1
|
Wang H, Zuo Q, Li X, Liu Y, Gan L, Wang L, Rao Y, Pan R, Dong J. p62 Binding to Protein Kinase C Regulates HIV-1 gp120 V3 Loop Induced Microglial Inflammation. Inflammation 2024:10.1007/s10753-024-02229-6. [PMID: 39731677 DOI: 10.1007/s10753-024-02229-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/12/2024] [Accepted: 12/22/2024] [Indexed: 12/30/2024]
Abstract
The main pathogenic mechanism of HIV-associated neurocognitive disorders (HAND) is neuronal apoptosis induced by inflammatory mediators, in which microglial inflammation plays a crucial role. However, the exact pathogenic mechanism remains unclear. Previous studies have shown that the HIV-1 gp120 V3 loop can trigger inflammation in CHME-5 microglia. p62 is a post-translational modified multidomain protein that is involved in the regulation of autophagy and is closely related to neuroinflammation. In this study, we found that p62 knockout down-regulated the expression of MCP-1, IL-6 and COX-2, and improved the inflammation of HIV-1 gp120 V3 loop induced microglia, while overexpression of p62 up-regulated the expression of MCP-1, IL-6 and COX-2, and promoted the inflammation of microglia. In addition, protein kinase C (PKC) knockout down-regulated the expression of MCP-1, IL-6 and COX-2 and inhibited the activation of IKK/ NF-κ B pathway, while tumor necrosis factor receptor-associated factor 6 (TRAF6) knockout had no significant effect on the expression of MCP-1, IL-6 and COX-2. Co-immunoprecipitation showed that p62 was bound and interacted with PKC. Inhibition of IKK/ NF-κ B pathway can down-regulate the expression of MCP-1, IL-6 and COX-2, and improve the inflammatory response of microglia. Our research further found that inhibition of IKK/ NF-κ B can decrease the expression of Caspase-3 and reduce the apoptosis of neurons in the co-culture of CHME-5 microglia and primary mouse neurons. The results of this study suggest that HIV-1 gp120 V3 loop induced CHME-5 microglial inflammation may be activated by the direct binding of p62 and PKC through the IKK/ NF-κ B signaling pathway, and these findings provide an important reference for the prevention and treatment of HAND.
Collapse
Affiliation(s)
- Huili Wang
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Qin Zuo
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Xinyi Li
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Yuanyuan Liu
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Limeng Gan
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Linlin Wang
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Yin Rao
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Rui Pan
- Department of Orthopedics, The First Affiliated Hospital, Medical College of Jinan University, Guangzhou, Guangdong Province, China
| | - Jun Dong
- Department of Pathophysiology, Key Laboratory of the State Administration of Traditional Chinese Medicine, Medical College of Jinan University, Guangzhou, Guangdong Province, China.
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Jinan University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Mirshekari Jahangiri H, Moradi A, Nazarinia D, Aboutaleb N. 4-methylumbilliferon (4-MU) as a Potential Treatment Against Cerebral ischemia and Reperfusion Injury in Rats; An Experimental Study. ARCHIVES OF ACADEMIC EMERGENCY MEDICINE 2024; 13:e8. [PMID: 39465056 PMCID: PMC11512716 DOI: 10.22037/aaem.v13i1.2456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Introduction Ischemic stroke (IS) is one of the three main fatal disorders and is a major health challenge. 4-methylumbelliferone (4-MU) is one of the coumarin derivatives (7-hydroxy-4-methylcoumarin) with antioxidant and anti-inflammatory impact. This study was conducted to elucidate the neuroprotective effects and anti-inflammatory impact of 4-MU in a rodent model of IS. Methods The IS model was induced by middle cerebral artery occlusion (MCAO) for 1 hour and reperfusion was established for 24 hours. 44 Male Wistar rats were divided into four groups: 1) Sham, 2) MCAO, 3) MCAO + Vehicle, and 4) MCAO + 4-MU (25 mg/kg). Evaluation of neurological deficit was performed using Garcia's score. 2,3,5-triphenoyl-2H-tetrazolium chloride (TTC) staining was employed to measure infarct size. Nissl staining was applied to determine neuronal loss. Moreover, western blotting was utilized to detect the expression of the proteins relevant to the TLR4/NF-κB/NLRP3 axis (p-NF-κB p65, TLR4, NLRP3, IL-1β, IL-10, IL-18, ASC, and Caspase-1). Results It was observed that MCAO caused neurological deficit (P<0.0001), infarct (P<0.0001), and neuronal loss (P<0.002); up-regulated NLRP3 (P<0.0001), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0005), IL-1β (P<0.0014), IL-18 (P<0.0001), ASC (P<0.0027), and Caspase-1 (P<0.0052); and reduced IL-10 concentrations (P<0.0024). Administration of 4-MU (25 mg/kg) quickly after reperfusion reduced neurological deficit (P<0.0001), infarct size (P<0.0001), neuronal loss (P<0.0058), and down-regulated NLRP3 (P<0.0257), TLR4 (P<0.0001), p-NF-κB p65 (P<0.0075), IL-1β (P<0.0106), IL-18 (P<0.0005), ASC (P<0.0072), and Caspase-1 (P<0.0315), and increased IL-10 concentrations (P<0.0215). Conclusion These results indicate that 4-MU can attenuate injury after MCAO by suppressing the TLR4/NF-κB/NLRP3 axis. Our findings show that 4-MU can be considered a novel therapeutic compound to cure IS.
Collapse
Affiliation(s)
- Hamzeh Mirshekari Jahangiri
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moradi
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
- Lung Diseases Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Donya Nazarinia
- Department of Physiology, School of Paramedical Sciences, Dezful University of Medical Sciences, Dezful, Iran
| | - Nahid Aboutaleb
- Department of Physiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
3
|
Jha SK, Nelson VK, Suryadevara PR, Panda SP, Pullaiah CP, Nuli MV, Kamal M, Imran M, Ausali S, Abomughaid MM, Srivastava R, Deka R, Pritam P, Gupta N, Shyam H, Singh IK, Pandey BW, Dewanjee S, Jha NK, Jafari SM. Cannabidiol and neurodegeneration: From molecular mechanisms to clinical benefits. Ageing Res Rev 2024; 100:102386. [PMID: 38969143 DOI: 10.1016/j.arr.2024.102386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 05/23/2024] [Accepted: 06/18/2024] [Indexed: 07/07/2024]
Abstract
Neurodegenerative disorders (NDs) such as Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, and amyotrophic lateral sclerosis are severe and life-threatening conditions in which significant damage of functional neurons occurs to produce psycho-motor malfunctions. NDs are an important cause of death in the elderly population worldwide. These disorders are commonly associated with the progression of age, oxidative stress, and environmental pollutants, which are the major etiological factors. Abnormal aggregation of specific proteins such as α-synuclein, amyloid-β, huntingtin, and tau, and accumulation of the associated oligomers in neurons are the hallmark pathological features of NDs. Existing therapeutic options for NDs are only symptomatic relief and do not address root-causing factors, such as protein aggregation, oxidative stress, and neuroinflammation. Cannabidiol (CBD) is a non-psychotic natural cannabinoid obtained from Cannabis sativa that possesses multiple pharmacological actions, including antioxidant, anti-inflammatory, and neuroprotective effects in various NDs and other neurological disorders both in vitro and in vivo. CBD has gained attention as a promising drug candidate for the management of neurodegenerative disorders, such as Alzheimer's disease and Parkinson's disease, by inhibiting protein aggregation, free radicals, and neuroinflammation. In parallel, CBD has shown positive results in other neurological disorders, such as epilepsy, depression, schizophrenia, and anxiety, as well as adjuvant treatment with existing standard therapeutic agents. Hence, the present review focuses on exploring the possible molecular mechanisms in controlling various neurological disorders as well as the clinical applications of CBD in NDs including epilepsy, depression and anxiety. In this way, the current review will serve as a standalone reference for the researchers working in this area.
Collapse
Affiliation(s)
- Saurabh Kumar Jha
- Department of Zoology, Kalindi College, University of Delhi, 110008, India.
| | - Vinod Kumar Nelson
- Center for Global Health Research, Saveetha Medical College, Saveetha Institute Of Medical And Technical Sciences, India
| | | | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh 281406, India
| | - Chitikela P Pullaiah
- Department of Chemistry, Siddha Central Research Institute, Central Council for Research in Siddha, Ministry of AYUSH, Govt. of India, Chennai, Tamil Nadu, India
| | - Mohana Vamsi Nuli
- Raghavendra Institute of Pharmaceutical Education and Research, Anantapur, India
| | - Mehnaz Kamal
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohd Imran
- Department of Pharmaceutical Chemistry, College of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
| | - Saijyothi Ausali
- College of Pharmacy, MNR Higher Education and Research Academy Campus, MNR Nagar, Sangareddy 502294, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Rashi Srivastava
- Department of Chemical & Biochemical Engineering, Indian Institute of Technology,Patna, 800013 India
| | - Rahul Deka
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Pingal Pritam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Neha Gupta
- School of Studies in Biotechnology, Jiwaji University, Gwalior, Madhya Pradesh, India
| | - Harishankar Shyam
- Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Indrakant K Singh
- Molecular Biology Research Lab., Department of Zoology, Deshbandhu College & Delhi School of Public Health, Institute of Eminence, University of Delhi, New Delhi 110019, India
| | | | - Saikat Dewanjee
- Advanced Pharmacognosy Research Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, West Bengal 700 032, India
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India.
| | - Seid Mahdi Jafari
- Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran; Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E-32004 Ourense, Spain
| |
Collapse
|
4
|
Oke OE, Akosile OA, Oni AI, Opowoye IO, Ishola CA, Adebiyi JO, Odeyemi AJ, Adjei-Mensah B, Uyanga VA, Abioja MO. Oxidative stress in poultry production. Poult Sci 2024; 103:104003. [PMID: 39084145 PMCID: PMC11341942 DOI: 10.1016/j.psj.2024.104003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 08/02/2024] Open
Abstract
Oxidative stress (OS) is a major concern that impacts the overall health of chickens in modern production systems. It is characterized by an imbalance between antioxidant defence mechanisms and the production of reactive oxygen species (ROS). This literature review aims to provide a comprehensive overview of oxidative stress in poultry production, with an emphasis on its effects on growth performance, immune responses, and reproductive outcomes. This review highlights the intricate mechanisms underlying OS and discusses how various factors, including dietary components, genetic predispositions, and environmental stressors can exacerbate the production of ROS. Additionally, the impact of oxidative stress on the production performance and physiological systems of poultry is examined. The study also emphasizes the relationship between oxidative stress and poultry diseases, highlighting how impaired antioxidant defenses increase bird's susceptibility to infections. The review assesses the existing approaches to reducing oxidative stress in chickens in response to these challenges. This includes managing techniques to lower stress in the production environment, antioxidant supplements, and nutritional interventions. The effectiveness of naturally occurring antioxidants, including plant extracts, minerals, and vitamins to improve poultry resistance to oxidative damage is also examined. To improve the antioxidant defenses of poultry under stress conditions, the activation of cellular homeostatic networks termed vitagenes, such as Nuclear Factor Erythroid 2-Related Factor 2 (Nrf2) is necessary for the synthesis of protective factors that can counteract the increased production of ROS and RNS. Future studies into novel strategies for managing oxidative stress in chicken production would build on these research advances and the knowledge gaps identified in this review.
Collapse
Affiliation(s)
- O E Oke
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria; Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo.
| | - O A Akosile
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - A I Oni
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - I O Opowoye
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - C A Ishola
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - J O Adebiyi
- Animal Production and Health, Federal University of Agriculture, Abeokuta, Nigeria
| | - A J Odeyemi
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - B Adjei-Mensah
- Centre of Excellence in Avian Sciences, Université of Lomé, Lomé, Togo
| | - V A Uyanga
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| | - M O Abioja
- Department of Animal Physiology, Federal University of Agriculture, Abeokuta, Nigeria
| |
Collapse
|
5
|
Pearson A, Koprivica M, Eisenbaum M, Ortiz C, Browning M, Vincennie T, Tinsley C, Mullan M, Crawford F, Ojo J. PPARγ activation ameliorates cognitive impairment and chronic microglial activation in the aftermath of r-mTBI. J Neuroinflammation 2024; 21:194. [PMID: 39097742 PMCID: PMC11297749 DOI: 10.1186/s12974-024-03173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/12/2024] [Indexed: 08/05/2024] Open
Abstract
Chronic neuroinflammation and microglial activation are key mediators of the secondary injury cascades and cognitive impairment that follow exposure to repetitive mild traumatic brain injury (r-mTBI). Peroxisome proliferator-activated receptor-γ (PPARγ) is expressed on microglia and brain resident myeloid cell types and their signaling plays a major anti-inflammatory role in modulating microglial responses. At chronic timepoints following injury, constitutive PPARγ signaling is thought to be dysregulated, thus releasing the inhibitory brakes on chronically activated microglia. Increasing evidence suggests that thiazolidinediones (TZDs), a class of compounds approved from the treatment of diabetes mellitus, effectively reduce neuroinflammation and chronic microglial activation by activating the peroxisome proliferator-activated receptor-γ (PPARγ). The present study used a closed-head r-mTBI model to investigate the influence of the TZD Pioglitazone on cognitive function and neuroinflammation in the aftermath of r-mTBI exposure. We revealed that Pioglitazone treatment attenuated spatial learning and memory impairments at 6 months post-injury and reduced the expression of reactive microglia and astrocyte markers in the cortex, hippocampus, and corpus callosum. We then examined whether Pioglitazone treatment altered inflammatory signaling mechanisms in isolated microglia and confirmed downregulation of proinflammatory transcription factors and cytokine levels. To further investigate microglial-specific mechanisms underlying PPARγ-mediated neuroprotection, we generated a novel tamoxifen-inducible microglial-specific PPARγ overexpression mouse line and examined its influence on microglial phenotype following injury. Using RNA sequencing, we revealed that PPARγ overexpression ameliorates microglial activation, promotes the activation of pathways associated with wound healing and tissue repair (such as: IL10, IL4 and NGF pathways), and inhibits the adoption of a disease-associated microglia-like (DAM-like) phenotype. This study provides insight into the role of PPARγ as a critical regulator of the neuroinflammatory cascade that follows r-mTBI in mice and demonstrates that the use of PPARγ agonists such as Pioglitazone and newer generation TZDs hold strong therapeutic potential to prevent the chronic neurodegenerative sequelae of r-mTBI.
Collapse
Affiliation(s)
- Andrew Pearson
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA.
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK.
| | - Milica Koprivica
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Max Eisenbaum
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | - Camila Ortiz
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
| | | | - Tessa Vincennie
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Cooper Tinsley
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Michael Mullan
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
| | - Fiona Crawford
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| | - Joseph Ojo
- The Roskamp Institute, 2040 Whitfield Avenue, Sarasota, FL, 34243, USA
- The Open University, Walton Hall, Kents Hill, Milton Keynes, MK7 6AA, UK
- James A. Haley Veterans' Hospital, 13000 Bruce B Downs Blvd, Tampa, FL, 33612, USA
| |
Collapse
|
6
|
Yang S, Li X, Yan J, Jiang F, Fan X, Jin J, Zhang W, Zhong D, Li G. Disulfiram downregulates ferredoxin 1 to maintain copper homeostasis and inhibit inflammation in cerebral ischemia/reperfusion injury. Sci Rep 2024; 14:15175. [PMID: 38956251 PMCID: PMC11219760 DOI: 10.1038/s41598-024-64981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 06/14/2024] [Indexed: 07/04/2024] Open
Abstract
In the current study, we aimed to investigate whether disulfiram (DSF) exerts a neuroprotective role in cerebral ischemiareperfusion (CI-RI) injury by modulating ferredoxin 1 (FDX1) to regulate copper ion (Cu) levels and inhibiting inflammatory responses. To simulate CI-RI, a transient middle cerebral artery occlusion (tMCAO) model in C57/BL6 mice was employed. Mice were administered with or without DSF before and after tMCAO. Changes in infarct volume after tMCAO were observed using TTC staining. Nissl staining and hematoxylin-eosin (he) staining were used to observe the morphological changes of nerve cells at the microscopic level. The inhibitory effect of DSF on initial inflammation was verified by TUNEL assay, apoptosis-related protein detection and iron concentration detection. FDX1 is the main regulatory protein of copper death, and the occurrence of copper death will lead to the increase of HSP70 stress and inflammatory response. Cuproptosis-related proteins and downstream inflammatory factors were detected by western blotting, immunofluorescence staining, and immunohistochemistry. The content of copper ions was detected using a specific kit, while electron microscopy was employed to examine mitochondrial changes. We found that DSF reduced the cerebral infarction volume, regulated the expression of cuproptosis-related proteins, and modulated copper content through down regulation of FDX1 expression. Moreover, DSF inhibited the HSP70/TLR-4/NLRP3 signaling pathway. Collectively, DSF could regulate Cu homeostasis by inhibiting FDX1, acting on the HSP70/TLR4/NLRP3 pathway to alleviate CI/RI. Accordingly, DSF could mitigate inflammatory responses and safeguard mitochondrial integrity, yielding novel therapeutic targets and mechanisms for the clinical management of ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Shuai Yang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xudong Li
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Jinhong Yan
- The Fourth Affiliated Hospital of Harbin Medical University, 37 Yiyuan Street, Harbin, 150001, China
| | - Fangchao Jiang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Xuehui Fan
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Jing Jin
- Heilongjiang Provincial Hospital, Harbin, China
| | - Weihua Zhang
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China
| | - Di Zhong
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
| | - Guozhong Li
- The First Afliated Hospital of Harbin Medical University, 23 You Zheng Street, Harbin, 150001, China.
- Heilongjiang Provincial Hospital, Harbin, China.
| |
Collapse
|
7
|
Gui S, Ni J, Mizutani S, Shigematsu N, Nakanishi H, Kashiwazaki H, Wu Z. A mixture of extracts from natural ingredients reduces the neurotoxic polarization of microglia via modulating NF-κB/NF-E2-related factor 2 activation. Food Sci Nutr 2024; 12:3745-3758. [PMID: 38726426 PMCID: PMC11077187 DOI: 10.1002/fsn3.4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/09/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Neurotoxic microglia-provoked neuroinflammation is implicated in cognitive decline in Alzheimer's disease (AD). Supplementation with Ginkgo biloba, phosphatidylserine, Curcuma longa, and propolis is reported to improve the cognitive functions of elderly people; however, the underlying mechanisms of this combination of natural ingredients are unknown. We investigated the effects of a mixture of extracts from propolis, Coffea arabica, Gotu kola, phosphatidylserine, Ginkgo biloba, and Curcuma longa (mixture) on microglia polarization after exposure to amyloid β1-42 (Aβ1-42, 1 μM) and lipopolysaccharide from Porphyromonas gingivalis (PgLPS, 1 μg/mL), using MG6 and BV2 microglial cells. Exposure to Aβ1-42 and PgLPS (AL) raised the mRNA expression of IL-1β, TNF-α, and IL-6, nuclear translocation of p65 NF-κB in MG6 cells and BV2 cells, and mitochondrial reactive oxygen species (ROS) production in MG6 cells. The mixture dramatically suppressed the mRNA expression of IL-1β, TNF-α, and IL-6, but significantly promoted that of IL-10, TGFβ1, and BDNF in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly suppressed the nuclear translocation of p65 NF-κB but significantly promoted that of NF-E2-related factor 2 (Nrf2) in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly ameliorated mitochondrial ROS production but increased mitochondrial membrane potential in MG6 cells. These observations strongly suggest that the mixture demotes the neuropathic polarization of microglia by modulating NF-κB/Nrf2 activation and improving mitochondrial functions. This study supplies the potential mechanisms of the efficacy of a combination of natural ingredients that can be applied in the prevention of cognitive decline in AD and aging by targeting microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Shuge Gui
- Department of Oral and Maxillofacial Surgery, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Shinsuke Mizutani
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Norihiro Shigematsu
- Yamada Institute for Health Science, R & D DepartmentYamada Bee Company, Inc.OkayamaJapan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of PharmacyYasuda Women's UniversityHiroshimaJapan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- OBT Research Center, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
8
|
Du R, Zheng X, Liu Y, Lu P, Hong Y, Wang P. Molecular and functional characterization of a type-1 cystatin in amphioxus (Branchiostoma japonicum). FISH & SHELLFISH IMMUNOLOGY 2024; 147:109423. [PMID: 38341117 DOI: 10.1016/j.fsi.2024.109423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/01/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024]
Abstract
Cystatins comprise a vast superfamily of evolutionary conserved proteins, predominantly recognized for their roles as endogenous inhibitors by regulating the activity of cysteine proteases. Emerging lines of research evidence also provides insight into their alternative roles in a spectrum of biological and pathological processes, including neurodegenerative disorders, tumor progression, inflammatory diseases, and immune response. Nowadays, various type-1 cystatins (stefins) have been demonstrated among a variety of discovered vertebrate groups, while little is known about the related homologue in cephalochordate amphioxus, which are repositioned at the base of the chordate phylum. In the present study, a single type-1 cystatin homologue in Branchiostoma japonicum was first successfully cloned and designated as Bjcystatin-1. The deduced Bjcystatin-1 protein is structurally characterized by the presence of typical wedge-shaped cystatin features, including the 'QxVxG' and 'Px' motif, as well as the conserved N-terminal glycine residue. Phylogenomic analyses utilizing different cystatin counterparts affirmed the close evolutionary relationship of Bjcystatin-1 and type-1 cystatin homologue. Bjcystatin-1 was predominantly expressed in the gills and hind-gut in a tissue-specific pattern, and its expression was remarkably up-regulated in response to challenge with bacteria or their signature molecules LPS and LTA, suggesting the involvement in immune response. Additionally, the recombinant Bjcystatin-1 (rBjcystatin-1) protein showed significant inhibitory activity towards papain and binding ability to LPS and LTA, indicating its hypothesized role as a pattern recognition receptor in immune response. Subcellular localization results also showed that Bjcystatin-1 was located in the cytoplasm and nucleus, and its overexpression could attenuate the activation of LPS-induced nuclear transcription factors NF-κB. Taken together, our study suggests that amphioxus Bjcystatin-1 acts as a dual role in protease inhibitor and an immunocompetent factor, providing new insights into the immune defense effect of type-1 cystatin in amphioxus.
Collapse
Affiliation(s)
- Ronghuan Du
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Xian Zheng
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Yudan Liu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Pei Lu
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China
| | - Yuxiang Hong
- Zhejiang Fangyuan Testing Group Co., Ltd., Hangzhou, Zhejiang, 310020, China
| | - Peng Wang
- Department of Nutrition and Food Hygiene, College of Public Health, Qingdao University, Ning Xia Road 308, Qingdao, 266071, China.
| |
Collapse
|
9
|
Xu G, Dong F, Su L, Tan ZX, Lei M, Li L, Wen D, Zhang F. The role and therapeutic potential of nuclear factor κB (NF-κB) in ischemic stroke. Biomed Pharmacother 2024; 171:116140. [PMID: 38211425 DOI: 10.1016/j.biopha.2024.116140] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/13/2024] Open
Abstract
Stroke is a prevalent cerebrovascular condition with a global impact, causing significant rates of illness and death. Despite extensive research, the available treatment options for stroke remain restricted. Hence, it is crucial to gain a deeper understanding of the molecular mechanisms associated with the onset and advancement of stroke in order to establish a theoretical foundation for novel preventive and therapeutic approaches. NF-κB, also known as nuclear factor κB, is a transcription factor responsible for controlling the expression of numerous genes and plays a crucial role in diverse physiological processes. NF-κB is triggered and regulates neuroinflammation and other processes after stroke, promoting the generation of cytokine storms and contributing to the advancement of ischemic stroke (IS). Therefore, NF-κB could potentially play a vital role in stroke by regulating diverse pathophysiological processes. This review provides an overview of the functions of NF-κB in stroke and its governing mechanisms. In addition, our attention is directed towards various potential therapies that aim to inhibit the NF-κB signaling pathway in order to offer valuable insights for the advancement of innovative treatment approaches for stroke.
Collapse
Affiliation(s)
- Guangyu Xu
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Fang Dong
- Department of Clinical Laboratory Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lei Su
- Department of Radiotherapy, Affiliated Hospital of Hebei University, Baoding 071000, PR China
| | - Zi-Xuan Tan
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Mingcheng Lei
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Lina Li
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China
| | - Di Wen
- College of Forensic Medicine, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Key Laboratory of Forensic Medicine, Collaborative Innovation Center of Forensic Medical Molecular Identification, Shijiazhuang 050017, PR China; Research Unit of Digestive Tract Microecosystem Pharmacology and Toxicology, Chinese Academy of Medical Sciences, Shijiazhuang 050017, PR China.
| | - Feng Zhang
- Department of Rehabilitation Medicine, The Third Hospital of Hebei Medical University, Shijiazhuang 050051, PR China.
| |
Collapse
|
10
|
Hu A, Xiao F, Wu W, Xu H, Su J. LincRNA-EPS inhibits caspase-11 and NLRP3 inflammasomes in gingival fibroblasts to alleviate periodontal inflammation. Cell Prolif 2024; 57:e13539. [PMID: 37710420 PMCID: PMC10771112 DOI: 10.1111/cpr.13539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/21/2023] [Accepted: 08/14/2023] [Indexed: 09/16/2023] Open
Abstract
To investigate the effects of long intergenic noncoding RNA-erythroid prosurvival (lincRNA-EPS) on periodontal inflammation mediated by inflammasomes and to explore its mechanism. Experimental periodontitis was induced in KO (lincRNA-EPS-/- ) and WT (lincRNA-EPS+/+ ) mice to compare the periodontal bone loss and inflammation by using micro-computed tomography, immunofluorescence staining and haematoxylin and eosin staining. The expression and activation of cysteinyl aspartate-specific proteinase-11 (caspase-11) and NOD-like receptor protein 3 (NLRP3) inflammasomes, as well as nuclear factor-kappa B (NF-κB) activation in mouse gingival fibroblasts (MGFs), were measured by real-time quantitative polymerase chain reaction, Western blotting, enzyme-linked immunosorbent and lactate dehydrogenase assays. MGFs were transfected with overexpression plasmids to assess the biological functions of lincRNA-EPS. RNA pull-down and immunoprecipitation experiments were performed to identify the interacting protein of lincRNA-EPS. LincRNA-EPS-expressing lentivirus was locally administered to inflamed periodontal tissues to evaluate its salvage function in periodontitis. The absence of lincRNA-EPS increased bone loss and expression of myeloperoxidase, interleukin-1α (IL-1α) and IL-1β in the inflammatory periodontium. LincRNA-EPS KO MGFs exhibited increased expression and activation of caspase-11/NLRP3 inflammasome components than WT MGFs under lipopolysaccharide (LPS) stimulation. The expression and activation of these molecules were inhibited in lincRNA-EPS overexpressed MGFs. Mechanistically, lincRNA-EPS directly bound to transactive response DNA-binding protein 43 (TDP43) in the nucleus of MGFs, and TDP43 knockdown exerted a similar inhibitory effect on NF-κB activation and the inflammasomes as lincRNA-EPS overexpression. Locally injecting lincRNA-EPS-expressing lentivirus weakened the periodontal damage. LincRNA-EPS inhibits the LPS-induced production and activation of caspase-11 and NLRP3 inflammasomes by suppressing the activation of the NF-κB signalling pathway via interacting with TDP43, thereby alleviating periodontitis.
Collapse
Affiliation(s)
- Anni Hu
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Fan Xiao
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Wenjing Wu
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Huilin Xu
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| | - Jiansheng Su
- Department of ProsthodonticsStomatological Hospital and Dental School of Tongji University, Shanghai Engineering Research Center of Tooth Restoration and RegenerationShanghaiChina
| |
Collapse
|
11
|
Stańczykiewicz B, Łuc M, Banach M, Zabłocka A. Cystatins: unravelling the biological implications for neuroprotection. Arch Med Sci 2023; 20:157-166. [PMID: 38414464 PMCID: PMC10895963 DOI: 10.5114/aoms/171706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/31/2023] [Indexed: 02/29/2024] Open
Abstract
Cystatins, a family of proteins known for their inhibitory role against cysteine proteases, have garnered significant attention in the field of neurodegeneration. Numerous genetic, experimental, and clinical studies concerning cystatin C suggest it plays an important role in the course of neurodegenerative diseases. Its beneficial effects are associated with cysteine protease inhibition, impact on β-amyloid aggregation, as well as regulation of cell proliferation, autophagy, and apoptosis. Cystatin isolated from chicken egg white, called ovocystatin, has been widely used in medical and pharmaceutical research due to its structural and biological similarities to human cystatin C. This article focuses on the potential use of cystatins, with special emphasis on easily obtained ovocystatin, in the treatment of neurodegenerative diseases, such as dementia. The current evidence on cystatin use has shed light on its mechanisms of action and therapeutic implications for neuroprotection and maintenance of cognitive functions.
Collapse
Affiliation(s)
- Bartłomiej Stańczykiewicz
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Mateusz Łuc
- Division of Consultation Psychiatry and Neuroscience, Department of Psychiatry, Wroclaw Medical University, Wroclaw, Poland
| | - Maciej Banach
- Department of Preventive Cardiology and Lipidology, Medical University of Lodz, Lodz, Poland
| | - Agnieszka Zabłocka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
12
|
Hyppönen J, Paanila V, Äikiä M, Koskenkorva P, Könönen M, Vanninen R, Mervaala E, Kälviäinen R, Hakumäki J. Progressive myoclonic epilepsy type 1 (EPM1) patients present with abnormal 1H MRS brain metabolic profiles associated with cognitive function. Neuroimage Clin 2023; 39:103459. [PMID: 37541097 PMCID: PMC10412857 DOI: 10.1016/j.nicl.2023.103459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 08/06/2023]
Abstract
PURPOSE Progressive myoclonic epilepsy, type 1A (EPM1, Unverricht-Lundborg disease), is a rare neurodegenerative autosomal recessive disorder characterized by stimulus-sensitive and action myoclonus and tonic-clonic epileptic seizures. Patients develop neurological symptoms, including ataxia, intention tremor, and dysarthria, over time, with relatively limited and nonspecific MRI atrophy findings. The effects of the disease on brain metabolism are largely unknown. METHOD Eighteen EPM1 patients (9 M, 9F) underwent clinical evaluation and neuropsychological testing, which included the assessment of intellectual ability, verbal memory, and psychomotor and executive functions. Magnetic resonance spectroscopy (MRS) and imaging (MRI) were performed on a 1.5 T MRI system. 2D MRS chemical shift imaging (CSI) maps (TE = 270) were obtained from the following regions of the brain: basal ganglia, thalamus, insula, splenium, and occipital white and gray matter, and N-acetyl-aspartate (NAA)-, choline (Cho)-, and lactate (Lac)-to-creatine (Cr) ratios were analyzed. Ten healthy age-and sex-matched subjects (5M, 5F) were used as controls for MRS. RESULTS We found significant brain metabolic changes involving lactate, NAA, and choline, which are widespread in the basal ganglia, thalamic nuclei, insula, and occipital areas of EPM1 patients. Changes, especially in the right insula, basal ganglia, and thalamus, were associated with intellectual abilities and impairment of the psychomotor and executive functions of EPM1 patients. CONCLUSION Multiple brain metabolic alterations suggest the presence of neurodegeneration associated with EPM1 progression. The changes in metabolite ratios are associated with the neurocognitive dysfunction caused by the disease. However, the role of MRS findings in understanding pathophysiology of EPM1 warrants further studies.
Collapse
Affiliation(s)
- Jelena Hyppönen
- Department of Clinical Neurophysiology, Epilepsy Center, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Vili Paanila
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Marja Äikiä
- Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Päivi Koskenkorva
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Mervi Könönen
- Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Ritva Vanninen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Esa Mervaala
- Department of Clinical Neurophysiology, Epilepsy Center, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland; Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Reetta Kälviäinen
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Epilepsy Center, Neurocenter, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland
| | - Juhana Hakumäki
- Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland; Department of Clinical Radiology, Diagnostic Imaging Center, Kuopio University Hospital, Full Member of ERN EpiCARE, Kuopio, Finland.
| |
Collapse
|
13
|
Sanchez K, Wu SL, Kakkar R, Darling JS, Harper CS, Fonken LK. Ovariectomy in mice primes hippocampal microglia to exacerbate behavioral sickness responses. Brain Behav Immun Health 2023; 30:100638. [PMID: 37256192 PMCID: PMC10225896 DOI: 10.1016/j.bbih.2023.100638] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 04/14/2023] [Accepted: 05/07/2023] [Indexed: 06/01/2023] Open
Abstract
Estrogens are a group of steroid hormones that promote the development and maintenance of the female reproductive system and secondary sex characteristics. Estrogens also modulate immune responses; estrogen loss at menopause increases the risk of inflammatory disorders. Elevated inflammatory responses in the brain can lead to affective behavioral changes, which are characteristic of menopause. Thus, here we examined whether loss of estrogens sensitizes microglia, the primary innate immune cell of the brain, leading to changes in affective behaviors. To test this question, adult C57BL/6 mice underwent an ovariectomy to remove endogenous estrogens and then received estradiol hormone replacement or vehicle. After a one-month recovery, mice received an immune challenge with lipopolysaccharide (LPS) or vehicle control treatment and underwent behavioral testing. Ovariectomized, saline-treated mice exhibited reduced social investigation compared to sham-operated mice. Furthermore, ovariectomized mice that received LPS exhibited an exacerbated decrease in sucrose preference, which was ameliorated by estradiol replacement. These results indicate that ovariectomy modulates affective behaviors at baseline and in response to an inflammatory challenge. Ovariectomy-related behavioral changes were associated with downregulation of Cx3cr1, a microglial receptor that limits activation, suggesting that estrogen loss can disinhibit microglia to immune stimuli. Indeed, estradiol treatment reduced ovariectomy-induced increases in Il1b and Il6 expression after an immune challenge. Changes in microglial reactivity following ovariectomy are likely subtle, as overt changes in microglial morphology (e.g., soma size and branching) were limited. Collectively, these results suggest that a lack of estrogens may allow microglia to confer exaggerated neuroimmune responses, thereby raising vulnerability to adverse affective- and sickness-related behavioral changes.
Collapse
Affiliation(s)
- Kevin Sanchez
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Sienna L. Wu
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Reha Kakkar
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeffrey S. Darling
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Claire S. Harper
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
14
|
Blockage of TRPV4 Downregulates the Nuclear Factor-Kappa B Signaling Pathway to Inhibit Inflammatory Responses and Neuronal Death in Mice with Pilocarpine-Induced Status Epilepticus. Cell Mol Neurobiol 2023; 43:1283-1300. [PMID: 35840809 DOI: 10.1007/s10571-022-01249-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 06/25/2022] [Indexed: 11/03/2022]
Abstract
The blockage of transient receptor potential vanilloid 4 (TRPV4) inhibits inflammation and reduces hippocampal neuronal injury in a pilocarpine-induced mouse model of temporal lobe epilepsy. However, the underlying mechanisms remain largely unclear. NF-κB signaling pathway is responsible for the inflammation and neuronal injury during epilepsy. Here, we explored whether TRPV4 blockage could affect the NF-κB pathway in mice with pilocarpine-induced status epilepticus (PISE). Application of a TRPV4 antagonist markedly attenuated the PISE-induced increase in hippocampal HMGB1, TLR4, phospho (p)-IκK (p-IκK), and p-IκBα protein levels, as well as those of cytoplasmic p-NF-κB p65 (p-p65) and nuclear NF-κB p65 and p50; in contrast, the application of GSK1016790A, a TRPV4 agonist, showed similar changes to PISE mice. Administration of the TLR4 antagonist TAK-242 or the NF-κB pathway inhibitor BAY 11-7082 led to a noticeable reduction in the hippocampal protein levels of cleaved IL-1β, IL-6 and TNF, as well as those of cytoplasmic p-p65 and nuclear p65 and p50 in GSK1016790A-injected mice. Finally, administration of either TAK-242 or BAY 11-7082 greatly increased neuronal survival in hippocampal CA1 and CA2/3 regions in GSK1016790A-injected mice. Therefore, TRPV4 activation increases HMGB1 and TLR4 expression, leading to IκK and IκBα phosphorylation and, consequently, NF-κB activation and nuclear translocation. The resulting increase in pro-inflammatory cytokine production is responsible for TRPV4 activation-induced neuronal injury. We conclude that blocking TRPV4 can downregulate HMGB1/TLR4/IκK/κBα/NF-κB signaling following PISE onset, an effect that may underlie the anti-inflammatory response and neuroprotective ability of TRPV4 blockage in mice with PISE.
Collapse
|
15
|
Li Y, Zhu W, Jiang Y, Lessing DJ, Chu W. Synthetic bacterial consortia transplantation for the treatment of Gardnerella vaginalis-induced bacterial vaginosis in mice. MICROBIOME 2023; 11:54. [PMID: 36941732 PMCID: PMC10026434 DOI: 10.1186/s40168-023-01497-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Bacterial vaginosis (BV) is a disease caused by vaginal microbiota dysbiosis. Here, we propose the use of synthetic bacterial consortia transplantation (SBCT) for the treatment of Gardnerella vaginalis-induced BV mice. The results showed that SBCT significantly reduced vaginal tissue damage and restored the vaginal microbiota, decreased the secretion of pro-inflammatory cytokines (IL-1β and IL-8), and suppressed NF-κB activation. IL-17, iNOS, and COX-2 expression in vaginal tissue were also down-regulated. However, IL-10 and Foxp3 showed up-regulated expression in mice. Compared with vaginal microbiota transplantation (VMT), results indicated that VMT was more effective than SBCT in suppressing G. vaginalis-induced inflammation. The obtained results suggest that synthetic bacterial consortia might be used as a potential biotherapeutic agent for the treatment of G. vaginalis-induced bacterial vaginosis. Video Abstract.
Collapse
Affiliation(s)
- Yunxia Li
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Wei Zhu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Jiang
- Animal, Plant and Food Inspection Center of Nanjing Customs, Nanjing, 210019, China
| | - Duncan James Lessing
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China
| | - Weihua Chu
- Department of Pharmaceutical Microbiology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
16
|
Janpaijit S, Lertpatipanpong P, Sillapachaiyaporn C, Baek SJ, Charoenkiatkul S, Tencomnao T, Sukprasansap M. Anti-neuroinflammatory effects of Cleistocalyx nervosum var. paniala berry-seed extract in BV-2 microglial cells via inhibition of MAPKs/NF-κB signaling pathway. Heliyon 2022; 8:e11869. [DOI: 10.1016/j.heliyon.2022.e11869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/27/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022] Open
|
17
|
Žerovnik E. Human stefin B: from its structure, folding, and aggregation to its function in health and disease. Front Mol Neurosci 2022; 15:1009976. [PMID: 36340691 PMCID: PMC9634419 DOI: 10.3389/fnmol.2022.1009976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 09/01/2022] [Indexed: 01/11/2024] Open
Abstract
Mutations in the gene for human stefin B (cystatin B) cause progressive myoclonic epilepsy type 1 (EPM1), a neurodegenerative disorder. The most common change is dodecamer repeats in the promoter region of the gene, though missense and frameshift mutations also appear. Human stefin B primarily acts as a cysteine cathepsin inhibitor, and it also exhibits alternative functions. It plays a protective role against oxidative stress, likely via reducing mitochondrial damage and thus generating fewer mitochondrial reactive oxygen species (ROS). Accordingly, lack of stefin B results in increased inflammation and NLRP3 inflammasome activation, producing more ROS. The protein is cytosolic but also has an important role in the nucleus, where it prevents cleavage of the N terminal part of histone 3 by inhibiting cathepsins L and B and thus regulates transcription and cell cycle. Furthermore, it has been shown that stefin B is oligomeric in cells and that it has a specific role in the physiology of the synapse and in vesicular transport. On the basis of my research team's data on the structure, folding, and aggregation of stefin B, we have proposed that it might regulate proteostasis, possessing a chaperone-like function. In this review, I synthesize these observations and derive some conclusions on possible sources of EPM1 pathology. The interaction partners of stefin B and other gene mutations leading to EPM1-like pathology are discussed and common pathways are pinpointed.
Collapse
Affiliation(s)
- Eva Žerovnik
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
- Jožef Stefan International Postgraduate School, Ljubljana, Slovenia
| |
Collapse
|
18
|
Liu J, Sun S, Zhou C, Sun Z, Wang Q, Sun C. In vitro and in vivo anticancer activity of Lycorine in prostate cancer by inhibiting NF-κB signaling pathway. J Cancer 2022; 13:3151-3159. [PMID: 36046655 PMCID: PMC9414015 DOI: 10.7150/jca.75597] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/30/2022] [Indexed: 11/05/2022] Open
Abstract
NF-κB transcription factors critically regulate the expression of genes which are involved in important cellular processes, including cellular proliferation and apoptosis. Abnormal activation of the NF-κB signaling pathway has been implicated in a variety of human cancers. Hyper-activation of the NF-κB signaling pathway has been found to lead to tumor survival, anti-apoptosis and invasion in the development of prostate cancer. In the present work, we identified Lycorine as a potent NF-κB inhibitor using a NF-κB activity dependent luciferase reporter in PC3 and DU145 prostate cancer cells. With this reporter gene assay, we found that Lycorine significantly suppressed the constitutive NF-κB activity as well as the NF-κB activity induced by TNF-α, LPS, PMA and IL-1β. Western blotting analysis of the NF-κB signaling pathway further showed that Lycorine inhibited IκB-α (inhibitor of κB) phosphorylation, IκB-α degradation, and p65 phosphorylation. Consistent with this, the subsequent nuclear translocation of p65 was blocked by Lycorine as evidenced in the immunofluorescence assay and western blotting. Furthermore, we observed that cell cycle was arrested at G2/M in Lycorine treated cells using FACS analysis. Western blotting analysis indicated that Lycorine increased the expression of Cyclin D1 but decreased the expression of p21. In addition, FACS analysis showed that Lycorine induced apoptosis in DU145 and PC3 cells. Western blotting analysis revealed that Lycorine decreased the expression of anti-apoptosis genes myc, survivin and Bcl-2 while increased cleavage of PARP. Finally, we observed a significant anticancer effect of Lycorine in a RM-1 prostate cancer xenograft mouse model. In agreement with its in vitro anticancer effect, Lycorine inhibited p65 phosphorylation, IKK-β phosphorylation and the expression of Ki-67, while increased the cleavage of Caspase 3 in tumor tissue. Taken together, our data demonstrated the in vitro and in vivo anti-prostate cancer activity of Lycorine by inhibiting the NF-κB signaling pathway, and highlighted it as a lead compound for further development into an effective anticancer drug.
Collapse
Affiliation(s)
- Jie Liu
- Yantai Yuhuangding Hospital, Yantai, P. R. China
| | - Shengjun Sun
- Yantaishan Hospital of Yantai, P. R. China.,School of Life Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Cheng Zhou
- Shenzhen Bay laboratory. Shenzhen, P. R. China
| | - Zhihong Sun
- Yantai Yuhuangding Hospital, Yantai, P. R. China.,School of Life Sciences, Lanzhou University, Lanzhou, P. R. China
| | - Qin Wang
- School of Life Sciences, Lanzhou University, Lanzhou, P. R. China
| | | |
Collapse
|
19
|
Han QW, Shao QH, Wang XT, Ma KL, Chen NH, Yuan YH. CB2 receptor activation inhibits the phagocytic function of microglia through activating ERK/AKT-Nurr1 signal pathways. Acta Pharmacol Sin 2022; 43:2253-2266. [PMID: 35132190 PMCID: PMC9433450 DOI: 10.1038/s41401-021-00853-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
Neuroinflammation is closely related to the pathogenesis of neurodegenerative diseases. Activation of microglia, the resident immune cells in CNS, induces inflammatory responses, resulting in the release of neurotoxic molecules, which favors neuronal death and neurodegeneration. Nuclear receptor-related 1 (Nurr1) protein, one of the orphan nuclear receptor superfamilies, is an emerging target for neuroprotective therapy. In addition, the anti-inflammatory function of cannabinoid (CB) receptors has attracted increasing interest. As both CB receptors (especially CB2 receptor) and Nurr1 exist in microglia, and regulate a number of same molecular points such as NF-κB, we herein explored the interplay between the CB2 receptor and Nurr1 as well as the regulatory mechanisms in microglial cells. We showed that the application of CB2 receptor agonists JWH015 (1, 10 μM) significantly increased the nuclear Nurr1 protein in BV-2 cells and primary midbrain microglia. Overexpression of Nurr1 or application of Nurr1 agonist C-DIM12 (10 μM) significantly increased the mRNA level of CB2 receptor in BV-2 cells, suggesting that positive expression feedback existing between the CB2 receptor and Nurr1. After 2-AG and JWH015 activated the CB2 receptors, the levels of p-ERK, p-AKT, p-GSK-3β in BV-2 cells were significantly increased. Using ERK1/2 inhibitor U0126 and PI3K/AKT inhibitor LY294002, we revealed that the amount of Nurr1 in the nucleus was upregulated through β-arrestin2/ERK1/2 and PI3K/AKT/GSK-3β signaling pathways. With these inhibitors, we found a cross-talk interaction between the two pathways, and the ERK1/2 signaling pathway played a more dominant regulatory role. Furthermore, we demonstrated that when the CB2 receptor was activated, the phagocytic function of BV-2 cells was significantly weakened; the activation of Nurr1 also inhibited the phagocytic function of BV-2 cells. Pretreatment with the signaling pathway inhibitors, especially U0126, reversed the inhibitory effect of 2-AG on phagocytosis, suggesting that CB2 receptor may regulate the phagocytic function of microglia by activating Nurr1. In conclusion, CB2 receptor or/and Nurr1-mediated signal pathways play instrumental roles in the progress of phagocytosis, which are expected to open up new treatment strategies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Qi-Wen Han
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Qian-Hang Shao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Xiao-Tong Wang
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Kai-Li Ma
- Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, 650118, China
| | - Nai-Hong Chen
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Yu-He Yuan
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
20
|
Rao X, Hua F, Zhang L, Lin Y, Fang P, Chen S, Ying J, Wang X. Dual roles of interleukin-33 in cognitive function by regulating central nervous system inflammation. J Transl Med 2022; 20:369. [PMID: 35974336 PMCID: PMC9382782 DOI: 10.1186/s12967-022-03570-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/04/2022] [Indexed: 12/13/2022] Open
Abstract
With the advent of an aging society, the incidence of dementia is increasing, resulting in a vast burden on society. It is increasingly acknowledged that neuroinflammation is implicated in various neurological diseases with cognitive dysfunction such as Alzheimer’s disease, multiple sclerosis, ischemic stroke, traumatic brain injury, and central nervous system infections. As an important neuroinflammatory factor, interleukin-33 (IL-33) is highly expressed in various tissues and cells in the mammalian brain, where it plays a role in the pathogenesis of a number of central nervous system conditions. Reams of previous studies have shown that IL-33 has both pro- and anti-inflammatory effects, playing dual roles in the progression of diseases linked to cognitive impairment by regulating the activation and polarization of immune cells, apoptosis, and synaptic plasticity. This article will summarize the current findings on the effects IL-33 exerts on cognitive function by regulating neuroinflammation, and attempt to explore possible therapeutic strategies for cognitive disorders based on the adverse and protective mechanisms of IL-33.
Collapse
Affiliation(s)
- Xiuqin Rao
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Fuzhou Hua
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Lieliang Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Yue Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Pu Fang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Shoulin Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Jun Ying
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.,Key Laboratory of Anesthesiology of Jiangxi Province, 1# Minde Road, Nanchang, 330006, Jiangxi, People's Republic of China
| | - Xifeng Wang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China.
| |
Collapse
|
21
|
Ye J, Zhong S, Deng Y, Yao X, Liu Q, Wang JZ, Xiao S. HDAC7 Activates IKK/NF-κB Signaling to Regulate Astrocyte-Mediated Inflammation. Mol Neurobiol 2022; 59:6141-6157. [PMID: 35871708 PMCID: PMC9309093 DOI: 10.1007/s12035-022-02965-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/16/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Jinwang Ye
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060 China
| | - Suyue Zhong
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Yunsong Deng
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Xuanbao Yao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
| | - Qiong Liu
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
- Shenzhen Bay Laboratory, Shenzhen, 518055 Guangdong China
| | - Jian-Zhi Wang
- Department of Pathophysiology, School of Basic Medicine, Key Laboratory of Education Ministry of China/Hubei Province for Neurological Disorders, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
| | - Shifeng Xiao
- Shenzhen Key Laboratory of Marine Biotechnology and Ecology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060 Guangdong China
- Shenzhen Bay Laboratory, Shenzhen, 518055 Guangdong China
| |
Collapse
|
22
|
Mokhtari T. Targeting autophagy and neuroinflammation pathways with plant-derived natural compounds as potential antidepressant agents. Phytother Res 2022; 36:3470-3489. [PMID: 35794794 DOI: 10.1002/ptr.7551] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 06/13/2022] [Accepted: 06/17/2022] [Indexed: 11/06/2022]
Abstract
Major depressive disorder (MDD) is a life-threatening disease that presents several characteristics. The pathogenesis of depression still remains poorly understood. Moreover, the mechanistic interactions of natural components in treating depression to target autophagy and neuroinflammation are yet to be evaluated. This study overviewed the effects of plant-derived natural components in regulating critical pathways, particularly neuroinflammation and autophagy, associated with depression. A list of natural components, including luteolin, apigenin, hyperforin, resveratrol, salvianolic acid b, isoliquiritin, nobiletin, andrographolide, and oridonin, have been investigated. All peer-reviewed journal articles were searched by Scopus, MEDLINE, PubMed, Web of Science, and Google Scholar using the appropriated keywords, including depression, neuroinflammation, autophagy, plant, natural components, etc. The neuroinflammation and autophagy dysfunction are critically associated with the pathophysiology of depression. Natural components with higher efficiency and lower complications can be used for targeting neuroinflammation and autophagy. These components with different doses showed the beneficial antidepressant properties in rodents. These can modulate autophagy markers, mainly AMPK, LC3II/LC3I ratio, Beclin-1. Moreover, they can regulate the NLRP3 inflammasome, resulting in the suppression of proinflammatory cytokines (e.g., IL-1β and IL-18). Future in vitro and in vivo studies are required to develop novel therapeutic approaches based on plant-derived active components to treat MDD.
Collapse
Affiliation(s)
- Tahmineh Mokhtari
- CAS Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China.,Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Cui Y, Zhang NN, Wang D, Meng WH, Chen HS. Modified Citrus Pectin Alleviates Cerebral Ischemia/Reperfusion Injury by Inhibiting NLRP3 Inflammasome Activation via TLR4/NF-ĸB Signaling Pathway in Microglia. J Inflamm Res 2022; 15:3369-3385. [PMID: 35706530 PMCID: PMC9191615 DOI: 10.2147/jir.s366927] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background Galectin-3 acts as a mediator of microglial inflammatory response following stroke injury. However, it remains unclear whether inhibiting galectin-3 protects against cerebral ischemia/reperfusion injury. We aimed to investigate the neuroprotective effects of modified citrus pectin (MCP, a galectin-3 blocker) in ischemic stroke and underlying mechanisms. Methods The middle cerebral artery occlusion/reperfusion (MCAO/R) model in C57BL/6J mice and oxygen-glucose deprivation/reoxygenation (ODG/R) model in neuronal (HT-22) and microglial (BV-2) cells were utilized in the following experiments: 1) the neuroprotective effects of MCP with different concentrations were evaluated in vivo and in vitro through measuring neurological deficit scores, brain water content, infarction volume, cell viability, and cell apoptosis; 2) the mechanisms of its neuroprotection were explored in mice and microglial cells through detecting the expression of NLRP3 (NOD-like receptor 3) inflammasome-related proteins by immunofluorescence staining and Western blotting analyses. Results Among the tested concentrations, 800 mg/kg/d MCP in mice and 4 g/L MCP in cells, respectively, showed in vivo and in vitro neuroprotective effects on all the tests, compared with vehicle group. First, MCP significantly reduced neurological deficit scores, brain water content and infarction volume, and alleviated cell injury in the cerebral cortex of MCAO/R model. Second, MCP increased cell viability and reduced cell apoptosis in the neuronal OGD/R model. Third, MCP blocked galectin-3 and decreased the expression of TLR4 (Toll-like receptor 4)/NF-κBp65 (nuclear factor kappa-B)/NLRP3/cleaved-caspase-1/IL-1β (interleukin-1β) in microglial cells. Conclusion This is the first report that MCP exerts neuroprotective effects in ischemic stroke through blocking galectin-3, which may be mediated by inhibiting the activation of NLRP3 inflammasome via TLR4/NF-κB signaling pathway in microglia.
Collapse
Affiliation(s)
- Yu Cui
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China.,Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Nan-Nan Zhang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Dan Wang
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| | - Wei-Hong Meng
- Department of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Hui-Sheng Chen
- Department of Neurology, General Hospital of Northern Theater Command, Shenyang, People's Republic of China
| |
Collapse
|
24
|
Yang J, Luo G, Li C, Zhao Z, Ju S, Li Q, Chen Z, Ding C, Tong X, Zhao J. Cystatin SN promotes epithelial-mesenchymal transition and serves as a prognostic biomarker in lung adenocarcinoma. BMC Cancer 2022; 22:589. [PMID: 35637432 PMCID: PMC9150371 DOI: 10.1186/s12885-022-09685-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/17/2022] [Indexed: 11/14/2022] Open
Abstract
Background Cystatins are a class of proteins that can inhibit cysteine protease and are widely distributed in human bodily fluids and secretions. Cystatin SN (CST1), a member of the CST superfamily, is abnormally expressed in a variety of tumors. However, its effect on the occurrence and development of lung adenocarcinoma (LUAD) remains unclear. Methods We obtained transcriptome analysis data of CST1 from The Cancer Genome Atlas (TCGA) and GSE31210 databases. The association of CST1 expression with prognosis, gene mutations and tumor immune microenvironment was analyzed using public databases. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were performed to investigate the potential mechanisms of CST1. Results In this study, we found that CST1 was highly expressed in lung adenocarcinoma and was associated with prognosis and tumor immune microenvironment. Genetic mutations of CST1 were shown to be related to disease-free survival (DFS) by using the c-BioPortal tool. Potential proteins binding to CST1 were identified by constructing a protein-protein interaction (PPI) network. Gene set enrichment analysis (GSEA) of CST1 revealed that CST1 was notably enriched in epithelial-mesenchymal transition (EMT). Cell experiments confirmed that overexpression of CST1 promoted lung adenocarcinoma cells migration and invasion, while knockdown of CST1 significantly inhibited lung adenocarcinoma cells migration and invasion. Conclusions Our comprehensive bioinformatics analyses revealed that CST1 may be a novel prognostic biomarker in LUAD. Experiments confirmed that CST1 promotes epithelial-mesenchymal transition in LUAD cells. These findings will help to better understand the distinct role of CST1 in LUAD. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-022-09685-z.
Collapse
Affiliation(s)
- Jian Yang
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaomeng Luo
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Chang Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhunlin Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Sheng Ju
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Qifan Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhike Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Cheng Ding
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Xin Tong
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Jun Zhao
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China. .,Institute of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
25
|
Renz-Polster H, Tremblay ME, Bienzle D, Fischer JE. The Pathobiology of Myalgic Encephalomyelitis/Chronic Fatigue Syndrome: The Case for Neuroglial Failure. Front Cell Neurosci 2022; 16:888232. [PMID: 35614970 PMCID: PMC9124899 DOI: 10.3389/fncel.2022.888232] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Although myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) has a specific and distinctive profile of clinical features, the disease remains an enigma because causal explanation of the pathobiological matrix is lacking. Several potential disease mechanisms have been identified, including immune abnormalities, inflammatory activation, mitochondrial alterations, endothelial and muscular disturbances, cardiovascular anomalies, and dysfunction of the peripheral and central nervous systems. Yet, it remains unclear whether and how these pathways may be related and orchestrated. Here we explore the hypothesis that a common denominator of the pathobiological processes in ME/CFS may be central nervous system dysfunction due to impaired or pathologically reactive neuroglia (astrocytes, microglia and oligodendrocytes). We will test this hypothesis by reviewing, in reference to the current literature, the two most salient and widely accepted features of ME/CFS, and by investigating how these might be linked to dysfunctional neuroglia. From this review we conclude that the multifaceted pathobiology of ME/CFS may be attributable in a unifying manner to neuroglial dysfunction. Because the two key features - post exertional malaise and decreased cerebral blood flow - are also recognized in a subset of patients with post-acute sequelae COVID, we suggest that our findings may also be pertinent to this entity.
Collapse
Affiliation(s)
- Herbert Renz-Polster
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| | - Marie-Eve Tremblay
- Axe Neurosciences, Centre de recherche du CHU de Québec, Université Laval, Quebec, QC, Canada
- Département de Médecine Moléculaire, Université Laval, Quebec, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Division of Medical Sciences, University of Victoria, Victoria, BC, Canada
- Center for Advanced Materials and Related Technology (CAMTEC), University of Victoria, Victoria, BC, Canada
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Dorothee Bienzle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | - Joachim E. Fischer
- Division of General Medicine, Center for Preventive Medicine and Digital Health Baden-Württemberg (CPD-BW), University Medicine Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
26
|
The α7 nAChR allosteric modulator PNU-120596 amends neuroinflammatory and motor consequences of parkinsonism in rats: Role of JAK2/NF-κB/GSk3β/ TNF-α pathway. Biomed Pharmacother 2022; 148:112776. [PMID: 35272136 DOI: 10.1016/j.biopha.2022.112776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 02/01/2022] [Accepted: 02/27/2022] [Indexed: 11/20/2022] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder and a leading cause of disability. The current gold standard for PD treatment, L-Dopa, has limited clinical efficacy and multiple side effects. Evidence suggests that activation of α7 nicotinic acetylcholine receptors (α7nAChRs) abrogates neuronal and inflammatory insults. Here we tested whether PNU-120596 (PNU), a type II positive allosteric modulator of α7 nAChR, has a critical role in regulating motor dysfunction and neuroinflammation correlated with the associated PD dysfunction. Neuroprotective mechanisms were investigated through neurobehavioral, molecular, histopathological, and immunohistochemical studies. PNU reversed motor incoordination and hypokinesia induced via the intrastriatal injection of 6-hydroxydopamine and manifested by lower falling latency in the rotarod test, short ambulation time and low rearing incidence in open field test. Tyrosine hydroxylase immunostaining showed a significant restoration of dopaminergic neurons following PNU treatment, in addition to histopathological restoration in nigrostriatal tissues. PNU halted striatal neuroinflammation manifested as a suppressed expression of JAK2/NF-κB/GSk3β accompanied by a parallel decline in the protein expression of TNF-α in nigrostriatal tissue denoting the modulator anti-inflammatory capacity. Moreover, the protective effects of PNU were partially reversed by the α7 nAChR antagonist, methyllycaconitine, indicating the role of α7 nAChR modulation in the mechanism of action of PNU. This is the first study to reveal the positive effects of PNU-120596 on motor derangements of PD via JAK2/NF-κB/GSk3β/ TNF-α neuroinflammatory pathways, which could offer a potential therapeutic strategy for PD.
Collapse
|
27
|
Maciejczyk M, Żebrowska E, Nesterowicz M, Supruniuk E, Choromańska B, Chabowski A, Żendzian-Piotrowska M, Zalewska A. α-Lipoic Acid Reduces Ceramide Synthesis and Neuroinflammation in the Hypothalamus of Insulin-Resistant Rats, While in the Cerebral Cortex Diminishes the β-Amyloid Accumulation. J Inflamm Res 2022; 15:2295-2312. [PMID: 35422650 PMCID: PMC9005076 DOI: 10.2147/jir.s358799] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/14/2022] Open
Abstract
Background Oxidative stress underlies metabolic diseases and cognitive impairment; thus, the use of antioxidants may improve brain function in insulin-resistant conditions. We are the first to evaluate the effects of α-lipoic acid (ALA) on redox homeostasis, sphingolipid metabolism, neuroinflammation, apoptosis, and β-amyloid accumulation in the cerebral cortex and hypothalamus of insulin-resistant rats. Methods The experiment was conducted on male cmdb/outbred Wistar rats fed a high-fat diet (HFD) for 10 weeks with intragastric administration of ALA (30 mg/kg body weight) for 4 weeks. Pro-oxidant and pro-inflammatory enzymes, oxidative stress, sphingolipid metabolism, neuroinflammation, apoptosis, and β-amyloid level were assessed in the hypothalamus and cerebral cortex using colorimetric, fluorimetric, ELISA, and HPLC methods. Statistical analysis was performed using three-way ANOVA followed by the Tukey HSD test. Results ALA normalizes body weight, food intake, glycemia, insulinemia, and systemic insulin sensitivity in HFD-fed rats. ALA treatment reduces nicotinamide adenine dinucleotide phosphate (NADPH) and xanthine oxidase activity, increases ferric-reducing antioxidant power (FRAP) and thiol levels in the hypothalamus of insulin-resistant rats. In addition, it decreases myeloperoxidase, glucuronidase, and metalloproteinase-2 activity and pro-inflammatory cytokines (IL-1β, IL-6) levels, while in the cerebral cortex ALA reduces β-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and caspase-3 activity. ALA improves systemic oxidative status and reduces insulin-resistant rats’ serum cytokines, chemokines, and growth factors. Conclusion ALA normalizes lipid and carbohydrate metabolism in insulin-resistant rats. At the brain level, ALA primarily affects hypothalamic metabolism. ALA improves redox homeostasis by decreasing the activity of pro-oxidant enzymes, enhancing total antioxidant potential, and reducing protein and lipid oxidative damage in the hypothalamus of HFD-fed rats. ALA also reduces hypothalamic inflammation and metalloproteinases activity, and cortical β-amyloid accumulation. In both brain structures, ALA diminishes ceramide synthesis and neuronal apoptosis. Although further study is needed, ALA may be a potential treatment for patients with cerebral complications of insulin resistance.
Collapse
Affiliation(s)
- Mateusz Maciejczyk
- Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, Bialystok, Poland
- Correspondence: Mateusz Maciejczyk, Department of Hygiene, Epidemiology, and Ergonomics, Medical University of Bialystok, 2C Mickiewicza Street, Bialystok, Poland, Email
| | - Ewa Żebrowska
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Miłosz Nesterowicz
- Students Scientific Club “Biochemistry of Civilization Diseases” at the Department of Hygiene, Epidemiology and Ergonomics, Medical University of Bialystok, Bialystok, Poland
| | - Elżbieta Supruniuk
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | - Barbara Choromańska
- 1st Department of General and Endocrine Surgery, Medical University of Bialystok, Bialystok, Poland
| | - Adrian Chabowski
- Department of Physiology, Medical University of Bialystok, Bialystok, Poland
| | | | - Anna Zalewska
- Department of Restorative Dentistry and Experimental Dentistry Laboratory, Medical University of Bialystok, Bialystok, Poland
| |
Collapse
|
28
|
α-Lipoic Acid Strengthens the Antioxidant Barrier and Reduces Oxidative, Nitrosative, and Glycative Damage, as well as Inhibits Inflammation and Apoptosis in the Hypothalamus but Not in the Cerebral Cortex of Insulin-Resistant Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7450514. [PMID: 35391928 PMCID: PMC8983239 DOI: 10.1155/2022/7450514] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 02/24/2022] [Accepted: 03/18/2022] [Indexed: 12/17/2022]
Abstract
The research determined the role of α-lipoic acid (ALA) in reducing the brain manifestations of insulin resistance. The mechanism of ALA action is mainly based on its ability to “scavenge” oxygen free radicals and stimulate biosynthesis of reduced glutathione (GSH), considered the most critical brain antioxidant. Although the protective effect of ALA is widely documented in various diseases, there are still no studies assessing the influence of ALA on brain metabolism in the context of insulin resistance and type 2 diabetes. The experiment was conducted on male Wistar rats fed a high-fat diet for ten weeks with intragastric administration of ALA for four weeks. We are the first to demonstrate that ALA improves the function of enzymatic and nonenzymatic brain antioxidant systems, but the protective effects of ALA were mainly observed in the hypothalamus of insulin-resistant rats. Indeed, ALA caused a significant increase in superoxide dismutase, catalase, peroxidase, and glutathione reductase activities, as well as GSH concentration and redox potential ([GSH]2/[GSSG]) in the hypothalamus of HFD-fed rats. A consequence of antioxidant barrier enhancement by ALA is the reduction of oxidation, glycation, and nitration of brain proteins, lipids, and DNA. The protective effects of ALA result from hypothalamic activation of the transcription factor Nrf2 and inhibition of NF-κB. In the hypothalamus of insulin-resistant rats, we demonstrated reduced levels of oxidation (AOPP) and glycation (AGE) protein products, 4-hydroxynoneal, 8-isoprostanes, and 3-nitrotyrosine and, in the cerebral cortex, lower levels of 8-hydroxydeoxyguanosine and peroxynitrite. In addition, we demonstrated that ALA decreases levels of proinflammatory TNF-α but also increases the synthesis of anti-inflammatory IL-10 in the hypothalamus of insulin-resistant rats. ALA also prevents neuronal apoptosis, confirming its multidirectional effects within the brain. Interestingly, we have shown no correlation between brain and serum/plasma oxidative stress biomarkers, indicating the different nature of redox imbalance at the central and systemic levels. To summarize, ALA improves antioxidant balance and diminishes oxidative/glycative stress, protein nitrosative damage, inflammation, and apoptosis, mainly in the hypothalamus of insulin-resistant rats. Further studies are needed to determine the molecular mechanism of ALA action within the brain.
Collapse
|
29
|
Zhang R, Yong VW, Xue M. Revisiting Minocycline in Intracerebral Hemorrhage: Mechanisms and Clinical Translation. Front Immunol 2022; 13:844163. [PMID: 35401553 PMCID: PMC8993500 DOI: 10.3389/fimmu.2022.844163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/24/2022] [Indexed: 01/31/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is an important subtype of stroke with an unsatisfactory prognosis of high mortality and disability. Although many pre-clinical studies and clinical trials have been performed in the past decades, effective therapy that meaningfully improve prognosis and outcomes of ICH patients is still lacking. An active area of research is towards alleviating secondary brain injury after ICH through neuroprotective pharmaceuticals and in which minocycline is a promising candidate. Here, we will first discuss new insights into the protective mechanisms of minocycline for ICH including reducing iron-related toxicity, maintenance of blood-brain barrier, and alleviating different types of cell death from preclinical data, then consider its shortcomings. Finally, we will review clinical trial perspectives for minocycline in ICH. We hope that this summary and discussion about updated information on minocycline as a viable treatment for ICH can facilitate further investigations.
Collapse
Affiliation(s)
- Ruiyi Zhang
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V. Wee Yong
- Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Mengzhou Xue
- The Departments of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Medical Key Laboratory of Translational Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
30
|
Lu J, Zhu B, Zhou F, Ding X, Qian C, Ding Z, Ye X. Polysaccharides From the Aerial Parts of Tetrastigma Hemsleyanum Diels et Gilg Induce Bidirectional Immunity and Ameliorate LPS-Induced Acute Respiratory Distress Syndrome in Mice. Front Pharmacol 2022; 13:838873. [PMID: 35370633 PMCID: PMC8965720 DOI: 10.3389/fphar.2022.838873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Tetrastigma hemsleyanum Diels et Gilg (Sanyeqing, SYQ) has traditionally been used to treat inflammation, high fever and improve immune function of patients. Polysaccharides have been proved to be one of the important components of SYQ. Previous studies have confirmed the antipyretic and antitumor effects of polysaccharides from SYQ (SYQP), and clarified that SYQP could enhance immunity through TLR4 signalling pathway. However, there were more possibilities for the mechanism by which SYQP exerted immunomodulatory effects and the role of SYQP in acute respiratory distress syndrome (ARDS) is elusive. The purpose of this study was further to explain the bidirectional modulation of immunity mechanism of SYQP in vitro and its effect in LPS-induced ARDS in vivo. Experimental results showed that SYQP significantly stimulated gene expressions of TLR1, TLR2 and TLR6 and secretion of cytokines in RAW264.7 cells. Individual or combined application of TLR2 antagonist C29 and TLR4 antagonist TAK-242 could reduce SYQP-mediated stimulation of cytokine secretion in RAW264.7 cells and mouse peritoneal macrophages (MPMs) to varying degrees. On the other hand, SYQP markedly inhibited the expression levels of inflammatory cytokines, NO, iNOS and COX-2 in LPS-treatment RAW264.7 cells. Moreover, in vivo results indicated that SYQP significantly reduced LPS-induced damage in ARDS mice through alleviating LPS-induced pulmonary morphological damage, inhibiting myeloperoxidase (MPO) expression levels, ameliorating the inflammatory cells in bronchoalveolar lavage fluid (BALF) and improving hematological status. Meanwhile, SYQP evidently reduced IL-6, TNF-α and IFN-γ secretion, the overexpression levels of TLR2 and TLR4, as well as the phosphorylation of NF-κB p65. In addition, SYQP reduced the phosphorylation of JAK2 and STAT1 and the overexpression of NLRP3, caspase-1, caspase-3 and caspase-8 in lung tissues of ARDS mice. In summary, our study confirmed that SYQP induced bidirectional immunity and ameliorated LPS-induced acute respiratory distress syndrome in mice through TLR2/TLR4-NF-κB, NLRP3/caspase and JAK/STAT signaling pathways, which provided a theoretical basis for further use of SYQP.
Collapse
Affiliation(s)
- Jingjing Lu
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqi Zhu
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangmei Zhou
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xinghong Ding
- School of Basic Medical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chaodong Qian
- College of Life Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhishan Ding
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Zhishan Ding, ; Xiaoqing Ye,
| | - Xiaoqing Ye
- School of Medical Technology and Information Engineering, Zhejiang Chinese Medical University, Hangzhou, China
- *Correspondence: Zhishan Ding, ; Xiaoqing Ye,
| |
Collapse
|
31
|
Zhang XF, Luan MZ, Yan WB, Zhao FL, Hou Y, Hou GG, Meng QG. Anti-neuroinflammatory effects of novel 5,6-dihydrobenzo[h]quinazolin-2-amine derivatives in lipopolysaccharide-stimulated BV2 microglial cells. Eur J Med Chem 2022; 235:114322. [DOI: 10.1016/j.ejmech.2022.114322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/19/2022] [Accepted: 03/24/2022] [Indexed: 01/07/2023]
|
32
|
Wei Z, Luo L, Hu S, Tian R, Liu Z. KDM2B overexpression prevents myocardial ischemia‑reperfusion injury in rats through regulating inflammatory response via the TLR4/NF‑κB p65 axis. Exp Ther Med 2021; 23:154. [PMID: 35069835 PMCID: PMC8753960 DOI: 10.3892/etm.2021.11077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 10/19/2021] [Indexed: 11/05/2022] Open
Abstract
Histone modifier lysine-specific demethylase 2B (KDM2B) has been previously reported to activate the inflammatory response by transcription initiation of the IL-6 gene. However, the effects of KDM2B on the inflammatory response during myocardial ischemia-reperfusion (I/R) injury and corresponding mechanisms remain poorly understood. The present study aimed to investigate the role and mechanism of KDM2B in myocardial I/R injury. Therefore, a myocardial I/R injury model was established in rats through coronary artery ligation. Adeno-associated virus-encoding KDM2B and small interfering RNA-KDM2B were designed to determine the effects of KDM2B on myocardial I/R injury using H&E staining and a TUNEL assay in the myocardial tissues. Reverse transcription-quantitative PCR and western blotting were performed to detect the mRNA and protein expression levels of KDM2B, toll-like receptor 4 (TLR4), NF-κB p65 and NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3). ELISA was used to detect the levels of TNF-α, IL-6 and IL-1β in the peripheral blood samples. Pathological analysis demonstrated that the cells in the model group were disordered, with a large area of necrosis and neutrophil infiltration. Knocking down KDM2B expression significantly upregulated the mRNA and protein expression levels of TLR4, NLRP3, NF-κB p65 and the ratio of phosphorylated (p)-p65 to p65. KDM2B knockdown also significantly increased the levels of IL-1β, IL-6 and TNF-α in the peripheral blood, which aggravated myocardial injury and promoted the apoptosis of myocardial cells. However, overexpression of KDM2B downregulated the mRNA and protein expression levels of TLR4, NLRP3, NF-κB P65, the ratio of p-p65 to p65 whilst reducing the levels of IL-1β, IL-6 and TNF-α in the peripheral blood, which markedly improved myocardial injury and significantly inhibited the apoptosis of cells in myocardial tissue. In conclusion, the results indicated that overexpression of KDM2B may prevent myocardial I/R injury in rats by reducing the inflammatory response through regulation of the TLR4/NF-κB p65 axis.
Collapse
Affiliation(s)
- Zijie Wei
- Department of Cardiac Intensive Care, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Lihua Luo
- Department of Nephrology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Shuo Hu
- Department of Cardiac Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Rongcheng Tian
- Department of Emergency, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| | - Ziyou Liu
- Department of Cardiac Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi 341000, P.R. China
| |
Collapse
|
33
|
Sun S, Sun S, Meng Y, Shi B, Chen Y. Elevated Serum Neuropeptide FF Levels Are Associated with Cognitive Decline in Patients with Spinal Cord Injury. DISEASE MARKERS 2021; 2021:4549049. [PMID: 34804262 PMCID: PMC8601828 DOI: 10.1155/2021/4549049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/22/2021] [Accepted: 10/26/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Spinal cord injury (SCI) has high incidence globally and is frequently accompanied by subsequent cognitive decline. Accurate early risk-categorization of SCI patients for cognitive decline using biomarkers can enable the timely application of appropriate neuroprotective measures and the development of new agents for the management of SCI-associated cognitive decline. Neuropeptide FF is an endogenous neuropeptide with a multitude of functions and is associated with neuroinflammatory processes. This prospective study investigated the predictive value of serum neuropeptide FF levels measured after acute SCI for subsequent cognitive decline. METHODS 88 patients presenting with acute SCI without preexisting neurological injury, brain trauma, or severe systemic illness and 60 healthy controls were recruited. Serum neuropeptide FF levels, clinical, and routine laboratory variables including low-density lipoprotein, high-density lipoprotein, fasting blood glucose, total triiodothyronine (TT3), total thyroxine (TT4), and thyroid-stimulating hormone (TSH) levels collected from all subjects were assessed. Montreal cognitive assessment (MoCA) was performed 3 months after enrollment. SCI patients were grouped according to quartile of serum neuropeptide FF level and MoCA scores were compared using ANOVA. Additionally, multivariate linear regression with clinical and laboratory variables was performed to predict MoCA scores. RESULTS SCI patients displayed significantly higher baseline serum neuropeptide FF levels than healthy controls (38.5 ± 4.1 versus 23.4 ± 2.0 pg/ml, p < 0.001∗∗). SCI patients in higher quartiles of baseline serum neuropeptide FF displayed significantly lower MoCA scores at 3 months. Linear regression analysis indicated serum neuropeptide FF levels as a significant independent predictor of worse MoCA scores after SCI (r = 0.331, p = 0.034∗). CONCLUSION Early serum neuropeptide FF levels significantly and independently predicted cognitive decline after acute SCI among patients without preexisting neurological disorders.
Collapse
Affiliation(s)
- Shifei Sun
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Shilong Sun
- Department of Radiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Yan Meng
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Bin Shi
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| | - Yuanzhen Chen
- Bone Biomechanics Engineering Laboratory of Shandong Province, Neck-Shoulder and Lumbocrural Pain Hospital of Shandong First Medical University, Jinan 250062, China
| |
Collapse
|
34
|
Bian HJ, Xu SY, Li HQ, Jia JQ, Ye L, Shu S, Xia SN, Gu Y, Zhu X, Xu Y, Cao X. JLX001 ameliorates cerebral ischemia injury by modulating microglial polarization and compromising NLRP3 inflammasome activation via the NF-κB signaling pathway. Int Immunopharmacol 2021; 101:108325. [PMID: 34740080 DOI: 10.1016/j.intimp.2021.108325] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/15/2021] [Accepted: 10/27/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke is a devastating disease with high morbidity and mortality rates, and the proinflammatory microglia-mediated inflammatory response directly affects stroke outcome. Previous studies have reported that JLX001, a novel compound with a structure similar to that of cyclovirobuxine D (CVB-D), exerts antiapoptotic, anti-inflammatory and antioxidative effects on ischemia-induced brain injury. However, the role of JLX001 in microglial polarization and nucleotide-binding oligomerization domain (NOD)-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome regulation after ischemic stroke has not been fully investigated. In this study, we used the middle cerebral artery occlusion (MCAO) method to establish a focal cerebral ischemia model and found that JLX001 attenuated the brain infarct size and improved cerebral damage. Moreover, the expression levels of proinflammatory cytokines (interleukin [IL]-1β and tumor necrosis factor [TNF]-α) were significantly reduced while those of the anti-inflammatory cytokine IL-10 were increased in the JLX001-treated group. Immunofluorescence staining and flow cytometry revealed an increased number of anti-inflammatory phenotypic microglia and a reduced number of proinflammatory phenotypic microglia in JLX001-treated MCAO mice. Western blotting analysis showed that JLX001 inhibited the expression of NLRP3 and proteins related to the NLRP3 inflammasome axis in vivo. Furthermore, JLX001 reduced the number of NLRP3/Iba1 cells in ischemic penumbra tissues. Finally, mechanistic analysis revealed that JLX001 significantly inhibited the expression of proteins related to the NF-κB signaling pathway. Additionally, pyrrolidine dithiocarbamate (PDTC), an NF-κB inhibitor, ameliorated cerebral ischemia-reperfusion injury by suppressing microglial polarization towards the proinflammatory phenotype and NLRP3 activation in vivo, further suggesting that these protective effects of JLX001 were mediated by inhibition of the NF-κB signaling pathway. These results suggest that JLX001 is a promising therapeutic approach for ischemic stroke.
Collapse
Affiliation(s)
- Hui-Jie Bian
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Si-Yi Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Hui-Qin Li
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Jun-Qiu Jia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Lei Ye
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Shu Shu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Sheng-Nan Xia
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Yue Gu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China
| | - Xiong Zhu
- Jiangsu Jinglixin Pharmaceutical Technology Company Limited, Nanjing 211100, China
| | - Yun Xu
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.
| | - Xiang Cao
- Department of Neurology, Drum Tower Hospital, Medical School and The State Key Laboratory of Pharmaceutical Biotechnology, Institute of Brain Science, Nanjing University, Nanjing 210008, China; Department of Neurology, Nanjing Drum Tower Hospital Clinical College of Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210008, China; Jiangsu Key Laboratory for Molecular Medicine, Medical School of Nanjing University, Nanjing 210008, China; Jiangsu Province Stroke Center for Diagnosis and Therapy, Nanjing 210008, China.
| |
Collapse
|
35
|
Cui C, Shen D, Zuo D, Ye X. Neuroprotective effects of sonochemical- synthesized SiO2 nanoparticles in vivo models of ischemic/reperfusion injury in stroke. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
36
|
Milstein JL, Ferris HA. The brain as an insulin-sensitive metabolic organ. Mol Metab 2021; 52:101234. [PMID: 33845179 PMCID: PMC8513144 DOI: 10.1016/j.molmet.2021.101234] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/26/2021] [Accepted: 04/07/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The brain was once thought of as an insulin-insensitive organ. We now know that the insulin receptor is present throughout the brain and serves important functions in whole-body metabolism and brain function. Brain insulin signaling is involved not only in brain homeostatic processes but also neuropathological processes such as cognitive decline and Alzheimer's disease. SCOPE OF REVIEW In this review, we provide an overview of insulin signaling within the brain and the metabolic impact of brain insulin resistance and discuss Alzheimer's disease, one of the neurologic diseases most closely associated with brain insulin resistance. MAJOR CONCLUSIONS While brain insulin signaling plays only a small role in central nervous system glucose regulation, it has a significant impact on the brain's metabolic health. Normal insulin signaling is important for mitochondrial functioning and normal food intake. Brain insulin resistance contributes to obesity and may also play an important role in neurodegeneration.
Collapse
Affiliation(s)
- Joshua L Milstein
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - Heather A Ferris
- Center for Brain Immunology and Glia, University of Virginia, Charlottesville, VA, USA; Department of Neuroscience, University of Virginia, Charlottesville, VA, USA; Division of Endocrinology and Metabolism, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
37
|
Park J, Lim EY, Kim YT. The inhibitory effects of Aster yomena extract on microglial activation-mediated inflammatory response and pain by modulation of the NF-κB and MAPK signaling pathways. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
38
|
Shaheen MJ, Bekdash AM, Itani HA, Borjac JM. Saffron extract attenuates neuroinflammation in rmTBI mouse model by suppressing NLRP3 inflammasome activation via SIRT1. PLoS One 2021; 16:e0257211. [PMID: 34506597 PMCID: PMC8432768 DOI: 10.1371/journal.pone.0257211] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/25/2021] [Indexed: 01/06/2023] Open
Abstract
Traumatic brain injury (TBI) remains a major cause of morbidity and disability worldwide and a healthcare burden. TBI is an important risk factor for neurodegenerative diseases hallmarked by exacerbated neuroinflammation. Neuroinflammation in the cerebral cortex plays a critical role in secondary injury progression following TBI. The NOD-like receptors (NLR) family pyrin domain containing 3 (NLRP3) inflammasome is a key player in initiating the inflammatory response in various central nervous system disorders entailing TBI. This current study aims to investigate the role of NLRP3 in repetitive mild traumatic brain injury (rmTBI) and identify the potential neuroprotective effect of saffron extract in regulating the NLRP3 inflammasome. 24 hours following the final injury, rmTBI causes an upregulation in mRNA levels of NLRP3, caspase-1, the apoptosis-associated speck-like protein containing a CARD (ASC), nuclear factor kappa B (NF-κB), interleukin-1Beta (IL-1β), interleukin 18 (IL-18), nuclear factor erythroid 2-related factor 2 (NRF2) and heme oxygenase 1 (HMOX1). Protein levels of NLRP3, sirtuin 1 (SIRT1), glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule 1 (Iba1), and neuronal nuclei (Neu N) also increased after rmTBI. Administration of saffron alleviated the degree of TBI, as evidenced by reducing the neuronal damage, astrocyte, and microglial activation. Pretreatment with saffron inhibited the activation of NLRP3, caspase-1, and ASC concurrent to reduced production of the inflammatory cytokines IL-1β and IL-18. Additionally, saffron extract enhanced SIRT1 expression, NRF2, and HMOX1 upregulation. These results suggest that NLRP3 inflammasome activation and the subsequent inflammatory response in the mice cortex are involved in the process of rmTBI. Saffron blocked the inflammatory response and relieved TBI by activating detoxifying genes and inhibiting NLRP3 activation. The effect of saffron on the NLRP3 inflammasome may be SIRT1 and NF-κB dependent in the rmTBI model. Thus, brain injury biomarkers will help in identifying a potential therapeutic target in treating TBI-induced neurodegenerative diseases.
Collapse
Affiliation(s)
- Mariam J. Shaheen
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| | - Amira M. Bekdash
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
| | - Hana A. Itani
- Faculty of Medicine, Department of Pharmacology and Toxicology, American University of Beirut, Beirut, Lebanon
- Division of Clinical Pharmacology, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jamilah M. Borjac
- Department of Biological Sciences, Beirut Arab University, Debbieh, Lebanon
| |
Collapse
|
39
|
Hu C, Zuo H, Li Y. Effects of Radiofrequency Electromagnetic Radiation on Neurotransmitters in the Brain. Front Public Health 2021; 9:691880. [PMID: 34485223 PMCID: PMC8415840 DOI: 10.3389/fpubh.2021.691880] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022] Open
Abstract
With the rapid development of electronic information in the past 30 years, technical achievements based on electromagnetism have been widely used in various fields pertaining to human production and life. Consequently, electromagnetic radiation (EMR) has become a substantial new pollution source in modern civilization. The biological effects of EMR have attracted considerable attention worldwide. The possible interaction of EMR with human organs, especially the brain, is currently where the most attention is focused. Many studies have shown that the nervous system is an important target organ system sensitive to EMR. In recent years, an increasing number of studies have focused on the neurobiological effects of EMR, including the metabolism and transport of neurotransmitters. As messengers of synaptic transmission, neurotransmitters play critical roles in cognitive and emotional behavior. Here, the effects of EMR on the metabolism and receptors of neurotransmitters in the brain are summarized.
Collapse
Affiliation(s)
- Cuicui Hu
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Hongyan Zuo
- Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Yang Li
- Anhui Medical University, Academy of Life Sciences, Hefei, China.,Department of Experimental Pathology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
40
|
Farmen K, Tofiño-Vian M, Iovino F. Neuronal Damage and Neuroinflammation, a Bridge Between Bacterial Meningitis and Neurodegenerative Diseases. Front Cell Neurosci 2021; 15:680858. [PMID: 34149363 PMCID: PMC8209290 DOI: 10.3389/fncel.2021.680858] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 05/03/2021] [Indexed: 12/13/2022] Open
Abstract
Bacterial meningitis is an inflammation of the meninges which covers and protects the brain and the spinal cord. Such inflammation is mostly caused by blood-borne bacteria that cross the blood-brain barrier (BBB) and finally invade the brain parenchyma. Pathogens such as Streptococcus pneumoniae, Neisseria meningitidis, and Haemophilus influenzae are the main etiological causes of bacterial meningitis. After trafficking across the BBB, bacterial pathogens in the brain interact with neurons, the fundamental units of Central Nervous System, and other types of glial cells. Although the specific molecular mechanism behind the interaction between such pathogens with neurons is still under investigation, it is clear that bacterial interaction with neurons and neuroinflammatory responses within the brain leads to neuronal cell death. Furthermore, clinical studies have shown indications of meningitis-caused dementia; and a variety of neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease and Huntington's disease are characterized by the loss of neurons, which, unlike many other eukaryotic cells, once dead or damaged, they are seldom replaced. The aim of this review article is to provide an overview of the knowledge on how bacterial pathogens in the brain damage neurons through direct and indirect interactions, and how the neuronal damage caused by bacterial pathogen can, in the long-term, influence the onset of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | - Federico Iovino
- Department of Neuroscience, Karolinska Institutet Biomedicum, Stockholm, Sweden
| |
Collapse
|
41
|
Jover-Mengual T, Hwang JY, Byun HR, Court-Vazquez BL, Centeno JM, Burguete MC, Zukin RS. The Role of NF-κB Triggered Inflammation in Cerebral Ischemia. Front Cell Neurosci 2021; 15:633610. [PMID: 34040505 PMCID: PMC8141555 DOI: 10.3389/fncel.2021.633610] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 04/12/2021] [Indexed: 12/17/2022] Open
Abstract
Cerebral ischemia is a devastating disease that affects many people worldwide every year. The neurodegenerative damage as a consequence of oxygen and energy deprivation, to date, has no known effective treatment. The ischemic insult is followed by an inflammatory response that involves a complex interaction between inflammatory cells and molecules which play a role in the progression towards cell death. However, there is presently a matter of controversy over whether inflammation could either be involved in brain damage or be a necessary part of brain repair. The inflammatory response is triggered by inflammasomes, key multiprotein complexes that promote secretion of pro-inflammatory cytokines. An early event in post-ischemic brain tissue is the release of certain molecules and reactive oxygen species (ROS) from injured neurons which induce the expression of the nuclear factor-kappaB (NF-κB), a transcription factor involved in the activation of the inflammasome. There are conflicting observations related to the role of NF-κB. While some observe that NF-κB plays a damaging role, others suggest it to be neuroprotective in the context of cerebral ischemia, indicating the need for additional investigation. Here we discuss the dual role of the major inflammatory signaling pathways and provide a review of the latest research aiming to clarify the relationship between NF-κB mediated inflammation and neuronal death in cerebral ischemia.
Collapse
Affiliation(s)
- Teresa Jover-Mengual
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States.,Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain.,Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - Jee-Yeon Hwang
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States.,Department of Pharmacology, Creighton University School of Medicine, Omaha, NE, United States
| | - Hyae-Ran Byun
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - Brenda L Court-Vazquez
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| | - José M Centeno
- Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe-Universidad de Valencia, Valencia, Spain.,Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - R Suzanne Zukin
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, New York, NY, United States
| |
Collapse
|
42
|
Yang H, Ni W, Wei P, Li S, Gao X, Su J, Jiang H, Lei Y, Zhou L, Gu Y. HDAC inhibition reduces white matter injury after intracerebral hemorrhage. J Cereb Blood Flow Metab 2021; 41:958-974. [PMID: 32703113 PMCID: PMC8054714 DOI: 10.1177/0271678x20942613] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Inhibition of histone deacetylases (HDACs) has been shown to reduce inflammation and white matter damage after various forms of brain injury via modulation of microglia/macrophage polarization. Previously we showed that the HDAC inhibitor scriptaid could attenuate white matter injury (WMI) after ICH. To access whether modulation of microglia/macrophage polarization might underlie this protection, we investigated the modulatory role of HDAC2 in microglia/macrophage polarization in response to WMI induced by intracerebral hemorrhage (ICH) and in primary microglia and oligodendrocyte co-cultures. HDAC2 activity was inhibited via conditional knockout of the Hdac2 gene in microglia or via administration of scriptaid. Conditional knockout of the Hdac2 gene in microglia and HDAC inhibition with scriptaid both improved neurological functional recovery and reduced WMI after ICH. Additionally, HDAC inhibition shifted microglia/macrophage polarization toward the M2 phenotype and reduced proinflammatory cytokine secretion after ICH in vivo. In vitro, a transwell co-culture model of microglia and oligodendrocytes also demonstrated that the HDAC inhibitor protected oligodendrocytes by modulating microglia polarization and mitigating neuroinflammation. Moreover, we found that scriptaid decreased the expression of pJAK2 and pSTAT1 in cultured microglia when stimulated with hemoglobin. Thus, HDAC inhibition ameliorated ICH-mediated neuroinflammation and WMI by modulating microglia/macrophage polarization.
Collapse
Affiliation(s)
- Heng Yang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Wei Ni
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Pengju Wei
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Sicheng Li
- State Key Laboratory of Medical Neurobiology and Institute of Brain Science, Fudan University, Shanghai, China
| | - Xinjie Gao
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Jiabin Su
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Hanqiang Jiang
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yu Lei
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Liangfu Zhou
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| | - Yuxiang Gu
- Department of Neurosurgery, Fudan University, Huashan Hospital, Shanghai, China
| |
Collapse
|
43
|
Rossi M, Freschi M, de Camargo Nascente L, Salerno A, de Melo Viana Teixeira S, Nachon F, Chantegreil F, Soukup O, Prchal L, Malaguti M, Bergamini C, Bartolini M, Angeloni C, Hrelia S, Soares Romeiro LA, Bolognesi ML. Sustainable Drug Discovery of Multi-Target-Directed Ligands for Alzheimer's Disease. J Med Chem 2021; 64:4972-4990. [PMID: 33829779 PMCID: PMC8154578 DOI: 10.1021/acs.jmedchem.1c00048] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Indexed: 12/12/2022]
Abstract
The multifactorial nature of Alzheimer's disease (AD) is a reason for the lack of effective drugs as well as a basis for the development of "multi-target-directed ligands" (MTDLs). As cases increase in developing countries, there is a need of new drugs that are not only effective but also accessible. With this motivation, we report the first sustainable MTDLs, derived from cashew nutshell liquid (CNSL), an inexpensive food waste with anti-inflammatory properties. We applied a framework combination of functionalized CNSL components and well-established acetylcholinesterase (AChE)/butyrylcholinesterase (BChE) tacrine templates. MTDLs were selected based on hepatic, neuronal, and microglial cell toxicity. Enzymatic studies disclosed potent and selective AChE/BChE inhibitors (5, 6, and 12), with subnanomolar activities. The X-ray crystal structure of 5 complexed with BChE allowed rationalizing the observed activity (0.0352 nM). Investigation in BV-2 microglial cells revealed antineuroinflammatory and neuroprotective activities for 5 and 6 (already at 0.01 μM), confirming the design rationale.
Collapse
Affiliation(s)
- Michele Rossi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Michela Freschi
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Luciana de Camargo Nascente
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Alessandra Salerno
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Sarah de Melo Viana Teixeira
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Florian Nachon
- Département
de Toxicologie et Risques Chimiques, Institut
de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Fabien Chantegreil
- Département
de Toxicologie et Risques Chimiques, Institut
de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Ondrej Soukup
- Biomedical
Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech
Republic
- Department
of Toxicology and Military Pharmacy, Faculty of Military Health Sciences, University of Defence, Trebesska 1575, 500
01 Hradec Kralove, Czech Republic
| | - Lukáš Prchal
- Biomedical
Research Center, University Hospital, Sokolska 581, 500 05 Hradec Kralove, Czech
Republic
| | - Marco Malaguti
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Christian Bergamini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Manuela Bartolini
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Cristina Angeloni
- School
of Pharmacy, University of Camerino, Via Madonna delle Carceri 9, 62032 Camerino, MC, Italy
| | - Silvana Hrelia
- Department
for Life Quality Studies, Alma Mater Studiorum
- University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy
| | - Luiz Antonio Soares Romeiro
- Department
of Pharmacy, Health Sciences Faculty, University
of Brasília, Campus Universitário Darcy Ribeiro, 70910-900 Brasília, DF, Brazil
| | - Maria Laura Bolognesi
- Department
of Pharmacy and Biotechnology, Alma Mater
Studiorum - University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| |
Collapse
|
44
|
Liu L, Chen M, Lin K, Xiang X, Yang J, Zheng Y, Xiong X, Zhu S. TRPC6 Attenuates Cortical Astrocytic Apoptosis and Inflammation in Cerebral Ischemic/Reperfusion Injury. Front Cell Dev Biol 2021; 8:594283. [PMID: 33604333 PMCID: PMC7884618 DOI: 10.3389/fcell.2020.594283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/21/2020] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential canonical 6 (TRPC6) channel is an important non-selective cation channel with a variety of physiological roles in the central nervous system. Evidence has shown that TRPC6 is involved in the process of experimental stroke; however, the underlying mechanisms remain unclear. In the present study, the role of astrocytic TRPC6 was investigated in an oxygen-glucose deprivation cell model and middle cerebral artery occlusion (MCAO) mouse model of stroke. HYP9 (a selective TRPC6 agonist) and SKF96365 (SKF; a TRPC antagonist) were used to clarify the exact functions of TRPC6 in astrocytes after ischemic stroke. TRPC6 was significantly downregulated during ischemia/reperfusion (IR) injury in cultured astrocytes and in cortices of MCAO mice. Application of HYP9 in vivo alleviated the brain infarct lesion, astrocytes population, apoptosis, and interleukin-6 (IL-6) and IL-1β release in mouse cortices after ischemia. HYP9 dose-dependently inhibited the downregulation of TRPC6 and reduced astrocytic apoptosis, cytotoxicity and inflammatory responses in IR insult, whereas SKF aggravated the damage in vitro. In addition, modulation of TRPC6 channel diminished IR-induced Ca2+ entry in astrocytes. Furthermore, decreased Ca2+ entry due to TRPC6 contributed to reducing nuclear factor kappa light chain enhancer of activated B cells (NF-κB) nuclear translocation and phosphorylation. Overexpression of astrocytic TRPC6 also attenuated apoptosis, cytotoxicity, inflammatory responses, and NF-κB phosphorylation in modeled ischemia in astrocytes. The results of the present study indicate that the TRPC6 channel can act as a potential target to reduce both inflammatory responses and apoptosis in astrocytes during IR injury, subsequently attenuating ischemic brain damage. In addition, we provide a novel view of stroke therapy by targeting the astrocytic TRPC6 channel.
Collapse
Affiliation(s)
- Lu Liu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Manli Chen
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Kun Lin
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuwu Xiang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jing Yang
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yueying Zheng
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoxing Xiong
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shengmei Zhu
- Department of Anesthesiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
45
|
Surai PF, Kochish II, Kidd MT. Redox Homeostasis in Poultry: Regulatory Roles of NF-κB. Antioxidants (Basel) 2021; 10:186. [PMID: 33525511 PMCID: PMC7912633 DOI: 10.3390/antiox10020186] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/19/2021] [Accepted: 01/25/2021] [Indexed: 12/13/2022] Open
Abstract
Redox biology is a very quickly developing area of modern biological sciences, and roles of redox homeostasis in health and disease have recently received tremendous attention. There are a range of redox pairs in the cells/tissues responsible for redox homeostasis maintenance/regulation. In general, all redox elements are interconnected and regulated by various means, including antioxidant and vitagene networks. The redox status is responsible for maintenance of cell signaling and cell stress adaptation. Physiological roles of redox homeostasis maintenance in avian species, including poultry, have received limited attention and are poorly characterized. However, for the last 5 years, this topic attracted much attention, and a range of publications covered some related aspects. In fact, transcription factor Nrf2 was shown to be a master regulator of antioxidant defenses via activation of various vitagenes and other protective molecules to maintain redox homeostasis in cells/tissues. It was shown that Nrf2 is closely related to another transcription factor, namely, NF-κB, responsible for control of inflammation; however, its roles in poultry have not yet been characterized. Therefore, the aim of this review is to describe a current view on NF-κB functioning in poultry with a specific emphasis to its nutritional modulation under various stress conditions. In particular, on the one hand, it has been shown that, in many stress conditions in poultry, NF-κB activation can lead to increased synthesis of proinflammatory cytokines leading to systemic inflammation. On the other hand, there are a range of nutrients/supplements that can downregulate NF-κB and decrease the negative consequences of stress-related disturbances in redox homeostasis. In general, vitagene-NF-κB interactions in relation to redox balance homeostasis, immunity, and gut health in poultry production await further research.
Collapse
Affiliation(s)
- Peter F. Surai
- Department of Biochemistry, Vitagene and Health Research Centre, Bristol BS4 2RS, UK
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
- Department of Biochemistry and Physiology, Saint-Petersburg State Academy of Veterinary Medicine, 196084 St. Petersburg, Russia
- Department of Microbiology and Biochemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria
- Department of Animal Nutrition, Faculty of Agricultural and Environmental Sciences, Szent Istvan University, H-2103 Gödöllo, Hungary
| | - Ivan I. Kochish
- Department of Hygiene and Poultry Sciences, Moscow State Academy of Veterinary Medicine and Biotechnology named after K. I. Skryabin, 109472 Moscow, Russia;
| | - Michael T. Kidd
- Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR 72701, USA;
| |
Collapse
|
46
|
Zika virus exposure affects neuron-glia communication in the hippocampal slices of adult rats. Sci Rep 2020; 10:21604. [PMID: 33303883 PMCID: PMC7729948 DOI: 10.1038/s41598-020-78735-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Zika virus (ZIKV) infection during pregnancy was associated with microcephaly in neonates, but clinical and experimental evidence indicate that ZIKV also causes neurological complications in adults. However, the changes in neuron-glial communication, which is essential for brain homeostasis, are still unknown. Here, we report that hippocampal slices from adult rats exposed acutely to ZIKV showed significant cellular alterations regarding to redox homeostasis, inflammatory process, neurotrophic functions and molecular signalling pathways associated with neurons and glial cells. Our findings support the hypothesis that ZIKV is highly neurotropic and its infection readily induces an inflammatory response, characterized by an increased expression and/or release of pro-inflammatory cytokines. We also observed changes in neural parameters, such as adenosine receptor A2a expression, as well as in the release of brain-derived neurotrophic factor and neuron-specific enolase, indicating plasticity synaptic impairment/neuronal damage. In addition, ZIKV induced a glial commitment, with alterations in specific and functional parameters such as aquaporin 4 expression, S100B secretion and glutathione synthesis. ZIKV also induced p21 senescence-associated gene expression, indicating that ZIKV may induce early senescence. Taken together, our results indicate that ZIKV-induced neuroinflammation, involving nuclear factor erythroid 2-related factor 2 (Nrf2) and nuclear factor κB (NFκB) pathways, affects important aspects of neuron-glia communication. Therefore, although ZIKV infection is transient, long-term consequences might be associated with neurological and/or neurodegenerative diseases.
Collapse
|
47
|
Jeong GW, Lee HH, Lee-Kwon W, Kwon HM. Microglial TonEBP mediates LPS-induced inflammation and memory loss as transcriptional cofactor for NF-κB and AP-1. J Neuroinflammation 2020; 17:372. [PMID: 33292328 PMCID: PMC7722447 DOI: 10.1186/s12974-020-02007-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/21/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Microglia are brain-resident myeloid cells involved in the innate immune response and a variety of neurodegenerative diseases. In macrophages, TonEBP is a transcriptional cofactor of NF-κB which stimulates the transcription of pro-inflammatory genes in response to LPS. Here, we examined the role of microglial TonEBP. METHODS We used microglial cell line, BV2 cells. TonEBP was knocked down using lentiviral transduction of shRNA. In animals, TonEBP was deleted from myeloid cells using a line of mouse with floxed TonEBP. Cerulenin was used to block the NF-κB cofactor function of TonEBP. RESULTS TonEBP deficiency blocked the LPS-induced expression of pro-inflammatory cytokines and enzymes in association with decreased activity of NF-κB in BV2 cells. We found that there was also a decreased activity of AP-1 and that TonEBP was a transcriptional cofactor of AP-1 as well as NF-κB. Interestingly, we found that myeloid-specific TonEBP deletion blocked the LPS-induced microglia activation and subsequent neuronal cell death and memory loss. Cerulenin disrupted the assembly of the TonEBP/NF-κB/AP-1/p300 complex and suppressed the LPS-induced microglial activation and the neuronal damages in animals. CONCLUSIONS TonEBP is a key mediator of microglial activation and neuroinflammation relevant to neuronal damage. Cerulenin is an effective blocker of the TonEBP actions.
Collapse
Affiliation(s)
- Gyu Won Jeong
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hwan Hee Lee
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Whaseon Lee-Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea
| | - Hyug Moo Kwon
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, 44919, Republic of Korea.
| |
Collapse
|
48
|
Smaga I, Gawlińska K, Frankowska M, Wydra K, Sadakierska-Chudy A, Suder A, Piechota M, Filip M. Extinction Training after Cocaine Self-Administration Influences the Epigenetic and Genetic Machinery Responsible for Glutamatergic Transporter Gene Expression in Male Rat Brain. Neuroscience 2020; 451:99-110. [PMID: 33065231 DOI: 10.1016/j.neuroscience.2020.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/29/2020] [Accepted: 10/01/2020] [Indexed: 12/27/2022]
Abstract
Glutamate is a key excitatory neurotransmitter in the central nervous system. The balance of glutamatergic transporter proteins allows long-term maintenance of glutamate homeostasis in the brain, which is impaired during cocaine use disorder. The aim of this study was to investigate changes in the gene expression of SLC1A2 (encoding GLT-1), and SLC7A11 (encoding xCT), in rat brain structures after short-term (3 days) and long-term (10 days) extinction training using microarray analysis and quantitative real-time PCR. Furthermore, we analyzed the expression of genes encoding transcription factors, i.e., NFKB1 and NFKB2 (encoding NF-κB), PAX6, (encoding Pax6), and NFE2L2 (encoding Nrf2), to verify the correlation between changes in glutamatergic transporters and changes in their transcriptional factors and microRNAs (miRNAs; miR-124a, miR-543-3p and miR-342-3p) and confirm the epigenetic mechanism. We found reduced GLT-1 transcript and mRNA level in the prefrontal cortex (PFCTX) and dorsal striatum (DSTR) in rats that had previously self-administered cocaine after 3 days of extinction training, which was associated with downregulation of PAX6 (transcript and mRNA) and NFKB2 (mRNA) level in the PFCTX and with upregulation of miR-543-3p and miR-342-3p in the DSTR. The xCT mRNA level was reduced in the PFCTX and DSTR, and NFE2L2 transcript level in the PFCTX was decreased on the 3rd day of extinction training. In conclusion, 3-day drug-free period modulates GLT-1 and xCT gene expression through genetic and epigenetic mechanisms, and such changes in expression seem to be potential molecular targets for developing a treatment for cocaine-seeking behavior.
Collapse
Affiliation(s)
- Irena Smaga
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland.
| | - Kinga Gawlińska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Małgorzata Frankowska
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Karolina Wydra
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Anna Sadakierska-Chudy
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Agata Suder
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| | - Marcin Piechota
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Molecular Neuropharmacology, Smętna 12, 31-343 Kraków, Poland
| | - Małgorzata Filip
- Maj Institute of Pharmacology Polish Academy of Sciences, Department of Drug Addiction Pharmacology, Smętna 12, PL 31-343 Kraków, Poland
| |
Collapse
|
49
|
Hp-s1 Ganglioside Suppresses Proinflammatory Responses by Inhibiting MyD88-Dependent NF-κB and JNK/p38 MAPK Pathways in Lipopolysaccharide-Stimulated Microglial Cells. Mar Drugs 2020; 18:md18100496. [PMID: 33003399 PMCID: PMC7600735 DOI: 10.3390/md18100496] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/21/2020] [Accepted: 09/23/2020] [Indexed: 02/06/2023] Open
Abstract
Hp-s1 ganglioside is isolated from the sperm of sea urchin (Hemicentrotus pulcherrimus). In addition to neuritogenic activity, the biological function of Hp-s1 in neuroinflammation is unknown. In this study, we investigated the anti-neuroinflammatory effect of Hp-s1 on lipopolysaccharide (LPS)-stimulated microglial cells. MG6 microglial cells were stimulated with LPS in the presence or absence of different Hp-s1 concentrations. The anti-inflammatory effect and underlying mechanism of Hp-s1 in LPS-activated microglia cells were assessed through a Cell Counting kit-8 assay, Western blot analysis, and immunofluorescence. We found that Hp-s1 suppressed not only the expression of inducible nitric oxide synthase and cyclooxygenase-2 but also the expression of proinflammatory cytokines, such as TNF-α, IL-1β, and IL-6. Hp-s1 inhibited the LPS-induced NF-κB signaling pathway by attenuating the phosphorylation and translocation of NF-κB p65 and by disrupting the degradation and phosphorylation of inhibitor κB-α (IκBα). Moreover, Hp-s1 inhibited the LPS-induced phosphorylation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK). Hp-s1 also reduced the expression of myeloid differentiation factor 88 (MyD88) and TNF receptor-associated factors 6 (TRAF6), which are prerequisites for NF-κB and MAPKs activation. These findings indicated that Hp-s1 alleviated LPS-induced proinflammatory responses in microglial cells by downregulating MyD88-mediated NF-κB and JNK/p38 MAPK signaling pathways, suggesting further evaluation as a new anti-neuroinflammatory drug.
Collapse
|
50
|
Neuroinflammation and progressive myoclonus epilepsies: from basic science to therapeutic opportunities. Expert Rev Mol Med 2020; 22:e4. [PMID: 32938505 PMCID: PMC7520540 DOI: 10.1017/erm.2020.5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Progressive myoclonus epilepsies (PMEs) are a group of genetic neurological disorders characterised by the occurrence of epileptic seizures, myoclonus and progressive neurological deterioration including cerebellar involvement and dementia. The primary cause of PMEs is variable and alterations in the corresponding mutated genes determine the progression and severity of the disease. In most cases, they lead to the death of the patient after a period of prolonged disability. PMEs also share poor information on the pathophysiological bases and the lack of a specific treatment. Recent reports suggest that neuroinflammation is a common trait under all these conditions. Here, we review similarities and differences in neuroinflammatory response in several PMEs and discuss the window of opportunity of using anti-inflammatory drugs in the treatment of several of these conditions.
Collapse
|