1
|
Lu YW, Xie LY, Qi MH, Ren S, Wang YQ, Hu JN, Wang Z, Tang S, Zhang JT, Li W. Platycodin D Ameliorates Cognitive Impairment in Type 2 Diabetes Mellitus Mice via Regulating PI3K/Akt/GSK3β Signaling Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:12516-12528. [PMID: 38491972 DOI: 10.1021/acs.jafc.3c08490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2024]
Abstract
Objectives: The aim of this study was to investigate the ameliorative effect of platycodin D (PD) on cognitive dysfunction in type 2 diabetes mellitus (T2DM) and its potential molecular mechanisms of action in vivo and in vitro. Materials and methods: An animal model of cognitive impairment in T2DM was established using a single intraperitoneal injection of streptozotocin (100 mg/kg) after 8 weeks of feeding a high-fat diet to C57BL/6 mice. In vitro, immunofluorescence staining and Western blot were employed to analyze the effects of PD on glucose-induced neurotoxicity in mouse hippocampal neuronal cells (HT22). Results: PD (2.5 mg/kg) treatment for 4 weeks significantly suppressed the rise in fasting blood glucose in T2DM mice, improved insulin secretion deficiency, and reversed abnormalities in serum triglyceride, cholesterol, low-density lipoprotein, and high-density lipoprotein levels. Meanwhile, PD ameliorated choline dysfunction in T2DM mice and inhibited the production of oxidative stress and apoptosis-related proteins of the caspase family. Notably, PD dose-dependently prevents the loss of mitochondrial membrane potential, promotes phosphorylation of phosphatidylinositol 3 kinase and protein kinase B (Akt) in vitro, activates glycogen synthase kinase 3β (GSK3β) expression at the Ser9 site, and inhibits Tau protein hyperphosphorylation. Conclusions: These findings clearly indicated that PD could alleviate the neurological damage caused by T2DM, and the phosphorylation of Akt at Ser473 may be the key to its effect.
Collapse
Affiliation(s)
- Ya-Wei Lu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Li-Ya Xie
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Meng-Han Qi
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shen Ren
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Yue-Qi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jun-Nan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Zi Wang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Shan Tang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Jing-Tian Zhang
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
| | - Wei Li
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China
- College of Life Sciences, Engineering Research Center of the Chinese Ministry of Education for Bioreactor and Pharmaceutical Development, Jilin Agricultural University, Changchun 130118, China
- Jilin Provincial International Joint Research Center for the Development and Utilization of Authentic Medicinal Materials, Changchun 130118, China
| |
Collapse
|
2
|
Lin S, Chen Z, Wu Z, Fei F, Xu Z, Tong Y, Sun W, Wang P. Involvement of PI3K/AKT Pathway in the Rapid Antidepressant Effects of Crocetin in Mice with Depression-Like Phenotypes. Neurochem Res 2024; 49:477-491. [PMID: 37935859 DOI: 10.1007/s11064-023-04051-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/22/2023] [Accepted: 10/17/2023] [Indexed: 11/09/2023]
Abstract
The current first-line antidepressants have the drawback of slow onset, which greatly affects the treatment of depression. Crocetin, one of the main active ingredients in saffron (Crocus sativus L.), has been demonstrated to have antidepressant activities, but whether it has a rapid antidepressant effect remains unclear. This study aimed to investigate the onset, duration, and mechanisms of the rapid antidepressant activity of crocetin (20, 40 and 80 mg/kg, intraperitoneal injection) in male mice subjected to chronic restraint stress (CRS). The results of behavioral tests showed that crocetin exerted rapid antidepressant-like effect in mice with depression-like phenotypes, including rapid normalization of depressive-like behaviors within 3 h, and the effects could be maintained for 2 days. Hematoxylin-eosin (HE) and Nissl staining showed that crocetin ameliorated hippocampal neuroinflammation and nerve injuries in mice with depression-like phenotypes. The levels of inflammatory factors, corticosterone and pro brain-derived neurotrophic factor in crocetin-administrated mice serum were significantly reduced compared with those in the CRS group, as well as the levels of inflammatory factors in hippocampus. What's more, Western blot analyses showed that, compared to CRS-induced mice, the relative levels of mitogen-activated kinase phosphatase 1 and toll-like receptor 4 were significantly reduced after the administration of crocetin, and the relative expressions of extracellular signal-regulated kinase 1/2 (ERK1/2), cAMP-response element binding protein, phosphorylated phosphoinositide 3 kinase (p-PI3K)/PI3K, phosphorylated protein kinase B (p-AKT)/AKT, phosphorylated glycogen synthase kinase 3β (p-GSK3β)/GSK3β, phosphorylated mammalian target of rapamycin (p-mTOR)/mTOR were markedly upregulated. In conclusion, crocetin exerted rapid antidepressant effects via suppressing the expression of inflammatory cytokines and the apoptosis of neuronal cells through PI3K/AKT signaling pathways. The rapid antidepressant effect of crocetin (40 mg/kg) could be maintained for at least 2 days after single treatment.
Collapse
Affiliation(s)
- Susu Lin
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Ziwei Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zhaoruncheng Wu
- School of Biomedical engineering, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Fei Fei
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
| | - Zijin Xu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China
- College of Pharmacy, Jiangxi Medical College, Shangrao, 334000, Jiangxi, People's Republic of China
| | - Yingpeng Tong
- Institute of Natural Medicine and Health Product, School of Advanced Study, Taizhou University, Taizhou, 318000, People's Republic of China
| | - Wenyu Sun
- The First Hospital of Jiaxing, Affiliated Hospital of Jiaxing University, Jiaxing, 314001, People's Republic of China.
| | - Ping Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, No. 18 Chaowang Road, Hangzhou, 310014, People's Republic of China.
| |
Collapse
|
3
|
Ghobadi M, Akbari S, Bayat M, Moosavi SMS, Salehi MS, Pandamooz S, Azarpira N, Afshari A, Hooshmandi E, Haghani M. Gens PSD-95 and GSK-3β expression improved by hair follicular stem cells-conditioned medium enhances synaptic transmission and cognitive abilities in the rat model of vascular dementia. Brain Behav 2024; 14:e3351. [PMID: 38376050 PMCID: PMC10757903 DOI: 10.1002/brb3.3351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/23/2023] [Accepted: 11/26/2023] [Indexed: 02/21/2024] Open
Abstract
INTRODUCTION Vascular dementia (VaD) is a common type of dementia. The aim of this study was to investigate the cellular and molecular mechanism of conditioned medium (CM) in VaD. MATERIAL AND METHODS The rats were divided into four groups of control (n = 9), sham-operation (n = 10), VaD with vehicle (n = 9), and VaD with CM (n = 12) that received CM on days 4, 14, and 24 after 2VO. Before sacrificing the rats, cognitive performance was assessed through the open-field (OP), passive-avoidance, and Morris-water maze. The field-potential recording was used to investigate basal synaptic transmission (BST) and long-term potentiation (LTP). Subsequently, the hippocampus was dissected, and real-time PCR was used to quantify the expression levels of β1-catenin, insulin-like growth factor-1 (IGF-1), transforming growth factor-beta (TGF-β), glycogen synthase kinase-3β (GSK-3β), postsynaptic density protein 95 (PSD-95), and NR2B genes. RESULTS The results indicated impaired performance in behavioral tests in 2VO rats, coupled with reductions in BST and LTP induction. The expression levels of β1-catenin, IGF-1, PSD-95, and TGF-β genes decreased, whereas NR2B and GSK-3β expression increased. Treatment with CM restores the expression of PSD-95 and GSK-3β as well as fear-memory, spatial learning, and grooming number without a positive effect on memory retrieval, time spent on the periphery and center of OP. The BST recovered upon administration of CM but, the LTP induction was still impaired. CONCLUSION The recovery of BST in VaD rats appears to be the most important outcome of this study which is caused by the improvement of gene expression and leads to the restoration of fear memory.
Collapse
Affiliation(s)
- Mojtaba Ghobadi
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
| | - Somayeh Akbari
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| | - Mahnaz Bayat
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | | | | | - Sareh Pandamooz
- Stem Cells Technology Research CenterShiraz University of Medical SciencesShirazIran
| | - Negar Azarpira
- Shiraz Institute of Stem Cell and Regenerative MedicineShiraz University of Medical SciencesShirazIran
| | - Afsoon Afshari
- Shiraz Nephro‐Urology Research CenterShiraz University of Medical SciencesShirazIran
| | - Etrat Hooshmandi
- Clinical Neurology Research CentreShiraz University of Medical SciencesShirazIran
| | - Masoud Haghani
- Department of PhysiologyShiraz University of Medical SciencesShirazIran
- Histomorphometry and Stereology Research CentreShiraz University of Medical SciencesShirazIran
| |
Collapse
|
4
|
Singh M, Jindal D, Kumar R, Pancham P, Haider S, Gupta V, Mani S, R R, Tiwari RK, Chanda S. Molecular Docking and Network Pharmacology Interaction Analysis of Gingko Biloba (EGB761) Extract with Dual Target Inhibitory Mechanism in Alzheimer's Disease. J Alzheimers Dis 2023; 93:705-726. [PMID: 37066913 DOI: 10.3233/jad-221222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is the most common type of neurodegenerative dementia affecting people in their later years of life. The AD prevalence rate has significantly increased due to a lack of early detection technology and low therapeutic efficacy. Despite recent scientific advances, some aspects of AD pathological targets still require special attention. Certain traditionally consumed phytocompounds have been used for thousands of years to treat such pathologies. The standard extract of Gingko biloba (EGB761) is a combination of 13 macro phyto-compounds and various other micro phytocompounds that have shown greater therapeutic potential against the pathology of AD. OBJECTIVE Strong physiological evidence of cognitive health preservation has been observed in elderly people who keep an active lifestyle. According to some theories, consuming certain medicinal extracts helps build cognitive reserve. We outline the research employing EGB761 as a dual target for AD. METHODS This study investigates various inhibitory targets against AD using computational approaches such as molecular docking, network pharmacology, ADMET (full form), and bioactivity prediction of the selected compounds. RESULTS After interaction studies were done for all the phytoconstituents of EGB761, it was concluded that all four of the phytocompounds (kaempferol, isorhamnetin, quercetin, and ginkgotoxin) showed the maximum inhibitory activity against acetylcholinesterase (AChE) and GSK3β. CONCLUSION The highly active phytocompounds of EGB761, especially quercetin, kaempferol, and isorhamnetin, have better activity against AChE and GSK3β than its reported synthetic drug, according to molecular docking and network pharmacology research. These compounds may act on multiple targets in the protein network of AD. The AChE theory was primarily responsible for EGB761's therapeutic efficacy in treating AD.
Collapse
Affiliation(s)
- Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India
- Flinders Health and Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, Australia
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India
| | - Rupesh Kumar
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India
| | - Shazia Haider
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University, Sydney, Australia
| | - Shalini Mani
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India
| | - Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology (JIIT), Noida, India
| | - Raj Kumar Tiwari
- Department of Pharmacognosy, Era College of Pharmacy, Era University, Lucknow, Uttar Pradesh, India
| | - Silpi Chanda
- Department of Pharmacognosy, Amity Institute of Pharmacy, Lucknow, Amity University, UttarPradesh, Noida, India
| |
Collapse
|
5
|
Structure-activity relationship (SAR) studies on substituted N-(pyridin-3-yl)-2-amino-isonicotinamides as highly potent and selective glycogen synthase kinase-3 (GSK-3) inhibitors. Bioorg Med Chem Lett 2023; 81:129143. [PMID: 36669575 DOI: 10.1016/j.bmcl.2023.129143] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/09/2023] [Accepted: 01/15/2023] [Indexed: 01/19/2023]
Abstract
In our continuing efforts to explore structure-activity relationships around the novel class of potent, isonicotinamide-based GSK3 inhibitors described in our previous report, we extensively explored structural variations around both 4/5-pyridine substitutions and the amide group. Some analogs were found to have greatly improved pTau lowering potency while retaining high kinase selectivity. In contrast to previous active compounds 1a-c, a close analog 3h did not show in vivo efficacy in a triple-transgenic mouse Alzheimer's disease model. In general, these 2‑pyridinyl amide derivatives were prone to amidase mediated hydrolysis in mouse plasma.
Collapse
|
6
|
Yan N, Shi XL, Tang LQ, Wang DF, Li X, Liu C, Liu ZP. Synthesis and biological evaluation of thieno[3,2- c]pyrazol-3-amine derivatives as potent glycogen synthase kinase 3β inhibitors for Alzheimer's disease. J Enzyme Inhib Med Chem 2022; 37:1724-1736. [PMID: 35698879 PMCID: PMC9225722 DOI: 10.1080/14756366.2022.2086867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Glycogen synthase kinase 3β (GSK-3β) catalyses the hyperphosphorylation of tau protein in the Alzheimer's disease (AD) pathology. A series of novel thieno[3,2-c]pyrazol-3-amine derivatives were designed and synthesised and evaluated as potential GSK-3β inhibitors by structure-guided drug rational design approach. The thieno[3,2-c]pyrazol-3-amine derivative 16b was identified as a potent GSK-3β inhibitor with an IC50 of 3.1 nM in vitro and showed accepted kinase selectivity. In cell levels, 16b showed no toxicity on the viability of SH-SY5Y cells at the concentration up to 50 μM and targeted GSK-3β with the increased phosphorylated GSK-3β at Ser9. Western blot analysis indicated that 16b decreased the phosphorylated tau at Ser396 in a dose-dependent way. Moreover, 16b effectively increased expressions of β-catenin as well as the GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth. Therefore, the thieno[3,2-c]pyrazol-3-amine derivative 16b could serve as a promising GSK-3β inhibitor for the treatment of AD.
Collapse
Affiliation(s)
- Ning Yan
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xiao-Long Shi
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Long-Qian Tang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - De-Feng Wang
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xun Li
- Institute of Materia Medica, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, PR China
| | - Chao Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Zhao-Peng Liu
- Institute of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
7
|
Hottin C, Perron M, Roger JE. GSK3 Is a Central Player in Retinal Degenerative Diseases but a Challenging Therapeutic Target. Cells 2022; 11:cells11182898. [PMID: 36139472 PMCID: PMC9496697 DOI: 10.3390/cells11182898] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/24/2022] Open
Abstract
Glycogen synthase kinase 3 (GSK3) is a key regulator of many cellular signaling processes and performs a wide range of biological functions in the nervous system. Due to its central role in numerous cellular processes involved in cell degeneration, a rising number of studies have highlighted the interest in developing therapeutics targeting GSK3 to treat neurodegenerative diseases. Although recent works strongly suggest that inhibiting GSK3 might also be a promising therapeutic approach for retinal degenerative diseases, its full potential is still under-evaluated. In this review, we summarize the literature on the role of GSK3 on the main cellular functions reported as deregulated during retinal degeneration, such as glucose homeostasis which is critical for photoreceptor survival, or oxidative stress, a major component of retinal degeneration. We also discuss the interest in targeting GSK3 for its beneficial effects on inflammation, for reducing neovascularization that occurs in some retinal dystrophies, or for cell-based therapy by enhancing Müller glia cell proliferation in diseased retina. Together, although GSK3 inhibitors hold promise as therapeutic agents, we highlight the complexity of targeting such a multitasked kinase and the need to increase our knowledge of the impact of reducing GSK3 activity on these multiple cellular pathways and biological processes.
Collapse
Affiliation(s)
- Catherine Hottin
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Muriel Perron
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| | - Jérôme E Roger
- Paris-Saclay Institute of Neuroscience, CERTO-Retina France, CNRS, Université Paris-Saclay, 91400 Saclay, France
| |
Collapse
|
8
|
Li T, Cao HX, Ke D. Type 2 Diabetes Mellitus Easily Develops into Alzheimer's Disease via Hyperglycemia and Insulin Resistance. Curr Med Sci 2021; 41:1165-1171. [PMID: 34874485 DOI: 10.1007/s11596-021-2467-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022]
Abstract
With the acceleration of population aging, the incidence of type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) is progressively increasing due to the age-relatedness of these two diseases. The association between T2DM and AD-like dementia is receiving much attention, and T2DM is reported to be a significant risk factor for AD. The aims of this review were to reveal the brain changes caused by T2DM as well as to explore the roles of hyperglycemia and insulin resistance in the development of AD.
Collapse
Affiliation(s)
- Ting Li
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Hong-Xia Cao
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Dan Ke
- Department of Pathophysiology, School of Basic Medicine and the Collaborative Innovation Center for Brain Science, Key Laboratory of Ministry of Education of China and Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
9
|
Alsadat AM, Nikbakht F, Hossein Nia H, Golab F, Khadem Y, Barati M, Vazifekhah S. GSK-3β as a target for apigenin-induced neuroprotection against Aβ 25-35 in a rat model of Alzheimer's disease. Neuropeptides 2021; 90:102200. [PMID: 34597878 DOI: 10.1016/j.npep.2021.102200] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 01/22/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a critical molecule in Alzheimer's disease (AD) that modulates two histopathological hallmarks of AD: Amyloid beta (Aβ) plaques and neurofibrillary tangles composed of aberrant hyper-phosphorylation of tau protein. This study was performed to investigate the protective effect of flavone apigenin through inhibition of GSK-3 and the involvement of this kinase in the inhibition of BACE1 expression and hyperphosphorylation of tau protein in an AD rat model. 15 nM of aggregated amyloid-beta 25-35 was microinjected into the left lateral ventricle of an AD rat. Apigenin (50 mg/kg) was administered orally 45 min before the Aβ injection and continued daily for three weeks. Immunohistochemistry and western blot analysis showed that apigenin significantly reduced the hyperphosphorylation of tau levels in the hippocampus. Real-time PCR analysis revealed significant inhibition of the mRNA level of β secretase (BACE1) and GSK-3β, but Apigenin had no effect on the level of GSK-3α. The results demonstrate that apigenin has a protective effect against amyloid-beta 25-35 by decreasing the expression of GSK-3β with the consequence of lowering the hyperphosphorylation of tau protein and suppressing BACE1 expression.
Collapse
Affiliation(s)
- Alireza Moein Alsadat
- Cellular and Molecular Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran. Iran
| | - Farnaz Nikbakht
- Cellular and Molecular Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran. Iran.
| | - Hadiseh Hossein Nia
- Cellular and Molecular Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran. Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran. Iran
| | - Yasaman Khadem
- Cellular and Molecular Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran. Iran
| | - Mahmoud Barati
- Department of Medical Biotechnology, School of Allied Medical Sciences, Iran University of Medical Sciences, Tehran. Iran
| | - Somayeh Vazifekhah
- Cellular and Molecular Research Center and Department of Physiology, Iran University of Medical Sciences, Tehran. Iran
| |
Collapse
|
10
|
Ma Y, Wang J, Xu D, Chen Y, Han X. Chronic MC-LR exposure promoted Aβ and p-tau accumulation via regulating Akt/GSK-3β signal pathway. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 794:148732. [PMID: 34323745 DOI: 10.1016/j.scitotenv.2021.148732] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/10/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
It has been reported that microcystin-leucine-arginine (MC-LR) can enter into the brain and demonstrate neurotoxicity resulting in learning and memory deficits. While, there is still a lack of clear understanding of the related molecular mechanisms. In this study, we observed β-amyloid (Aβ) accumulation and tau hyperphosphorylation (p-tau) at sites of Ser396 and Thr205 in mouse hippocampus and cortex, Alzheimer's disease (AD) like changes, after chronic exposure to MC-LR at different concentrations (1, 7.5, 15 and 30 μg/L) for 180 days. The hallmarks of AD are characterized by senile plaques and neurofibrillary tangles (NFT), with associated loss of neurons, resulting in cognitive impairment and dementia. Similarly, the production of Aβ and tau hyperphosphorylation was also detected in HT-22 cells treated with MC-LR. In addition, MC-LR promoted increased expressions of BACE1 and PS1, but reduced mRNA expressions of ADAM family members both in vivo and in vitro, promoting the Aβ production. Moreover, we identified Akt/GSK-3β signal pathway mediated the Aβ and p-tau accumulation, bringing about Alzheimer's disease-like changes. Furthermore, microglial cells were activated in those mice exposed to MC-LR. Inflammatory cytokines were also found being activated to release in vitro. In conclusion, this study could provide a clue for MC-LR-induced neurotoxicity, which gave insights into the environmental risks of Alzheimer's disease.
Collapse
Affiliation(s)
- Yuhan Ma
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Jing Wang
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Dihui Xu
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China
| | - Yabing Chen
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| | - Xiaodong Han
- Immunology and Reproduction Biology Laboratory & State Key Laboratory of Analytical Chemistry for Life Science, Medical School, Nanjing University, Nanjing 210093, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing University, Nanjing 210093, China.
| |
Collapse
|
11
|
Curcumin and Nano-Curcumin Mitigate Copper Neurotoxicity by Modulating Oxidative Stress, Inflammation, and Akt/GSK-3β Signaling. Molecules 2021; 26:molecules26185591. [PMID: 34577062 PMCID: PMC8467357 DOI: 10.3390/molecules26185591] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/10/2021] [Accepted: 09/11/2021] [Indexed: 12/31/2022] Open
Abstract
Copper (Cu) is essential for multiple biochemical processes, and copper sulphate (CuSO4) is a pesticide used for repelling pests. Accidental or intentional intoxication can induce multiorgan toxicity and could be fatal. Curcumin (CUR) is a potent antioxidant, but its poor systemic bioavailability is the main drawback in its therapeutic uses. This study investigated the protective effect of CUR and N-CUR on CuSO4-induced cerebral oxidative stress, inflammation, and apoptosis in rats, pointing to the possible involvement of Akt/GSK-3β. Rats received 100 mg/kg CuSO4 and were concurrently treated with CUR or N-CUR for 7 days. Cu-administered rats exhibited a remarkable increase in cerebral malondialdehyde (MDA), NF-κB p65, TNF-α, and IL-6 associated with decreased GSH, SOD, and catalase. Cu provoked DNA fragmentation, upregulated BAX, caspase-3, and p53, and decreased BCL-2 in the brain of rats. N-CUR and CUR ameliorated MDA, NF-κB p65, and pro-inflammatory cytokines, downregulated pro-apoptotic genes, upregulated BCL-2, and enhanced antioxidants and DNA integrity. In addition, both N-CUR and CUR increased AKT Ser473 and GSK-3β Ser9 phosphorylation in the brain of Cu-administered rats. In conclusion, N-CUR and CUR prevent Cu neurotoxicity by attenuating oxidative injury, inflammatory response, and apoptosis and upregulating AKT/GSK-3β signaling. The neuroprotective effect of N-CUR was more potent than CUR.
Collapse
|
12
|
Sun Y, Wu A, Li X, Qin D, Jin B, Liu J, Tang Y, Wu J, Yu C. The seed of Litchi chinensis fraction ameliorates hippocampal neuronal injury in an Aβ 25-35-induced Alzheimer's disease rat model via the AKT/GSK-3β pathway. PHARMACEUTICAL BIOLOGY 2020; 58:35-43. [PMID: 31881157 PMCID: PMC6968628 DOI: 10.1080/13880209.2019.1697298] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 08/27/2019] [Accepted: 11/20/2019] [Indexed: 06/10/2023]
Abstract
Context: The seed of Litchi chinensis Sonn., a famous traditional Chinese medicine, was recently reported to enhance cognitive function by inhibiting neuronal apoptosis in rats.Objective: We determined whether the seed of Litchi chinensis fraction (SLF) can ameliorate hippocampal neuronal injury via the AKT/GSK-3β pathway.Materials and methods: We established Alzheimer's disease (AD) model by infusing Aβ25-35 into the lateral ventricle of Sprague-Dawley (SD) rats and randomly divided into five groups (n = 10): sham, donepezil and SLF (120, 240 and 480 mg/kg/d). Rats were treated by intragastric administration for 28 consecutive days. Spatial learning and memory were evaluated with Morris water maze, while protein expression of AKT, GSK-3β and tau in the hippocampal neurons was measured by Western blotting and immunohistochemistry.Results: On the fifth day, escape latency of the AD model group was 45.78 ± 2.52 s and that of the sham operative group was 15.98 ± 2.32 s. SLF could improve cognitive functions by increasing the number of rats that crossed the platform (p < 0.01), and their platform quadrant dwell time (p < 0.05). The protein expression level of AKT was upregulated (p < 0.001), while that of GSK-3β and tau (p < 0.01) was remarkably downregulated in the hippocampal CA1 area.Discussion and conclusions: To our knowledge, the present study is the first to show that SLF may exert neuroprotective effect in AD rats via the AKT/GSK-3β signalling pathway, thereby serving as evidence for the potential utility of SLF as an effective drug against AD.
Collapse
Affiliation(s)
- Yueshan Sun
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Anguo Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Xiu Li
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Department of Anatomy and Histology and Embryology, Chengdu Medical College, Chengdu, China
| | - Dalian Qin
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Bingjin Jin
- Department of Human Anatomy, Chengdu Medical Collage, Chengdu, China
| | - Jian Liu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Yong Tang
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Jianming Wu
- Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| | - Chonglin Yu
- Institute of Cardiovascular Research, The Key Laboratory of Medical Electrophysiology, Southwest Medical University, Luzhou, China
| |
Collapse
|
13
|
Sharma M, Pruitt K. Wnt Pathway: An Integral Hub for Developmental and Oncogenic Signaling Networks. Int J Mol Sci 2020; 21:E8018. [PMID: 33126517 PMCID: PMC7663720 DOI: 10.3390/ijms21218018] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 12/18/2022] Open
Abstract
The Wnt pathway is an integral cell-to-cell signaling hub which regulates crucial development processes and maintenance of tissue homeostasis by coordinating cell proliferation, differentiation, cell polarity, cell movement, and stem cell renewal. When dysregulated, it is associated with various developmental diseases, fibrosis, and tumorigenesis. We now better appreciate the complexity and crosstalk of the Wnt pathway with other signaling cascades. Emerging roles of the Wnt signaling in the cancer stem cell niche and drug resistance have led to development of therapeutics specifically targeting various Wnt components, with some agents currently in clinical trials. This review highlights historical and recent findings on key mediators of Wnt signaling and how they impact antitumor immunity and maintenance of cancer stem cells. This review also examines current therapeutics being developed that modulate Wnt signaling in cancer and discusses potential shortcomings associated with available therapeutics.
Collapse
Affiliation(s)
| | - Kevin Pruitt
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| |
Collapse
|
14
|
Rodríguez-Matellán A, Avila J, Hernández F. Overexpression of GSK-3β in Adult Tet-OFF GSK-3β Transgenic Mice, and Not During Embryonic or Postnatal Development, Induces Tau Phosphorylation, Neurodegeneration and Learning Deficits. Front Mol Neurosci 2020; 13:561470. [PMID: 33013321 PMCID: PMC7511757 DOI: 10.3389/fnmol.2020.561470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/24/2022] Open
Abstract
GSK-3β or tau-kinase I is particularly abundant in the central nervous system (CNS), playing a key role in the pathogenesis of Alzheimer’s disease (AD). Accordingly, transgenic mouse models overexpressing this kinase recapitulate some aspects of this disease, such as tau hyperphosphorylation, neuronal death, and microgliosis. These alterations have been studied in mouse models showing GSK-3β overexpression from birth. In this case, some of these alterations may be due to adaptations that occur during development. Here we explored the potential of the Tet-OFF conditional system in the murine CamKIIα-tTA/GSK-3β model to increase the activity of GSK-3β only during adulthood. To this end, the overexpression of GSK-3β remained OFF during embryonic and postnatal development by administration of doxycycline in drinking water for 6 months, while it was turned ON in adult animals by removal of the treatment for 6 months. In these conditions, the CamKIIα-tTA/GSK-3β mouse is characterized by an increase in phosphorylated tau, cell death, and microgliosis. Furthermore, the increase in GSK-3β expression in the adult animals triggered a cognitive deficit, as determined through the hippocampus-dependent object recognition test (OR). These results demonstrate that the GSK-3β plays a key role in AD and that previously published data with other transgenic models are neither caused by or a consequence of adaptations to high levels of the enzyme during development.
Collapse
Affiliation(s)
- Alberto Rodríguez-Matellán
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Madrid, Spain.,Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| |
Collapse
|
15
|
Shi XL, Yan N, Cui YJ, Liu ZP. A Unique GSK-3β inhibitor B10 Has a Direct Effect on Aβ, Targets Tau and Metal Dyshomeostasis, and Promotes Neuronal Neurite Outgrowth. Cells 2020; 9:cells9030649. [PMID: 32155989 PMCID: PMC7140427 DOI: 10.3390/cells9030649] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 02/07/2023] Open
Abstract
Due to the complicated pathogenesis of Alzheimer's disease (AD), the development of multitargeted agents to simultaneously interfere with multiple pathological processes of AD is a potential choice. Glycogen synthase kinase-3β (GSK-3β) plays a vital role in the AD pathological process. In this study, we discovered a novel 1H-pyrrolo[2,3-b]pyridine derivative B10 as a GSK-3β inhibitor that features with a quinolin-8-ol moiety to target the metal dyshomeostasis of AD. B10 potently inhibited GSK-3β with an IC50 of 66 ± 2.5 nM. At the concentration of 20 μM, B10 increased β-catenin abundance (β-catenin/GAPDH: 0.83 ± 0.086 vs. 0.30 ± 0.016), phosphorylated GSK-3β at Ser9 (p-GSK-3β/GAPDH: 0.53 ± 0.045 vs. 0.35 ± 0.012), and decreased the phosphorylated tau level (p-tau/GAPDH: 0.33 ± 0.065 vs. 0.83 ± 0.061) in SH-SY5Y cells. Unlike other GSK-3β inhibitors, B10 had a direct effect on Aβ by inhibiting Aβ1-42 aggregation and promoting the Aβ1-42 aggregate disassociation. It selectively chelated with Cu2+, Zn2+, Fe3+, and Al3+, and targeted AD metal dyshomeostasis. Moreover, B10 effectively increased the mRNA expression of the recognized neurogenesis markers, GAP43, N-myc, and MAP-2, and promoted the differentiated neuronal neurite outgrowth, possibly through the GSK-3β and β-catenin signal pathways. Therefore, B10 is a potent and unique GSK-3β inhibitor that has a direct on Aβ and serves as a multifunctional anti-AD agent for further investigations.
Collapse
|
16
|
Herrera JL, Ordoñez-Gutierrez L, Fabrias G, Casas J, Morales A, Hernandez G, Acosta NG, Rodriguez C, Prieto-Valiente L, Garcia-Segura LM, Wandosell FG, Alonso R. Ovarian Hormone-Dependent Effects of Dietary Lipids on APP/PS1 Mouse Brain. Front Aging Neurosci 2019; 11:346. [PMID: 31920626 PMCID: PMC6930904 DOI: 10.3389/fnagi.2019.00346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 11/26/2019] [Indexed: 12/30/2022] Open
Abstract
The formation of senile plaques through amyloid-β peptide (Aβ) aggregation is a hallmark of Alzheimer’s disease (AD). Irrespective of its actual role in the synaptic alterations and cognitive impairment associated with AD, different therapeutic approaches have been proposed to reduce plaque formation. In rodents, daily intake of omega-3 (n-3) long-chain polyunsaturated fatty acids (LC-PUFAs) is required for neural development, and there is experimental and epidemiological evidence that their inclusion in the diet has positive effects on several neurodegenerative diseases. Similarly, estradiol appears to reduce senile plaque formation in primary mouse cell cultures, human cortical neurons and mouse AD models, and it prevents Aβ toxicity in neural cell lines. We previously showed that differences in dietary n-6/n-3 LC-PUFAs ratios modify the lipid composition in the cerebral cortex of female mice and the levels of amyloid precursor protein (APP) in the brain. These effects depended in part on the presence of circulating estradiol. Here we explored whether this potentially synergistic action between diet and ovarian hormones may influence the progression of amyloidosis in an AD mouse model. Our results show that a diet with high n-3 LC-PUFA content, especially DHA (22:6n-3), reduces the hippocampal accumulation of Aβ1–40, but not amyloid Aβ1–42 in female APPswe/PS1 E9A mice, an effect that was counteracted by the loss of the ovaries and that depended on circulating estradiol. In addition, this interaction between dietary lipids and ovarian function also affects the composition of the brain lipidome as well as the expression of certain neuronal signaling and synaptic proteins. These findings provide new insights into how ovarian hormones and dietary composition affect the brain lipidome and amyloid burden. Furthermore, they strongly suggest that when designing dietary or pharmacological strategies to combat human neurodegenerative diseases, hormonal and metabolic status should be specifically taken into consideration as it may affect the therapeutic response.
Collapse
Affiliation(s)
- Jose Luis Herrera
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Lara Ordoñez-Gutierrez
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Gemma Fabrias
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Josefina Casas
- Instituto de Química Avanzada de Cataluña (IQAC-CSIC), Barcelona, Spain
| | - Araceli Morales
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Guadalberto Hernandez
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Nieves G Acosta
- Departamento de Biología Animal, Edafología y Geología, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | - Covadonga Rodriguez
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| | | | - Luis M Garcia-Segura
- Instituto Cajal, CSIC, Madrid, Spain.,Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable, Madrid, Spain
| | - Francisco G Wandosell
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas, Madrid, Spain
| | - Rafael Alonso
- Departamento de Ciencias Médicas Básicas, Instituto de Tecnologías Biomédicas-Centro de Investigaciones Biomédicas de Canarias, Universidad de La Laguna, San Cristóbal de La Laguna, Spain
| |
Collapse
|
17
|
Paudel P, Seong SH, Zhou Y, Park HJ, Jung HA, Choi JS. Anti-Alzheimer's Disease Activity of Bromophenols from a Red Alga, Symphyocladia latiuscula (Harvey) Yamada. ACS OMEGA 2019; 4:12259-12270. [PMID: 31460342 PMCID: PMC6682041 DOI: 10.1021/acsomega.9b01557] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 07/02/2019] [Indexed: 05/04/2023]
Abstract
Symphyocladia latiuscula (Harvey) Yamada is a red alga with a myriad of bromophenols accompanied by a diverse array of biological activities. The main purpose of the present study was to characterize the anti-Alzheimer's disease activity of bromophenols from S. latiuscula via inhibition of cholinesterases (AChE and BChE), β-site amyloid precursor protein cleaving enzyme 1 (BACE1), and glycogen synthase kinase-3β (GSK-3β). The results of enzyme inhibition assays demonstrated 2,3,6-tribromo-4,5-dihydroxybenzyl alcohol (1), 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (2), and bis-(2,3,6-tribromo-4,5-dihydroxybenzyl) ether (3) as potent inhibitors of aforementioned enzymes. Among the tested bromophenols, 3 showed multifold higher inhibition of all of the tested enzymes. Enzyme kinetics revealed different modes of inhibition, and in silico molecular docking simulation demonstrated the importance of the 7-OH group and bromine number for H-bond and halogen-bond interactions, respectively. Similarly, 1-3 at 20 μM concentration showed more than 50% inhibition of self-induced Aβ25-35 aggregation. These results suggest that bromophenols from S. latiuscula, especially highly brominated (3), may represent a novel class of anti-Alzheimer's disease drugs.
Collapse
Affiliation(s)
- Pradeep Paudel
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Su Hui Seong
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Yajuan Zhou
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
| | - Hye Jin Park
- Department
of Food Science and Nutrition, Changshin
University, Gyeongsangnam-do, Changwon 51352, Republic of Korea
| | - Hyun Ah Jung
- Department
of Food Science and Human Nutrition, Chonbuk
National University, Jeonju 54896, Republic of Korea
- E-mail: . Tel.: +82-63-270-4882. Fax: +82-63-270-3854 (H.A.J.)
| | - Jae Sue Choi
- Department
of Food and Life Science, Pukyong National
University, Busan 48513, Republic of Korea
- E-mail: . Tel.: +82-51-629-5845. Fax: +82-51-629-5842 (J.S.C.)
| |
Collapse
|
18
|
Yu WN, Lai YJ, Ma JW, Ho CT, Hung SW, Chen YH, Chen CT, Kao JY, Way TDER. Citronellol Induces Necroptosis of Human Lung Cancer Cells via TNF-α Pathway and Reactive Oxygen Species Accumulation. In Vivo 2019; 33:1193-1201. [PMID: 31280209 PMCID: PMC6689369 DOI: 10.21873/invivo.11590] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Accepted: 05/23/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND/AIM Our current study aimed to determine the molecular mechanisms of citronellol-induced cell death and ROS accumulation in non-small cell lung cancer (NCI-H1299 cells) and also compare the anticancer effects of citronellol and EOPC. MATERIALS AND METHODS ROS measurement and western blotting were performed to detect whether citronellol can induce necroptosis in vitro. Besides, we performed an in vivo analysis of tumourigenesis inhibition by citronellol treatment in BALB/c (nu/nu) nude mice. RESULTS Necroptosis occured by up-regulating TNF-α, RIP1/RIP3 activities, and down-regulating caspase-3/caspase-8 activities after citronellol treatment in NCI-H1299 cells. Citronellol also resulted in a biphasic increase in ROS production at 1 h and at 12 h in NCI-H1299 cells. Xenograft model experiments showed that citronellol could effectively inhibit subcutaneous tumours produced 4 weeks after intraperitoneal injection of NCI-H1299 in BALB/c nude mice. CONCLUSION Citronellol induced necroptosis of NCI-H1299 cells via TNF-α pathway and ROS accumulation.
Collapse
Affiliation(s)
- Wan-Nien Yu
- Department of Otolaryngology, Head and Neck Surgery, Changhwa Christian Hospital, Changhwa, Taiwan, R.O.C
| | - Ying-Ju Lai
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, R.O.C
| | - Jui-Wen Ma
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Chi-Tang Ho
- Department of Food Science, Rutgers University, New Brunswick, NJ, U.S.A
| | - Shan-Wei Hung
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C
| | - Yu-Hsin Chen
- Taichung District Agricultural Research and Extension Station, Council of Agriculture, Taichung, Taiwan, R.O.C
| | - Chiung-Tong Chen
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, R.O.C
- Institute of Biotechnology and Pharmaceutical Research, National Health Research Institutes, Miaoli, Taiwan, R.O.C
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, R.O.C
| | - Jung-Yie Kao
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C.
| | - Tzong-DER Way
- Institute of Biochemistry, College of Life Science, National Chung Hsing University, Taichung, Taiwan, R.O.C.
- Department of Biological Science and Technology, College of Biopharmaceutical and Food Sciences, China Medical University, Taichung, Taiwan, R.O.C
- Department of Health and Nutrition Biotechnology, College of Health Science, Asia University, Taichung, Taiwan, R.O.C
| |
Collapse
|
19
|
Yakoub AM, Schülke S. A Model for Apoptotic-Cell-Mediated Adaptive Immune Evasion via CD80-CTLA-4 Signaling. Front Pharmacol 2019; 10:562. [PMID: 31214024 PMCID: PMC6554677 DOI: 10.3389/fphar.2019.00562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 05/06/2019] [Indexed: 12/22/2022] Open
Abstract
Apoptotic cells carry a plethora of self-antigens but they suppress eliciting of innate and adaptive immune responses to them. How apoptotic cells evade and subvert adaptive immune responses has been elusive. Here, we propose a novel model to understand how apoptotic cells regulate T cell activation in different contexts, leading mostly to tolerogenic responses, mainly via taking control of the CD80-CTLA-4 coinhibitory signal delivered to T cells. This model may facilitate understanding of the molecular mechanisms of autoimmune diseases associated with dysregulation of apoptosis or apoptotic cell clearance, and it highlights potential therapeutic targets or strategies for treatment of multiple immunological disorders.
Collapse
Affiliation(s)
- Abraam M Yakoub
- Department of Molecular and Cellular Physiology, School of Medicine, Stanford University, Stanford, CA, United States
| | - Stefan Schülke
- Vice President's Research Group: Molecular Allergology, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
20
|
Iqubal A, Iqubal MK, Sharma S, Ansari MA, Najmi AK, Ali SM, Ali J, Haque SE. Molecular mechanism involved in cyclophosphamide-induced cardiotoxicity: Old drug with a new vision. Life Sci 2018; 218:112-131. [PMID: 30552952 DOI: 10.1016/j.lfs.2018.12.018] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 11/08/2018] [Accepted: 12/10/2018] [Indexed: 12/20/2022]
Abstract
Cyclophosphamide (CP) is an important anticancer drug which belongs to the class of alkylating agent. Cyclophosphamide is mostly used in bone marrow transplantation, rheumatoid arthritis, lupus erythematosus, multiple sclerosis, neuroblastoma and other types of cancer. Dose-related cardiotoxicity is a limiting factor for its use. CP-induced cardiotoxicity ranges from 7 to 28% and mortality ranges from 11 to 43% at the therapeutic dose of 170-180 mg/kg, i.v. CP undergoes hepatic metabolism that results in the production of aldophosphamide. Aldophosphamide decomposes into phosphoramide mustard & acrolein. Phosphoramide is an active neoplastic agent, and acrolein is a toxic metabolite which acts on the myocardium and endothelial cells. This is the first review article that talks about cyclophosphamide-induced cardiotoxicity and the different signaling pathways involved in its pathogenicity. Based on the available literature, CP is accountable for cardiomyocytes energy pool alteration by affecting the heart fatty acid binding proteins (H-FABP). CP has been found associated with cardiomyocytes apoptosis, inflammation, endothelial dysfunction, calcium dysregulation, endoplasmic reticulum damage, and mitochondrial damage. Molecular mechanism of cardiotoxicity has been discussed in detail through crosstalk of Nrf2/ARE, Akt/GSK-3β/NFAT/calcineurin, p53/p38MAPK, NF-kB/TLR-4, and Phospholamban/SERCA-2a signaling pathway. Based on the available literature we support the fact that metabolites of CP are responsible for cardiotoxicity due to depletion of antioxidants/ATP level, altered contractility, damaged endothelium and enhanced pro-inflammatory/pro-apoptotic activities resulting into cardiomyopathy, myocardial infarction, and heart failure. Dose adjustment, elimination/excretion of acrolein and maintenance of endogenous antioxidant pool could be the therapeutic approach to mitigate the toxicities.
Collapse
Affiliation(s)
- Ashif Iqubal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Kashif Iqubal
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Sumit Sharma
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd Asif Ansari
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Mansoor Ali
- Department of Biosciences, Jamia Millia Islamia,110025 New Delhi, India
| | - Javed Ali
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Syed Ehtaishamul Haque
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
21
|
Chen JY, Chu LW, Cheng KI, Hsieh SL, Juan YS, Wu BN. Valproate reduces neuroinflammation and neuronal death in a rat chronic constriction injury model. Sci Rep 2018; 8:16457. [PMID: 30405207 PMCID: PMC6220313 DOI: 10.1038/s41598-018-34915-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 10/29/2018] [Indexed: 01/08/2023] Open
Abstract
Valproate (VPA) is a well-known drug for treating epilepsy and mania, but its action in neuropathic pain is unclear. We used a chronic constriction injury (CCI) model to explore whether VPA prevents neuropathic pain-mediated inflammation and neuronal death. Rats were treated with or without VPA. CCI + VPA rats were intraperitoneally injected with VPA (300 mg/kg/day) from postoperative day (POD) 1 to 14. We measured paw withdrawal latency (PWL) and paw withdrawal threshold (PWT) 1 day before surgery and 1, 3, 7, 14 days after CCI and harvested the sciatic nerves (SN), spinal cord (SC) and dorsal root ganglia (DRG) on POD 3, 7, and 14. PWL and PWT were reduced in CCI rats, but increased in CCI + VPA rats on POD 7 and POD 14. VPA lowered CCI-induced inflammatory proteins (pNFκB, iNOS and COX-2), pro-apoptotic proteins (pAKT/AKT and pGSK-3β/GSK-3β), proinflammatory cytokines (TNF-α and IL-1β) and nuclear pNFκB activation in the SN, DRG and SC in CCI rats. COX-2 and pGSK-3 proteins were decreased by VPA on immunofluorescence analysis. VPA attenuated CCI-induced thermal and mechanical pain behaviors in rats in correlation with anti-neuroinflammation action involving reduction of pNFκB/iNOS/COX-2 activation and inhibition of pAKT/pGSK-3β-mediated neuronal death from injury to peripheral nerves.
Collapse
Affiliation(s)
- Jun-Yih Chen
- Division of Neurosurgery, Fooyin University Hospital, Pingtung, Taiwan.,School of Nursing, Fooyin University, Kaohsiung, Taiwan
| | - Li-Wen Chu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Yuh-Ing Junior College of Health Care and Management, Kaohsiung, Taiwan
| | - Kuang-I Cheng
- Department of Anesthesiology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Anesthesiology, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Su-Ling Hsieh
- Department of Pharmacy, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Yung-Shun Juan
- Department of Urology, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan.,Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung, Taiwan
| | - Bin-Nan Wu
- Department of Pharmacology, Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
22
|
A Closer Look into the Role of Protein Tau in the Identification of Promising Therapeutic Targets for Alzheimer's Disease. Brain Sci 2018; 8:brainsci8090162. [PMID: 30149687 PMCID: PMC6162660 DOI: 10.3390/brainsci8090162] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 01/09/2023] Open
Abstract
One of the most commonly known chronic neurodegenerative disorders, Alzheimer's disease (AD), manifests the common type of dementia in 60⁻80% of cases. From a clinical standpoint, a patent cognitive decline and a severe change in personality, as caused by a loss of neurons, is usually evident in AD with about 50 million people affected in 2016. The disease progression in patients is distinguished by a gradual plummet in cognitive functions, eliciting symptoms such as memory loss, and eventually requiring full-time medical care. From a histopathological standpoint, the defining characteristics are intracellular aggregations of hyper-phosphorylated tau protein, known as neurofibrillary tangles (NFT), and depositions of amyloid β-peptides (Aβ) in the brain. The abnormal phosphorylation of tau protein is attributed to a wide gamut of neurological disorders known as tauopathies. In addition to the hyperphosphorylated tau lesions, neuroinflammatory processes could occur in a sustained manner through astro-glial activation, resulting in the disease progression. Recent findings have suggested a strong interplay between the mechanism of Tau phosphorylation, disruption of microtubules, and synaptic loss and pathology of AD. The mechanisms underlying these interactions along with their respective consequences in Tau pathology are still ill-defined. Thus, in this review: (1) we highlight the interplays existing between Tau pathology and AD; and (2) take a closer look into its role while identifying some promising therapeutic advances including state of the art imaging techniques.
Collapse
|
23
|
Chatterjee S, Mudher A. Alzheimer's Disease and Type 2 Diabetes: A Critical Assessment of the Shared Pathological Traits. Front Neurosci 2018; 12:383. [PMID: 29950970 PMCID: PMC6008657 DOI: 10.3389/fnins.2018.00383] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/22/2018] [Indexed: 12/16/2022] Open
Abstract
Alzheimer's disease (AD) and Type 2 Diabetes Mellitus (T2DM) are two of the most prevalent diseases in the elderly population worldwide. A growing body of epidemiological studies suggest that people with T2DM are at a higher risk of developing AD. Likewise, AD brains are less capable of glucose uptake from the surroundings resembling a condition of brain insulin resistance. Pathologically AD is characterized by extracellular plaques of Aβ and intracellular neurofibrillary tangles of hyperphosphorylated tau. T2DM, on the other hand is a metabolic disorder characterized by hyperglycemia and insulin resistance. In this review we have discussed how Insulin resistance in T2DM directly exacerbates Aβ and tau pathologies and elucidated the pathophysiological traits of synaptic dysfunction, inflammation, and autophagic impairments that are common to both diseases and indirectly impact Aβ and tau functions in the neurons. Elucidation of the underlying pathways that connect these two diseases will be immensely valuable for designing novel drug targets for Alzheimer's disease.
Collapse
Affiliation(s)
- Shreyasi Chatterjee
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - Amritpal Mudher
- Centre of Biological Sciences, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
24
|
Urbanska M, Gozdz A, Macias M, Cymerman IA, Liszewska E, Kondratiuk I, Devijver H, Lechat B, Van Leuven F, Jaworski J. GSK3β Controls mTOR and Prosurvival Signaling in Neurons. Mol Neurobiol 2017; 55:6050-6062. [PMID: 29143288 PMCID: PMC5994211 DOI: 10.1007/s12035-017-0823-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 11/07/2017] [Indexed: 12/23/2022]
Abstract
Glycogen synthase kinases-3β (GSK3β) is a key regulator of cell homeostasis. In neurons, GSK3β contributes to control of neuronal transmission and plasticity. Despite extensive studies in non-neuronal cells, crosstalk between GSK3β and other signaling pathways remains not well defined in neurons. In the present study, we report that GSK3β positively affected the activity of effectors of mammalian target of rapamycin complex 1 (mTORC1) and complex 2 (mTORC2), in mature neurons in vitro and in vivo. GSK3β also promoted prosurvival signaling and attenuated kainic acid-induced apoptosis. Our study identified GSK3β as a positive regulator of prosurvival signaling, including the mTOR pathway, and indicates the possible neuroprotective role of GSK3β in models of pharmacologically induced excitotoxicity.
Collapse
Affiliation(s)
- Malgorzata Urbanska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland.,Department of Neurology and Epileptology, Children's Memorial Health Institute, 04-730, Warsaw, Poland
| | - Agata Gozdz
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Matylda Macias
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Iwona A Cymerman
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Ewa Liszewska
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland
| | - Ilona Kondratiuk
- Laboratory of Neurobiology, The Nencki Institute of Experimental Biology, 02-093, Warsaw, Poland
| | - Herman Devijver
- Department of Human Genetics, Experimental Genetics Group - LEGTEGG, KU Leuven, 3000, Leuven, Belgium
| | - Benoit Lechat
- Department of Human Genetics, Experimental Genetics Group - LEGTEGG, KU Leuven, 3000, Leuven, Belgium
| | - Fred Van Leuven
- Department of Human Genetics, Experimental Genetics Group - LEGTEGG, KU Leuven, 3000, Leuven, Belgium
| | - Jacek Jaworski
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology, Ks. Trojdena St. 4, 02-109, Warsaw, Poland.
| |
Collapse
|
25
|
Hernandez-Baltazar D, Zavala-Flores L, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. NEUROLOGÍA (ENGLISH EDITION) 2017. [DOI: 10.1016/j.nrleng.2015.06.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
26
|
Wang X, Wu J, Yu C, Tang Y, Liu J, Chen H, Jin B, Mei Q, Cao S, Qin D. Lychee Seed Saponins Improve Cognitive Function and Prevent Neuronal Injury via Inhibiting Neuronal Apoptosis in a Rat Model of Alzheimer's Disease. Nutrients 2017; 9:nu9020105. [PMID: 28165366 PMCID: PMC5331536 DOI: 10.3390/nu9020105] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 12/20/2022] Open
Abstract
Lychee seed is a traditional Chinese medicine and possesses many activities, including hypoglycemia, liver protection, antioxidation, antivirus, and antitumor. However, its effect on neuroprotection is still unclear. The present study investigated the effects of lychee seed saponins (LSS) on neuroprotection and associated mechanisms. We established a rat model of Alzheimer’s disease (AD) by injecting Aβ25–35 into the lateral ventricle of rats and evaluated the effect of LSS on spatial learning and memory ability via the Morris water maze. Neuronal apoptosis was analyzed by hematoxylin and eosin stain and terminal deoxynucleotidyl transferase (Tdt)-mediated dUTP nick-end labeling analysis, and mRNA expression of caspase-3 and protein expressions of Bax and Bcl-2 by reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting, respectively. The results showed that LSS remarkably improved cognitive function and alleviated neuronal injury by inhibiting apoptosis in the hippocampus of AD rats. Furthermore, the mRNA expression of caspase-3 and the protein expression of Bax were downregulated, while the protein expression of Bcl-2 and the ratio of Bcl-2/Bax were increased by LSS. We demonstrate that LSS significantly improves cognitive function and prevent neuronal injury in the AD rats via regulation of the apoptosis pathway. Therefore, LSS may be developed as a nutritional supplement and sold as a drug for AD prevention and/or treatment.
Collapse
Affiliation(s)
- Xiuling Wang
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Jianming Wu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Chonglin Yu
- Department of Human Anatomy, School of Preclinical Medicine, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Yong Tang
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Jian Liu
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Haixia Chen
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Bingjin Jin
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qibing Mei
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Shousong Cao
- Laboratory of Cancer Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Dalian Qin
- Laboratory of Chinese Materia Medica, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
27
|
Figueira I, Fernandes A, Mladenovic Djordjevic A, Lopez-Contreras A, Henriques CM, Selman C, Ferreiro E, Gonos ES, Trejo JL, Misra J, Rasmussen LJ, Xapelli S, Ellam T, Bellantuono I. Interventions for age-related diseases: Shifting the paradigm. Mech Ageing Dev 2016; 160:69-92. [DOI: 10.1016/j.mad.2016.09.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 09/18/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
|
28
|
Cholesterol overload induces apoptosis in SH-SY5Y human neuroblastoma cells through the up regulation of flotillin-2 in the lipid raft and the activation of BDNF/Trkb signaling. Neuroscience 2016; 328:201-9. [PMID: 27155148 DOI: 10.1016/j.neuroscience.2016.04.043] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 04/24/2016] [Accepted: 04/28/2016] [Indexed: 01/19/2023]
Abstract
Epidemiological investigations have shown that Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. It has been indicated that the cholesterol concentration in the brain of AD patients is higher than that in normal people. In this study, we investigated the effects of cholesterol concentrations, 0, as the control, 3.125, 12.5, and 25μM, on cholesterol metabolism, neuron survival, AD-related protein expressions, and cell morphology and apoptosis using SH-SY5Y human neuroblastoma cells. We observed that expressions of cholesterol hydroxylase (Cyp46), flotillin-2 (a marker of lipid raft content), and truncated tyrosine kinase B (TrkBtc) increased, while expressions of brain-derived neurotrophic factor (BDNF) and full-length TrkB (TrkBfl) decreased as the concentration of cholesterol loading increased. Down-regulation of the PI3K-Akt-glycogen synthase kinase (GSK)-3β cascade and cell apoptosis were also observed at higher concentrations of cholesterol, along with elevated levels of β-amyloid (Aβ), β-secretase (BACE), and reactive oxygen species (ROS). In conclusion, we found that cholesterol overload in neuronal cells imbalanced the cholesterol homeostasis and increased the protein expressions causing cell apoptosis, which illustrates the neurodegenerative pathology of abnormally elevated cholesterol concentrations found in AD patients.
Collapse
|
29
|
Fazio G, Gaston-Massuet C, Bettini LR, Graziola F, Scagliotti V, Cereda A, Ferrari L, Mazzola M, Cazzaniga G, Giordano A, Cotelli F, Bellipanni G, Biondi A, Selicorni A, Pistocchi A, Massa V. CyclinD1 Down-Regulation and Increased Apoptosis Are Common Features of Cohesinopathies. J Cell Physiol 2016. [PMID: 26206533 DOI: 10.1002/jcp.25106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Genetic variants within components of the cohesin complex (NIPBL, SMC1A, SMC3, RAD21, PDS5, ESCO2, HDAC8) are believed to be responsible for a spectrum of human syndromes known as "cohesinopathies" that includes Cornelia de Lange Syndrome (CdLS). CdLS is a multiple malformation syndrome affecting almost any organ and causing severe developmental delay. Cohesinopathies seem to be caused by dysregulation of specific developmental pathways downstream of mutations in cohesin components. However, it is still unclear how mutations in different components of the cohesin complex affect the output of gene regulation. In this study, zebrafish embryos and SMC1A-mutated patient-derived fibroblasts were used to analyze abnormalities induced by SMC1A loss of function. We show that the knockdown of smc1a in zebrafish impairs neural development, increases apoptosis, and specifically down-regulates Ccnd1 levels. The same down-regulation of cohesin targets is observed in SMC1A-mutated patient fibroblasts. Previously, we have demonstrated that haploinsufficiency of NIPBL produces similar effects in zebrafish and in patients fibroblasts indicating a possible common feature for neurological defects and mental retardation in cohesinopathies. Interestingly, expression analysis of Smc1a and Nipbl in developing mouse embryos reveals a specific pattern in the hindbrain, suggesting a role for cohesins in neural development in vertebrates.
Collapse
Affiliation(s)
- Grazia Fazio
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Carles Gaston-Massuet
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK
| | - Laura Rachele Bettini
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Federica Graziola
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK.,Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| | - Valeria Scagliotti
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London Medical School, Queen Mary University of London, London, UK
| | - Anna Cereda
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Luca Ferrari
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy
| | - Mara Mazzola
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gianni Cazzaniga
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Antonio Giordano
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Franco Cotelli
- Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Gianfranco Bellipanni
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania.,Sbarro Institute for Cancer Research and Molecular Medicine, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Andrea Biondi
- Centro Ricerca Tettamanti, Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy.,Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Angelo Selicorni
- Clinica Pediatrica, Università di Milano-Bicocca, Ospedale San Gerardo/Fondazione MBBM, Monza, Italy
| | - Anna Pistocchi
- Dipartimento di Biotecnologie Mediche e Medicina Traslazionale, Università degli Studi di Milano, Milano, Italy.,Dipartimento di Bioscienze, Università degli Studi di Milano, Milano, Italy
| | - Valentina Massa
- Dipartimento di Scienze della Salute, Università degli Studi di Milano, Milano, Italy
| |
Collapse
|
30
|
Luo G, Chen L, Burton CR, Xiao H, Sivaprakasam P, Krause CM, Cao Y, Liu N, Lippy J, Clarke WJ, Snow K, Raybon J, Arora V, Pokross M, Kish K, Lewis HA, Langley DR, Macor JE, Dubowchik GM. Discovery of Isonicotinamides as Highly Selective, Brain Penetrable, and Orally Active Glycogen Synthase Kinase-3 Inhibitors. J Med Chem 2016; 59:1041-51. [DOI: 10.1021/acs.jmedchem.5b01550] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Guanglin Luo
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Ling Chen
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Catherine R. Burton
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hong Xiao
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Prasanna Sivaprakasam
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Carol M. Krause
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Yang Cao
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Nengyin Liu
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Jonathan Lippy
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Wendy J. Clarke
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kimberly Snow
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Joseph Raybon
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Vinod Arora
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Matt Pokross
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Kevin Kish
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Hal A. Lewis
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - David R. Langley
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - John E. Macor
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| | - Gene M. Dubowchik
- Bristol-Myers Squibb Research & Development, Bristol-Myers Squibb Company, 5 Research Parkway, Wallingford, Connecticut 06492, United States
| |
Collapse
|
31
|
Majd S, Power JH, Grantham HJM. Neuronal response in Alzheimer's and Parkinson's disease: the effect of toxic proteins on intracellular pathways. BMC Neurosci 2015; 16:69. [PMID: 26499115 PMCID: PMC4619058 DOI: 10.1186/s12868-015-0211-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 10/13/2015] [Indexed: 01/09/2023] Open
Abstract
Accumulation of protein aggregates is the leading cause of cellular dysfunction in neurodegenerative disorders. Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s disease, Prion disease and motor disorders such as amyotrophic lateral sclerosis, present with a similar pattern of progressive neuronal death, nervous system deterioration and cognitive impairment. The common characteristic is an unusual misfolding of proteins which is believed to cause protein deposition and trigger degenerative signals in the neurons. A similar clinical presentation seen in many neurodegenerative disorders suggests the possibility of shared neuronal responses in different disorders. Despite the difference in core elements of deposits in each neurodegenerative disorder, the cascade of neuronal reactions such as activation of glycogen synthase kinase-3 beta, mitogen-activated protein kinases, cell cycle re-entry and oxidative stress leading to a progressive neurodegeneration are surprisingly similar. This review focuses on protein toxicity in two neurodegenerative diseases, AD and PD. We reviewed the activated mechanisms of neurotoxicity in response to misfolded beta-amyloid and α-synuclein, two major toxic proteins in AD and PD, leading to neuronal apoptosis. The interaction between the proteins in producing an overlapping pathological pattern will be also discussed.
Collapse
Affiliation(s)
- Shohreh Majd
- Centre for Neuroscience and Paramedic Unit, School of Medicine, Flinders University of South Australia, Adelaide, SA, 5042, Australia.
| | - John H Power
- Department of Human Physiology, School of Medicine, Flinders University of South Australia, Adelaide, SA, 5042, Australia.
| | - Hugh J M Grantham
- Centre for Neuroscience and Paramedic Unit, School of Medicine, Flinders University of South Australia, Adelaide, SA, 5042, Australia.
| |
Collapse
|
32
|
Hernandez-Baltazar D, Zavala-Flores LM, Villanueva-Olivo A. The 6-hydroxydopamine model and parkinsonian pathophysiology: Novel findings in an older model. Neurologia 2015; 32:533-539. [PMID: 26304655 DOI: 10.1016/j.nrl.2015.06.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 06/09/2015] [Accepted: 06/15/2015] [Indexed: 01/09/2023] Open
Abstract
The neurotoxin 6-hydroxydopamine (6-OHDA) is widely used to induce models of Parkinson's disease (PD). We now know that the model induced by 6-OHDA does not include all PD symptoms, although it does reproduce the main cellular processes involved in PD, such as oxidative stress, neurodegeneration, neuroinflammation, and neuronal death by apoptosis. In this review we analyse the factors affecting the vulnerability of dopaminergic neurons as well as the close relationships between neuroinflammation, neurodegeneration, and apoptosis in the 6-OHDA model. Knowledge of the mechanisms involved in neurodegeneration and cell death in this model is the key to identifying potential therapeutic targets for PD.
Collapse
Affiliation(s)
- D Hernandez-Baltazar
- Cátedra CONACyT, Dirección Adjunta de Desarrollo Científico CONACyT, México, D. F., México; Instituto de Neuroetología, Universidad Veracruzana, Xalapa, Veracruz, México.
| | - L M Zavala-Flores
- Centro de Investigación Biomédica del Noreste, IMSS, Monterrey, Nuevo León, México
| | - A Villanueva-Olivo
- Departamento de Histología, Facultad de Medicina, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México
| |
Collapse
|
33
|
Abstract
Parkinson's disease (PD) displays a greater prevalence and earlier age at onset in men. This review addresses the concept that sex differences in PD are determined, largely, by biological sex differences in the NSDA system which, in turn, arise from hormonal, genetic and environmental influences. Current therapies for PD rely on dopamine replacement strategies to treat symptoms, and there is an urgent, unmet need for disease modifying agents. As a significant degree of neuroprotection against the early stages of clinical or experimental PD is seen, respectively, in human and rodent females compared with males, a better understanding of brain sex dimorphisms in the intact and injured NSDA system will shed light on mechanisms which have the potential to delay, or even halt, the progression of PD. Available evidence suggests that sex-specific, hormone-based therapeutic agents hold particular promise for developing treatments with optimal efficacy in men and women.
Collapse
|
34
|
Zhang Y, Ma RH, Li XC, Zhang JY, Shi HR, Wei W, Luo DJ, Wang Q, Wang JZ, Liu GP. Silencing [Formula: see text] Rescues Tau Pathologies and Memory Deficits through Rescuing PP2A and Inhibiting GSK-3β Signaling in Human Tau Transgenic Mice. Front Aging Neurosci 2014; 6:123. [PMID: 24987368 PMCID: PMC4060416 DOI: 10.3389/fnagi.2014.00123] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/27/2014] [Indexed: 01/12/2023] Open
Abstract
Increase of inhibitor-2 of protein phosphatase-2A [Formula: see text] is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer's disease (AD). Down-regulating [Formula: see text] attenuated amyloidogenesis and improved the cognitive functions in transgenic mice expressing amyloid precursor protein (tg2576). Here, we found that silencing [Formula: see text] by hippocampal infusion of [Formula: see text] down-regulated [Formula: see text] (~45%) with reduction of tau phosphorylation/accumulation, improvement of memory deficits, and dendritic plasticity in 12-month-old human tau transgenic mice. Silencing [Formula: see text] not only restored PP2A activity but also inhibited glycogen synthase kinase-3β (GSK-3β) with a significant activation of protein kinase A (PKA) and Akt. In HEK293/tau and N2a/tau cells, silencing [Formula: see text] by [Formula: see text] also significantly reduced tau hyperphosphorylation with restoration of PP2A activity and inhibition of GSK-3β, demonstrated by the decreased GSK-3β total protein and mRNA levels, and the increased inhibitory phosphorylation of GSK-3β at serine-9. Furthermore, activation of PKA but not Akt mediated the inhibition of GSK-3β by [Formula: see text] silencing. We conclude that targeting [Formula: see text] can improve tau pathologies and memory deficits in human tau transgenic mice, and activation of PKA contributes to GSK-3β inhibition induced by silencing [Formula: see text]in vitro, suggesting that [Formula: see text] is a promising multiple target of AD.
Collapse
Affiliation(s)
- Yao Zhang
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Endocrinology, Liyuan Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Rong-Hong Ma
- Department of Laboratory Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xia-Chun Li
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia-Yu Zhang
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hai-Rong Shi
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Wei
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Jinan University, Guangzhou, China
| | - Dan-Ju Luo
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qun Wang
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Zhi Wang
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Gong-Ping Liu
- Key Laboratory of Neurological Disease of Chinese Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
- Department of Pathophysiology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Llorens-Martín M, Jurado J, Hernández F, Avila J. GSK-3β, a pivotal kinase in Alzheimer disease. Front Mol Neurosci 2014; 7:46. [PMID: 24904272 PMCID: PMC4033045 DOI: 10.3389/fnmol.2014.00046] [Citation(s) in RCA: 225] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 05/02/2014] [Indexed: 01/10/2023] Open
Abstract
Alzheimer disease (AD) is the most common form of age-related dementia. The etiology of AD is considered to be multifactorial as only a negligible percentage of cases have a familial or genetic origin. Glycogen synthase kinase-3 (GSK-3) is regarded as a critical molecular link between the two histopathological hallmarks of the disease, namely senile plaques and neurofibrillary tangles. In this review, we summarize current data regarding the involvement of this kinase in several aspects of AD development and progression, as well as key observations highlighting GSK-3 as one of the most relevant targets for AD treatment.
Collapse
Affiliation(s)
| | - Jerónimo Jurado
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| | - Félix Hernández
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain ; Biology Faculty, Autónoma University Madrid, Spain
| | - Jesús Avila
- Centro de Biología Molecular "Severo Ochoa", Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid Madrid, Spain ; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Instituto de Salud Carlos III Madrid, Spain
| |
Collapse
|
36
|
Deletion of CXCR4 in cardiomyocytes exacerbates cardiac dysfunction following isoproterenol administration. Gene Ther 2014; 21:496-506. [PMID: 24646609 PMCID: PMC4016112 DOI: 10.1038/gt.2014.23] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 01/30/2014] [Accepted: 02/03/2014] [Indexed: 11/08/2022]
Abstract
Altered alpha- and beta-adrenergic receptor signaling is associated with cardiac hypertrophy and failure. Stromal cell-derived factor-1α (SDF-1α) and its cognate receptor CXCR4 have been reported to mediate cardioprotection after injury through the mobilization of stem cells into injured tissue. However, little is known regarding whether SDF-1/CXCR4 induces acute protection following pathological hypertrophy and if so, by what molecular mechanism. We have previously reported that CXCR4 physically interacts with the beta-2 adrenergic receptor and modulates its down stream signaling. Here we have shown that CXCR4 expression prevents beta-adrenergic receptor induced hypertrophy. Cardiac beta-adrenergic receptors were stimulated with the implantation of a subcutaneous osmotic pump administrating isoproterenol and CXCR4 expression was selectively abrogated in cardiomyocytes using Cre-loxP-mediated gene recombination. CXCR4 knockout mice showed worsened fractional shortening and ejection fraction. CXCR4 ablation increased susceptibility to isoproterenol-induced heart failure, by upregulating apoptotic markers and reducing mitochondrial function; cardiac function decreases while fibrosis increases. Additionally, CXCR4 expression was rescued with the use of cardiotropic Adeno-associated viral-9 (AAV9) vectors. CXCR4 gene transfer reduced cardiac apoptotic signaling, improved mitochondrial function and resulted in a recovered cardiac function. Our results represent the first evidence that SDF-1/CXCR4 signaling mediates acute cardioprotection through modulating beta-adrenergic receptor signaling in vivo.
Collapse
|
37
|
Jafari Anarkooli I, Barzegar Ganji H, Pourheidar M. The protective effects of insulin and natural honey against hippocampal cell death in streptozotocin-induced diabetic rats. J Diabetes Res 2014; 2014:491571. [PMID: 24745031 PMCID: PMC3976855 DOI: 10.1155/2014/491571] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2013] [Revised: 02/05/2014] [Accepted: 02/09/2014] [Indexed: 11/18/2022] Open
Abstract
We investigated the effects of insulin and honey as antioxidants to prevent the hippocampal cell death in streptozotocin-induced diabetic rats. We selected sixty Wister rats (5 groups of 12 animals each), including the control group (C), and four diabetic groups (control (D) and 3 groups treated with insulin (I), honey (H), and insulin plus honey (I + H)). Diabetes was induced by streptozotocin injection (IP, 60 mg/kg). Six weeks after the induction of diabetes, the group I received insulin (3-4 U/kg/day, SC), group H received honey (5 mg/kg/day, IP), and group I + H received a combination of the above at the same dose. Groups C and D received normal saline. Two weeks after treatment, rats were sacrificed and the hippocampus was extracted. Neuronal cell death in the hippocampal region was examined using trypan blue assay, "H & E" staining, and TUNEL assay. Cell viability assessment showed significantly lower number of living cells in group D than in group C. Besides, the mean number of living cells was significantly higher in group I, H, and I + H compared to group D. Therefore, it can be concluded that the treatment of the diabetic rats with insulin, honey, and a combination of insulin and honey can prevent neuronal cell death in different hippocampal areas of the studied samples.
Collapse
Affiliation(s)
- Iraj Jafari Anarkooli
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Hossein Barzegar Ganji
- Department of Anatomy, Faculty of Medicine, Zanjan University of Medical Sciences, Zanjan 4513956111, Iran
| | - Maryam Pourheidar
- Department of Histology, Faculty of Medicine, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
38
|
Function and Regulation of the Mono-ADP-Ribosyltransferase ARTD10. Curr Top Microbiol Immunol 2014; 384:167-88. [DOI: 10.1007/82_2014_379] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
39
|
González-López A, López-Alonso I, Aguirre A, Amado-Rodríguez L, Batalla-Solís E, Astudillo A, Tomás-Zapico C, Fueyo A, dos Santos CC, Talbot K, Albaiceta GM. Mechanical ventilation triggers hippocampal apoptosis by vagal and dopaminergic pathways. Am J Respir Crit Care Med 2013; 188:693-702. [PMID: 23962032 DOI: 10.1164/rccm.201304-0691oc] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Critically ill patients frequently develop neuropsychological disturbances including acute delirium or memory impairment. The need for mechanical ventilation is a risk factor for these adverse events, but a mechanism that links lung stretch and brain injury has not been identified. OBJECTIVES To identify the mechanisms that lead to brain dysfunction during mechanical ventilation. METHODS Brains from mechanically ventilated mice were harvested, and signals of apoptosis and alterations in the Akt survival pathway were studied. These measurements were repeated in vagotomized or haloperidol-treated mice, and in animals intracerebroventricularly injected with selective dopamine-receptor blockers. Hippocampal slices were cultured and treated with micromolar concentrations of dopamine, with or without dopamine receptor blockers. Last, levels of dysbindin, a regulator of the membrane availability of dopamine receptors, were assessed in the experimental model and in brain samples from ventilated patients. MEASUREMENTS AND MAIN RESULTS Mechanical ventilation triggers hippocampal apoptosis as a result of type 2 dopamine receptor activation in response to vagal signaling. Activation of these receptors blocks the Akt/GSK3β prosurvival pathway and activates the apoptotic cascade, as demonstrated in vivo and in vitro. Vagotomy, systemic haloperidol, or intracerebroventricular raclopride (a type 2 dopamine receptor blocker) ameliorated this effect. Moreover, ventilation induced a concomitant change in the expression of dysbindin-1C. These results were confirmed in brain samples from ventilated patients. CONCLUSIONS These results prove the existence of a pathogenic mechanism of lung stretch-induced hippocampal apoptosis that could explain the neurological changes in ventilated patients and may help to identify novel therapeutic approaches.
Collapse
Affiliation(s)
- Adrián González-López
- 1 Departamento de Biología Funcional, Área de Fisiología, Instituto Universitario de Oncología del Principado de Asturias, and
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Cornelia de Lange Syndrome: NIPBL haploinsufficiency downregulates canonical Wnt pathway in zebrafish embryos and patients fibroblasts. Cell Death Dis 2013; 4:e866. [PMID: 24136230 PMCID: PMC3824680 DOI: 10.1038/cddis.2013.371] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 08/01/2013] [Indexed: 01/21/2023]
Abstract
Cornelia de Lange Syndrome is a severe genetic disorder characterized by malformations affecting multiple systems, with a common feature of severe mental retardation. Genetic variants within four genes (NIPBL (Nipped-B-like), SMC1A, SMC3, and HDAC8) are believed to be responsible for the majority of cases; all these genes encode proteins that are part of the 'cohesin complex'. Cohesins exhibit two temporally separated major roles in cells: one controlling the cell cycle and the other involved in regulating the gene expression. The present study focuses on the role of the zebrafish nipblb paralog during neural development, examining its expression in the central nervous system, and analyzing the consequences of nipblb loss of function. Neural development was impaired by the knockdown of nipblb in zebrafish. nipblb-loss-of-function embryos presented with increased apoptosis in the developing neural tissues, downregulation of canonical Wnt pathway genes, and subsequent decreased Cyclin D1 (Ccnd1) levels. Importantly, the same pattern of canonical WNT pathway and CCND1 downregulation was observed in NIPBL-mutated patient-specific fibroblasts. Finally, chemical activation of the pathway in nipblb-loss-of-function embryos rescued the adverse phenotype and restored the physiological levels of cell death.
Collapse
|
41
|
Activation of GSK-3β and caspase-3 occurs in Nigral dopamine neurons during the development of apoptosis activated by a striatal injection of 6-hydroxydopamine. PLoS One 2013; 8:e70951. [PMID: 23940672 PMCID: PMC3733721 DOI: 10.1371/journal.pone.0070951] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/24/2013] [Indexed: 11/24/2022] Open
Abstract
The 6-Hydroxydopamine (6-OHDA) rat model of Parkinson's disease is essential for a better understanding of the pathological processes underlying the human disease and for the evaluation of promising therapeutic interventions. This work evaluated whether a single striatal injection of 6-OHDA causes progressive apoptosis of dopamine (DA) neurons and activation of glycogen synthase kinase 3β (GSK-3β) and caspase-3 in the substantia nigra compacta (SNc). The loss of DA neurons was shown by three neuron markers; tyrosine hydroxylase (TH), NeuN, and β-III tubulin. Apoptosis activation was determined using Apostain and immunostaining against cleaved caspase-3 and GSK-3β pY216. We also explored the possibility that cleaved caspase-3 is produced by microglia and astrocytes. Our results showed that the 6-OHDA caused loss of nigral TH(+) cells, progressing mainly in rostrocaudal and lateromedial directions. In the neostriatum, a severe loss of TH(+) terminals occurred from day 3 after lesion. The disappearance of TH(+) cells was associated with a decrease in NeuN and β-III tubulin immunoreactivity and an increase in Apostain, cleaved caspase-3, and GSK-3β pY216 in the SNc. Apostain immunoreactivity was observed from days 3 to 21 postlesion. Increased levels of caspase-3 immunoreactivity in TH(+) cells were detected from days 1 to 15, and the levels then decreased to day 30 postlesion. The cleaved caspase-3 also collocated with microglia and astrocytes indicating its participation in glial activation. Our results suggest that caspase-3 and GSK-3β pY216 activation might participate in the DA cell death and that the active caspase-3 might also participate in the neuroinflammation caused by the striatal 6-OHDA injection.
Collapse
|
42
|
Gäbler K, Behrmann I, Haan C. JAK2 mutants (e.g., JAK2V617F) and their importance as drug targets in myeloproliferative neoplasms. JAKSTAT 2013; 2:e25025. [PMID: 24069563 PMCID: PMC3772115 DOI: 10.4161/jkst.25025] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 05/13/2013] [Accepted: 05/13/2013] [Indexed: 12/25/2022] Open
Abstract
The Janus kinase 2 (JAK2) mutant V617F and other JAK mutants are found in patients with myeloproliferative neoplasms and leukemias. Due to their involvement in neoplasia and inflammatory disorders, Janus kinases are promising targets for kinase inhibitor therapy. Several small-molecule compounds are evaluated in clinical trials for myelofibrosis, and ruxolitinib (INCB018424, Jakafi®) was the first Janus kinase inhibitor to receive clinical approval. In this review we provide an overview of JAK2V617F signaling and its inhibition by small-molecule kinase inhibitors. In addition, myeloproliferative neoplasms are discussed regarding the role of JAK2V617F and other mutant proteins of possible relevance. We further give an overview about treatment options with special emphasis on possible combination therapies.
Collapse
Affiliation(s)
- Karoline Gäbler
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Iris Behrmann
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| | - Claude Haan
- Signal Transduction Laboratory; Life Sciences Research Unit; University of Luxembourg; Luxembourg
| |
Collapse
|
43
|
Avrahami L, Licht-Murava A, Eisenstein M, Eldar-Finkelman H. GSK-3 inhibition: Achieving moderate efficacy with high selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2013; 1834:1410-4. [DOI: 10.1016/j.bbapap.2013.01.016] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 01/15/2013] [Indexed: 02/06/2023]
|
44
|
Dunleavy M, Provenzano G, Henshall DC, Bozzi Y. Kainic acid-induced seizures modulate Akt (SER473) phosphorylation in the hippocampus of dopamine D2 receptor knockout mice. J Mol Neurosci 2012. [PMID: 23188702 PMCID: PMC3532719 DOI: 10.1007/s12031-012-9927-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Dopamine D2 receptor (D2R) signalling has been shown to modulate seizure-induced hippocampal cell death. D2R knockout (D2R−/−) mice are more susceptible to kainic acid (KA)-induced excitotoxicity, displaying cell death in the CA3 subfield of the hippocampus at KA doses not damaging in wild-type (WT) animals. Absence of D2R signalling in the hippocampus leads to activation (dephosphorylation) of glycogen synthase kinase 3β (GSK-3β) after KA (20 mg/kg), which is not associated with a change in the phosphorylation of the GSK-3β regulator Akt at the canonical threonine 308 residue. In the present study, we investigated alternative pathways responsible for the activation of GSK-3β in the hippocampus of the D2R−/− mice 24 h following KA-induced seizures. Here, we show that phosphorylation of Akt occurs at serine 473 (Ser473) in the CA3 region of WT but not D2R−/− mice following KA. Moreover, the CA1 subregion, which does not undergo neurodegeneration in either WT or D2R−/− mice, displays a strong induction of Akt (Ser473) phosphorylation after KA. Additionally, the vulnerability in the CA3 is not associated with changes to p38MAPK and Dishevelled activation, and β-catenin does not appear to be a downstream target of the GSK-3β. Thus, we propose that GSK-3β phosphorylation-mediated hippocampal cell survival may depend on Akt (Ser473) phosphorylation; loss of D2R-mediated signalling in the CA3 region of D2R−/− mice leads to reduced Akt (Ser473) phosphorylation rendering neurons more vulnerable to apoptosis. Further investigation is required to fully elucidate the GSK-3β targets involved in D2R-dependent response to excitotoxicity.
Collapse
Affiliation(s)
- Mark Dunleavy
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, Mattarello, 38123 Trento, Italy
| | - Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, Mattarello, 38123 Trento, Italy
| | - David C. Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento, Via delle Regole 101, Mattarello, 38123 Trento, Italy
| |
Collapse
|
45
|
Pharmacological inhibition of GSK3 attenuates DNA damage-induced apoptosis via reduction of p53 mitochondrial translocation and Bax oligomerization in neuroblastoma SH-SY5Y cells. Cell Mol Biol Lett 2012; 18:58-74. [PMID: 23161404 PMCID: PMC6275584 DOI: 10.2478/s11658-012-0039-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 10/31/2012] [Indexed: 11/20/2022] Open
Abstract
Glycogen synthase kinase-3 (GSK3) and p53 play crucial roles in the mitochondrial apoptotic pathway and are known to interact in the nucleus. However, it is not known if GSK3 has a regulatory role in the mitochondrial translocation of p53 that participates in apoptotic signaling following DNA damage. In this study, we demonstrated that lithium and SB216763, which are pharmacological inhibitors of GSK3, attenuated p53 accumulation and caspase-3 activation, as shown by PARP cleavage induced by the DNA-damaging agents doxorubicin, etoposide and camptothecin. Furthermore, each of these agents induced translocation of p53 to the mitochondria and activated the mitochondrial pathway of apoptosis, as evidenced by the release of cytochrome C from the mitochondria. Both mitochondrial translocation of p53 and mitochondrial release of cytochrome C were attenuated by inhibition of GSK3, indicating that GSK3 promotes the DNA damage-induced mitochondrial translocation of p53 and the mitochondrial apoptosis pathway. Interestingly, the regulation of p53 mitochondrial translocation by GSK3 was only evident with wild-type p53, not with mutated p53. GSK3 inhibition also reduced the phosphorylation of wild-type p53 at serine 33, which is induced by doxorubicin, etoposide and camptothecin in the mitochondria. Moreover, inhibition of GSK3 reduced etoposide-induced association of p53 with Bcl2 and Bax oligomerization. These findings show that GSK3 promotes the mitochondrial translocation of p53, enabling its interaction with Bcl2 to allow Bax oligomerization and the subsequent release of cytochrome C. This leads to caspase activation in the mitochondrial pathway of intrinsic apoptotic signaling.
Collapse
|
46
|
Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. J Biol Chem 2012; 288:1295-306. [PMID: 23155049 DOI: 10.1074/jbc.m112.409250] [Citation(s) in RCA: 173] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Accumulation of β-amyloid (Aβ) deposits is a primary pathological feature of Alzheimer disease that is correlated with neurotoxicity and cognitive decline. The role of glycogen synthase kinase-3 (GSK-3) in Alzheimer disease pathogenesis has been debated. To study the role of GSK-3 in Aβ pathology, we used 5XFAD mice co-expressing mutated amyloid precursor protein and presenilin-1 that develop massive cerebral Aβ loads. Both GSK-3 isozymes (α/β) were hyperactive in this model. Nasal treatment of 5XFAD mice with a novel substrate competitive GSK-3 inhibitor, L803-mts, reduced Aβ deposits and ameliorated cognitive deficits. Analyses of 5XFAD hemi-brain samples indicated that L803-mts restored the activity of mammalian target of rapamycin (mTOR) and inhibited autophagy. Lysosomal acidification was impaired in the 5XFAD brains as indicated by reduced cathepsin D activity and decreased N-glycoyslation of the vacuolar ATPase subunit V0a1, a modification required for lysosomal acidification. Treatment with L803-mts restored lysosomal acidification in 5XFAD brains. Studies in SH-SY5Y cells confirmed that GSK-3α and GSK-3β impair lysosomal acidification and that treatment with L803-mts enhanced the acidic lysosomal pool as demonstrated in LysoTracker Red-stained cells. Furthermore, L803-mts restored impaired lysosomal acidification caused by dysfunctional presenilin-1. We provide evidence that mTOR is a target activated by GSK-3 but inhibited by impaired lysosomal acidification and elevation in amyloid precursor protein/Aβ loads. Taken together, our data indicate that GSK-3 is a player in Aβ pathology. Inhibition of GSK-3 restores lysosomal acidification that in turn enables clearance of Aβ burdens and reactivation of mTOR. These changes facilitate amelioration in cognitive function.
Collapse
Affiliation(s)
- Limor Avrahami
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, George S. Wise Faculty of Life Sciences, Tel Aviv University Tel Aviv 69978, Israel
| | | | | | | | | | | |
Collapse
|
47
|
Paul JR, Johnson RL, Jope RS, Gamble KL. Disruption of circadian rhythmicity and suprachiasmatic action potential frequency in a mouse model with constitutive activation of glycogen synthase kinase 3. Neuroscience 2012; 226:1-9. [PMID: 22986169 DOI: 10.1016/j.neuroscience.2012.08.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 08/11/2012] [Accepted: 08/24/2012] [Indexed: 12/21/2022]
Abstract
Glycogen synthase kinase 3 (GSK3) is a serine/threonine kinase that has been implicated in psychiatric diseases, neurodevelopment, and circadian regulation. Both GSK3 isoforms, α and β, exhibit a 24-h variation of inhibitory phosphorylation within the suprachiasmatic nucleus (SCN), the primary circadian pacemaker. We examined the hypothesis that rhythmic GSK3 activity is critical for robust circadian rhythmicity using GSK3α(21A/21A)/β(9A/9A) knock-in mice with serine-alanine substitutions at the inhibitory phosphorylation sites, making both forms constitutively active. We monitored wheel-running locomotor activity of GSK3 knock-in mice and used loose-patch electrophysiology to examine the effect of chronic GSK3 activity on circadian behavior and SCN neuronal activity. Double transgenic GSK3α/β knock-in mice exhibit disrupted behavioral rhythmicity, including significantly decreased rhythmic amplitude, lengthened active period, and increased activity bouts per day. This behavioral disruption was dependent on chronic activation of both GSK3 isoforms and was not seen in single transgenic GSK3α or GSK3β knock-in mice. Underlying the behavioral changes, SCN neurons from double transgenic GSK3α/β knock-in mice exhibited significantly higher spike rates during the subjective night compared to those from wild-type controls, with no differences detected during the subjective day. These results suggest that constitutive activation of GSK3 results in the loss of the typical day/night variation of SCN neuronal activity. Together, these results implicate GSK3 activity as a critical regulator of circadian behavior and neurophysiological rhythms. Because GSK3 has been implicated in numerous pathologies, understanding how GSK3 modulates circadian rhythms and neurophysiological activity may lead to novel therapeutics for pathological disorders and circadian rhythm dysfunction.
Collapse
Affiliation(s)
- J R Paul
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | |
Collapse
|
48
|
Kaidanovich-Beilin O, Beaulieu JM, Jope RS, Woodgett JR. Neurological functions of the masterswitch protein kinase - gsk-3. Front Mol Neurosci 2012; 5:48. [PMID: 22509152 PMCID: PMC3321477 DOI: 10.3389/fnmol.2012.00048] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Accepted: 03/23/2012] [Indexed: 12/03/2022] Open
|