1
|
Popovičová A, Račeková E, Martončíková M, Fabianová K, Raček A, Žideková M. Effect of microwave radiation on adult neurogenesis and behavior of prenatally exposed rats. IBRO Neurosci Rep 2024; 17:235-244. [PMID: 39286040 PMCID: PMC11404077 DOI: 10.1016/j.ibneur.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/31/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Postnatal neurogenesis appears to be highly sensitive to environmental factors, including microwave electromagnetic radiation (MWR). Here, we investigated the impact of MWR during intrauterine development on juvenile and adult neurogenesis in the rostral migratory stream (RMS) and the dentate gyrus of the hippocampus in the rat brain, as well as its effect on animal behavior. Female rats were exposed to MWR at a frequency of 2.45 GHz for 2 hours daily throughout pregnancy. The offspring of irradiated mothers survived to either juvenile age or adulthood. The brains of the rats were subjected to morphological analysis, assessing cell proliferation and death in both neurogenic regions. In the RMS, the differentiation of nitrergic neurons was also investigated. The effect of MWR on behavior was evaluated in rats surviving to adulthood. Prenatal MWR exposure caused significant changes in the number of proliferating and dying cells, depending on the age of the animals and the observed neurogenic region. In addition, MWR attenuated the maturation of nitrergic neurons in the RMS in both juvenile and adult rats. Morphological alterations in neurogenesis were accompanied by changes in animals' behavior. Affected neurogenesis and changes in animal behavior suggest a high sensitivity of the developing brain to MWR.
Collapse
Affiliation(s)
- Alexandra Popovičová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Enikő Račeková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Marcela Martončíková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Kamila Fabianová
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Adam Raček
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| | - Monika Žideková
- Institute of Neurobiology, Biomedical Research Center, Slovak Academy of Sciences, Šoltésovej 4, Košice 040 01, Slovakia
| |
Collapse
|
2
|
Chen X, Luo Y, Zhu Q, Zhang J, Huang H, Kan Y, Li D, Xu M, Liu S, Li J, Pan J, Zhang L, Guo Y, Wang B, Qi G, Zhou Z, Zhang CY, Fang L, Wang Y, Chen X. Small extracellular vesicles from young plasma reverse age-related functional declines by improving mitochondrial energy metabolism. NATURE AGING 2024; 4:814-838. [PMID: 38627524 PMCID: PMC11186790 DOI: 10.1038/s43587-024-00612-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/15/2024] [Indexed: 05/31/2024]
Abstract
Recent investigations into heterochronic parabiosis have unveiled robust rejuvenating effects of young blood on aged tissues. However, the specific rejuvenating mechanisms remain incompletely elucidated. Here we demonstrate that small extracellular vesicles (sEVs) from the plasma of young mice counteract pre-existing aging at molecular, mitochondrial, cellular and physiological levels. Intravenous injection of young sEVs into aged mice extends their lifespan, mitigates senescent phenotypes and ameliorates age-associated functional declines in multiple tissues. Quantitative proteomic analyses identified substantial alterations in the proteomes of aged tissues after young sEV treatment, and these changes are closely associated with metabolic processes. Mechanistic investigations reveal that young sEVs stimulate PGC-1α expression in vitro and in vivo through their miRNA cargoes, thereby improving mitochondrial functions and mitigating mitochondrial deficits in aged tissues. Overall, this study demonstrates that young sEVs reverse degenerative changes and age-related dysfunction, at least in part, by stimulating PGC-1α expression and enhancing mitochondrial energy metabolism.
Collapse
Affiliation(s)
- Xiaorui Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yang Luo
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Qing Zhu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China
| | - Huan Huang
- Department of Pediatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yansheng Kan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Dian Li
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Ming Xu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Shuohan Liu
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Jianxiao Li
- Institute of Systems, Molecular and Integrative Biology, School of Life Sciences, University of Liverpool, Liverpool, UK
| | - Jinmeng Pan
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Li Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Yan Guo
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Binghao Wang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China
| | - Guantong Qi
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Zhen Zhou
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China
| | - Chen-Yu Zhang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Research Unit of Extracellular RNA, Chinese Academy of Medical Sciences, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Yanbo Wang
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
| | - Xi Chen
- Center for Reproductive Medicine and Department of Andrology, Nanjing Drum Tower Hospital, State Key Laboratory of Pharmaceutical Biotechnology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, NJU Advanced Institute of Life Sciences (NAILS), School of Life Sciences, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, China.
- Institute of Artificial Intelligence Biomedicine, Nanjing University, Nanjing, China.
| |
Collapse
|
3
|
Guerin SP, Melbourne JK, Dang HQ, Shaji CA, Nixon K. Astrocyte Reactivity and Neurodegeneration in the Female Rat Brain Following Alcohol Dependence. Neuroscience 2023; 529:183-199. [PMID: 37598836 PMCID: PMC10810177 DOI: 10.1016/j.neuroscience.2023.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/04/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Recent evidence suggests that alcohol use disorder (AUD) may manifest itself differently in women compared to men. Women experience AUDs on an accelerated timeline and may have certain regional vulnerabilities. In male rats, neuronal cell death and astrocyte reactivity are noted following induction of alcohol dependence in an animal model of an AUD. However, the regional and temporal patterns of neurodegeneration and astrocyte reactivity have yet to be fully examined in females using this model. Therefore, adult female rats were exposed to a 4-day binge model of alcohol dependence followed by different periods of abstinence. Histological markers for FluoroJade B, a label of degenerating neurons, and vimentin, a marker for reactive astrocytes, were utilized. The expression of these markers in cortical and limbic regions was quantified immediately after their last dose (e.g., T0), or 2, 7, and 14 days later. Significant neuronal cell death was noted in the entorhinal cortex and the hippocampus, similar to previous reports in males, but also in several cortical regions not previously observed. Vimentin immunoreactivity was noted in the same regions as previously reported, in addition to three novel regions. Vimentin immunoreactivity also occurred at earlier and later time points in some cortical and hippocampal regions. These data suggest that both neuronal cell death and astrocyte reactivity could be more widespread in females compared to males. Therefore, this study provides a framework for specific regions and time points which should be examined in future studies of alcohol-induced damage that include female rats.
Collapse
Affiliation(s)
- Steven P Guerin
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Jennifer K Melbourne
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Huy Q Dang
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Chinchusha Anasooya Shaji
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States
| | - Kimberly Nixon
- The University of Texas at Austin, Division of Pharmacology & Toxicology, College of Pharmacy, Austin, TX 78712, United States.
| |
Collapse
|
4
|
Park HR, Cai M, Yang EJ. Novel Psychopharmacological Herbs Relieve Behavioral Abnormalities and Hippocampal Dysfunctions in an Animal Model of Post-Traumatic Stress Disorder. Nutrients 2023; 15:3815. [PMID: 37686847 PMCID: PMC10490282 DOI: 10.3390/nu15173815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Post-traumatic stress disorder (PTSD) is an anxiety disorder caused by traumatic or frightening events, with intensified anxiety, fear memories, and cognitive impairment caused by a dysfunctional hippocampus. Owing to its complex phenotype, currently prescribed treatments for PTSD are limited. This study investigated the psychopharmacological effects of novel COMBINATION herbal medicines on the hippocampus of a PTSD murine model induced by combining single prolonged stress (SPS) and foot shock (FS). We designed a novel herbal formula extract (HFE) from Chaenomeles sinensis, Glycyrrhiza uralensis, and Atractylodes macrocephala. SPS+FS mice were administered HFE (500 and 1000 mg/kg) once daily for 14 days. The effects of HFE of HFE on the hippocampus were analyzed using behavioral tests, immunostaining, Golgi staining, and Western blotting. HFE alleviated anxiety-like behavior and fear response, improved short-term memory, and restored hippocampal dysfunction, including hippocampal neurogenesis alteration and aberrant migration and hyperactivation of dentate granule cells in SPS+FS mice. HFE increased phosphorylation of the Kv4.2 potassium channel, extracellular signal-regulated kinase, and cAMP response element-binding protein, which were reduced in the hippocampus of SPS+FS mice. Therefore, our study suggests HFE as a potential therapeutic drug for PTSD by improving behavioral impairment and hippocampal dysfunction and regulating Kv4.2 potassium channel-related pathways in the hippocampus.
Collapse
Affiliation(s)
| | | | - Eun Jin Yang
- Department of KM Science Research, Korea Institute of Oriental Medicine (KIOM), Daejeon 34054, Republic of Korea; (H.R.P.); (M.C.)
| |
Collapse
|
5
|
Ma J, Xiong F, Li Z, Dong G, Sun X, Yin W, Cai H. The effect of chronic alcohol exposure on spatial memory and BDNF-TrkB- PLCγ1 signaling in the hippocampus of male and female mice. Heliyon 2023; 9:e16660. [PMID: 37303582 PMCID: PMC10248118 DOI: 10.1016/j.heliyon.2023.e16660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Alcohol is a commonly used drug worldwide, and abuse of alcohol has become a serious public health problem. Alcohol consumption over time can cause cognitive deficits and memory impairment, which is thought to be associated with changes in the hippocampus. Given previously known effects of brain-derived neurotrophic factor (BDNF) in regulating synaptic plasticity and learning and memory, we investigated the effect of chronic alcohol consumption on spatial memory impairment in both sexes and changes in BDNF signaling in the hippocampus. After 4 weeks of intermittent access to 20% alcohol, memory impairment in both male and female mice was evaluated using the Morris water maze and the expression of BDNF, TrkB, phosphorylation of PLCγ1 (p-PLCγ1) and PLCγ1 in the hippocampus was examined using Western blot. As expected, females spent longer escape latencies during the training phase, and both sexes spent shorter time in the target quadrant. Furthermore, after 4 weeks 20% alcohol exposure, we found significantly decreased expression levels of BDNF in the hippocampus of female mice but increased levels in male mice. TrkB and PLCγ1 expression showed no significant change in the hippocampus of both sexes. These findings suggest that chronic alcohol exposure may induce spatial memory impairment in both sexes and opposite changes in expression of BDNF and p-PLCγ1 in the hippocampus of males and females.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongxing Cai
- Corresponding author. .Department of Forensic Science, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, China.
| |
Collapse
|
6
|
Li J, Li C, Subedi P, Tian X, Lu X, Miriyala S, Panchatcharam M, Sun H. Light Alcohol Consumption Promotes Early Neurogenesis Following Ischemic Stroke in Adult C57BL/6J Mice. Biomedicines 2023; 11:biomedicines11041074. [PMID: 37189692 DOI: 10.3390/biomedicines11041074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/20/2023] [Accepted: 03/31/2023] [Indexed: 04/05/2023] Open
Abstract
Ischemic stroke is one of the leading causes of death and disability worldwide. Neurogenesis plays a crucial role in postischemic functional recovery. Alcohol dose-dependently affects the prognosis of ischemic stroke. We investigated the impact of light alcohol consumption (LAC) on neurogenesis under physiological conditions and following ischemic stroke. C57BL/6J mice (three months old) were fed with 0.7 g/kg/day ethanol (designed as LAC) or volume-matched water (designed as control) daily for eight weeks. To evaluate neurogenesis, the numbers of 5-bromo-2-deoxyuridine (BrdU)+/doublecortin (DCX)+ and BrdU+/NeuN+ neurons were assessed in the subventricular zone (SVZ), dentate gyrus (DG), ischemic cortex, and ischemic striatum. The locomotor activity was determined by the accelerating rotarod and open field tests. LAC significantly increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the SVZ under physiological conditions. Ischemic stroke dramatically increased BrdU+/DCX+ and BrdU+/NeuN+ cells in the DG, SVZ, ischemic cortex, and ischemic striatum. The increase in BrdU+/DCX+ cells was significantly greater in LAC mice compared to the control mice. In addition, LAC significantly increased BrdU+/NeuN+ cells by about three folds in the DG, SVZ, and ischemic cortex. Furthermore, LAC reduced ischemic brain damage and improved locomotor activity. Therefore, LAC may protect the brain against ischemic stroke by promoting neurogenesis.
Collapse
Affiliation(s)
- Jiyu Li
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Chun Li
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Pushpa Subedi
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Xinli Tian
- Department of Pharmacology, Toxicology & Neuroscience, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Xiaohong Lu
- Department of Pharmacology, Toxicology & Neuroscience, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | - Sumitra Miriyala
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| | | | - Hong Sun
- Department of Cellular Biology & Anatomy, LSUHSC-Shreveport, Shreveport, LA 71103, USA
| |
Collapse
|
7
|
Anand SK, Ahmad MH, Sahu MR, Subba R, Mondal AC. Detrimental Effects of Alcohol-Induced Inflammation on Brain Health: From Neurogenesis to Neurodegeneration. Cell Mol Neurobiol 2022:10.1007/s10571-022-01308-2. [DOI: 10.1007/s10571-022-01308-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022]
|
8
|
Vilpoux C, Fouquet G, Deschamps C, Lefebvre E, Gosset P, Antol J, Zabijak L, Marcq I, Naassila M, Pierrefiche O. Astrogliosis and compensatory neurogenesis after the first ethanol binge drinking-like exposure in the adolescent rat. Alcohol Clin Exp Res 2021; 46:207-220. [PMID: 34862633 DOI: 10.1111/acer.14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 11/22/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Multiple ethanol binge drinking-like exposures during adolescence in the rat induce neuroinflammation, loss of neurogenesis, and cognitive deficits in adulthood. Interestingly, the first ethanol binge drinking-like exposure during adolescence also induces short- term impairments in cognition and synaptic plasticity in the hippocampus though the cellular mechanisms of these effects are unclear. Here, we sought to determine which of the cellular effects of ethanol might play a role in the disturbances in cognition and synaptic plasticity observed in the adolescent male rat after two binge-like ethanol exposures. METHODS Using immunochemistry, we measured neurogenesis, neuronal loss, astrogliosis, neuroinflammation, and synaptogenesis in the hippocampus of adolescent rats 48 h after two binge-like ethanol exposures (3 g/kg, i.p., 9 h apart). We used flow cytometry to analyze activated microglia and identify the TLR4-expressing cell types. RESULTS We detected increased hippocampal doublecortin immunoreactivity in the subgranular zone (SGZ) of the dentate gyrus (DG), astrogliosis in the SGZ, and a reduced number of mature neurons in the DG and in CA3, suggesting compensatory neurogenesis. Synaptic density decreased in the stratum oriens of CA1 revealing structural plasticity. There was no change in microglial TLR4 expression or in the number of activated microglia, suggesting a lack of neuroinflammatory processes, although neuronal TLR4 was decreased in CA1 and DG. CONCLUSIONS Our findings demonstrate that the cognitive deficits associated with hippocampal synaptic plasticity alterations that we previously characterized 48 h after the first binge-like ethanol exposures are associated with hippocampal structural plasticity, astrogliosis, and decreased neuronal TLR4 expression, but not with microglia reactivity.
Collapse
Affiliation(s)
- Catherine Vilpoux
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Gregory Fouquet
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Chloe Deschamps
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Elise Lefebvre
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Philippe Gosset
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Johann Antol
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Luciane Zabijak
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France.,Plateforme d'Ingénierie Cellulaire & Analyses des Protéines (ICAP), Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Ingrid Marcq
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Mickael Naassila
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| | - Olivier Pierrefiche
- UMR1247 INSERM, Groupe de Recherche sur l'Alcool et les Pharmacodépendances, Centre Universitaire de Recherche en Santé, Université de Picardie Jules Verne, Amiens, France
| |
Collapse
|
9
|
Wooden JI, Thompson KR, Guerin SP, Nawarawong NN, Nixon K. Consequences of adolescent alcohol use on adult hippocampal neurogenesis and hippocampal integrity. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2021; 160:281-304. [PMID: 34696876 DOI: 10.1016/bs.irn.2021.08.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Alcohol is the most commonly used drug among adolescents. Their decreased sensitivity to self-regulating cues to stop drinking coincides with an enhanced vulnerability to negative outcomes of excessive drinking. In adolescents, the hippocampus is one brain region that is particularly susceptible to alcohol-induced neurodegeneration. While cell death is causal, alcohol effects on adult neurogenesis also impact hippocampal structure and function. This review describes what little is known about adolescent-specific effects of alcohol on adult neurogenesis and its relationship to hippocampal integrity. For example, alcohol intoxication inhibits neurogenesis persistently in adolescents but produces aberrant neurogenesis after alcohol dependence. Little is known, however, about the role of adolescent-born neurons in hippocampal integrity or the mechanisms of these effects. Understanding the role of neurogenesis in adolescent alcohol use and misuse is critical to our understanding of adolescent susceptibility to alcohol pathology and increased likelihood of developing alcohol problems in adulthood.
Collapse
Affiliation(s)
- J I Wooden
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - K R Thompson
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - S P Guerin
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - N N Nawarawong
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States
| | - K Nixon
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, United States.
| |
Collapse
|