1
|
Bonetti L, Fernández-Rubio G, Lumaca M, Carlomagno F, Risgaard Olsen E, Criscuolo A, Kotz SA, Vuust P, Brattico E, Kringelbach ML. Age-related neural changes underlying long-term recognition of musical sequences. Commun Biol 2024; 7:1036. [PMID: 39209979 PMCID: PMC11362492 DOI: 10.1038/s42003-024-06587-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 07/15/2024] [Indexed: 09/04/2024] Open
Abstract
Aging is often associated with decline in brain processing power and neural predictive capabilities. To challenge this notion, we used magnetoencephalography (MEG) and magnetic resonance imaging (MRI) to record the whole-brain activity of 39 older adults (over 60 years old) and 37 young adults (aged 18-25 years) during recognition of previously memorised and varied musical sequences. Results reveal that when recognising memorised sequences, the brain of older compared to young adults reshapes its functional organisation. In fact, it shows increased early activity in sensory regions such as the left auditory cortex (100 ms and 250 ms after each note), and only moderate decreased activity (350 ms) in medial temporal lobe and prefrontal regions. When processing the varied sequences, older adults show a marked reduction of the fast-scale functionality (250 ms after each note) of higher-order brain regions including hippocampus, ventromedial prefrontal and inferior temporal cortices, while no differences are observed in the auditory cortex. Accordingly, young outperform older adults in the recognition of novel sequences, while no behavioural differences are observed with regards to memorised ones. Our findings show age-related neural changes in predictive and memory processes, integrating existing theories on compensatory neural mechanisms in non-pathological aging.
Collapse
Affiliation(s)
- Leonardo Bonetti
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark.
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK.
- Department of Psychiatry, University of Oxford, Oxford, UK.
| | - Gemma Fernández-Rubio
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Massimo Lumaca
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Francesco Carlomagno
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Emma Risgaard Olsen
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Antonio Criscuolo
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Sonja A Kotz
- Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Peter Vuust
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
| | - Elvira Brattico
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Department of Education, Psychology, Communication, University of Bari Aldo Moro, Bari, Italy
| | - Morten L Kringelbach
- Center for Music in the Brain, Department of Clinical Medicine, Aarhus University & The Royal Academy of Music, Aarhus/Aalborg, Aarhus, Denmark
- Centre for Eudaimonia and Human Flourishing, Linacre College, University of Oxford, Oxford, UK
- Department of Psychiatry, University of Oxford, Oxford, UK
| |
Collapse
|
2
|
James C, Müller D, Müller C, Van De Looij Y, Altenmüller E, Kliegel M, Van De Ville D, Marie D. Randomized controlled trials of non-pharmacological interventions for healthy seniors: Effects on cognitive decline, brain plasticity and activities of daily living-A 23-year scoping review. Heliyon 2024; 10:e26674. [PMID: 38707392 PMCID: PMC11066598 DOI: 10.1016/j.heliyon.2024.e26674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 01/28/2024] [Accepted: 02/16/2024] [Indexed: 05/07/2024] Open
Abstract
Little is known about the simultaneous effects of non-pharmacological interventions (NPI) on healthy older adults' behavior and brain plasticity, as measured by psychometric instruments and magnetic resonance imaging (MRI). The purpose of this scoping review was to compile an extensive list of randomized controlled trials published from January 1, 2000, to August 31, 2023, of NPI for mitigating and countervailing age-related physical and cognitive decline and associated cerebral degeneration in healthy elderly populations with a mean age of 55 and over. After inventorying the NPI that met our criteria, we divided them into six classes: single-domain cognitive, multi-domain cognitive, physical aerobic, physical non-aerobic, combined cognitive and physical aerobic, and combined cognitive and physical non-aerobic. The ultimate purpose of these NPI was to enhance individual autonomy and well-being by bolstering functional capacity that might transfer to activities of daily living. The insights from this study can be a starting point for new research and inform social, public health, and economic policies. The PRISMA extension for scoping reviews (PRISMA-ScR) checklist served as the framework for this scoping review, which includes 70 studies. Results indicate that medium- and long-term interventions combining non-aerobic physical exercise and multi-domain cognitive interventions best stimulate neuroplasticity and protect against age-related decline and that outcomes may transfer to activities of daily living.
Collapse
Affiliation(s)
- C.E. James
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
| | - D.M. Müller
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - C.A.H. Müller
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - Y. Van De Looij
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- Division of Child Development and Growth, Department of Pediatrics, School of Medicine, University of Geneva, 6 Rue Willy Donzé, 1205 Geneva, Switzerland
- Center for Biomedical Imaging (CIBM), Animal Imaging and Technology Section, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH F1 - Station 6, 1015, Lausanne, Switzerland
| | - E. Altenmüller
- Hannover University of Music, Drama and Media, Institute for Music Physiology and Musicians' Medicine, Neues Haus 1, 30175, Hannover, Germany
- Center for Systems Neuroscience, Bünteweg 2, 30559, Hannover, Germany
| | - M. Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Chemin de Pinchat 22, 1207, Carouge, Switzerland
| | - D. Van De Ville
- Ecole polytechnique fédérale de Lausanne (EPFL), Neuro-X Institute, Campus Biotech, 1211 Geneva, Switzerland
- University of Geneva, Department of Radiology and Medical Informatics, Faculty of Medecine, Campus Biotech, 1211 Geneva, Switzerland
| | - D. Marie
- Geneva Musical Minds Lab (GEMMI Lab), Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Cognitive and Affective Neuroimaging Section, University of Geneva, 1211, Geneva, Switzerland
| |
Collapse
|
3
|
Liebscher M, Dell’Orco A, Doll-Lee J, Buerger K, Dechent P, Ewers M, Fliessbach K, Glanz W, Hetzer S, Janowitz D, Kilimann I, Laske C, Lüsebrink F, Munk M, Perneczky R, Peters O, Preis L, Priller J, Rauchmann B, Rostamzadeh A, Roy-Kluth N, Scheffler K, Schneider A, Schott BH, Spottke A, Spruth E, Teipel S, Wiltfang J, Jessen F, Düzel E, Wagner M, Röske S, Wirth M. Short communication: Lifetime musical activity and resting-state functional connectivity in cognitive networks. PLoS One 2024; 19:e0299939. [PMID: 38696395 PMCID: PMC11065262 DOI: 10.1371/journal.pone.0299939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/20/2024] [Indexed: 05/04/2024] Open
Abstract
BACKGROUND Participation in multimodal leisure activities, such as playing a musical instrument, may be protective against brain aging and dementia in older adults (OA). Potential neuroprotective correlates underlying musical activity remain unclear. OBJECTIVE This cross-sectional study investigated the association between lifetime musical activity and resting-state functional connectivity (RSFC) in three higher-order brain networks: the Default Mode, Fronto-Parietal, and Salience networks. METHODS We assessed 130 cognitively unimpaired participants (≥ 60 years) from the baseline cohort of the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Lifetime musical activity was operationalized by the self-reported participation in musical instrument playing across early, middle, and late life stages using the Lifetime of Experiences Questionnaire (LEQ). Participants who reported musical activity during all life stages (n = 65) were compared to controls who were matched on demographic and reserve characteristics (including education, intelligence, socioeconomic status, self-reported physical activity, age, and sex) and never played a musical instrument (n = 65) in local (seed-to-voxel) and global (within-network and between-network) RSFC patterns using pre-specified network seeds. RESULTS Older participants with lifetime musical activity showed significantly higher local RSFC between the medial prefrontal cortex (Default Mode Network seed) and temporal as well as frontal regions, namely the right temporal pole and the right precentral gyrus extending into the superior frontal gyrus, compared to matched controls. There were no significant group differences in global RSFC within or between the three networks. CONCLUSION We show that playing a musical instrument during life relates to higher RSFC of the medial prefrontal cortex with distant brain regions involved in higher-order cognitive and motor processes. Preserved or enhanced functional connectivity could potentially contribute to better brain health and resilience in OA with a history in musical activity. TRIAL REGISTRATION German Clinical Trials Register (DRKS00007966, 04/05/2015).
Collapse
Affiliation(s)
- Maxie Liebscher
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | - Andrea Dell’Orco
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
- Department of Neuroradiology, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt- Universität zu Berlin, Berlin, Germany
| | - Johanna Doll-Lee
- Department of Neurology, Hannover Medical School, Hannover, Germany
| | - Katharina Buerger
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Peter Dechent
- Department of Cognitive Neurology, MR-Research in Neurosciences, Georg-August-University Goettingen, Göttingen, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Wenzel Glanz
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Stefan Hetzer
- Center for Advanced Neuroimaging, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Christoph Laske
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Falk Lüsebrink
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Matthias Munk
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
- Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy) Munich, Munich, Germany
- Ageing Epidemiology Research Unit (AGE), School of Public Health, Imperial College London, London, United Kingdom
| | - Oliver Peters
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Institute of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lukas Preis
- Institute of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
- University of Edinburgh and UK DRI, Edinburgh, United Kingdom
| | - Boris Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom
- Department of Neuroradiology, University Hospital LMU, Munich, Germany
| | - Ayda Rostamzadeh
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
| | - Nina Roy-Kluth
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Björn H. Schott
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, University of Bonn, Bonn, Germany
| | - Eike Spruth
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Teipel
- German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, University of Goettingen, Goettingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Goettingen, Germany
- Department of Medical Sciences, Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), University of Aveiro, Aveiro, Portugal
| | - Frank Jessen
- Department of Psychiatry, University of Cologne, Medical Faculty, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
- German Center for Neurodegenerative Diseases (DZNE), Cologne, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurodegenerative Disease and Geriatric Psychiatry/Psychiatry, University of Bonn Medical Center, Bonn, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases (DZNE), Dresden, Germany
| | | |
Collapse
|
4
|
James CE, Tingaud M, Laera G, Guedj C, Zuber S, Diambrini Palazzi R, Vukovic S, Richiardi J, Kliegel M, Marie D. Cognitive enrichment through art: a randomized controlled trial on the effect of music or visual arts group practice on cognitive and brain development of young children. BMC Complement Med Ther 2024; 24:141. [PMID: 38575952 PMCID: PMC10993461 DOI: 10.1186/s12906-024-04433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND The optimal stimulation for brain development in the early academic years remains unclear. Current research suggests that musical training has a more profound impact on children's executive functions (EF) compared to other art forms. What is crucially lacking is a large-scale, long-term genuine randomized controlled trial (RCT) in cognitive neuroscience, comparing musical instrumental training (MIP) to another art form, and a control group (CG). This study aims to fill this gap by using machine learning to develop a multivariate model that tracks the interconnected brain and EF development during the academic years, with or without music or other art training. METHODS The study plans to enroll 150 children aged 6-8 years and randomly assign them to three groups: Orchestra in Class (OC), Visual Arts (VA), and a control group (CG). Anticipating a 30% attrition rate, each group aims to retain at least 35 participants. The research consists of three analytical stages: 1) baseline analysis correlating EF, brain data, age, gender, and socioeconomic status, 2) comparison between groups and over time of EF brain and behavioral development and their interactions, including hypothesis testing, and 3) exploratory analysis combining behavioral and brain data. The intervention includes intensive art classes once a week, and incremental home training over two years, with the CG receiving six annual cultural outings. DISCUSSION This study examines the potential benefits of intensive group arts education, especially contrasting music with visual arts, on EF development in children. It will investigate how artistic enrichment potentially influences the presumed typical transition from a more unified to a more multifaceted EF structure around age eight, comparing these findings against a minimally enriched active control group. This research could significantly influence the incorporation of intensive art interventions in standard curricula. TRIAL REGISTRATION The project was accepted after peer-review by the Swiss National Science Foundation (SNSF no. 100014_214977) on March 29, 2023. The study protocol received approval from the Cantonal Commission for Ethics in Human Research of Geneva (CCER, BASEC-ID 2023-01016), which is part of Swiss ethics, on October 25, 2023. The study is registered at clinicaltrials.gov (NCT05912270).
Collapse
Affiliation(s)
- C E James
- University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva School of Health Sciences, Geneva Musical Minds lab (GEMMI lab), Avenue de Champel 47, 1206, Geneva, Switzerland.
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland.
| | - M Tingaud
- University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva School of Health Sciences, Geneva Musical Minds lab (GEMMI lab), Avenue de Champel 47, 1206, Geneva, Switzerland
| | - G Laera
- University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva School of Health Sciences, Geneva Musical Minds lab (GEMMI lab), Avenue de Champel 47, 1206, Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Chemin de Pinchat 22, 1227, Carouge (Genève), Switzerland
| | - C Guedj
- University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva School of Health Sciences, Geneva Musical Minds lab (GEMMI lab), Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Cognitive and Affective Neuroimaging section, University of Geneva, 1211, Geneva, Switzerland
| | - S Zuber
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Chemin de Pinchat 22, 1227, Carouge (Genève), Switzerland
| | | | - S Vukovic
- Haute école pédagogique de Vaud (HEP; University of Teacher Education, State of Vaud), Avenue de Cour 33, Lausanne, 1014, Switzerland
| | - J Richiardi
- Department of Radiology, Lausanne University Hospital and University of Lausanne, Rue du Bugnon 21, Lausanne, 1011, Switzerland
| | - M Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Chemin de Pinchat 22, 1227, Carouge (Genève), Switzerland
| | - D Marie
- University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva School of Health Sciences, Geneva Musical Minds lab (GEMMI lab), Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, Cognitive and Affective Neuroimaging section, University of Geneva, 1211, Geneva, Switzerland
- Brain and Behaviour Laboratory, Centre Médical Universitaire, University of Geneva, Rue Michel-Servet 1, Geneva, 1211, Switzerland
| |
Collapse
|
5
|
Calvino M, Zuazua A, Sanchez-Cuadrado I, Gavilán J, Mancheño M, Arroyo H, Lassaletta L. Meludia platform as a tool to evaluate music perception in pediatric and adult cochlear implant users. Eur Arch Otorhinolaryngol 2024; 281:629-638. [PMID: 37480418 PMCID: PMC10796694 DOI: 10.1007/s00405-023-08121-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 07/10/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Music perception is one of the greatest challenges for cochlear implant (CI) users. The aims of this study were: (i) to evaluate the music perception of CI users using the online Meludia music training program as music testing platform, (ii) to compare performance among three age groups, and (iii) to compare CI users with their normal hearing (NH) peers. METHODS 138 individuals participated, divided between children (6-10 y), adolescents (11-16 y), and adults (≥ 17 y). Five music perception tasks were evaluated: Rhythm, Spatialization, Stable/unstable, Melody, and Density. We also administered the music related quality of life (MuRQoL) questionnaire for adults, and a music questionnaire for pediatric population (6-16 y) (MuQPP). RESULTS A significantly higher percentage of the adolescent CI users completed the five tasks compared to the other age groups. Both pediatric and adolescent CI users had similar performance to their NH peers in most categories. On the MuRQoL, adult NH listeners reported more music exposure than CI users (3.8 ± 0.6 vs 3.0 ± 0.6, p < 0.01), but both groups reported similar levels of perceived music importance (3.4 ± 0.7 vs 3.2 ± 1.1, p = 0.340). On the MuQPP, pediatric CI users who scored highly on music perception also had higher reported questionnaire scores (54.2 ± 12.9 vs 40.9 ± 12.1, p = 0.009). CONCLUSIONS Meludia can be used to evaluate music perception and to use for music training in CI users of all ages. Adolescents had the highest performance in most musical tasks. Pediatric CI users were more similar to their NH peers. The importance of music in adult CI users was comparable to their NH peers.
Collapse
Affiliation(s)
- Miryam Calvino
- Department of Otorhinolaryngology, Hospital Universitario La Paz. IdiPAZ Research Institute, Paseo de la Castellana 261, 28046, Madrid, Spain.
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III (CIBERER-U761), Madrid, Spain.
| | - Alejandro Zuazua
- Department of Otorhinolaryngology, Hospital Infanta Leonor, Madrid, Spain
| | - Isabel Sanchez-Cuadrado
- Department of Otorhinolaryngology, Hospital Universitario La Paz. IdiPAZ Research Institute, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Javier Gavilán
- Department of Otorhinolaryngology, Hospital Universitario La Paz. IdiPAZ Research Institute, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Marta Mancheño
- Department of Otorhinolaryngology, Hospital Universitario La Paz. IdiPAZ Research Institute, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Helena Arroyo
- Department of Otorhinolaryngology, Hospital Universitario La Paz. IdiPAZ Research Institute, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Luis Lassaletta
- Department of Otorhinolaryngology, Hospital Universitario La Paz. IdiPAZ Research Institute, Paseo de la Castellana 261, 28046, Madrid, Spain
- Biomedical Research Networking Centre on Rare Diseases (CIBERER), Institute of Health Carlos III (CIBERER-U761), Madrid, Spain
| |
Collapse
|
6
|
von Schnehen A, Hobeika L, Houot M, Recher A, Puisieux F, Huvent-Grelle D, Samson S. Sensorimotor Impairment in Aging and Neurocognitive Disorders: Beat Synchronization and Adaptation to Tempo Changes. J Alzheimers Dis 2024; 100:945-959. [PMID: 38995777 PMCID: PMC11307093 DOI: 10.3233/jad-231433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2024] [Indexed: 07/14/2024]
Abstract
Background Understanding the nature and extent of sensorimotor decline in aging individuals and those with neurocognitive disorders (NCD), such as Alzheimer's disease, is essential for designing effective music-based interventions. Our understanding of rhythmic functions remains incomplete, particularly in how aging and NCD affect sensorimotor synchronization and adaptation to tempo changes. Objective This study aimed to investigate how aging and NCD severity impact tapping to metronomes and music, with and without tempo changes. Methods Patients from a memory clinic participated in a tapping task, synchronizing with metronomic and musical sequences, some of which contained sudden tempo changes. After exclusions, 51 patients were included in the final analysis. Results Participants' Mini-Mental State Examination scores were associated with tapping consistency. Additionally, age negatively influenced consistency when synchronizing with a musical beat, whereas consistency remained stable across age when tapping with a metronome. Conclusions The results indicate that the initial decline of attention and working memory with age may impact perception and synchronization to a musical beat, whereas progressive NCD-related cognitive decline results in more widespread sensorimotor decline, affecting tapping irrespective of audio type. These findings underline the importance of customizing rhythm-based interventions to the needs of older adults and individuals with NCD, taking into consideration their cognitive as well as their rhythmic aptitudes.
Collapse
Affiliation(s)
- Andres von Schnehen
- ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Emotions, Cognition, Lille University, Lille, France
| | - Lise Hobeika
- ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Emotions, Cognition, Lille University, Lille, France
- Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- Institut Pasteur, Inserm, Institut de l’Audition, Université Paris Cité, Paris, France
| | - Marion Houot
- Centre of Excellence of Neurodegenerative Disease (CoEN), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Department of Neurology, Institute of Memory and Alzheimer’s Disease (IM2A), AP-HP, Pitié-Salpêtrière Hospital, Paris, France
- Clinical Investigation Centre, Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Paris, France
| | - Arnaud Recher
- STMS, IRCAM, Sorbonne Université, CNRS, Ministère de la Culture, Paris, France
| | - François Puisieux
- Hôpital Gériatrique les Bateliers, Pôle de Gérontologie, CHU Lille, Lille, France
| | | | - Séverine Samson
- ULR 4072 – PSITEC – Psychologie: Interactions, Temps, Emotions, Cognition, Lille University, Lille, France
- Institut du Cerveau – Paris Brain Institute – ICM, Inserm, CNRS, APHP, Hôpital de la Pitié Salpêtrière, Sorbonne Université, Paris, France
- Institut Pasteur, Inserm, Institut de l’Audition, Université Paris Cité, Paris, France
- Epilepsy Unit, AP-HP, GHU Pitié-Salpêtrière-Charles Foix, Paris, France
| |
Collapse
|
7
|
Jünemann K, Engels A, Marie D, Worschech F, Scholz DS, Grouiller F, Kliegel M, Van De Ville D, Altenmüller E, Krüger THC, James CE, Sinke C. Increased functional connectivity in the right dorsal auditory stream after a full year of piano training in healthy older adults. Sci Rep 2023; 13:19993. [PMID: 37968500 PMCID: PMC10652022 DOI: 10.1038/s41598-023-46513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 11/02/2023] [Indexed: 11/17/2023] Open
Abstract
Learning to play an instrument at an advanced age may help to counteract or slow down age-related cognitive decline. However, studies investigating the neural underpinnings of these effects are still scarce. One way to investigate the effects of brain plasticity is using resting-state functional connectivity (FC). The current study compared the effects of learning to play the piano (PP) against participating in music listening/musical culture (MC) lessons on FC in 109 healthy older adults. Participants underwent resting-state functional magnetic resonance imaging at three time points: at baseline, and after 6 and 12 months of interventions. Analyses revealed piano training-specific FC changes after 12 months of training. These include FC increase between right Heschl's gyrus (HG), and other right dorsal auditory stream regions. In addition, PP showed an increased anticorrelation between right HG and dorsal posterior cingulate cortex and FC increase between the right motor hand area and a bilateral network of predominantly motor-related brain regions, which positively correlated with fine motor dexterity improvements. We suggest to interpret those results as increased network efficiency for auditory-motor integration. The fact that functional neuroplasticity can be induced by piano training in healthy older adults opens new pathways to countervail age related decline.
Collapse
Affiliation(s)
- Kristin Jünemann
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Anna Engels
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland (HES-SO), Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, MRI UNIGE, University of Geneva, Geneva, Switzerland
| | - Florian Worschech
- Center for Systems Neuroscience, Hannover, Germany
- Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | - Daniel S Scholz
- Institute of Medical Psychology, University of Lübeck, Lübeck, Germany
- Department of Musicians' Health, University of Music Lübeck, Lübeck, Germany
| | - Frédéric Grouiller
- CIBM Center for Biomedical Imaging, MRI UNIGE, University of Geneva, Geneva, Switzerland
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
- Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Neuro-X Institute, École Polytechnique Fédérale de Lausanne (EPFL), Geneva, Switzerland
- Department of Radiology and Medical Informatics, University of Geneva, Geneva, Switzerland
| | - Eckart Altenmüller
- Center for Systems Neuroscience, Hannover, Germany
- Institute of Music Physiology and Musicians' Medicine, Hannover University of Music, Drama and Media, Hannover, Germany
| | - Tillmann H C Krüger
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland (HES-SO), Geneva, Switzerland
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Christopher Sinke
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| |
Collapse
|
8
|
Passarotto E, Kopp B, Lee A, Altenmüller E. Musical Expertise and Executive Functions in Experienced Musicians. Brain Sci 2023; 13:908. [PMID: 37371386 DOI: 10.3390/brainsci13060908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Extensive music practice has been suggested to enhance the development of cognitive abilities over and above musical expertise. Executive functions (EFs) have been particularly investigated, given their generalizability across different domains and their crucial role in almost all aspects of cognition. However, the relationship between musical expertise and EFs is still not completely understood, as several studies have reported conflicting results. The present study aims to investigate the relationship between musical expertise and EFs, determining which facets-if any-of EFs might be particularly relevant to extensive music practice. Thirty-five student pianists completed a set of neuropsychological tasks which assessed EFs (the Trail Making Task, Design Fluency, Numerical Stroop, and the Tower of London). They also performed a short musical excerpt inspired by the piano literature. Musical expertise was assessed by considering three parameters, namely the highest academic degree in music, the lifetime amount of music practice, and the quality of the sample-based musical performance. The results indicate that postgraduate piano students did not show advantages in EFs compared to undergraduate piano students. More extensive lifetime practice in music was solely associated with faster visual reaction times on the Numerical Stroop task. The Trail Making and Design Fluency scores were significant predictors of the quality of the sample-based musical performance. In conclusion, the present data suggests that EFs and the amount of music practice do not seem to be correlated in student pianists. Nevertheless, some facets of EFs and the quality of musical performance may share substantial amounts of variance.
Collapse
Affiliation(s)
- Edoardo Passarotto
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama and Media Hannover, 30175 Hanover, Germany
| | - Bruno Kopp
- Department of Neurology, Hannover Medical School, 30625 Hannover, Germany
| | - André Lee
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama and Media Hannover, 30175 Hanover, Germany
- Department of Neurology, Klinikum Rechts der Isar, Technical University of Munich; 80333 Munich, Germany
| | - Eckart Altenmüller
- Institute of Music Physiology and Musicians' Medicine, University of Music, Drama and Media Hannover, 30175 Hanover, Germany
| |
Collapse
|
9
|
Lister JJ, Hudak EM, Andel R, Edwards JD. The Effects of Piano Training on Auditory Processing, Cognition, and Everyday Function. JOURNAL OF COGNITIVE ENHANCEMENT 2023. [DOI: 10.1007/s41465-023-00256-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
10
|
James CE, Stucker C, Junker-Tschopp C, Fernandes AM, Revol A, Mili ID, Kliegel M, Frisoni GB, Brioschi Guevara A, Marie D. Musical and psychomotor interventions for cognitive, sensorimotor, and cerebral decline in patients with Mild Cognitive Impairment (COPE): a study protocol for a multicentric randomized controlled study. BMC Geriatr 2023; 23:76. [PMID: 36747142 PMCID: PMC9900212 DOI: 10.1186/s12877-022-03678-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/03/2022] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Regular cognitive training can boost or maintain cognitive and brain functions known to decline with age. Most studies administered such cognitive training on a computer and in a lab setting. However, everyday life activities, like musical practice or physical exercise that are complex and variable, might be more successful at inducing transfer effects to different cognitive domains and maintaining motivation. "Body-mind exercises", like Tai Chi or psychomotor exercise, may also positively affect cognitive functioning in the elderly. We will compare the influence of active music practice and psychomotor training over 6 months in Mild Cognitive Impairment patients from university hospital memory clinics on cognitive and sensorimotor performance and brain plasticity. The acronym of the study is COPE (Countervail cOgnitive imPairmEnt), illustrating the aim of the study: learning to better "cope" with cognitive decline. METHODS We aim to conduct a randomized controlled multicenter intervention study on 32 Mild Cognitive Impairment (MCI) patients (60-80 years), divided over 2 experimental groups: 1) Music practice; 2) Psychomotor treatment. Controls will consist of a passive test-retest group of 16 age, gender and education level matched healthy volunteers. The training regimens take place twice a week for 45 min over 6 months in small groups, provided by professionals, and patients should exercise daily at home. Data collection takes place at baseline (before the interventions), 3, and 6 months after training onset, on cognitive and sensorimotor capacities, subjective well-being, daily living activities, and via functional and structural neuroimaging. Considering the current constraints of the COVID-19 pandemic, recruitment and data collection takes place in 3 waves. DISCUSSION We will investigate whether musical practice contrasted to psychomotor exercise in small groups can improve cognitive, sensorimotor and brain functioning in MCI patients, and therefore provoke specific benefits for their daily life functioning and well-being. TRIAL REGISTRATION The full protocol was approved by the Commission cantonale d'éthique de la recherche sur l'être humain de Genève (CCER, no. 2020-00510) on 04.05.2020, and an amendment by the CCER and the Commission cantonale d'éthique de la recherche sur l'être humain de Vaud (CER-VD) on 03.08.2021. The protocol was registered at clinicaltrials.gov (20.09.2020, no. NCT04546451).
Collapse
Affiliation(s)
- C E James
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland.
- Faculty of Psychology and Educational Sciences, University of Geneva, Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland.
| | - C Stucker
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - C Junker-Tschopp
- Geneva School of Social Work, Department of Psychomotricity, University of Applied Sciences and Arts Western Switzerland HES-SO, Rue Prévost-Martin 28, 1205, Geneva, Switzerland
| | - A M Fernandes
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
| | - A Revol
- Geneva School of Social Work, Department of Psychomotricity, University of Applied Sciences and Arts Western Switzerland HES-SO, Rue Prévost-Martin 28, 1205, Geneva, Switzerland
| | - I D Mili
- Faculty of Psychology and Educational Sciences, Didactics of Arts and Movement Laboratory, University of Geneva, Switzerland. Boulevard Carl-Vogt 101, 1205, Geneva, Switzerland
| | - M Kliegel
- Faculty of Psychology and Educational Sciences, Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Switzerland, Boulevard du Pont d'Arve 28, 1205, Geneva, Switzerland
| | - G B Frisoni
- University Hospitals and University of Geneva, Memory Center, Rue Gabrielle-Perret-Gentil 6, 1205, Geneva, Switzerland
| | - A Brioschi Guevara
- Leenaards Memory Center, Lausanne University Hospital, Chemin de Mont-Paisible 16, 1011, Lausanne, Switzerland
| | - D Marie
- Geneva School of Health Sciences, Geneva Musical Minds Lab (GEMMI lab), University of Applied Sciences and Arts Western Switzerland HES-SO, Avenue de Champel 47, 1206, Geneva, Switzerland
- CIBM Center for Biomedical Imaging, MRI HUG-UNIGE, University of Geneva, Geneva, Switzerland
| |
Collapse
|
11
|
Böttcher A, Zarucha A, Köbe T, Gaubert M, Höppner A, Altenstein S, Bartels C, Buerger K, Dechent P, Dobisch L, Ewers M, Fliessbach K, Freiesleben SD, Frommann I, Haynes JD, Janowitz D, Kilimann I, Kleineidam L, Laske C, Maier F, Metzger C, Munk MHJ, Perneczky R, Peters O, Priller J, Rauchmann BS, Roy N, Scheffler K, Schneider A, Spottke A, Teipel SJ, Wiltfang J, Wolfsgruber S, Yakupov R, Düzel E, Jessen F, Röske S, Wagner M, Kempermann G, Wirth M. Musical Activity During Life Is Associated With Multi-Domain Cognitive and Brain Benefits in Older Adults. Front Psychol 2022; 13:945709. [PMID: 36092026 PMCID: PMC9454948 DOI: 10.3389/fpsyg.2022.945709] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Regular musical activity as a complex multimodal lifestyle activity is proposed to be protective against age-related cognitive decline and Alzheimer’s disease. This cross-sectional study investigated the association and interplay between musical instrument playing during life, multi-domain cognitive abilities and brain morphology in older adults (OA) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) study. Participants reporting having played a musical instrument across three life periods (n = 70) were compared to controls without a history of musical instrument playing (n = 70), well-matched for reserve proxies of education, intelligence, socioeconomic status and physical activity. Participants with musical activity outperformed controls in global cognition, working memory, executive functions, language, and visuospatial abilities, with no effects seen for learning and memory. The musically active group had greater gray matter volume in the somatosensory area, but did not differ from controls in higher-order frontal, temporal, or hippocampal volumes. However, the association between gray matter volume in distributed frontal-to-temporal regions and cognitive abilities was enhanced in participants with musical activity compared to controls. We show that playing a musical instrument during life relates to better late-life cognitive abilities and greater brain capacities in OA. Musical activity may serve as a multimodal enrichment strategy that could help preserve cognitive and brain health in late life. Longitudinal and interventional studies are needed to support this notion.
Collapse
Affiliation(s)
- Adriana Böttcher
- German Center for Neurodegenerative Diseases, Dresden, Germany
- Section of Cognitive Neurophysiology, Department of Child and Adolescent Psychiatry, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Alexis Zarucha
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Theresa Köbe
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Malo Gaubert
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Angela Höppner
- German Center for Neurodegenerative Diseases, Dresden, Germany
| | - Slawek Altenstein
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Claudia Bartels
- Department of Psychiatry and Psychotherapy, University Medical Center, University of Göttingen, Göttingen, Germany
| | - Katharina Buerger
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Peter Dechent
- MR-Research in Neurology and Psychiatry, Georg-August-University Göttingen, Göttingen, Germany
| | - Laura Dobisch
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Michael Ewers
- German Center for Neurodegenerative Diseases, Munich, Germany
| | - Klaus Fliessbach
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | | | - Ingo Frommann
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - John Dylan Haynes
- Bernstein Center for Computational Neuroscience, Charité – Universitätsmedizin, Berlin, Germany
| | - Daniel Janowitz
- Institute for Stroke and Dementia Research, University Hospital, LMU Munich, Munich, Germany
| | - Ingo Kilimann
- German Center for Neurodegenerative Diseases, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | | | - Christoph Laske
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Section for Dementia Research, Hertie Institute for Clinical Brain Research and Department of Psychiatry and Psychotherapy, University of Tübingen, Tübingen, Germany
| | - Franziska Maier
- Department of Psychiatry, Faculty of Medicine, University of Cologne, Cologne, Germany
| | - Coraline Metzger
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- Department of Psychiatry and Psychotherapy, Otto-von-Guericke University, Magdeburg, Germany
| | - Matthias H. J. Munk
- German Center for Neurodegenerative Diseases, Tübingen, Germany
- Systems Neurophysiology, Department of Biology, Darmstadt University of Technology, Darmstadt, Germany
| | - Robert Perneczky
- German Center for Neurodegenerative Diseases, Munich, Germany
- Munich Cluster for Systems Neurology, Munich, Germany
- Ageing Epidemiology Research Unit, School of Public Health, Imperial College London, London, United Kingdom
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Oliver Peters
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Josef Priller
- German Center for Neurodegenerative Diseases, Berlin, Germany
- Department of Psychiatry, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Boris-Stephan Rauchmann
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Nina Roy
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Klaus Scheffler
- Department for Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Anja Schneider
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Annika Spottke
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Neurology, University Hospital Bonn, Bonn, Germany
| | - Stefan J. Teipel
- German Center for Neurodegenerative Diseases, Rostock, Germany
- Department of Psychosomatic Medicine, Rostock University Medical Center, Rostock, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center, University of Göttingen, Göttingen, Germany
- German Center for Neurodegenerative Diseases, Göttingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine, Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Steffen Wolfsgruber
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Renat Yakupov
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases, Magdeburg, Germany
- Institute of Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
| | - Frank Jessen
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department of Psychiatry, Faculty of Medicine, University of Cologne, Cologne, Germany
- Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases, University of Cologne, Cologne, Germany
| | - Sandra Röske
- German Center for Neurodegenerative Diseases, Bonn, Germany
| | - Michael Wagner
- German Center for Neurodegenerative Diseases, Bonn, Germany
- Department for Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn, Germany
| | - Gerd Kempermann
- German Center for Neurodegenerative Diseases, Dresden, Germany
- Center for Regenerative Therapies Dresden, Technische Universität Dresden, Dresden, Germany
| | - Miranka Wirth
- German Center for Neurodegenerative Diseases, Dresden, Germany
- *Correspondence: Miranka Wirth,
| |
Collapse
|
12
|
Zendel BR. The importance of the motor system in the development of music-based forms of auditory rehabilitation. Ann N Y Acad Sci 2022; 1515:10-19. [PMID: 35648040 DOI: 10.1111/nyas.14810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hearing abilities decline with age, and one of the most commonly reported hearing issues in older adults is a difficulty understanding speech when there is loud background noise. Understanding speech in noise relies on numerous cognitive processes, including working memory, and is supported by numerous brain regions, including the motor and motor planning systems. Indeed, many working memory processes are supported by motor and premotor cortical regions. Interestingly, lifelong musicians and nonmusicians given music training over the course of weeks or months show an improved ability to understand speech when there is loud background noise. These benefits are associated with enhanced working memory abilities, and enhanced activity in motor and premotor cortical regions. Accordingly, it is likely that music training improves the coupling between the auditory and motor systems and promotes plasticity in these regions and regions that feed into auditory/motor areas. This leads to an enhanced ability to dynamically process incoming acoustic information, and is likely the reason that musicians and those who receive laboratory-based music training are better able to understand speech when there is background noise. Critically, these findings suggest that music-based forms of auditory rehabilitation are possible and should focus on tasks that promote auditory-motor interactions.
Collapse
Affiliation(s)
- Benjamin Rich Zendel
- Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland and Labrador, Canada.,Aging Research Centre - Newfoundland and Labrador, Grenfell Campus, Memorial University, Corner Brook, Newfoundland and Labrador, Canada
| |
Collapse
|
13
|
Gray R, Sarampalis A, Başkent D, Harding EE. Working-Memory, Alpha-Theta Oscillations and Musical Training in Older Age: Research Perspectives for Speech-on-speech Perception. Front Aging Neurosci 2022; 14:806439. [PMID: 35645774 PMCID: PMC9131017 DOI: 10.3389/fnagi.2022.806439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 03/24/2022] [Indexed: 12/18/2022] Open
Abstract
During the normal course of aging, perception of speech-on-speech or “cocktail party” speech and use of working memory (WM) abilities change. Musical training, which is a complex activity that integrates multiple sensory modalities and higher-order cognitive functions, reportedly benefits both WM performance and speech-on-speech perception in older adults. This mini-review explores the relationship between musical training, WM and speech-on-speech perception in older age (> 65 years) through the lens of the Ease of Language Understanding (ELU) model. Linking neural-oscillation literature associating speech-on-speech perception and WM with alpha-theta oscillatory activity, we propose that two stages of speech-on-speech processing in the ELU are underpinned by WM-related alpha-theta oscillatory activity, and that effects of musical training on speech-on-speech perception may be reflected in these frequency bands among older adults.
Collapse
Affiliation(s)
- Ryan Gray
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Psychology, Centre for Applied Behavioural Sciences, School of Social Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Anastasios Sarampalis
- Department of Experimental Psychology, University of Groningen, Groningen, Netherlands
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
| | - Deniz Başkent
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Eleanor E. Harding
- Research School of Behavioural and Cognitive Neurosciences, University of Groningen, Groningen, Netherlands
- Department of Otorhinolaryngology, University of Groningen, University Medical Center Groningen, Groningen, Netherlands
- *Correspondence: Eleanor E. Harding,
| |
Collapse
|
14
|
Speranza L, Pulcrano S, Perrone-Capano C, di Porzio U, Volpicelli F. Music affects functional brain connectivity and is effective in the treatment of neurological disorders. Rev Neurosci 2022; 33:789-801. [PMID: 35325516 DOI: 10.1515/revneuro-2021-0135] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 02/25/2022] [Indexed: 11/15/2022]
Abstract
In a million years, under the pressure of natural selection, hominins have acquired the abilities for vocal learning, music, and language. Music is a relevant human activity, highly effective in enhancing sociality, is a universal experience common to all known human cultures, although it varies in rhythmic and melodic complexity. It has been part of human life since the beginning of our history, or almost, and it strengthens the mother-baby relation even within the mother's womb. Music engages multiple cognitive functions, and promotes attention, concentration, imagination, creativity, elicits memories and emotions, and stimulates imagination, and harmony of movement. It changes the chemistry of the brain, by inducing the release of neurotransmitters and hormones (dopamine, serotonin, and oxytocin) and activates the reward and prosocial systems. In addition, music is also used to develop new therapies necessary to alleviate severe illness, especially neurological disorders, and brain injuries.
Collapse
Affiliation(s)
- Luisa Speranza
- Department of Neuroscience, Albert Einstein College of Medicine, New York, NY 10461, USA
| | - Salvatore Pulcrano
- Institute of Genetics and Biophysics, "Adriano Buzzati-Traverso", C.N.R., 80131 Naples, Italy.,Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Carla Perrone-Capano
- Institute of Genetics and Biophysics, "Adriano Buzzati-Traverso", C.N.R., 80131 Naples, Italy.,Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| | - Umberto di Porzio
- Institute of Genetics and Biophysics, "Adriano Buzzati-Traverso", C.N.R., 80131 Naples, Italy
| | - Floriana Volpicelli
- Department of Pharmacy, School of Medicine and Surgery, University of Naples Federico II, 80131 Naples, Italy
| |
Collapse
|
15
|
Worschech F, Altenmüller E, Jünemann K, Sinke C, Krüger THC, Scholz DS, Müller CAH, Kliegel M, James CE, Marie D. Evidence of cortical thickness increases in bilateral auditory brain structures following piano learning in older adults. Ann N Y Acad Sci 2022; 1513:21-30. [PMID: 35292982 DOI: 10.1111/nyas.14762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/03/2022] [Indexed: 12/25/2022]
Abstract
Morphological differences in the auditory brain of musicians compared to nonmusicians are often associated with life-long musical activity. Cross-sectional studies, however, do not allow for any causal inferences, and most experimental studies testing music-driven adaptations investigated children. Although the importance of the age at which musical training begins is widely recognized to impact neuroplasticity, there have been few longitudinal studies examining music-related changes in the brains of older adults. Using magnetic resonance imaging, we measured cortical thickness (CT) of 12 auditory-related regions of interest before and after 6 months of musical instruction in 134 healthy, right-handed, normal-hearing, musically-naive older adults (64-76 years old). Prior to the study, all participants were randomly assigned to either piano training or to a musical culture/music listening group. In five regions-left Heschl's gyrus, left planum polare, bilateral superior temporal sulcus, and right Heschl's sulcus-we found an increase in CT in the piano training group compared with the musical culture group. Furthermore, CT of the right Heschl's gyrus could be identified as a morphological substrate supporting speech in noise perception. The results support the conclusion that playing an instrument is an effective stimulator for cortical plasticity, even in older adults.
Collapse
Affiliation(s)
- Florian Worschech
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Eckart Altenmüller
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Kristin Jünemann
- Center for Systems Neuroscience, Hanover, Germany.,Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Tillmann H C Krüger
- Center for Systems Neuroscience, Hanover, Germany.,Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| | - Daniel S Scholz
- Institute for Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Cécile A H Müller
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland HES-SO, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
16
|
Jünemann K, Marie D, Worschech F, Scholz DS, Grouiller F, Kliegel M, Van De Ville D, James CE, Krüger THC, Altenmüller E, Sinke C. Six Months of Piano Training in Healthy Elderly Stabilizes White Matter Microstructure in the Fornix, Compared to an Active Control Group. Front Aging Neurosci 2022; 14:817889. [PMID: 35242025 PMCID: PMC8886041 DOI: 10.3389/fnagi.2022.817889] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/06/2022] [Indexed: 12/31/2022] Open
Abstract
While aging is characterized by neurodegeneration, musical training is associated with experience-driven brain plasticity and protection against age-related cognitive decline. However, evidence for the positive effects of musical training mostly comes from cross-sectional studies while randomized controlled trials with larger sample sizes are rare. The current study compares the influence of six months of piano training with music listening/musical culture lessons in 121 musically naïve healthy elderly individuals with regard to white matter properties using fixel-based analysis. Analyses revealed a significant fiber density decline in the music listening/musical culture group (but not in the piano group), after six months, in the fornix, which is a white matter tract that naturally declines with age. In addition, these changes in fiber density positively correlated to episodic memory task performances and the amount of weekly piano training. These findings not only provide further evidence for the involvement of the fornix in episodic memory encoding but also more importantly show that learning to play the piano at an advanced age may stabilize white matter microstructure of the fornix.
Collapse
Affiliation(s)
- Kristin Jünemann
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Damien Marie
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Florian Worschech
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Daniel S Scholz
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Frédéric Grouiller
- Swiss Center for Affective Sciences, University of Geneva, Geneva, Switzerland
| | - Matthias Kliegel
- Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland.,Center for the Interdisciplinary Study of Gerontology and Vulnerability, University of Geneva, Geneva, Switzerland
| | - Dimitri Van De Ville
- Ecole Polytechnique Fédérale de Lausanne, Campus Biotech, Geneva, Switzerland.,Faculty of Medicine, University of Geneva, Campus Biotech, Geneva, Switzerland
| | - Clara E James
- Geneva Musical Minds Lab, Geneva School of Health Sciences, University of Applied Sciences and Arts Western Switzerland, Geneva, Switzerland.,Faculty of Psychology and Educational Sciences, University of Geneva, Geneva, Switzerland
| | - Tillmann H C Krüger
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany.,Center for Systems Neuroscience, Hanover, Germany
| | - Eckart Altenmüller
- Center for Systems Neuroscience, Hanover, Germany.,Institute of Music Physiology and Musicians' Medicine, Hanover University of Music, Drama and Media, Hanover, Germany
| | - Christopher Sinke
- Division of Clinical Psychology & Sexual Medicine, Department of Psychiatry, Social Psychiatry and Psychotherapy, Hanover Medical School, Hanover, Germany
| |
Collapse
|
17
|
Braun Janzen T, Koshimori Y, Richard NM, Thaut MH. Rhythm and Music-Based Interventions in Motor Rehabilitation: Current Evidence and Future Perspectives. Front Hum Neurosci 2022; 15:789467. [PMID: 35111007 PMCID: PMC8801707 DOI: 10.3389/fnhum.2021.789467] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/27/2021] [Indexed: 12/17/2022] Open
Abstract
Research in basic and clinical neuroscience of music conducted over the past decades has begun to uncover music’s high potential as a tool for rehabilitation. Advances in our understanding of how music engages parallel brain networks underpinning sensory and motor processes, arousal, reward, and affective regulation, have laid a sound neuroscientific foundation for the development of theory-driven music interventions that have been systematically tested in clinical settings. Of particular significance in the context of motor rehabilitation is the notion that musical rhythms can entrain movement patterns in patients with movement-related disorders, serving as a continuous time reference that can help regulate movement timing and pace. To date, a significant number of clinical and experimental studies have tested the application of rhythm- and music-based interventions to improve motor functions following central nervous injury and/or degeneration. The goal of this review is to appraise the current state of knowledge on the effectiveness of music and rhythm to modulate movement spatiotemporal patterns and restore motor function. By organizing and providing a critical appraisal of a large body of research, we hope to provide a revised framework for future research on the effectiveness of rhythm- and music-based interventions to restore and (re)train motor function.
Collapse
Affiliation(s)
- Thenille Braun Janzen
- Center of Mathematics, Computing and Cognition, Universidade Federal do ABC, São Bernardo do Campo, Brazil
| | - Yuko Koshimori
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Brain Health Imaging Centre, CAMH, Toronto, ON, Canada
| | - Nicole M. Richard
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Faculty of Music, Belmont University, Nashville, TN, United States
| | - Michael H. Thaut
- Music and Health Science Research Collaboratory, Faculty of Music, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
- *Correspondence: Michael H. Thaut,
| |
Collapse
|
18
|
Grenier AS, Lafontaine L, Sharp A. Use of Music Therapy as an Audiological Rehabilitation Tool in the Elderly Population: A Mini-Review. Front Neurosci 2021; 15:662087. [PMID: 34602963 PMCID: PMC8481584 DOI: 10.3389/fnins.2021.662087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 08/13/2021] [Indexed: 01/14/2023] Open
Abstract
It is well known and documented that sensory perception decreases with age. In the elderly population, hearing loss and reduced vestibular function are among the most prevalently affected senses. Two important side effects of sensory deprivation are cognitive decline and decrease in social participation. Hearing loss, vestibular function impairment, and cognitive decline all lead to a decrease in social participation. Altogether, these problems have a great impact on the quality of life of the elderly. This is why a rehabilitation program covering all of these aspects would therefore be useful for clinicians. It is well known that long-term music training can lead to cortical plasticity. Behavioral improvements have been measured for cognitive abilities and sensory modalities (auditory, motor, tactile, and visual) in healthy young adults. Based on these findings, it is possible to wonder if this kind of multisensory training would be an interesting therapy to not only improve communication but also help with posture and balance, cognitive abilities, and social participation. The aim of this review is to assess and validate the impact of music therapy in the context of hearing rehabilitation in older adults. Musical therapy seems to have a positive impact on auditory perception, posture and balance, social integration, and cognition. While the benefits seem obvious, the evidence in the literature is scarce. However, there is no reason not to recommend the use of music therapy as an adjunct to audiological rehabilitation in the elderly when possible. Further investigations are needed to conclude on the extent of the benefits that music therapy could bring to older adults. More data are needed to confirm which hearing abilities can be improved based on the many characteristics of hearing loss. There is also a need to provide a clear protocol for clinicians on how this therapy should be administered to offer the greatest possible benefits.
Collapse
Affiliation(s)
| | - Louise Lafontaine
- École d'Orthophonie et d'Audiologie, Université de Montréal, Montreal, QC, Canada
| | - Andréanne Sharp
- CERVO Research Center, Université Laval, Québec City, QC, Canada
| |
Collapse
|