML variable selection method, based on a XGBoost wrapper, an attribute core set was used to train and test each algorithm using 5-fold cross-validation. The performance of each algorithm in both phases was assessed in terms of accuracy and area under receiver operating characteristic curve (AUROC). Results The dataset consisted of 107 GCA patients (73 women, 68.2%) with mean age ( ± SD) 74.1 ( ± 8.5) years at presentation. GCA flare occurred in 40/107 patients (37.4%) within 3 months after GCs tapering. As a result of ML wrapper, the attribute core set with the least number of variables used for algorithm training included presence/absence of diabetes mellitus and concomitant polymyalgia rheumatica as well as erythrocyte sedimentation rate level at GCs baseline. RF showed the best performance, being significantly superior to other algorithms in accuracy (RF 71.4% vs LR 70.4% vs DT 62.9%). Consistently, RF precision (72.1%) was significantly greater than those of LR (62.6%) and DT (50.8%). Conversely, LR was superior to RF and DT in recall (RF 60% vs LR 62.5% vs DT 47.5%). Moreover, RF AUROC (0.76) was more significant compared to LR (0.73) and DT (0.65). Conclusions RF algorithm can predict GCA relapse after GCs tapering with sufficient accuracy. To date, this is one of the most accurate predictive modelings for such outcome. This ML method represents a reproducible tool, capable of supporting clinicians in GCA patient management.
Collapse
Affiliation(s)
- Vincenzo Venerito
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Giacomo Emmi
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Luca Cantarini
- Research Centre of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Centre, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Pietro Leccese
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Potenza, Italy
| | - Marco Fornaro
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Claudia Fabiani
- Ophthalmology Unit, Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Nancy Lascaro
- Rheumatology Department of Lucania, San Carlo Hospital of Potenza, Potenza, Italy
| | - Laura Coladonato
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Irene Mattioli
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Giulia Righetti
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Danilo Malandrino
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Sabina Tangaro
- Dipartimento di Scienze del Suolo, della Pianta e degli Alimenti, University of Bari "Aldo Moro", Bari, Italy.,Istituto Nazionale di Fisica Nucleare - Sezione di Bari, Bari, Italy
| | - Adalgisa Palermo
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Maria Letizia Urban
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Edoardo Conticini
- Research Centre of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Centre, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Bruno Frediani
- Research Centre of Systemic Autoinflammatory Diseases, Behçet's Disease Clinic and Rheumatology-Ophthalmology Collaborative Uveitis Centre, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, Siena, Italy
| | - Florenzo Iannone
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| | - Giuseppe Lopalco
- Department of Emergency and Organ Transplantation, Rheumatology Unit, University of Bari, Bari, Italy
| |
Collapse
|
26
|
Zhu G, Chen H, Jiang B, Chen F, Xie Y, Wintermark M. Application of Deep Learning to Ischemic and Hemorrhagic Stroke Computed Tomography and Magnetic Resonance Imaging. Semin Ultrasound CT MR 2022; 43:147-152. [PMID: 35339255 DOI: 10.1053/j.sult.2022.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Deep Learning (DL) algorithm holds great potential in the field of stroke imaging. It has been applied not only to the "downstream" side such as lesion detection, treatment decision making, and outcome prediction, but also to the "upstream" side for generation and enhancement of stroke imaging. This paper aims to comprehensively overview the common applications of DL to stroke imaging. In the future, more standardized imaging datasets and more extensive studies are needed to establish and validate the role of DL in stroke imaging.
Collapse
Affiliation(s)
- Guangming Zhu
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, CA
| | - Hui Chen
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, CA
| | - Bin Jiang
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, CA
| | - Fei Chen
- Department of Neurology, Xuan Wu hospital, Capital Meidcal University, Beijing, China
| | - Yuan Xie
- Subtle Medical Inc, Menlo Park, CA
| | - Max Wintermark
- Department of Radiology, Neuroradiology Section, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
27
|
Retico A, Avanzo M, Boccali T, Bonacorsi D, Botta F, Cuttone G, Martelli B, Salomoni D, Spiga D, Trianni A, Stasi M, Iori M, Talamonti C. Enhancing the impact of Artificial Intelligence in Medicine: A joint AIFM-INFN Italian initiative for a dedicated cloud-based computing infrastructure. Phys Med 2021; 91:140-150. [PMID: 34801873 DOI: 10.1016/j.ejmp.2021.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
Artificial Intelligence (AI) techniques have been implemented in the field of Medical Imaging for more than forty years. Medical Physicists, Clinicians and Computer Scientists have been collaborating since the beginning to realize software solutions to enhance the informative content of medical images, including AI-based support systems for image interpretation. Despite the recent massive progress in this field due to the current emphasis on Radiomics, Machine Learning and Deep Learning, there are still some barriers to overcome before these tools are fully integrated into the clinical workflows to finally enable a precision medicine approach to patients' care. Nowadays, as Medical Imaging has entered the Big Data era, innovative solutions to efficiently deal with huge amounts of data and to exploit large and distributed computing resources are urgently needed. In the framework of a collaboration agreement between the Italian Association of Medical Physicists (AIFM) and the National Institute for Nuclear Physics (INFN), we propose a model of an intensive computing infrastructure, especially suited for training AI models, equipped with secure storage systems, compliant with data protection regulation, which will accelerate the development and extensive validation of AI-based solutions in the Medical Imaging field of research. This solution can be developed and made operational by Physicists and Computer Scientists working on complementary fields of research in Physics, such as High Energy Physics and Medical Physics, who have all the necessary skills to tailor the AI-technology to the needs of the Medical Imaging community and to shorten the pathway towards the clinical applicability of AI-based decision support systems.
Collapse
Affiliation(s)
- Alessandra Retico
- National Institute for Nuclear Physics (INFN), Pisa Division, 56127 Pisa, Italy
| | - Michele Avanzo
- Medical Physics Department, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy
| | - Tommaso Boccali
- National Institute for Nuclear Physics (INFN), Pisa Division, 56127 Pisa, Italy
| | - Daniele Bonacorsi
- University of Bologna, 40126 Bologna, Italy; INFN, Bologna Division, 40126 Bologna, Italy
| | - Francesca Botta
- Medical Physics Unit, Istituto Europeo di oncologia IRCCS, 20141 Milan, Italy
| | - Giacomo Cuttone
- INFN, Southern National Laboratory (LNS), 95123 Catania, Italy
| | | | | | | | - Annalisa Trianni
- Medical Physics Unit, Ospedale Santa Chiara APSS, 38122 Trento, Italy
| | - Michele Stasi
- Medical Physics Unit, A.O. Ordine Mauriziano di Torino, 10128 Torino, Italy
| | - Mauro Iori
- Medical Physics Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy.
| | - Cinzia Talamonti
- Department Biomedical Experimental and Clinical Science "Mario Serio", University of Florence, 50134 Florence, Italy; INFN, Florence Division, 50134 Florence, Italy
| |
Collapse
|