1
|
Philippe S, Delay M, Macian N, Morel V, Pickering ME. Common miRNAs of Osteoporosis and Fibromyalgia: A Review. Int J Mol Sci 2023; 24:13513. [PMID: 37686318 PMCID: PMC10488272 DOI: 10.3390/ijms241713513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
A significant clinical association between osteoporosis (OP) and fibromyalgia (FM) has been shown in the literature. Given the need for specific biomarkers to improve OP and FM management, common miRNAs might provide promising tracks for future prevention and treatment. The aim of this review is to identify miRNAs described in OP and FM, and dysregulated in the same direction in both pathologies. The PubMed database was searched until June 2023, with a clear mention of OP, FM, and miRNA expression. Clinical trials, case-control, and cross-sectional studies were included. Gray literature was not searched. Out of the 184 miRNAs found in our research, 23 are shared by OP and FM: 7 common miRNAs are dysregulated in the same direction for both pathologies (3 up-, 4 downregulated). The majority of these common miRNAs are involved in the Wnt pathway and the cholinergic system and a possible link has been highlighted. Further studies are needed to explore this relationship. Moreover, the harmonization of technical methods is necessary to confirm miRNAs shared between OP and FM.
Collapse
Affiliation(s)
- Soline Philippe
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marine Delay
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
- Inserm 1107, Neuro-Dol, University Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nicolas Macian
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Véronique Morel
- Platform of Clinical Investigation Department, Inserm CIC 1405, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France; (S.P.); (M.D.); (N.M.); (V.M.)
| | - Marie-Eva Pickering
- Rheumatology Department, University Hospital Clermont-Ferrand, F-63000 Clermont-Ferrand, France
| |
Collapse
|
2
|
Zajonz TS, Kunzemann C, Schreiner AL, Beckert F, Schneck E, Boening A, Markmann M, Sander M, Koch C. Potentials of Acetylcholinesterase and Butyrylcholinesterase Alterations in On-Pump Coronary Artery Bypass Surgery in Postoperative Delirium: An Observational Trial. J Clin Med 2023; 12:5245. [PMID: 37629287 PMCID: PMC10455192 DOI: 10.3390/jcm12165245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Cardiac surgery is regularly associated with postoperative delirium (POD), affected by neuro-inflammation and changes in cholinergic activity. Therefore, this prospective observational study aimed to evaluate whether pre- and perioperative changes in blood acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activity were associated with POD development in patients undergoing isolated elective coronary artery bypass graft (CABG) surgery. It included 93 patients. Pre- and postoperative blood AChE and BChE activities were measured with photometric rapid-point-of-care-testing. The Intensive Care Delirium Screening Checklist and the Confusion Assessment Method for the Intensive Care Unit were used to screen patients for POD. POD developed in 20 patients (21.5%), who were older (p = 0.003), had higher EuroSCOREs (p ≤ 0.001), and had longer intensive care unit stays (p < 0.001). On postoperative day one, BChE activity decreased from preoperative values more in patients with (31.9%) than without (23.7%) POD (group difference p = 0.002). Applying a cutoff of ≥32.0% for BChE activity changes, receiver operating characteristic analysis demonstrated a moderate prediction capability for POD (area under the curve = 0.72, p = 0.002). The risk of developing POD was 4.31 times higher with a BChE activity change of ≥32.0% (p = 0.010). Monitoring the pre- to postoperative reduction in BChE activity might be a clinically practicable biomarker for detecting patients at risk of developing POD after CABG surgery.
Collapse
Affiliation(s)
- Thomas S. Zajonz
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| | - Christian Kunzemann
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| | - Anna Lena Schreiner
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| | - Frauke Beckert
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| | - Emmanuel Schneck
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| | - Andreas Boening
- Department of Cardiac and Vascular Surgery, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany;
| | - Melanie Markmann
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| | - Michael Sander
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| | - Christian Koch
- Department of Anesthesiology, Operative Intensive Care Medicine and Pain Therapy, University Hospital of Giessen and Marburg, Justus Liebig University of Giessen, 35392 Giessen, Germany; (C.K.); (A.L.S.); (F.B.); (E.S.); (M.M.); (M.S.); (C.K.)
| |
Collapse
|
3
|
The Potential Role of Serum and Exhaled Breath Condensate miRNAs in Diagnosis and Predicting Exacerbations in Pediatric Asthma. Biomedicines 2023; 11:biomedicines11030763. [PMID: 36979742 PMCID: PMC10045893 DOI: 10.3390/biomedicines11030763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Asthma is the most common chronic disease of the respiratory system in children and the number of new cases is constantly increasing. It is characterized by dyspnea, wheezing, tightness in the chest, or coughing. Due to diagnostic difficulties, disease monitoring, and the selection of safe and effective drugs, it has been shown that among the youngest patients, miRNAs fulfilling the above roles can be successfully used in common clinical practice. These biomolecules, by regulating the expression of the body’s genes, influence various biological processes underlying the pathogenesis of asthma, such as the inflammatory process, remodeling, and intensification of airway obstruction. They can be detected in blood serum and in exhaled breath condensate (EBC). Among children, common factors responsible for the onset or exacerbation of asthma, such as infections, allergens, air pollution, or tobacco smoke present in the home environment, cause a change the concentration of miRNAs in the body. This is related to their significant impact on the modulation of the disease process. In the following paper, we review the latest knowledge on miRNAs and their use, especially as diagnostic markers in assessing asthma exacerbation, with particular emphasis on the pediatric population.
Collapse
|
4
|
Gok M, Madrer N, Zorbaz T, Bennett ER, Greenberg D, Bennett DA, Soreq H. Altered levels of variant cholinesterase transcripts contribute to the imbalanced cholinergic signaling in Alzheimer's and Parkinson's disease. Front Mol Neurosci 2022; 15:941467. [PMID: 36117917 PMCID: PMC9479005 DOI: 10.3389/fnmol.2022.941467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Acetylcholinesterase and butyrylcholinesterase (AChE and BChE) are involved in modulating cholinergic signaling, but their roles in Alzheimer's and Parkinson's diseases (AD and PD) remain unclear. We identified a higher frequency of the functionally impaired BCHE-K variant (rs1803274) in AD and PD compared to controls and lower than in the GTEx dataset of healthy individuals (n = 651); in comparison, the prevalence of the 5'-UTR (rs1126680) and intron 2 (rs55781031) single-nucleotide polymorphisms (SNPs) of BCHE and ACHE's 3'-UTR (rs17228616) which disrupt AChE mRNA targeting by miR-608 remained unchanged. qPCR validations confirmed lower levels of the dominant splice variant encoding the "synaptic" membrane-bound ACHE-S in human post-mortem superior temporal gyrus samples from AD and in substantia nigra (but not amygdala) samples from PD patients (n = 79, n = 67) compared to controls, potentially reflecting region-specific loss of cholinergic neurons. In contradistinction, the non-dominant "readthrough" AChE-R mRNA variant encoding for soluble AChE was elevated (p < 0.05) in the AD superior temporal gyrus and the PD amygdala, but not in the neuron-deprived substantia nigra. Elevated levels of BChE (p < 0.001) were seen in AD superior temporal gyrus. Finally, all three ACHE splice variants, AChE-S, AChE-R, and N-extended AChE, were elevated in cholinergic-differentiated human neuroblastoma cells, with exposure to the oxidative stress agent paraquat strongly downregulating AChE-S and BChE, inverse to their upregulation under exposure to the antioxidant simvastatin. The multi-leveled changes in cholinesterase balance highlight the role of post-transcriptional regulation in neurodegeneration. (235).
Collapse
Affiliation(s)
- Muslum Gok
- Department of Biochemistry, Faculty of Medicine, Muğla Sıtkı Koçman University, Muğla, Turkey
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nimrod Madrer
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Tamara Zorbaz
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Biochemistry and Organic Analytical Chemistry Unit, Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Estelle R. Bennett
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David Greenberg
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - David A. Bennett
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - Hermona Soreq
- Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
5
|
Distinct CholinomiR Blood Cell Signature as a Potential Modulator of the Cholinergic System in Women with Fibromyalgia Syndrome. Cells 2022; 11:cells11081276. [PMID: 35455956 PMCID: PMC9031252 DOI: 10.3390/cells11081276] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/06/2022] [Indexed: 11/25/2022] Open
Abstract
Fibromyalgia syndrome (FMS) is a heterogeneous chronic pain syndrome characterized by musculoskeletal pain and other key co-morbidities including fatigue and a depressed mood. FMS involves altered functioning of the central and peripheral nervous system (CNS, PNS) and immune system, but the specific molecular pathophysiology remains unclear. Anti-cholinergic treatment is effective in FMS patient subgroups, and cholinergic signaling is a strong modulator of CNS and PNS immune processes. Therefore, we used whole blood small RNA-sequencing of female FMS patients and healthy controls to profile microRNA regulators of cholinergic transcripts (CholinomiRs). We compared microRNA profiles with those from Parkinson’s disease (PD) patients with pain as disease controls. We validated the sequencing results with quantitative real-time PCR (qRT-PCR) and identified cholinergic targets. Further, we measured serum cholinesterase activity in FMS patients and healthy controls. Small RNA-sequencing revealed FMS-specific changes in 19 CholinomiRs compared to healthy controls and PD patients. qRT-PCR validated miR-182-5p upregulation, distinguishing FMS patients from healthy controls. mRNA targets of CholinomiRs bone morphogenic protein receptor 2 and interleukin 6 signal transducer were downregulated. Serum acetylcholinesterase levels and cholinesterase activity in FMS patients were unchanged. Our findings identified an FMS-specific CholinomiR signature in whole blood, modulating immune-related gene expression.
Collapse
|
6
|
Cholinergic blockade of neuroinflammation – from tissue to RNA regulators. Neuronal Signal 2022; 6:NS20210035. [PMID: 35211331 PMCID: PMC8837817 DOI: 10.1042/ns20210035] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/06/2022] [Accepted: 01/06/2022] [Indexed: 11/17/2022] Open
Abstract
Inflammatory stimuli and consequent pro-inflammatory immune responses may facilitate neurodegeneration and threaten survival following pathogen infection or trauma, but potential controllers preventing these risks are incompletely understood. Here, we argue that small RNA regulators of acetylcholine (ACh) signaling, including microRNAs (miRs) and transfer RNA fragments (tRFs) may tilt the balance between innate and adaptive immunity, avoid chronic inflammation and prevent the neuroinflammation-mediated exacerbation of many neurological diseases. While the restrictive permeability of the blood–brain barrier (BBB) protects the brain from peripheral immune events, this barrier can be disrupted by inflammation and is weakened with age. The consequently dysregulated balance between pro- and anti-inflammatory processes may modify the immune activities of brain microglia, astrocytes, perivascular macrophages, oligodendrocytes and dendritic cells, leading to neuronal damage. Notably, the vagus nerve mediates the peripheral cholinergic anti-inflammatory reflex and underlines the consistent control of body–brain inflammation by pro-inflammatory cytokines, which affect cholinergic functions; therefore, the disruption of this reflex can exacerbate cognitive impairments such as attention deficits and delirium. RNA regulators can contribute to re-balancing the cholinergic network and avoiding its chronic deterioration, and their activities may differ between men and women and/or wear off with age. This can lead to hypersensitivity of aged patients to inflammation and higher risks of neuroinflammation-driven cholinergic impairments such as delirium and dementia following COVID-19 infection. The age- and sex-driven differences in post-transcriptional RNA regulators of cholinergic elements may hence indicate new personalized therapeutic options for neuroinflammatory diseases.
Collapse
|
7
|
Ramos-Martínez IE, Rodríguez MC, Cerbón M, Ramos-Martínez JC, Ramos-Martínez EG. Role of the Cholinergic Anti-Inflammatory Reflex in Central Nervous System Diseases. Int J Mol Sci 2021; 22:ijms222413427. [PMID: 34948222 PMCID: PMC8705572 DOI: 10.3390/ijms222413427] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/30/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
In several central nervous system diseases, it has been reported that inflammation may be related to the etiologic process, therefore, therapeutic strategies are being implemented to control inflammation. As the nervous system and the immune system maintain close bidirectional communication in physiological and pathological conditions, the modulation of inflammation through the cholinergic anti-inflammatory reflex has been proposed. In this review, we summarized the evidence supporting chemical stimulation with cholinergic agonists and vagus nerve stimulation as therapeutic strategies in the treatment of various central nervous system pathologies, and their effect on inflammation.
Collapse
Affiliation(s)
- Ivan Emmanuel Ramos-Martínez
- Glycobiology, Cell Growth and Tissue Repair Research Unit (Gly-CRRET), Université Paris Est Créteil (UPEC), 94010 Créteil, France;
| | - María Carmen Rodríguez
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, SSA, Morelos 62100, Mexico;
| | - Marco Cerbón
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| | - Juan Carlos Ramos-Martínez
- Cardiology Department, Hospital General Regional Lic. Ignacio Garcia Tellez IMSS, Yucatán 97150, Mexico;
| | - Edgar Gustavo Ramos-Martínez
- Escuela de Ciencias, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca 68120, Mexico
- Instituto de Cómputo Aplicado en Ciencias, Oaxaca 68044, Mexico
- Correspondence: (M.C.); (E.G.R.-M.)
| |
Collapse
|
8
|
Sapienza MR, Benvenuto G, Ferracin M, Mazzara S, Fuligni F, Tripodo C, Belmonte B, Fanoni D, Melle F, Motta G, Tabanelli V, Consiglio J, Mazzara V, Del Corvo M, Fiori S, Pileri A, Dellino GI, Cerroni L, Facchetti F, Berti E, Sabattini E, Paulli M, Croce CM, Pileri SA. Newly-Discovered Neural Features Expand the Pathobiological Knowledge of Blastic Plasmacytoid Dendritic Cell Neoplasm. Cancers (Basel) 2021; 13:cancers13184680. [PMID: 34572907 PMCID: PMC8469149 DOI: 10.3390/cancers13184680] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/02/2021] [Accepted: 09/15/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary For the first time, neuronal features are described in blastic plasmacytoid dendritic cell neoplasm (BPDCN) by a complex array of molecular techniques, including microRNA and gene expression profiling, RNA and Chromatin immunoprecipitation sequencing, and immunohistochemistry. The discovery of unexpected neural features in BPDCN may change our vision of this disease, leading to the designing of a new BPDCN cell model and to re-thinking the relations occurring between BPDCN and nervous system. The observed findings contribute to explaining the extreme tumor aggressiveness and also to propose novel therapeutic targets. In view of this, the identification, in this work of new potential neural metastatic inducers might open the way to therapeutic approaches for BPDCN patients based on the use of anti-neurogenic agents. Abstract Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematologic malignancy originating from plasmacytoid dendritic cells (pDCs). The microRNA expression profile of BPDCN was compared to that of normal pDCs and the impact of miRNA dysregulation on the BPDCN transcriptional program was assessed. MiRNA and gene expression profiling data were integrated to obtain the BPDCN miRNA-regulatory network. The biological process mainly dysregulated by this network was predicted to be neurogenesis, a phenomenon raising growing interest in solid tumors. Neurogenesis was explored in BPDCN by querying different molecular sources (RNA sequencing, Chromatin immunoprecipitation-sequencing, and immunohistochemistry). It was shown that BPDCN cells upregulated neural mitogen genes possibly critical for tumor dissemination, expressed neuronal progenitor markers involved in cell migration, exchanged acetylcholine neurotransmitter, and overexpressed multiple neural receptors that may stimulate tumor proliferation, migration and cross-talk with the nervous system. Most neural genes upregulated in BPDCN are currently investigated as therapeutic targets.
Collapse
Affiliation(s)
- Maria Rosaria Sapienza
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
- Correspondence: (M.R.S.); (S.A.P.)
| | | | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (M.F.); (A.P.)
| | - Saveria Mazzara
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
| | - Fabio Fuligni
- Department of Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Claudio Tripodo
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, 90134 Palermo, Italy; (C.T.); (B.B.)
| | - Beatrice Belmonte
- Tumor Immunology Unit, Human Pathology Section, Department of Health Science, Palermo University School of Medicine, 90134 Palermo, Italy; (C.T.); (B.B.)
| | - Daniele Fanoni
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.F.); (E.B.)
| | - Federica Melle
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
| | - Giovanna Motta
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
| | - Valentina Tabanelli
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
| | - Jessica Consiglio
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA; (J.C.); (C.M.C.)
| | - Vincenzo Mazzara
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
| | - Marcello Del Corvo
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
| | - Stefano Fiori
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
| | - Alessandro Pileri
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, 40138 Bologna, Italy; (M.F.); (A.P.)
| | - Gaetano Ivan Dellino
- Department of Experimental Oncology, European Institute of Oncology, 20141 Milan, Italy;
| | - Lorenzo Cerroni
- Die Dermatopathologie der Universitätsklinik für Dermatologie und Venerologie, LKH-Univ. Klinikum Graz, 8036 Graz, Austria;
| | - Fabio Facchetti
- Pathology Section, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy;
| | - Emilio Berti
- Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy; (D.F.); (E.B.)
- Department of Dermatology, Fondazione IRCCS Ca’ Granda-Ospedale Maggiore Policlinic and Milan University, 20122 Milan, Italy
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
| | - Marco Paulli
- Unit of Anatomic Pathology, Department of Molecular Medicine, University of Pavia and Fondazione IRCCS San Matteo Polyclinic, 27100 Pavia, Italy;
| | - Carlo Maria Croce
- Department of Molecular Virology, Immunology and Medical Genetics, Ohio State University, Columbus, OH 43210, USA; (J.C.); (C.M.C.)
| | - Stefano A. Pileri
- Division of Haematopathology, IEO, European Institute of Oncology IRCCS, 20141 Milan, Italy; (S.M.); (F.M.); (G.M.); (V.T.); (V.M.); (M.D.C.); (S.F.)
- Correspondence: (M.R.S.); (S.A.P.)
| |
Collapse
|
9
|
Winek K, Soreq H, Meisel A. Regulators of cholinergic signaling in disorders of the central nervous system. J Neurochem 2021; 158:1425-1438. [PMID: 33638173 PMCID: PMC8518971 DOI: 10.1111/jnc.15332] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 01/23/2021] [Accepted: 02/21/2021] [Indexed: 12/14/2022]
Abstract
Cholinergic signaling is crucial in cognitive processes, and degenerating cholinergic projections are a pathological hallmark in dementia. Use of cholinesterase inhibitors is currently the main treatment option to alleviate symptoms of Alzheimer's disease and has been postulated as a therapeutic strategy in acute brain damage (stroke and traumatic brain injury). However, the benefits of this treatment are still not clear. Importantly, cholinergic receptors are expressed both by neurons and by astrocytes and microglia, and binding of acetylcholine to the α7 nicotinic receptor in glial cells results in anti-inflammatory response. Similarly, the brain fine-tunes the peripheral immune response over the cholinergic anti-inflammatory axis. All of these processes are of importance for the outcome of acute and chronic neurological disease. Here, we summarize the main findings about the role of cholinergic signaling in brain disorders and provide insights into the complexity of molecular regulators of cholinergic responses, such as microRNAs and transfer RNA fragments, both of which may fine-tune the orchestra of cholinergic mRNAs. The available data suggest that these small noncoding RNA regulators may include promising biomarkers for predicting disease course and assessing treatment responses and might also serve as drug targets to attenuate signaling cascades during overwhelming inflammation and to ameliorate regenerative capacities of neuroinflammation.
Collapse
Affiliation(s)
- Katarzyna Winek
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain SciencesThe Hebrew University of JerusalemJerusalemIsrael
- The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Andreas Meisel
- Department of Neurology with Experimental NeurologyCenter for Stroke Research BerlinNeuroCure Clinical Research CenterCharité‐Universitätsmedizin BerlinBerlinGermany
| |
Collapse
|
10
|
Corsetti V, Perrone-Capano C, Salazar Intriago MS, Botticelli E, Poiana G, Augusti-Tocco G, Biagioni S, Tata AM. Expression of Cholinergic Markers and Characterization of Splice Variants during Ontogenesis of Rat Dorsal Root Ganglia Neurons. Int J Mol Sci 2021; 22:ijms22115499. [PMID: 34071104 PMCID: PMC8197147 DOI: 10.3390/ijms22115499] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Dorsal root ganglia (DRG) neurons synthesize acetylcholine (ACh), in addition to their peptidergic nature. They also release ACh and are cholinoceptive, as they express cholinergic receptors. During gangliogenesis, ACh plays an important role in neuronal differentiation, modulating neuritic outgrowth and neurospecific gene expression. Starting from these data, we studied the expression of choline acetyltransferase (ChAT) and vesicular ACh transporter (VAChT) expression in rat DRG neurons. ChAT and VAChT genes are arranged in a “cholinergic locus”, and several splice variants have been described. Using selective primers, we characterized splice variants of these cholinergic markers, demonstrating that rat DRGs express R1, R2, M, and N variants for ChAT and V1, V2, R1, and R2 splice variants for VAChT. Moreover, by RT-PCR analysis, we observed a progressive decrease in ChAT and VAChT transcripts from the late embryonic developmental stage (E18) to postnatal P2 and P15 and in the adult DRG. Interestingly, Western blot analyses and activity assays demonstrated that ChAT levels significantly increased during DRG ontogenesis. The modulated expression of different ChAT and VAChT splice variants during development suggests a possible differential regulation of cholinergic marker expression in sensory neurons and confirms multiple roles for ACh in DRG neurons, both in the embryo stage and postnatally.
Collapse
Affiliation(s)
- Veronica Corsetti
- Department of Biology and Biotechnology Charles Darwin, “Sapienza” University of Rome, 00185 Rome, Italy; (V.C.); (M.S.S.I.); (E.B.); (G.P.); (G.A.-T.); (S.B.)
| | - Carla Perrone-Capano
- Department of Pharmacy, University of Naples Federico II, 80138 Naples, Italy;
- Institute of Genetics and Biophysics “Adriano Buzzati Traverso”, CNR, 80131 Naples, Italy
| | - Michael Sebastian Salazar Intriago
- Department of Biology and Biotechnology Charles Darwin, “Sapienza” University of Rome, 00185 Rome, Italy; (V.C.); (M.S.S.I.); (E.B.); (G.P.); (G.A.-T.); (S.B.)
| | - Elisabetta Botticelli
- Department of Biology and Biotechnology Charles Darwin, “Sapienza” University of Rome, 00185 Rome, Italy; (V.C.); (M.S.S.I.); (E.B.); (G.P.); (G.A.-T.); (S.B.)
| | - Giancarlo Poiana
- Department of Biology and Biotechnology Charles Darwin, “Sapienza” University of Rome, 00185 Rome, Italy; (V.C.); (M.S.S.I.); (E.B.); (G.P.); (G.A.-T.); (S.B.)
- Research Center of Neuroscience Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Gabriella Augusti-Tocco
- Department of Biology and Biotechnology Charles Darwin, “Sapienza” University of Rome, 00185 Rome, Italy; (V.C.); (M.S.S.I.); (E.B.); (G.P.); (G.A.-T.); (S.B.)
- Research Center of Neuroscience Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Stefano Biagioni
- Department of Biology and Biotechnology Charles Darwin, “Sapienza” University of Rome, 00185 Rome, Italy; (V.C.); (M.S.S.I.); (E.B.); (G.P.); (G.A.-T.); (S.B.)
- Research Center of Neuroscience Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
| | - Ada Maria Tata
- Department of Biology and Biotechnology Charles Darwin, “Sapienza” University of Rome, 00185 Rome, Italy; (V.C.); (M.S.S.I.); (E.B.); (G.P.); (G.A.-T.); (S.B.)
- Research Center of Neuroscience Daniel Bovet, Sapienza University of Rome, 00185 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-2822
| |
Collapse
|
11
|
Parrino V, De Marco G, Minutoli R, Lo Paro G, Giannetto A, Cappello T, De Plano LM, Cecchini S, Fazio F. Effects of pesticides on Chelon labrosus (Risso, 1827) evaluated by enzymatic activities along the north eastern Sicilian coastlines (Italy). EUROPEAN ZOOLOGICAL JOURNAL 2021. [DOI: 10.1080/24750263.2021.1905090] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- V. Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - G. De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - R. Minutoli
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - G. Lo Paro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - A. Giannetto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - T. Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - L. M. De Plano
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - S. Cecchini
- Department of Sciences, University of Basilicata, Potenza, Italy
| | - F. Fazio
- Department of Veterinary Sciences, University of Messina, Polo Universitario Annunziata, Messina, Italy
| |
Collapse
|
12
|
Reale M, Costantini E. Cholinergic Modulation of the Immune System in Neuroinflammatory Diseases. Diseases 2021; 9:diseases9020029. [PMID: 33921376 PMCID: PMC8167596 DOI: 10.3390/diseases9020029] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 02/06/2023] Open
Abstract
Frequent diseases of the CNS, such as Alzheimer’s disease, Parkinson’s disease, multiple sclerosis, and psychiatric disorders (e.g., schizophrenia), elicit a neuroinflammatory response that contributes to the neurodegenerative disease process itself. The immune and nervous systems use the same mediators, receptors, and cells to regulate the immune and nervous systems as well as neuro-immune interactions. In various neurodegenerative diseases, peripheral inflammatory mediators and infiltrating immune cells from the periphery cause exacerbation to current injury in the brain. Acetylcholine (ACh) plays a crucial role in the peripheral and central nervous systems, in fact, other than cells of the CNS, the peripheral immune cells also possess a cholinergic system. The findings on peripheral cholinergic signaling, and the activation of the “cholinergic anti-inflammatory pathway” mediated by ACh binding to α7 nAChR as one of the possible mechanisms for controlling inflammation, have restarted interest in cholinergic-mediated pathological processes and in the new potential therapeutic target for neuro-inflammatory-degenerative diseases. Herein, we focus on recent progress in the modulatory mechanisms of the cholinergic anti-inflammatory pathway in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Marcella Reale
- Department of Innovative Technologies in Medicine and Dentistry, University “G.d’Annunzio”, 65122 Chieti-Pescara, Italy
- Correspondence:
| | - Erica Costantini
- Department of Medical, Oral and Biotechnological Science, University “G.d’Annunzio”, 65122 Chieti-Pescara, Italy;
| |
Collapse
|
13
|
Narayanan R, Schratt G. miRNA regulation of social and anxiety-related behaviour. Cell Mol Life Sci 2020; 77:4347-4364. [PMID: 32409861 PMCID: PMC11104968 DOI: 10.1007/s00018-020-03542-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/31/2020] [Accepted: 04/27/2020] [Indexed: 12/21/2022]
Abstract
Neuropsychiatric disorders, including autism spectrum disorders (ASD) and anxiety disorders are characterized by a complex range of symptoms, including social behaviour and cognitive deficits, depression and repetitive behaviours. Although the mechanisms driving pathophysiology are complex and remain largely unknown, advances in the understanding of gene association and gene networks are providing significant clues to their aetiology. In recent years, small noncoding RNA molecules known as microRNA (miRNA) have emerged as a new gene regulatory layer in the pathophysiology of mental illness. These small RNAs can bind to the 3'-UTR of mRNA thereby negatively regulating gene expression at the post-transcriptional level. Their ability to regulate hundreds of target mRNAs simultaneously predestines them to control the activity of entire cellular pathways, with obvious implications for the regulation of complex processes such as animal behaviour. There is growing evidence to suggest that numerous miRNAs are dysregulated in pathophysiology of neuropsychiatric disorders, and there is strong genetic support for the association of miRNA genes and their targets with several of these conditions. This review attempts to cover the most relevant microRNAs for which an important contribution to the control of social and anxiety-related behaviour has been demonstrated by functional studies in animal models. In addition, it provides an overview of recent expression profiling and genetic association studies in human patient-derived samples in an attempt to highlight the most promising candidates for biomarker discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Ramanathan Narayanan
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland
| | - Gerhard Schratt
- Lab of Systems Neuroscience, Department of Health Science and Technology, Institute for Neuroscience, Swiss Federal Institute of Technology ETH, Zurich, Switzerland.
| |
Collapse
|
14
|
Moshitzky G, Shoham S, Madrer N, Husain AM, Greenberg DS, Yirmiya R, Ben-Shaul Y, Soreq H. Cholinergic Stress Signals Accompany MicroRNA-Associated Stereotypic Behavior and Glutamatergic Neuromodulation in the Prefrontal Cortex. Biomolecules 2020; 10:E848. [PMID: 32503154 PMCID: PMC7355890 DOI: 10.3390/biom10060848] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/24/2020] [Accepted: 05/28/2020] [Indexed: 12/13/2022] Open
Abstract
Stereotypic behavior (SB) is common in emotional stress-involved psychiatric disorders and is often attributed to glutamatergic impairments, but the underlying molecular mechanisms are unknown. Given the neuro-modulatory role of acetylcholine, we sought behavioral-transcriptomic links in SB using TgR transgenic mice with impaired cholinergic transmission due to over-expression of the stress-inducible soluble 'readthrough' acetylcholinesterase-R splice variant AChE-R. TgR mice showed impaired organization of behavior, performance errors in a serial maze test, escape-like locomotion, intensified reaction to pilocarpine and reduced rearing in unfamiliar situations. Small-RNA sequencing revealed 36 differentially expressed (DE) microRNAs in TgR mice hippocampi, 8 of which target more than 5 cholinergic transcripts. Moreover, compared to FVB/N mice, TgR prefrontal cortices displayed individually variable changes in over 400 DE mRNA transcripts, primarily acetylcholine and glutamate-related. Furthermore, TgR brains presented c-fos over-expression in motor behavior-regulating brain regions and immune-labeled AChE-R excess in the basal ganglia, limbic brain nuclei and the brain stem, indicating a link with the observed behavioral phenotypes. Our findings demonstrate association of stress-induced SB to previously unknown microRNA-mediated perturbations of cholinergic/glutamatergic networks and underscore new therapeutic strategies for correcting stereotypic behaviors.
Collapse
Affiliation(s)
- Gilli Moshitzky
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Shai Shoham
- Herzog Medical Center, Givat Shaul, P.O. Box 3900, Jerusalem 9103702, Israel;
| | - Nimrod Madrer
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Amir Mouhammed Husain
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - David S. Greenberg
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| | - Raz Yirmiya
- Department of Psychology, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel;
| | - Yoram Ben-Shaul
- Department of Medical Neurobiology, The Institute of Medical Research Israel-Canada, Jerusalem 9112102, Israel;
| | - Hermona Soreq
- The Institute of Life Sciences and The Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel; (G.M.); (N.M.); (A.M.H.); (D.S.G.)
| |
Collapse
|
15
|
Madrer N, Soreq H. Cholino-ncRNAs modulate sex-specific- and age-related acetylcholine signals. FEBS Lett 2020; 594:2185-2198. [PMID: 32330292 PMCID: PMC7496432 DOI: 10.1002/1873-3468.13789] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/13/2022]
Abstract
Acetylcholine (ACh) signaling orchestrates mammalian movement, mental capacities, and inflammation. Dysregulated ACh signaling associates with many human mental disorders and neurodegeneration in an individual‐, sex‐, and tissue‐related manner. Moreover, aged patients under anticholinergic therapy show increased risk of dementia, but the underlying molecular mechanisms are incompletely understood. Here, we report that certain cholinergic‐targeting noncoding RNAs, named Cholino‐noncoding RNAs (ncRNAs), can modulate ACh signaling, agonistically or antagonistically, via distinct direct and indirect mechanisms and at different timescales. Cholino‐ncRNAs include both small microRNAs (miRNAs) and long noncoding RNAs (lncRNAs). The former may attenuate translation and/or induce destruction of target mRNAs that code for either ACh‐signaling proteins or transcription factors controlling the expression of cholinergic genes. lncRNAs may block miRNAs via ‘sponging’ events or by competitive binding to the cholinergic target mRNAs. Also, single nucleotide polymorphisms in either Cholino‐ncRNAs or in their recognition sites in the ACh‐signaling associated genes may modify ACh signaling‐regulated processes. Taken together, both inherited and acquired changes in the function of Cholino‐ncRNAs impact ACh‐related deficiencies, opening new venues for individual, sex‐related, and age‐specific oriented research, diagnosis, and therapeutics.
Collapse
Affiliation(s)
- Nimrod Madrer
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| | - Hermona Soreq
- The Life Sciences Institute and the Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel
| |
Collapse
|
16
|
Schneider C, O'Leary CE, Locksley RM. Regulation of immune responses by tuft cells. Nat Rev Immunol 2020; 19:584-593. [PMID: 31114038 DOI: 10.1038/s41577-019-0176-x] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Tuft cells are rare, secretory epithelial cells that generated scant immunological interest until contemporaneous reports in 2016 linked tuft cells with type 2 immunity in the small intestine. Tuft cells have the capacity to produce an unusual spectrum of biological effector molecules, including IL-25, eicosanoids implicated in allergy (such as cysteinyl leukotrienes and prostaglandin D2) and the neurotransmitter acetylcholine. In most cases, the extracellular signals controlling tuft cell effector function are unknown, but signal transduction is thought to proceed via canonical, G protein-coupled receptor-dependent pathways involving components of the signalling pathway used by type II taste bud cells to sense sweet, bitter and umami compounds. Tuft cells are ideally positioned as chemosensory sentinels that can detect and relay information from diverse luminal substances via what appear to be stereotyped outputs to initiate both positive and aversive responses through populations of immune and neuronal cells. Despite recent insights, numerous questions remain regarding tuft cell lineage, diversity and effector mechanisms and how tuft cells interface with the immunological niche in the tissues where they reside.
Collapse
Affiliation(s)
- Christoph Schneider
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Claire E O'Leary
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA
| | - Richard M Locksley
- Department of Medicine, University of California-San Francisco, San Francisco, CA, USA. .,Department of Microbiology & Immunology, University of California-San Francisco, San Francisco, CA, USA. .,Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
17
|
Vaknine S, Soreq H. Central and peripheral anti-inflammatory effects of acetylcholinesterase inhibitors. Neuropharmacology 2020; 168:108020. [PMID: 32143069 DOI: 10.1016/j.neuropharm.2020.108020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 02/09/2020] [Accepted: 02/25/2020] [Indexed: 12/31/2022]
Abstract
Acetylcholinesterase (AChE) inhibitors modulate acetylcholine hydrolysis and hence play a key role in determining the cholinergic tone and in implementing its impact on the cholinergic blockade of inflammatory processes. Such inhibitors may include rapidly acting small molecule AChE-blocking drugs and poisonous anti-AChE insecticides or war agent inhibitors which penetrate both body and brain. Notably, traumatized patients may be hyper-sensitized to anti-AChEs due to their impaired cholinergic tone, higher levels of circulation pro-inflammatory cytokines and exacerbated peripheral inflammatory responses. Those largely depend on the innate-immune system yet reach the brain via vagus pathways and/or disrupted blood-brain-barrier. Other regulators of the neuro-inflammatory cascade are AChE-targeted microRNAs (miRs) and synthetic chemically protected oligonucleotide blockers thereof, whose size prevents direct brain penetrance. Nevertheless, these larger molecules may exert parallel albeit slower inflammatory regulating effects on brain and body tissues. Additionally, oligonucleotide aptamers interacting with innate immune Toll-Like Receptors (TLRs) may control inflammation through diverse routes and in different rates. Such aptamers may compete with the action of both small molecule inhibitors and AChE-inhibiting miRs in peripheral tissues including muscle and intestine. However, rapid adaptation processes, visualized in neuromuscular junctions enable murine survival under otherwise lethal anti-cholinesterase exposure; and both miR inhibitors and TLR-modulating aptamers may exert body-brain signals protecting experimental mice from acute inflammation. The complex variety of AChE inhibiting molecules identifies diverse body-brain communication pathways which may rapidly induce long-lasting central reactions to peripheral stressful and inflammatory insults in both mice and men. This article is part of the special issue entitled 'Acetylcholinesterase Inhibitors: From Bench to Bedside to Battlefield'.
Collapse
Affiliation(s)
- Shani Vaknine
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center of Brain Science, The Life Sciences Institute, The Hebrew University of Jerusalem, 9190401, Israel.
| |
Collapse
|
18
|
Association of status of acetylcholinesterase and ACHE gene 3' UTR variants (rs17228602, rs17228616) with drug addiction vulnerability in pakistani population. Chem Biol Interact 2019; 308:130-136. [PMID: 31129131 DOI: 10.1016/j.cbi.2019.05.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/23/2019] [Accepted: 05/22/2019] [Indexed: 12/21/2022]
Abstract
Substance addiction is a chronic, relapsing mental disorder Characterized by compulsive drug seeking, and loss of control over drug intake and relapse after prolonged abstinence. Genetics has been shown to contribute towards an individual's vulnerability to addiction. Acetylecholine (ACh), a cholinergic neurotransmitter hydrolyzed by acetylcholinesterase (AChE), is an essential neurotransmitter and neuromodulator in central and peripheral nervous system and has regulatory influence on numerous neuronal functions including addiction. The present study was carried out to investigate the role of acetylcholinesterase (AChE) in addiction through measurement of enzyme activity and to find potential association of ACHE gene 3'UTR variants rs17228602 and rs17228616 in heroin, hashish and poly drug addicts. Both SNPs are located within microRNA (miRNA) recognition sites with potential to affect miRNA/transcript interaction. A total of 122 addicts of heroin, hashish and polydrug were recruited from local rehabilitation centers to participate in this study. AChE activity was measured in blood by Ellman's method. SNP genotyping was performed by restriction fragment length polymorphism (PCR-RFLP) and Sanger sequencing. The AChE activity was found significantly higher (p ≤ 0.005) in addicted cohort (mean ± standard error of mean 0.020 ± 0.001 μmol/L/min; 95% confidence interval (CI) 0.018-0.022) in comparison to non-addicted healthy subjects (0.011 ± 0.001 μmol/L/min; 95% confidence interval CI 0.010-0.013). A statistically significant association of ACHE rs17228602 SNP with addiction vulnerability in dominant (DM: Odd's ratio OR = 2.095, 95% CI = 1.157-3.807 p = 0.009) and allelic genetic models (OR = 1.854 95% CI = 1.082-3.187, p = 0.016) was observed. However, no statistically significant association of rs17228616 SNP with substance abuse disorder was found. The data presented here shows that AChE could play significant role in substance addiction. Further studies with larger sample size and other variants of AChE are recommended to identify novel therapeutic approaches for cholinergic based treatment of addiction.
Collapse
|
19
|
Braid LR, Wood CA, Ford BN. Human umbilical cord perivascular cells: A novel source of the organophosphate antidote butyrylcholinesterase. Chem Biol Interact 2019; 305:66-78. [PMID: 30926319 DOI: 10.1016/j.cbi.2019.03.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/20/2019] [Accepted: 03/25/2019] [Indexed: 01/06/2023]
Abstract
Human butyrylcholinesterase (BChE) is a well-characterized bioscavenger with significant potential as a prophylactic or post-exposure treatment for organophosphate poisoning. Despite substantial efforts, BChE has proven technically challenging to produce in recombinant systems. Recombinant BChE tends to be insufficiently or incorrectly glycosylated, and consequently exhibits a truncated half-life, compromised activity, or is immunogenic. Thus, expired human plasma remains the only reliable source of the benchmark BChE tetramer, but production is costly and time intensive and presents possible blood-borne disease hazards. Here we report a human BChE production platform that produces functionally active, tetrameric BChE enzyme, without the addition of external factors such as polyproline peptides or chemical or gene modification required by other systems. Human umbilical cord perivascular cells (HUCPVCs) are a rich population of mesenchymal stromal cells (MSCs) derived from Wharton's jelly. We show that HUCPVCs naturally and stably secrete BChE during culture in xeno- and serum-free media, and can be gene-modified to increase BChE output. However, BChE secretion from HUCPVCs is limited by innate feedback mechanisms that can be interrupted by addition of miR 186 oligonucleotide mimics or by competitive inhibition of muscarinic cholinergic signalling receptors by addition of atropine. By contrast, adult bone marrow-derived mesenchymal stromal cells neither secrete measurable levels of BChE naturally, nor after gene modification. Further work is required to fully characterize and disable the intrinsic ceiling of HUCPVC-mediated BChE secretion to achieve commercially relevant enzyme output. However, HUCPVCs present a unique opportunity to produce both native and strategically engineered recombinant BChE enzyme in a human platform with the innate capacity to secrete the benchmark human plasma form.
Collapse
Affiliation(s)
- Lorena R Braid
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada.
| | - Catherine A Wood
- Aurora BioSolutions Inc., PO Box 21053, Crescent Heights PO, Medicine Hat, AB, T1A 6N0, Canada
| | - Barry N Ford
- DRDC Suffield Research Centre, Casualty Management Section, Box 4000 Station Main, Medicine Hat, AB, T1A 8K6, Canada
| |
Collapse
|
20
|
MicroRNA-186-5p controls GluA2 surface expression and synaptic scaling in hippocampal neurons. Proc Natl Acad Sci U S A 2019; 116:5727-5736. [PMID: 30808806 DOI: 10.1073/pnas.1900338116] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Homeostatic synaptic scaling is a negative feedback response to fluctuations in synaptic strength induced by developmental or learning-related processes, which maintains neuronal activity stable. Although several components of the synaptic scaling apparatus have been characterized, the intrinsic regulatory mechanisms promoting scaling remain largely unknown. MicroRNAs may contribute to posttranscriptional control of mRNAs implicated in different stages of synaptic scaling, but their role in these mechanisms is still undervalued. Here, we report that chronic blockade of glutamate receptors of the AMPA and NMDA types in hippocampal neurons in culture induces changes in the neuronal mRNA and miRNA transcriptomes, leading to synaptic upscaling. Specifically, we show that synaptic activity blockade persistently down-regulates miR-186-5p. Moreover, we describe a conserved miR-186-5p-binding site within the 3'UTR of the mRNA encoding the AMPA receptor GluA2 subunit, and demonstrate that GluA2 is a direct target of miR-186-5p. Overexpression of miR-186 decreased GluA2 surface levels, increased synaptic expression of GluA2-lacking AMPA receptors, and blocked synaptic scaling, whereas inhibition of miR-186-5p increased GluA2 surface levels and the amplitude and frequency of AMPA receptor-mediated currents, and mimicked excitatory synaptic scaling induced by synaptic inactivity. Our findings elucidate an activity-dependent miRNA-mediated mechanism for regulation of AMPA receptor expression.
Collapse
|
21
|
The critical role of microRNAs in stress response: Therapeutic prospect and limitation. Pharmacol Res 2018; 142:294-302. [PMID: 30553824 DOI: 10.1016/j.phrs.2018.12.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022]
Abstract
Stress response refers to the systemic nonspecific response upon exposure to strong stimulation or chronic stress, such as severe trauma, shock, infection, burn, major surgery or improper environment, which disturb organisms and damage their physical and psychological health. However, the pathogenesis of stress induced disorder remains complicated and diverse under different stress exposure. Recently, studies have revealed a specific role of microRNAs (miRNAs) in regulating cellular function under different types of stress, suggesting a significant role in the treatment and prevention of stress-related diseases, such as stress ulcer, posttraumatic stress disorder, stress-induced cardiomyopathy and so on. This paper have reviewed the literature on microRNA related stress diseases in different databases including PubMed, Web of Science, and the MiRbase. It considers only peer-reviewed papers published in English between 2004 and 2018. This review summarizes new advances in principles and mechanisms of miRNAs regulating stress signalling pathway and the role of miRNAs in human stress diseases. This comprehensive review is to provide an integrated account of how different stresses affect miRNAs and how stress-miRNA pathways may, in turn, be linked with disease, which offers some potential strategies for stress disorder treatment. Furthermore, the limitation of current studies and challenges for clinical use are discussed.
Collapse
|
22
|
Amyloid Beta 1-42 Alters the Expression of miRNAs in Cortical Neurons. J Mol Neurosci 2018; 67:181-192. [PMID: 30515701 DOI: 10.1007/s12031-018-1223-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 11/18/2018] [Indexed: 02/08/2023]
Abstract
Recently, Aβ1-42 was demonstrated to have the potential to translocate into the nucleus and to be involved in the transcriptional regulation of certain neurodegeneration-related genes. This data raises the question of whether Aβ-induced neurodegeneration might include the expression of miRNAs. Thus, our aim in this study was to investigate the effects of Aβ1-42 on certain miRNAs which are related with vitamin D metabolism, neuronal differentiation, development, and memory. This question was investigated in primary cortical neurons that were treated with 10 μM Aβ and/or 10-8 M 1,25-dihydroxyvitamin D3 at different time points by expression analysis of let-7a-5p, miR-26b-5p, miR-27b-3p, miR-31a-5p, miR-125b-5p, and miR-192-5p with qRT-PCR. Our data indicate that amyloid pathology has effects on the expression of miRNAs. Furthermore, some of these miRNAs simultaneously regulate the proteins or the enzymes involved in neuronal metabolism. The experimental setup that we used and the data we acquired supply valuable information about the miRNAs that play a part in the Aβ pathology and suggested Aβ as a counterpart of vitamin D at the crossroads of neuronal differentiation, development, and memory.
Collapse
|
23
|
Li S, Xu YN, Niu X, Li Z, Wang JF. miR-513a-5p targets Bcl-2 to promote dichlorvos induced apoptosis in HK-2 cells. Biomed Pharmacother 2018; 108:876-882. [PMID: 30372899 DOI: 10.1016/j.biopha.2018.09.101] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/04/2018] [Accepted: 09/18/2018] [Indexed: 11/26/2022] Open
Abstract
miRNAs are crucially involved in cellular responses to exotic chemical toxins. However, the role of miRNAs in organophosphates induced cytotoxicity is poorly understood. In present study, we investigated the role of miR-513a-5p in dichlorvos induced cytotoxicity in human kidney cell line HK-2. We found that dichlorvos increased intracellular ROS level, upregulated miR-513a-5p expression and induced apoptosis in HK-2 cells. Moreover, overexpression of miR-513a-5p promoted apoptosis of HK-2 cells with or without exposure to dichlorvos while anti-miR-513a-5p partially suppressed dichlorvos induced apoptosis. Luciferase assay showed that miR-513a-5p could directly bind to the 3'-untranslated regions of Bcl-2. Furthermore, miR-513a-5p decreased the level of Bcl-2 and promoted dichlorvos induced apoptosis in HK-2 cells through the Bcl-2/Bax-Caspase-3 pathway. Taken together, our findings indicate that miR-513a-5p promotes dichlorvos induced apoptosis by targeting Bcl-2.
Collapse
Affiliation(s)
- Sheng Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Tobacco Research Institute, Guiyang 550081, Guizhou, China.
| | - Ya-Nan Xu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Xi Niu
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Guizhou Tobacco Research Institute, Guiyang 550081, Guizhou, China
| | - Zhu Li
- Key laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Collaborative Innovation Center for Mountain Ecology & Agro-Bioengineering (CICMEAB), Institute of Agro-bioengineering/College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jia-Fu Wang
- Tongren College, Tongren, 554300, Guizhou, China
| |
Collapse
|
24
|
Chen ML, Lin K, Lin SK. NLRP3 inflammasome signaling as an early molecular response is negatively controlled by miR-186 in CFA-induced prosopalgia mice. ACTA ACUST UNITED AC 2018; 51:e7602. [PMID: 30020320 PMCID: PMC6050947 DOI: 10.1590/1414-431x20187602] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 05/24/2018] [Indexed: 01/19/2023]
Abstract
The NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most frequently studied in the central nervous system and has been linked to neuropathic pain. In this study, a post-translational mechanism of microRNA (miR)-186 via regulating the expression of NLRP3 in the complete Freund's adjuvant (CFA)-treated mice was investigated. The injection of CFA was used to induce trigeminal neuropathic pain in mice. miRs microarray chip assay was performed in trigeminal ganglions (TGs). CFA treatment significantly increased the mRNA expression of NLRP3, interleukin (IL)-1β, and IL-18 in TGs compared to the control group. Moreover, 26 miRs were differentially expressed in TGs from trigeminal neuropathic pain mice, and the expression of miR-186 showed the lowest level of all the miRs. Further examination revealed that NLRP3 was a candidate target gene of miR-186. We delivered miR-186 mimics to CFA-treated mice. The head withdrawal thresholds of the CFA-treated mice were significantly increased by miR-186 mimics injection compared with CFA single treatment. The mRNA and protein expression of NLRP3, IL-1β, and IL-18 in TGs from trigeminal neuropathic pain mice were significantly inhibited by miR-186 mimics treatment compared to the CFA group. miR-186 was able to suppress the neuropathic pain via regulating the NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Ming-Lei Chen
- Department of Neurology, the Third People's Hospital of Hainan Province, Sanya, China
| | - Kang Lin
- Department of Neurology, the Third People's Hospital of Hainan Province, Sanya, China
| | - Shu-Kai Lin
- Department of Neurosurgery, the Third People's Hospital of Hainan Province, Sanya, China
| |
Collapse
|
25
|
Maulik U, Sen S, Mallik S, Bandyopadhyay S. Detecting TF-miRNA-gene network based modules for 5hmC and 5mC brain samples: a intra- and inter-species case-study between human and rhesus. BMC Genet 2018; 19:9. [PMID: 29357837 PMCID: PMC5776763 DOI: 10.1186/s12863-017-0574-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 11/29/2017] [Indexed: 01/09/2023] Open
Abstract
Background Study of epigenetics is currently a high-impact research topic. Multi stage methylation is also an area of high-dimensional prospect. In this article, we provide a new study (intra and inter-species study) on brain tissue between human and rhesus on two methylation cytosine variants based data-profiles (viz., 5-hydroxymethylcytosine (5hmC) and 5-methylcytosine (5mC) samples) through TF-miRNA-gene network based module detection. Results First of all, we determine differentially 5hmC methylated genes for human as well as rhesus for intra-species analysis, and differentially multi-stage methylated genes for inter-species analysis. Thereafter, we utilize weighted topological overlap matrix (TOM) measure and average linkage clustering consecutively on these genesets for intra- and inter-species study.We identify co-methylated and multi-stage co-methylated gene modules by using dynamic tree cut, for intra-and inter-species cases, respectively. Each module is represented by individual color in the dendrogram. Gene Ontology and KEGG pathway based analysis are then performed to identify biological functionalities of the identified modules. Finally, top ten regulator TFs and targeter miRNAs that are associated with the maximum number of gene modules, are determined for both intra-and inter-species analysis. Conclusions The novel TFs and miRNAs obtained from the analysis are: MYST3 and ZNF771 as TFs (for human intra-species analysis), BAZ2B, RCOR3 and ATF1 as TFs (for rhesus intra-species analysis), and mml-miR-768-3p and mml-miR-561 as miRs (for rhesus intra-species analysis); and MYST3 and ZNF771 as miRs(for inter-species study). Furthermore, the genes/TFs/miRNAs that are already found to be liable for several brain-related dreadful diseases as well as rare neglected diseases (e.g., wolf Hirschhorn syndrome, Joubarts Syndrome, Huntington’s disease, Simian Immunodeficiency Virus(SIV) mediated enchaphilits, Parkinsons Disease, Bipolar disorder and Schizophenia etc.) are mentioned. Electronic supplementary material The online version of this article (doi:10.1186/s12863-017-0574-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ujjwal Maulik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India.
| | - Sagnik Sen
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India
| | - Saurav Mallik
- Department of Computer Science and Engineering, Jadavpur University, Kolkata, 700032, India
| | | |
Collapse
|
26
|
Simchovitz A, Heneka MT, Soreq H. Personalized genetics of the cholinergic blockade of neuroinflammation. J Neurochem 2017; 142 Suppl 2:178-187. [PMID: 28326544 PMCID: PMC5600134 DOI: 10.1111/jnc.13928] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 11/27/2016] [Accepted: 12/05/2016] [Indexed: 01/09/2023]
Abstract
Acetylcholine signaling is essential for cognitive functioning and blocks inflammation. To maintain homeostasis, cholinergic signaling is subjected to multi‐leveled and bidirectional regulation by both proteins and non‐coding microRNAs (‘CholinomiRs’). CholinomiRs coordinate the cognitive and inflammatory aspects of cholinergic signaling by targeting major cholinergic transcripts including the acetylcholine hydrolyzing enzyme acetylcholinesterase (AChE). Notably, AChE inhibitors are the only currently approved line of treatment for Alzheimer's disease patients. Since cholinergic signaling blocks neuroinflammation which is inherent to Alzheimer's disease, genomic changes modifying AChE's properties and its susceptibility to inhibitors and/or to CholinomiRs regulation may affect the levels and properties of inflammasome components such as NLRP3. This calls for genomic‐based medicine approaches based on genotyping of both coding and non‐coding single nucleotide polymorphisms (SNPs) in the genes involved in cholinergic signaling. An example is a SNP in a recognition element for the primate‐specific microRNA‐608 within the 3′ untranslated region of the AChE transcript. Carriers of the minor allele of that SNP present massively elevated brain AChE levels, increased trait anxiety and inflammation, accompanied by perturbed CholinomiR‐608 regulatory networks and elevated prefrontal activity under exposure to stressful insults. Several additional SNPs in the AChE and other cholinergic genes await further studies, and might likewise involve different CholinomiRs and pathways including those modulating the initiation and progression of neurodegenerative diseases. CholinomiRs regulation of the cholinergic system thus merits in‐depth interrogation and is likely to lead to personalized medicine approaches for achieving better homeostasis in health and disease. This is an article for the special issue XVth International Symposium on Cholinergic Mechanisms. ![]()
Collapse
Affiliation(s)
- Alon Simchovitz
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | | | - Hermona Soreq
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| |
Collapse
|
27
|
Mishra N, Friedson L, Hanin G, Bekenstein U, Volovich M, Bennett ER, Greenberg DS, Soreq H. Antisense miR-132 blockade via the AChE-R splice variant mitigates cortical inflammation. Sci Rep 2017; 7:42755. [PMID: 28209997 PMCID: PMC5314396 DOI: 10.1038/srep42755] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/12/2017] [Indexed: 01/05/2023] Open
Abstract
MicroRNA (miR)-132 brain-to-body messages suppress inflammation by targeting acetylcholinesterase (AChE), but the target specificity of 3'-AChE splice variants and the signaling pathways involved remain unknown. Using surface plasmon resonance (SPR), we identified preferential miR-132 targeting of soluble AChE-R over synaptic-bound AChE-S, potentiating miR-132-mediated brain and body cholinergic suppression of pro-inflammatory cytokines. Inversely, bacterial lipopolysaccharide (LPS) reduced multiple miR-132 targets, suppressed AChE-S more than AChE-R and elevated inflammatory hallmarks. Furthermore, blockade of peripheral miR-132 by chemically protected AM132 antisense oligonucleotide elevated muscle AChE-R 10-fold over AChE-S, and cortical miRNA-sequencing demonstrated inverse brain changes by AM132 and LPS in immune-related miRs and neurotransmission and cholinergic signaling pathways. In neuromuscular junctions, AM132 co-elevated the nicotinic acetylcholine receptor and AChE, re-balancing neurotransmission and reaching mild muscle incoordination. Our findings demonstrate preferential miR-132-induced modulation of AChE-R which ignites bidirectional brain and body anti-inflammatory regulation, underscoring splice-variant miR-132 specificity as a new complexity level in inflammatory surveillance.
Collapse
Affiliation(s)
- Nibha Mishra
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Lyndon Friedson
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Geula Hanin
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Uriya Bekenstein
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Meshi Volovich
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Estelle R. Bennett
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - David S. Greenberg
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
- The Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, The Edmond Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| |
Collapse
|
28
|
Malan-Müller S, Hemmings S. The Big Role of Small RNAs in Anxiety and Stress-Related Disorders. ANXIETY 2017; 103:85-129. [DOI: 10.1016/bs.vh.2016.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
29
|
Gambardella C, Ferrando S, Gatti AM, Cataldi E, Ramoino P, Aluigi MG, Faimali M, Diaspro A, Falugi C. Review: Morphofunctional and biochemical markers of stress in sea urchin life stages exposed to engineered nanoparticles. ENVIRONMENTAL TOXICOLOGY 2016; 31:1552-1562. [PMID: 26031494 DOI: 10.1002/tox.22159] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/12/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
We describe the use of different life stages of the Mediterranean sea urchin Paracentrotus lividus for the assessment of the possible risk posed by nanoparticles (NPs) in the coastal water. A first screening for the presence of NPs in sea water may be obtained by checking their presence inside tissues of organisms taken from the wild. The ability of NPs to pass from gut to the coelomic fluid is demonstrated by accumulation in sea urchin coelomocytes; the toxicity on sperms can be measured by embryotoxicity markers after sperm exposure, whereas the transfer through the food chain can be observed by developmental anomalies in larvae fed with microalgae exposed to NPs. The most used spermiotoxicity and embryotoxicity tests are described, as well as the biochemical and histochemical analyses of cholinesterase (ChE) activities, which are used to verify toxicity parameters such as inflammation, neurotoxicity, and interference in cell-to-cell communication. Morphological markers of toxicity, in particular skeletal anomalies, are described and classified. In addition, NPs may impair viability of the immune cells of adult specimens. Molecular similarity between echinoderm and human immune cells is shown and discussed. © 2015 Wiley Periodicals, Inc. Environ Toxicol 31: 1552-1562, 2016.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute of Marine Science, National Research Council (CNR), Genova, Italy.
| | | | | | | | | | | | - Marco Faimali
- Institute of Marine Science, National Research Council (CNR), Genova, Italy
| | - Alberto Diaspro
- Department of Nanophysics, Italian Institute of Technology (IIT), Genova, Italy
| | - Carla Falugi
- Department of Earth, Environment and Life Sciences (DISVA), Università Politecnica Delle Marche, Ancona, Italy
| |
Collapse
|
30
|
Kwan H, Garzoni L, Liu HL, Cao M, Desrochers A, Fecteau G, Burns P, Frasch MG. Vagus Nerve Stimulation for Treatment of Inflammation: Systematic Review of Animal Models and Clinical Studies. Bioelectron Med 2016. [DOI: 10.15424/bioelectronmed.2016.00005] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
31
|
Meydan C, Shenhar-Tsarfaty S, Soreq H. MicroRNA Regulators of Anxiety and Metabolic Disorders. Trends Mol Med 2016; 22:798-812. [DOI: 10.1016/j.molmed.2016.07.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 07/06/2016] [Accepted: 07/09/2016] [Indexed: 12/19/2022]
|
32
|
Dobrovinskaya O, Valencia-Cruz G, Castro-Sánchez L, Bonales-Alatorre EO, Liñan-Rico L, Pottosin I. Cholinergic Machinery as Relevant Target in Acute Lymphoblastic T Leukemia. Front Pharmacol 2016; 7:290. [PMID: 27630569 PMCID: PMC5005329 DOI: 10.3389/fphar.2016.00290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 08/18/2016] [Indexed: 12/17/2022] Open
Abstract
Various types of non-neuronal cells, including tumors, are able to produce acetylcholine (ACh), which acts as an autocrine/paracrine growth factor. T lymphocytes represent a key component of the non-neuronal cholinergic system. T cells-derived ACh is involved in a stimulation of their activation and proliferation, and acts as a regulator of immune response. The aim of the present work was to summarize the data about components of cholinergic machinery in T lymphocytes, with an emphasis on the comparison of healthy and leukemic T cells. Cell lines derived from acute lymphoblastic leukemias of T lineage (T-ALL) were found to produce a considerably higher amount of ACh than healthy T lymphocytes. Additionally, ACh produced by T-ALL is not efficiently hydrolyzed, because acetylcholinesterase (AChE) activity is drastically decreased in these cells. Up-regulation of muscarinic ACh receptors was also demonstrated at expression and functional level, whereas nicotinic ACh receptors seem to play a less important role and not form functional channels in cells derived from T-ALL. We hypothesized that ACh over-produced in T-ALL may act as an autocrine growth factor and play an important role in leukemic clonal expansion through shaping of intracellular Ca2+ signals. We suggest that cholinergic machinery may be attractive targets for new drugs against T-ALL. Specifically, testing of high affinity antagonists of muscarinic ACh receptors as well as antagomiRs, which interfere with miRNAs involved in the suppression of AChE expression, may be the first choice options.
Collapse
Affiliation(s)
- Oxana Dobrovinskaya
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Georgina Valencia-Cruz
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Luis Castro-Sánchez
- Centro Universitario de Investigaciones Biomédicas, Universidad de ColimaColima, México; Consejo Nacional de Ciencia y TecnologíaMéxico City, México
| | | | - Liliana Liñan-Rico
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| | - Igor Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima Colima, México
| |
Collapse
|
33
|
Arctigenin Confers Neuroprotection Against Mechanical Trauma Injury in Human Neuroblastoma SH-SY5Y Cells by Regulating miRNA-16 and miRNA-199a Expression to Alleviate Inflammation. J Mol Neurosci 2016; 60:115-29. [DOI: 10.1007/s12031-016-0784-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 12/19/2022]
|
34
|
Kho AT, Sharma S, Davis JS, Spina J, Howard D, McEnroy K, Moore K, Sylvia J, Qiu W, Weiss ST, Tantisira KG. Circulating MicroRNAs: Association with Lung Function in Asthma. PLoS One 2016; 11:e0157998. [PMID: 27362794 PMCID: PMC4928864 DOI: 10.1371/journal.pone.0157998] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 06/08/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND MicroRNAs are key transcriptional and network regulators previously associated with asthma susceptibility. However, their role in relation to asthma severity has not been delineated. OBJECTIVE We hypothesized that circulating microRNAs could serve as biomarkers of changes in lung function in asthma patients. METHODS We isolated microRNAs from serum samples obtained at randomization for 160 participants of the Childhood Asthma Management Program. Using a TaqMan microRNA array containing 754 microRNA primers, we tested for the presence of known asthma microRNAs, and assessed the association of the individual microRNAs with lung function as measured by FEV1/FVC, FEV1% and FVC%. We further tested the subset of FEV1/FVC microRNAs for sex-specific and lung developmental associations. RESULTS Of the 108 well-detected circulating microRNAs, 74 (68.5%) had previously been linked to asthma susceptibility. We found 22 (20.3%), 4 (3.7%) and 8 (7.4%) microRNAs to be associated with FEV1/FVC, FEV1% and FVC%, respectively. 8 (of 22) FEV1/FVC, 3 (of 4) FEV1% and 1 (of 8) FVC% microRNAs had functionally validated target genes that have been linked via genome wide association studies to asthma and FEV1 change. Among the 22 FEV1/FVC microRNAs, 9 (40.9%) remain associated with FEV1/FVC in boys alone in a sex-stratified analysis (compared with 3 FEV1/FVC microRNAs in girls alone), 7 (31.8%) were associated with fetal lung development, and 3 (13.6%) in both. Ontology analyses revealed enrichment for pathways integral to asthma, including PPAR signaling, G-protein coupled signaling, actin and myosin binding, and respiratory system development. CONCLUSIONS Circulating microRNAs reflect asthma biology and are associated with lung function differences in asthmatics. They may represent biomarkers of asthma severity.
Collapse
Affiliation(s)
- Alvin T. Kho
- Children’s Hospital Informatics Program, Boston Children’s Hospital and Harvard Medical School, Boston MA 02115, United States of America
| | - Sunita Sharma
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, United States of America
| | - Joshua S. Davis
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Pulmonary and Critical Care Unit, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Joseph Spina
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Dagnie Howard
- Oregon Health & Science University, Portland, OR 97239, United States of America
| | - Kevin McEnroy
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Kip Moore
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Jody Sylvia
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Weiliang Qiu
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| | - Scott T. Weiss
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Partners Personalized Medicine, Partners HealthCare System, Boston, MA 02115, United States of America
| | - Kelan G. Tantisira
- Channing Division of Network Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA 02115, United States of America
| |
Collapse
|
35
|
Hollins SL, Cairns MJ. MicroRNA: Small RNA mediators of the brains genomic response to environmental stress. Prog Neurobiol 2016; 143:61-81. [PMID: 27317386 DOI: 10.1016/j.pneurobio.2016.06.005] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 05/24/2016] [Accepted: 06/11/2016] [Indexed: 01/09/2023]
Abstract
The developmental processes that establish the synaptic architecture of the brain while retaining capacity for activity-dependent remodeling, are complex and involve a combination of genetic and epigenetic influences. Dysregulation of these processes can lead to problems with neural circuitry which manifest in humans as a range of neurodevelopmental syndromes, such as schizophrenia, bipolar disorder and fragile X mental retardation. Recent studies suggest that prenatal, postnatal and intergenerational environmental factors play an important role in the aetiology of stress-related psychopathology. A number of these disorders have been shown to display epigenetic changes in the postmortem brain that reflect early life experience. These changes affect the regulation of gene expression though chromatin remodeling (transcriptional) and post-transcriptional influences, especially small noncoding microRNA (miRNA). These dynamic and influential molecules appear to play an important function in both brain development and its adaption to stress. In this review, we examine the role of miRNA in mediating the brain's response to both prenatal and postnatal environmental perturbations and explore how stress- induced alterations in miRNA expression can regulate the stress response via modulation of the immune system. Given the close relationship between environmental stress, miRNA, and brain development/function, we assert that miRNA hold a significant position at the molecular crossroads between neural development and adaptations to environmental stress. A greater understanding of the dynamics that mediate an individual's predisposition to stress-induced neuropathology has major human health benefits and is an important area of research.
Collapse
Affiliation(s)
- Sharon L Hollins
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia
| | - Murray J Cairns
- School of Biomedical Sciences and Pharmacy and the Hunter Medical Research Institute, the University of Newcastle, Callaghan, NSW 2308, Australia; Schizophrenia Research Institute, Sydney, NSW, Australia.
| |
Collapse
|
36
|
Intensified vmPFC surveillance over PTSS under perturbed microRNA-608/AChE interaction. Transl Psychiatry 2016; 6:e801. [PMID: 27138800 PMCID: PMC5070052 DOI: 10.1038/tp.2016.70] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 03/14/2016] [Accepted: 03/20/2016] [Indexed: 12/12/2022] Open
Abstract
Trauma causes variable risk of posttraumatic stress symptoms (PTSS) owing to yet-unknown genome-neuronal interactions. Here, we report co-intensified amygdala and ventromedial prefrontal cortex (vmPFC) emotional responses that may overcome PTSS in individuals with the single-nucleotide polymorphism (SNP) rs17228616 in the acetylcholinesterase (AChE) gene. We have recently shown that in individuals with the minor rs17228616 allele, this SNP interrupts AChE suppression by microRNA (miRNA)-608, leading to cortical elevation of brain AChE and reduced cortisol and the miRNA-608 target GABAergic modulator CDC42, all stress-associated. To examine whether this SNP has effects on PTSS and threat-related brain circuits, we exposed 76 healthy Israel Defense Forces soldiers who experienced chronic military stress to a functional magnetic resonance imaging task of emotional and neutral visual stimuli. Minor allele individuals predictably reacted to emotional stimuli by hyperactivated amygdala, a hallmark of PTSS and a predisposing factor of posttraumatic stress disorder (PTSD). Despite this, minor allele individuals showed no difference in PTSS levels. Mediation analyses indicated that the potentiated amygdala reactivity in minor allele soldiers promoted enhanced vmPFC recruitment that was associated with their limited PTSS. Furthermore, we found interrelated expression levels of several miRNA-608 targets including CD44, CDC42 and interleukin 6 in human amygdala samples (N=7). Our findings suggest that miRNA-608/AChE interaction is involved in the threat circuitry and PTSS and support a model where greater vmPFC regulatory activity compensates for amygdala hyperactivation in minor allele individuals to neutralize their PTSS susceptibility.
Collapse
|
37
|
Campoy FJ, Vidal CJ, Muñoz-Delgado E, Montenegro MF, Cabezas-Herrera J, Nieto-Cerón S. Cholinergic system and cell proliferation. Chem Biol Interact 2016; 259:257-265. [PMID: 27083142 DOI: 10.1016/j.cbi.2016.04.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/05/2016] [Accepted: 04/08/2016] [Indexed: 12/31/2022]
Abstract
The cholinergic system, comprising acetylcholine, the proteins responsible for acetylcholine synthesis and release, acetylcholine receptors and cholinesterases, is expressed by most human cell types. Acetylcholine is a neurotransmitter, but also a local signalling molecule which regulates basic cell functions, and cholinergic responses are involved in cell proliferation and apoptosis. So, activation of nicotinic and muscarinic receptors has a proliferative and anti-apoptotic effect in many cells. The content of choline acetyltransferase, acetylcholine receptors and cholinesterases is altered in many tumours, and cholinesterase content correlates with patient survival in some cancers. During apoptosis, acetylcholinesterase is induced and appears in the nuclei. Acetylcholinesterase participates in the regulation of cell proliferation and apoptosis through hydrolysis of acetylcholine and by other catalytic and non catalytic mechanisms, in a variant-specific manner. This review gathers information on the role of cholinergic system and specially acetylcholinesterase in cell proliferation and apoptosis.
Collapse
Affiliation(s)
- F J Campoy
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain.
| | - C J Vidal
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - E Muñoz-Delgado
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - M F Montenegro
- Departamento de Bioquímica y Biología Molecular-A, Universidad de Murcia, IMIB, Regional Campus of International Excellence "Campus Mare Nostrum", E-30071 Murcia, Spain
| | - J Cabezas-Herrera
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| | - S Nieto-Cerón
- Molecular Therapy and Biomarker Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, E-30120 El Palmar, Murcia, Spain
| |
Collapse
|
38
|
Ruan T, He X, Yu J, Hang Z. MicroRNA-186 targets Yes-associated protein 1 to inhibit Hippo signaling and tumorigenesis in hepatocellular carcinoma. Oncol Lett 2016; 11:2941-2945. [PMID: 27073580 DOI: 10.3892/ol.2016.4312] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 02/16/2016] [Indexed: 12/22/2022] Open
Abstract
Liver cancer, particularly hepatocellular carcinoma (HCC), is one of leading causes of cancer-related mortality worldwide. Upregulation of the evolutionary conserved Hippo signaling pathway has been observed in HCC patients, and Yes-associated protein 1 (YAP1) has been reported to play a key role in HCC tumorigenesis. microRNAs (miRNAs) are a family of small non-coding RNAs, usually 21-25 nucleotides in length, and are essential in the regulation of gene expression. Abnormal miRNA expression has been implicated in the initiation and progression of numerous forms of cancers, including liver cancer. Here, we report the identification of a novel miRNA, miR-186, and its functions as an HCC tumor suppressor. We observed that miR-186 was downregulated in several HCC cell lines, and that it directly targets YAP1 mRNA. Overexpression of miR-186 in HCC cells significantly downregulates YAP1 mRNA and protein levels, leading to downregulation of the Hippo signaling pathway, which in turn severely inhibits HCC cell migration, invasion and proliferation. Our study is the first to report the direct involvement of miR-186 in downregulating YAP1 and, more significantly, inhibiting HCC tumorigenesis, and supports the role miR-186 as a potential therapeutic target in treating liver cancer.
Collapse
Affiliation(s)
- Tingyan Ruan
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Xiaoting He
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| | - Jun Yu
- Department of Thoracic Surgery, The Second People's Hospital of Wuxi, Wuxi, Jiangsu 214002, P.R. China
| | - Zhiqiang Hang
- Department of Oncology, Wuxi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu 214023, P.R. China
| |
Collapse
|
39
|
Kwan H, Garzoni L, Liu HL, Cao M, Desrochers A, Fecteau G, Burns P, Frasch MG. Vagus Nerve Stimulation for Treatment of Inflammation: Systematic Review of Animal Models and Clinical Studies. Bioelectron Med 2016; 3:1-6. [PMID: 29308423 PMCID: PMC5756070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023] Open
Abstract
Vagus nerve stimulation (VNS) has been used since 1997 for treatment of drug-resistant epilepsy. More recently, an off-label use of VNS has been explored in animal models and clinical trials for treatment of a number of conditions involving the innate immune system. The underlying premise has been the notion of the cholinergic antiinflammatory pathway (CAP), mediated by the vagus nerves. While the macroanatomic substrate - the vagus nerve - is understood, the physiology of the pleiotropic VNS effects and the "language" of the vagus nerve, mediated brain-body communication, remain an enigma. Tackling this kind of enigma is precisely the challenge for and promise of bioelectronic medicine. We review the state of the art of this emerging field as it pertains to developing strategies for use of the endogenous CAP to treat inflammation and infection in various animal models and human clinical trials. This is a systematic PubMed review for the MeSH terms "vagus nerve stimulation AND inflammation." We report the diverse profile of currently used VNS antiinflammatory strategies in animal studies and human clinical trials. This review provides a foundation and calls for devising systematic and comparable VNS strategies in animal and human studies for treatment of inflammation. We discuss species-specific differences in the molecular genetics of cholinergic signaling as a framework to understand the divergence in VNS effects between species. Brain-mapping initiatives are needed to decode vagus-carried brain-body communication before hypothesis-driven treatment approaches can be devised.
Collapse
Affiliation(s)
- Harwood Kwan
- Department of Obstetrics and Gynecology and Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Luca Garzoni
- Department of Pediatrics, CHU Ste-Justine Research Centre, University of Montreal, Montreal, Quebec, Canada
| | - Hai Lun Liu
- Department of Obstetrics and Gynecology and Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Mingju Cao
- Department of Obstetrics and Gynecology and Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
| | - Andre Desrochers
- Department of Clinical Sciences, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Gilles Fecteau
- Department of Clinical Sciences, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Patrick Burns
- Department of Clinical Sciences, University of Montreal, St-Hyacinthe, Quebec, Canada
| | - Martin G Frasch
- Department of Obstetrics and Gynecology and Department of Neurosciences, University of Montreal, Montreal, Quebec, Canada
- Centre de Recherche en Reproduction Animale, Faculty of Veterinary Medicine, University of Montreal, St-Hyacinthe, Quebec, Canada
- Department of Obstetrics and Gynecology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
40
|
Sfera A, Price AI, Gradini R, Cummings M, Osorio C. Proteomic and epigenomic markers of sepsis-induced delirium (SID). Front Mol Biosci 2015; 2:59. [PMID: 26579527 PMCID: PMC4620149 DOI: 10.3389/fmolb.2015.00059] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 10/10/2015] [Indexed: 12/21/2022] Open
Abstract
In elderly population sepsis is one of the leading causes of intensive care unit (ICU) admissions in the United States. Sepsis-induced delirium (SID) is the most frequent cause of delirium in ICU (Martin et al., 2010). Together delirium and SID represent under-recognized public health problems which place an increasing financial burden on the US health care system, currently estimated at 143-152 billion dollars per year (Leslie et al., 2008). The interest in SID was recently reignited as it was demonstrated that, contrary to prior beliefs, cognitive deficits induced by this condition may be irreversible and lead to dementia (Pandharipande et al., 2013; Brummel et al., 2014). Conversely, it is construed that diagnosing SID early or mitigating its full blown manifestations may preempt geriatric cognitive disorders. Biological markers specific for sepsis and SID would facilitate the development of potential therapies, monitor the disease process and at the same time enable elderly individuals to make better informed decisions regarding surgeries which may pose the risk of complications, including sepsis and delirium. This article proposes a battery of peripheral blood markers to be used for diagnostic and prognostic purposes in sepsis and SID. Though each individual marker may not be specific enough, we believe that together as a battery they may achieve the necessary accuracy to answer two important questions: who may be vulnerable to the development of sepsis, and who may develop SID and irreversible cognitive deficits following sepsis?
Collapse
Affiliation(s)
- Adonis Sfera
- Department of Psychiatry, Loma Linda University Loma Linda, CA, USA ; Psychiatry, Patton State Hospital Patton, CA, USA
| | - Amy I Price
- Evidence Based Health Care, University of Oxford Oxford, UK
| | - Roberto Gradini
- Department of Pathology, Sapienza University Rome, Italy ; IRCCS Neuromed Pozzili, Italy
| | | | - Carolina Osorio
- Department of Psychiatry, Loma Linda University Loma Linda, CA, USA
| |
Collapse
|
41
|
Role of α7 nicotinic receptor in the immune system and intracellular signaling pathways. Cent Eur J Immunol 2015; 40:373-9. [PMID: 26648784 PMCID: PMC4655390 DOI: 10.5114/ceji.2015.54602] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/13/2015] [Indexed: 01/12/2023] Open
Abstract
Acetylcholine has been well known as one of the most exemplary neurotransmitters. In humans, this versatile molecule and its synthesizing enzyme, choline acetyltransferase, have been found in various non-neural tissues such as the epithelium, endothelium, mesothelium muscle, blood cells and immune cells. The non-neuronal acetylcholine is accompanied by the expression of acetylcholinesterase and nicotinic/muscarinic acetylcholine receptors. Increasing evidence of the non-neuronal acetylcholine system found throughout the last few years has indicated this neurotransmitter as one of the major cellular signaling molecules (associated e.g. with kinases and transcription factors activity). This system is responsible for maintenance and optimization of the cellular function, such as proliferation, differentiation, adhesion, migration, intercellular contact and apoptosis. Additionally, it controls proper activity of immune cells and affects differentiation, antigen presentation or cytokine production (both pro- and anti-inflammatory). The present article reviews recent findings about the non-neuronal cholinergic system in the field of immune system and intracellular signaling pathways.
Collapse
|
42
|
Liu C, Zhao L, Han S, Li J, Li D. Identification and Functional Analysis of MicroRNAs in Mice following Focal Cerebral Ischemia Injury. Int J Mol Sci 2015; 16:24302-18. [PMID: 26473853 PMCID: PMC4632751 DOI: 10.3390/ijms161024302] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Revised: 09/09/2015] [Accepted: 09/10/2015] [Indexed: 01/09/2023] Open
Abstract
Numerous studies have demonstrated that genes, RNAs, and proteins are involved in the occurrence and development of stroke. In addition, previous studies concluded that microRNAs (miRNAs or miRs) are closely related to the pathological process of ischemic and hypoxic disease. Therefore, the aims of this study were to quantify the altered expression levels of miRNAs in the infarct region 6 h after middle cerebral artery occlusion (MCAO)-induced focal cerebral ischemia in mice using a large-scale miRNAs microarray. Firstly, MCAO-induced cerebral ischemic injuries were investigated by observing the changes of neurological deficits, infarct volume and edema ratio. One hundred and eighteen differentially expressed miRNAs were identified in the infarct region of mice following the MCAOs compared with sham group (p < 0.05 was considered as significant). Among these 118 significantly expressed microRNAs, we found that 12 miRNAs were up-regulated with fold changes lager than two, and 18 miRNAs were down-regulated with fold changes less than 0.5 in the infarct region of mice following the 6 h MCAOs, compared with the sham group. Then, these 30 miRNAs with expression in fold change larger than two or less than 0.5 was predicted, and the functions of the target genes of 30 miRNAs were analyzed using a bioinformatics method. Finally, the miRNA-gene network was established and the functional miRNA-mRNA pairs were identified, which provided insight into the roles of the specific miRNAs that regulated specified genes in the ischemic injuries. The miRNAs identified in this study may represent effective therapeutic targets for stroke, and further study of the role of these targets may increase our understanding of the mechanisms underlying ischemic injuries.
Collapse
Affiliation(s)
- Cuiying Liu
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
- China-America Institute of Neuroscience, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China.
| | - Lei Zhao
- Department of Anesthesiology Xuan Wu Hospital, Capital Medical University, Beijing 100053, China.
| | - Song Han
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Junfa Li
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| | - Dongguo Li
- Institute of Biomedical Engineering, Capital Medical University, Beijing 100069, China.
- Department of Neurobiology and Center of Stroke, Beijing Institute for Brain Disorders, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
43
|
Checks and balances on cholinergic signaling in brain and body function. Trends Neurosci 2015; 38:448-58. [DOI: 10.1016/j.tins.2015.05.007] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/19/2015] [Accepted: 05/25/2015] [Indexed: 02/07/2023]
|
44
|
Sun Y, Luo ZM, Guo XM, Su DF, Liu X. An updated role of microRNA-124 in central nervous system disorders: a review. Front Cell Neurosci 2015; 9:193. [PMID: 26041995 PMCID: PMC4438253 DOI: 10.3389/fncel.2015.00193] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 05/04/2015] [Indexed: 12/18/2022] Open
Abstract
MicroRNA-124 (miR-124) is the most abundant miRNA in the brain. Biogenesis of miR-124 displays specific temporal and spatial profiles in various cell and tissue types and affects a broad spectrum of biological functions in the central nervous system (CNS). Recently, the link between dysregulation of miR-124 and CNS disorders, such as neurodegeneration, CNS stress, neuroimmune disorders, stroke, and brain tumors, has become evident. Here, we provide an overview of the specific molecular function of miR-124 in the CNS and a revealing insight for the therapeutic potential of miR-124 in the treatment of human CNS diseases.
Collapse
Affiliation(s)
- Yang Sun
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai China
| | - Zhu-Min Luo
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai China
| | - Xiu-Ming Guo
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai China
| | - Ding-Feng Su
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai China
| | - Xia Liu
- Department of Pharmacology, School of Pharmacy, Second Military Medical University, Shanghai China
| |
Collapse
|
45
|
Nadorp B, Soreq H. Gut feeling: MicroRNA discriminators of the intestinal TLR9-cholinergic links. Int Immunopharmacol 2015; 29:8-14. [PMID: 26003847 PMCID: PMC4646847 DOI: 10.1016/j.intimp.2015.04.058] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 04/14/2015] [Accepted: 04/15/2015] [Indexed: 12/25/2022]
Abstract
The intestinal tissue notably responds to stressful, cholinergic and innate immune signals by microRNA (miRNA) changes, but whether and how those miRNA regulators modify the intestinal cholinergic and innate immune pathways remained unexplored. Here, we report changes in several miRNA regulators of cholinesterases (ChEs) and correspondingly modified ChE activities in intestine, splenocytes and the circulation of mice exposed to both stress and canonical or alternative Toll-Like Receptor 9 (TLR9) oligonucleotide (ODN) aptamer activators or blockers. Stressful intraperitoneal injection of saline, the anti-inflammatory TLR9 agonist mEN101 aptamer or the inflammation-activating TLR9 aptamer ODN 1826 all increased the expression of the acetylcholinesterase (AChE)-targeting miR-132. In comparison, mEN101 but neither ODN 1826 nor saline injections elevated intestinal miR-129-5p, miR-186 and miR-200c, all predicted to target both AChE and the homologous enzyme butyrylcholinesterase (BChE). In cultured immune cells, BL-7040, the human counterpart of mEN101, reduced AChE activity reflecting inflammatory reactions in a manner preventable by the TLR9 blocking ODN 2088. Furthermore, the anti-inflammatory BL-7040 TLR9 aptamer caused reduction in nitric oxide and AChE activity in both murine splenocytes and human mononuclear cells at molar concentrations four orders of magnitude lower than ODN 1826. Our findings demonstrate differential reaction of cholinesterase-targeting miRNAs to distinct TLR9 challenges, indicating upstream miRNA co-regulation of the intestinal alternative NFκB pathway and cholinergic signaling. TLR9 aptamers may hence potentiate miRNA regulation that enhances cholinergic signaling and the resolution of inflammation, which opens new venues for manipulating bowel diseases.
Collapse
Affiliation(s)
- Bettina Nadorp
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Israel; Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel; Grass Center for Bioengineering, The Hebrew University of Jerusalem, Israel
| | - Hermona Soreq
- Department of Biological Chemistry, The Hebrew University of Jerusalem, Israel; Institute of Life Sciences, The Hebrew University of Jerusalem, Israel; Edmond and Lily Safra Center of Brain Science, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
46
|
Castillo-González AC, Nieto-Cerón S, Pelegrín-Hernández JP, Montenegro MF, Noguera JA, López-Moreno MF, Rodríguez-López JN, Vidal CJ, Hellín-Meseguer D, Cabezas-Herrera J. Dysregulated cholinergic network as a novel biomarker of poor prognostic in patients with head and neck squamous cell carcinoma. BMC Cancer 2015; 15:385. [PMID: 25956553 PMCID: PMC4435806 DOI: 10.1186/s12885-015-1402-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 04/29/2015] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND In airways, a proliferative effect is played directly by cholinergic agonists through nicotinic and muscarinic receptors activation. How tumors respond to aberrantly activated cholinergic signalling is a key question in smoking-related cancer. This research was addressed to explore a possible link of cholinergic signalling changes with cancer biology. METHODS Fifty-seven paired pieces of head and neck squamous cell carcinoma (HNSCC) and adjacent non-cancerous tissue (ANCT) were compared for their mRNA levels for ACh-related proteins and ACh-hydrolyzing activity. RESULTS The measurement in ANCT of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) activities (5.416 ± 0.501 mU/mg protein and 6.350 ± 0.599 mU/mg protein, respectively) demonstrated that upper respiratory tract is capable of controlling the availability of ACh. In HNSCC, AChE and BChE activities dropped to 3.584 ± 0.599 mU/mg protein (p = 0.002) and 3.965 ± 0.423 mU/mg protein (p < 0.001). Moreover, tumours with low AChE activity and high BChE activity were associated with shorter patient overall survival. ANCT and HNSCC differed in mRNA levels for AChE-T, α3, α5, α9 and β2 for nAChR subunits. Tobacco exposure had a great impact on the expression of both AChE-H and AChE-T mRNAs. Unaffected and cancerous pieces contained principal AChE dimers and BChE tetramers. The lack of nerve-born PRiMA-linked AChE agreed with pathological findings on nerve terminal remodelling and loss in HNSCC. CONCLUSIONS Our results suggest that the low AChE activity in HNSCC can be used to predict survival in patients with head and neck cancer. So, the ChE activity level can be used as a reliable prognostic marker.
Collapse
Affiliation(s)
- Ana Cristina Castillo-González
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - Susana Nieto-Cerón
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - Juan Pablo Pelegrín-Hernández
- Otorhinolaryngology Surgical Service, University Hospital Virgen de la Arrixaca IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - María Fernanda Montenegro
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", IMIB-University of Murcia, Murcia, 30100, Spain.
| | - José Antonio Noguera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - María Fuensanta López-Moreno
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - José Neptuno Rodríguez-López
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", IMIB-University of Murcia, Murcia, 30100, Spain.
| | - Cecilio J Vidal
- Department of Biochemistry and Molecular Biology A, School of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", IMIB-University of Murcia, Murcia, 30100, Spain.
| | - Diego Hellín-Meseguer
- Otorhinolaryngology Surgical Service, University Hospital Virgen de la Arrixaca IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| | - Juan Cabezas-Herrera
- Molecular Therapy and Biomarkers Research Group, Clinical Analysis Service, University Hospital Virgen de la Arrixaca, IMIB-Arrixaca, Ctra Madrid-Cartagena s/n, El Palmar, Murcia, 30120, Spain.
| |
Collapse
|
47
|
Trimetazidine protects cardiomyocytes against hypoxia-induced injury through ameliorates calcium homeostasis. Chem Biol Interact 2015; 236:47-56. [PMID: 25937560 DOI: 10.1016/j.cbi.2015.04.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Revised: 03/28/2015] [Accepted: 04/24/2015] [Indexed: 12/24/2022]
Abstract
Intracellular calcium (Ca(2+)i) overload induced by chronic hypoxia alters Ca(2+)i homeostasis, which plays an important role on mediating myocardial injury. We tested the hypothesis that treatment with trimetazidine (TMZ) would improve Ca(2+)i handling in hypoxic myocardial injury. Cardiomyocytes isolated from neonatal Sprague-Dawley rats were exposed to chronic hypoxia (1% O2, 5% CO2, 37 °C). Intracellular calcium concentration ([Ca(2+)]i) was measured with Fura-2/AM. Perfusion of cardiomyocytes with a high concentration of caffeine (10 mM) was carried out to verify the function of the cardiac Na(+)/Ca(2+) exchanger (NCX) and the activity of sarco(endo)-plasmic reticulum Ca(2+)-ATPase (SERCA2a). For TMZ-treated cardiomyocytes exposured in hypoxia, we observed a decrease in mRNA expression of proapoptotic Bax, caspase-3 activation and enhanced expression of anti-apoptotic Bcl-2. The cardiomyocyte hypertrophy were also alleviated in hypoxic cardiomyocyte treated with TMZ. Moreover, we found that TMZ treatment cardiomyocytes enhanced "metabolic shift" from lipid oxidation to glucose oxidation. Compared with hypoxic cardiomyocyte, the diastolic [Ca(2+)]i was decreased, the amplitude of Ca(2+)i oscillations and sarcoplasmic reticulum Ca(2+) load were recovered, the activities of ryanodine receptor 2 (RyR2), NCX and SERCA2a were increased in cardiomyocytes treated with TMZ. TMZ attenuated abnormal changes of RyR2 and SERCA2a genes in hypoxic cardiomyocytes. In addition, cholinergic signaling are involved in hypoxic stress and the cardioprotective effects of TMZ. These results suggest that TMZ ameliorates Ca(2+)i homeostasis through switch of lipid to glucose metabolism, thereby producing the cardioprotective effect and reduction in hypoxic cardiomyocytes damage.
Collapse
|
48
|
Niola P, Gross JA, Lopez JP, Chillotti C, Deiana V, Manchia M, Georgitsi M, Patrinos GP, Alda M, Turecki G, Del Zompo M, Squassina A. Lithium-induced differential expression of SAT1 in suicide completers and controls is not correlated with polymorphisms in the promoter region of the gene. Psychiatry Res 2014; 220:1167-8. [PMID: 25288042 DOI: 10.1016/j.psychres.2014.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 09/18/2014] [Accepted: 09/20/2014] [Indexed: 12/27/2022]
Affiliation(s)
- Paola Niola
- Laboratory of Pharmacogenomics, Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | - Jeffrey A Gross
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Juan Pablo Lopez
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Caterina Chillotti
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Valeria Deiana
- Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; Department of Pharmacology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Marianthi Georgitsi
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| | - George P Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, University Campus, Rion, Patras, Greece
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Gustavo Turecki
- McGill Group for Suicide Studies, Douglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada
| | - Maria Del Zompo
- Laboratory of Pharmacogenomics, Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy; Unit of Clinical Pharmacology, University Hospital of Cagliari, Cagliari, Italy
| | - Alessio Squassina
- Laboratory of Pharmacogenomics, Section of Neuroscience and Clinical Pharmacology, Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy.
| |
Collapse
|
49
|
Tan Y, Yang J, Xiang K, Tan Q, Guo Q. Suppression of microRNA-155 attenuates neuropathic pain by regulating SOCS1 signalling pathway. Neurochem Res 2014; 40:550-60. [PMID: 25488154 DOI: 10.1007/s11064-014-1500-2] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 11/25/2014] [Accepted: 12/03/2014] [Indexed: 12/21/2022]
Abstract
Chronic neuropathic pain is an unfavourable pathological pain characterised by allodynia and hyperalgesia which has brought considerable trouble to people's physical and mental health, but effective therapeutics are still lacking. MicroRNAs (miRNAs) have been widely studied in the development of neuropathic pain and neuronal inflammation. Among various miRNAs, miR-155 has been widely studied. It is intensively involved in regulating inflammation-associated diseases. However, the role of miR-155 in regulating neuropathic pain development is poorly understood. In the present study, we aimed to investigate whether miR-155 is associated with neuropathic pain and delineate the underlying mechanism. Using a neuropathic pain model of chronic constriction injury (CCI), miR-155 expression levels were markedly increased in the spinal cord. Inhibition of miR-155 significantly attenuated mechanical allodynia, thermal hyperalgesia and proinflammatory cytokine expression. We also demonstrated that miR-155 directly bound with the 3'-untranslated region of the suppressor of cytokine signalling 1 (SOCS1). The expression of SOCS1 significantly decreased in the CCI rat model, but this effect could be reversed by miR-155 inhibition. Furthermore, knockdown of SOCS1 abrogated the inhibitory effects of miR-155 inhibition on neuropathic development and neuronal inflammation. Finally, we demonstrated that inhibition of miR-155 resulted in the suppression of nuclear factor-κB and p38 mitogen-activated protein kinase activation by mediating SOCS1. Our data demonstrate the critical role of miR-155 in regulating neuropathic pain through SOCS1, and suggest that miR-155 may be an important and potential target in preventing neuropathic pain development.
Collapse
Affiliation(s)
- Yi Tan
- Department of Anesthesiology, Xiangya Hospital of Central South University, 87 Xiangya Road, Changsha, 410008, Hunan, People's Republic of China
| | | | | | | | | |
Collapse
|
50
|
Soreq H. Novel roles of non-coding brain RNAs in health and disease. Front Mol Neurosci 2014; 7:55. [PMID: 25018693 PMCID: PMC4072071 DOI: 10.3389/fnmol.2014.00055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 05/30/2014] [Indexed: 12/21/2022] Open
Affiliation(s)
- Hermona Soreq
- Laboratory of Molecular Neuroscience, Department of Biological Chemistry, The Edmond and Lily Safra Center of Brain Sciences, The Alexander Silberman Institute for Life Sciences, The Hebrew University of Jerusalem Jerusalem, Israel
| |
Collapse
|