1
|
Pinyon JL, von Jonquieres G, Crawford EN, Abed AA, Power JM, Klugmann M, Browne CJ, Housley DM, Wise AK, Fallon JB, Shepherd RK, Lin JY, McMahon C, McAlpine D, Birman CS, Lai W, Enke YL, Carter PM, Patrick JF, Gay RD, Marie C, Scherman D, Lovell NH, Housley GD. Gene Electrotransfer via Conductivity-Clamped Electric Field Focusing Pivots Sensori-Motor DNA Therapeutics: "A Spoonful of Sugar Helps the Medicine Go Down". ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401392. [PMID: 38874431 PMCID: PMC11321635 DOI: 10.1002/advs.202401392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Indexed: 06/15/2024]
Abstract
Viral vectors and lipofection-based gene therapies have dispersion-dependent transduction/transfection profiles that thwart precise targeting. The study describes the development of focused close-field gene electrotransfer (GET) technology, refining spatial control of gene expression. Integration of fluidics for precise delivery of "naked" plasmid deoxyribonucleic acid (DNA) in sucrose carrier within the focused electric field enables negative biasing of near-field conductivity ("conductivity-clamping"-CC), increasing the efficiency of plasma membrane molecular translocation. This enables titratable gene delivery with unprecedently low charge transfer. The clinic-ready bionics-derived CC-GET device achieved neurotrophin-encoding miniplasmid DNA delivery to the cochlea to promote auditory nerve regeneration; validated in deafened guinea pig and cat models, leading to improved central auditory tuning with bionics-based hearing. The performance of CC-GET is evaluated in the brain, an organ problematic for pulsed electric field-based plasmid DNA delivery, due to high required currents causing Joule-heating and damaging electroporation. Here CC-GET enables safe precision targeting of gene expression. In the guinea pig, reporter expression is enabled in physiologically critical brainstem regions, and in the striatum (globus pallidus region) delivery of a red-shifted channelrhodopsin and a genetically-encoded Ca2+ sensor, achieved photoactivated neuromodulation relevant to the treatment of Parkinson's Disease and other focal brain disorders.
Collapse
Affiliation(s)
- Jeremy L. Pinyon
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
- Charles Perkins CentreSchool of Medical SciencesFaculty of Medicine and HealthUniversity of SydneySydneyNSW2006Australia
| | - Georg von Jonquieres
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Edward N. Crawford
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Amr Al Abed
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - John M. Power
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Matthias Klugmann
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Cherylea J. Browne
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
- Medical SciencesSchool of ScienceWestern Sydney UniversitySydneyNSW2560Australia
| | - David M. Housley
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Andrew K. Wise
- Bionics Institute384–388 Albert StreetEast MelbourneVIC3002Australia
- Medical BionicsDepartment of OtolaryngologyUniversity of MelbourneMelbourneVIC3002Australia
| | - James B. Fallon
- Bionics Institute384–388 Albert StreetEast MelbourneVIC3002Australia
- Medical BionicsDepartment of OtolaryngologyUniversity of MelbourneMelbourneVIC3002Australia
| | - Robert K. Shepherd
- Bionics Institute384–388 Albert StreetEast MelbourneVIC3002Australia
- Medical BionicsDepartment of OtolaryngologyUniversity of MelbourneMelbourneVIC3002Australia
| | - John Y. Lin
- Tasmanian School of MedicineUniversity of TasmaniaHobartTAS7001Australia
| | - Catherine McMahon
- Faculty of Medicine and Health SciencesThe Hearing HubMacquarie UniversitySydney2109Australia
| | - David McAlpine
- Faculty of Medicine and Health SciencesThe Hearing HubMacquarie UniversitySydney2109Australia
| | - Catherine S. Birman
- Faculty of Medicine and Health SciencesThe Hearing HubMacquarie UniversitySydney2109Australia
- Faculty of Medicine and HealthUniversity of SydneySydneyNSW2006Australia
- Department of OtolaryngologyRoyal Prince Alfred HospitalCamperdownNSW2050Australia
- NextSenseRoyal Institute of Deaf and Blind ChildrenGladesvilleNSW2111Australia
| | - Waikong Lai
- NextSenseRoyal Institute of Deaf and Blind ChildrenGladesvilleNSW2111Australia
| | - Ya Lang Enke
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - Paul M. Carter
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - James F. Patrick
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - Robert D. Gay
- Cochlear LimitedMacquarie UniversityUniversity AvenueMacquarie ParkNSW2109Australia
| | - Corinne Marie
- CNRS, Inserm, UTCBSUniversité Paris CitéParisF‐75006France
- Chimie ParisTechUniversité PSLParis75005France
| | - Daniel Scherman
- CNRS, Inserm, UTCBSUniversité Paris CitéParisF‐75006France
- Fondation Maladies Rares96 rue DidotParis75014France
| | - Nigel H. Lovell
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| | - Gary D. Housley
- Translational Neuroscience FacilityDepartment of PhysiologySchool of Biomedical SciencesGraduate School of Biomedical EngineeringTyree Institute for Health Engineering (IHealthE)UNSWSydneyNSW2052Australia
| |
Collapse
|
2
|
Soltani Dehnavi S, Cembran A, Mahmoudi N, Caballero Aguilar LM, Wang Y, Cheeseman S, Malagutti N, Franks S, Long B, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Molecular camouflage by a context-specific hydrogel as the key to unlock the potential of viral vector gene therapy. CHEMICAL ENGINEERING JOURNAL 2023; 477:146857. [DOI: 10.1016/j.cej.2023.146857] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Dhote VV, Samundre P, Upaganlawar AB, Ganeshpurkar A. Gene Therapy for Chronic Traumatic Brain Injury: Challenges in Resolving Long-term Consequences of Brain Damage. Curr Gene Ther 2023; 23:3-19. [PMID: 34814817 DOI: 10.2174/1566523221666211123101441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/08/2023]
Abstract
The gene therapy is alluring not only for CNS disorders but also for other pathological conditions. Gene therapy employs the insertion of a healthy gene into the identified genome to replace or replenish genes responsible for pathological disorder or damage due to trauma. The last decade has seen a drastic change in the understanding of vital aspects of gene therapy. Despite the complexity of traumatic brain injury (TBI), the advent of gene therapy in various neurodegenerative disorders has reinforced the ongoing efforts of alleviating TBI-related outcomes with gene therapy. The review highlights the genes modulated in response to TBI and evaluates their impact on the severity and duration of the injury. We have reviewed strategies that pinpointed the most relevant gene targets to restrict debilitating events of brain trauma and utilize vector of choice to deliver the gene of interest at the appropriate site. We have made an attempt to summarize the long-term neurobehavioral consequences of TBI due to numerous pathometabolic perturbations associated with a plethora of genes. Herein, we shed light on the basic pathological mechanisms of brain injury, genetic polymorphism in individuals susceptible to severe outcomes, modulation of gene expression due to TBI, and identification of genes for their possible use in gene therapy. The review also provides insights on the use of vectors and challenges in translations of this gene therapy to clinical practices.
Collapse
Affiliation(s)
- Vipin V Dhote
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Prem Samundre
- Faculty of Pharmacy, VNS Group of Institutions, Bhopal, MP, 462044, India
| | - Aman B Upaganlawar
- SNJB's Shree Sureshdada Jain College of Pharmacy, Chandwad, Nasik, Maharashtra, 423101, India
| | - Aditya Ganeshpurkar
- Department of Pharmacy, Shri Ram Institute of Technology, Jabalpur, MP, India
| |
Collapse
|
4
|
Safiullov Z, Izmailov A, Sokolov M, Markosyan V, Kundakchan G, Garifulin R, Shmarov M, Naroditsky B, Logunov D, Islamov R. Autologous Genetically Enriched Leucoconcentrate in the Preventive and Acute Phases of Stroke Treatment in a Mini-Pig Model. Pharmaceutics 2022; 14:pharmaceutics14102209. [PMID: 36297644 PMCID: PMC9611398 DOI: 10.3390/pharmaceutics14102209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/21/2022] [Accepted: 10/12/2022] [Indexed: 12/05/2022] Open
Abstract
The natural limitations of regeneration in the CNS are major problems for the treatment of neurological disorders, including ischaemic brain strokes. Among the approaches being actively developed to inhibit post-ischaemic negative consequences is the delivery of therapeutic genes encoding neuroprotective molecules to the brain. Unfortunately, there are currently no proven and available medicines that contain recombinant human genes for the treatment of ischaemic cerebral stroke. Of particular interest is the development of treatments for patients at risk of ischaemic stroke. In the present study, we propose a proof of concept for the use of an autologous, genetically enriched leucoconcentrate temporally secreting recombinant vascular endothelial growth factor (VEGF), glial-cell-line-derived neurotrophic factor (GDNF) and the neural cell adhesion molecule (NCAM) for the treatment of stroke. In a mini-pig ischaemic stroke model, genetically enriched leucoconcentrate was infused 4 h after surgery (gene therapy in acute phase) or 2 days before stroke modelling (preventive gene therapy). On day 21, after the stroke modelling, the post-ischaemic brain recovery was examined by morphologic and immunofluorescence analysis. The benefits of treating a stroke with genetically enriched leucoconcentrate both for preventive purposes and in the acute phase were confirmed by an improved performance in behavioural tests, higher preservation of brain tissue and positive post-ischaemic brain remodelling in the peri-infarct area. These results suggest that the employment of autologous leucocytes enabling the temporary production of the recombinant therapeutic molecules to correct the pathological process in the CNS may be one of the breakthrough approaches in gene therapy.
Collapse
Affiliation(s)
- Zufar Safiullov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Andrei Izmailov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Mikhail Sokolov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Vage Markosyan
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Grayr Kundakchan
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Ravil Garifulin
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
| | - Maksim Shmarov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Boris Naroditsky
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Denis Logunov
- The National Research Center for Epidemiology and Microbiology Named after Honorary Academician N.F. Gamaleya of the Ministry of Health of the Russian Federation, 123098 Moscow, Russia
| | - Rustem Islamov
- The Department of Histology, Cytology and Embryology, Kazan State Medical University, 420012 Kazan, Russia
- Correspondence:
| |
Collapse
|
5
|
Zhou W, Fu Y, Zhang M, Buabeid MA, Ijaz M, Murtaza G. Nanoparticle-mediated therapy of neuronal damage in the neonatal brain. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Moradi SZ, Jalili F, Farhadian N, Joshi T, Wang M, Zou L, Cao H, Farzaei MH, Xiao J. Polyphenols and neurodegenerative diseases: focus on neuronal regeneration. Crit Rev Food Sci Nutr 2021; 62:3421-3436. [PMID: 33393375 DOI: 10.1080/10408398.2020.1865870] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Neurodegenerative diseases are questions that modern therapeutics can still not answer. Great milestones have been achieved regarding liver, heart, skin, kidney and other types of organ transplantations but the greatest drawback is the adequate supply of these organs. Furthermore, there are still a few options available in the treatment of neurodegenerative diseases. With great advances in medical science, many health problems faced by humans have been solved, and their quality of life is improving. Moreover, diseases that were incurable in the past have now been fully cured. Still, the area of regenerative medicine, especially concerning neuronal regeneration, is in its infancy. Presently allopathic drugs, surgical procedures, organ transplantation, stem cell therapy forms the core of regenerative therapy. However, many times, the currently used therapies cannot completely cure damaged organs and neurodegenerative diseases. The current review focuses on the concepts of regeneration, hurdles faced in the path of regenerative therapy, neurodegenerative diseases and the idea of using peptides, cytokines, tissue engineering, genetic engineering, advanced stem cell therapy, and polyphenolic phytochemicals to cure damaged tissues and neurodegenerative diseases.
Collapse
Affiliation(s)
- Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faramarz Jalili
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Negin Farhadian
- Substance Abuse Prevention Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Kumaun University (Nainital), Nainital, India
| | - Mingfu Wang
- School of Biological Sciences, The University of Hong Kong, Hong Kong, Hong Kong
| | - Liang Zou
- Key Laboratory of Coarse Cereal Processing, Ministry of Agriculture and Rural Affairs, Chengdu University, Chengdu, China
| | - Hui Cao
- College of Food Science and Technology, Guangdong Ocean University, Zhanjiang, China
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Jianbo Xiao
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China.,International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| |
Collapse
|
7
|
Zhao SL, Jin G, Bai ZL, Chen JB, Li MW, Li G, Zhuang W, Liu YN, Qin MX. Twenty-four-hour real-time continuous monitoring of acute focal cerebral ischemia in rabbits based on magnetic inductive phase shift. Biomed Eng Online 2020; 19:83. [PMID: 33176808 PMCID: PMC7659095 DOI: 10.1186/s12938-020-00829-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/05/2020] [Indexed: 01/26/2023] Open
Abstract
BACKGROUND As a serious clinical disease, ischemic stroke is usually detected through magnetic resonance imaging and computed tomography. In this study, a noninvasive, non-contact, real-time continuous monitoring system was constructed on the basis of magnetic induction phase shift (MIPS) technology. The "thrombin induction method", which conformed to the clinical pathological development process of ischemic stroke, was used to construct an acute focal cerebral ischemia model of rabbits. In the MIPS measurement, a "symmetric cancellation-type" magnetic induction sensor was used to improve the sensitivity and antijamming capability of phase detection. METHODS A 24-h MIPS monitoring experiment was carried out on 15 rabbits (10 in the experimental group and five in the control group). Brain tissues were taken from seven rabbits for the 2% triphenyl tetrazolium chloride staining and verification of the animal model. RESULTS The nonparametric independent-sample Wilcoxon rank sum test showed significant differences (p < 0.05) between the experimental group and the control group in MIPS. Results showed that the rabbit MIPS presented a declining trend at first and then an increasing trend in the experimental group, which may reflect the pathological development process of cerebral ischemic stroke. Moreover, TTC staining results showed that the focal cerebral infarction area increased with the development of time CONCLUSIONS: Our experimental study indicated that the MIPS technology has a potential ability of differentiating the development process of cytotoxic edema from that of vasogenic edema, both of which are caused by cerebral ischemia.
Collapse
Affiliation(s)
- Shuang-Lin Zhao
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Gui Jin
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Ze-Lin Bai
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Jing-Bo Chen
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Meng-Wei Li
- Department of Medical Engineering, Beidaihe Rehabilitation and Recuperation Center, Hebei, 066100, China
| | - Gen Li
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400020, China
| | - Wei Zhuang
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Yue-Ning Liu
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China
| | - Ming-Xin Qin
- College of Biomedical Engineering, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
8
|
Markosyan V, Safiullov Z, Izmailov A, Fadeev F, Sokolov M, Kuznetsov M, Trofimov D, Kim E, Kundakchyan G, Gibadullin A, Salafutdinov I, Nurullin L, Bashirov F, Islamov R. Preventive Triple Gene Therapy Reduces the Negative Consequences of Ischemia-Induced Brain Injury after Modelling Stroke in a Rat. Int J Mol Sci 2020; 21:ijms21186858. [PMID: 32962079 PMCID: PMC7558841 DOI: 10.3390/ijms21186858] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/16/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Currently, the main fundamental and clinical interest for stroke therapy is focused on developing a neuroprotective treatment of a penumbra region within the therapeutic window. The development of treatments for ischemic stroke in at-risk patients is of particular interest. Preventive gene therapy may significantly reduce the negative consequences of ischemia-induced brain injury. In the present study, we suggest the approach of preventive gene therapy for stroke. Adenoviral vectors carrying genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF) and neural cell adhesion molecule (NCAM) or gene engineered umbilical cord blood mononuclear cells (UCB-MC) overexpressing recombinant VEGF, GDNF, and NCAM were intrathecally injected before distal occlusion of the middle cerebral artery in rats. Post-ischemic brain recovery was investigated 21 days after stroke modelling. Morphometric and immunofluorescent analysis revealed a reduction of infarction volume accompanied with a lower number of apoptotic cells and decreased expression of Hsp70 in the peri-infarct region in gene-treated animals. The lower immunopositive areas for astrocytes and microglial cells markers, higher number of oligodendrocytes and increased expression of synaptic proteins suggest the inhibition of astrogliosis, supporting the corresponding myelination and functional recovery of neurons in animals receiving preventive gene therapy. In this study, for the first time, we provide evidence of the beneficial effects of preventive triple gene therapy by an adenoviral- or UCB-MC-mediated intrathecal simultaneous delivery combination of vegf165, gdnf, and ncam1 on the preservation and recovery of the brain in rats with subsequent modelling of stroke.
Collapse
Affiliation(s)
- Vage Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Zufar Safiullov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Andrei Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Filip Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Mikhail Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Maksim Kuznetsov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Dmitry Trofimov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Evgeny Kim
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Grayr Kundakchyan
- Institute of Fundamental Medicine and Biology, Kazan [Volga Region] Federal University, 420008 Kazan, Russia; (G.K.); (I.S.)
| | - Airat Gibadullin
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Ilnur Salafutdinov
- Institute of Fundamental Medicine and Biology, Kazan [Volga Region] Federal University, 420008 Kazan, Russia; (G.K.); (I.S.)
| | - Leniz Nurullin
- Kazan Institute of Biochemistry and Biophysics, Federal Research Center of Kazan Scientific Center of Russian Academy of Sciences, 119991 Kazan, Russia;
| | - Farid Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
| | - Rustem Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, 420012 Kazan, Russia; (V.M.); (Z.S.); (A.I.); (F.F.); (M.S.); (M.K.); (D.T.); (E.K.); (A.G.); (F.B.)
- Correspondence:
| |
Collapse
|
9
|
Yang L, Han B, Zhang Z, Wang S, Bai Y, Zhang Y, Tang Y, Du L, Xu L, Wu F, Zuo L, Chen X, Lin Y, Liu K, Ye Q, Chen B, Li B, Tang T, Wang Y, Shen L, Wang G, Ju M, Yuan M, Jiang W, Zhang JH, Hu G, Wang J, Yao H. Extracellular Vesicle-Mediated Delivery of Circular RNA SCMH1 Promotes Functional Recovery in Rodent and Nonhuman Primate Ischemic Stroke Models. Circulation 2020; 142:556-574. [PMID: 32441115 DOI: 10.1161/circulationaha.120.045765] [Citation(s) in RCA: 209] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
BACKGROUND Stroke is a leading cause of adult disability that can severely compromise the quality of life of patients, yet no effective medication currently exists to accelerate rehabilitation. A variety of circular RNA (circRNA) molecules are known to function in ischemic brain injury. Lentivirus-based expression systems have been widely used in basic studies of circRNAs, but safety issues with such delivery systems have limited exploration of the potential therapeutic roles for circRNAs. METHODS Circular RNA SCMH1 (circSCMH1) was screened from the plasma of patients with acute ischemic stroke by using circRNA microarrays. Engineered rabies virus glycoprotein-circSCMH1-extracellular vesicles were generated to selectively deliver circSCMH1 to the brain. Nissl staining was used to examine infarct size. Behavioral tasks were performed to evaluate motor functions in both rodent and nonhuman primate ischemic stroke models. Golgi staining and immunostaining were used to examine neuroplasticity and glial activation. Proteomic assays and RNA-sequencing data combined with transcriptional profiling were used to identify downstream targets of circSCMH1. RESULTS CircSCMH1 levels were significantly decreased in the plasma of patients with acute ischemic stroke, offering significant power in predicting stroke outcomes. The decreased levels of circSCMH1 were further confirmed in the plasma and peri-infarct cortex of photothrombotic stroke mice. Beyond demonstrating proof-of-concept for an RNA drug delivery technology, we observed that circSCMH1 treatment improved functional recovery after stroke in both mice and monkeys, and we discovered that circSCMH1 enhanced the neuronal plasticity and inhibited glial activation and peripheral immune cell infiltration. CircSCMH1 binds mechanistically to the transcription factor MeCP2 (methyl-CpG binding protein 2), thereby releasing repression of MeCP2 target gene transcription. CONCLUSIONS Rabies virus glycoprotein-circSCMH1-extracellular vesicles afford protection by promoting functional recovery in the rodent and the nonhuman primate ischemic stroke models. Our study presents a potentially widely applicable nucleotide drug delivery technology and demonstrates the basic mechanism of how circRNAs can be therapeutically exploited to improve poststroke outcomes.
Collapse
Affiliation(s)
- Li Yang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Bing Han
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Zhiting Zhang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Institutes of Physical Science and Information Technology, Anhui University, Hefei, China (Z.Z., K.L.).,State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (Z.Z.)
| | - Shuguo Wang
- Department of Neurosurgery, First Affiliation Hospital of Kunming Medical University, Kunming, China (S.W.)
| | - Ying Bai
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Yuan Zhang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Ying Tang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Lingli Du
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Ling Xu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Fangfang Wu
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Lei Zuo
- Department of Neurology of Affiliated ZhongDa Hospital, Institute of Neuropsychiatry of Southeast University (L.Z.), Southeast University, Nanjing, China
| | - Xufeng Chen
- Emergency Department, Jiangsu Province Hospital and Nanjing Medical University First Affiliated Hospital, Nanjing, China (X.C.)
| | - Yu Lin
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Kezhong Liu
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Qingqing Ye
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Biling Chen
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Bin Li
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Tianci Tang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Yu Wang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Ling Shen
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Guangtian Wang
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Minzi Ju
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China
| | - Mengqin Yuan
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China (M.Y., W.J.)
| | - Wei Jiang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, China (M.Y., W.J.)
| | - John H Zhang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, China (Z.Z., K.L.).,Department of Physiology, School of Medicine, Loma Linda University, Loma Linda, CA (J.H.Z.)
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China (G.H.)
| | - Jianhong Wang
- National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility) (Z.Z., L.D., L.X., Y.L., K.L., J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,National Resource Center for Non-Human Primates (Kunming Primate Research Center) (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Science & Yunnan Province, (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China.,KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases (J.W.), Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Honghong Yao
- Department of Pharmacology, School of Medicine (L.Y., B.H., Y.B., Y.Z., Y.T., F.W., Q.Y., B.C., B.L., T.T., Y.W., L.S., G.W., M.J., H.Y.), Southeast University, Nanjing, China.,Institute of Life Sciences, Key Laboratory of Developmental Genes and Human Disease (H.Y.), Southeast University, Nanjing, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China (H.Y.)
| |
Collapse
|
10
|
Arteaga Cabeza O, Mikrogeorgiou A, Kannan S, Ferriero DM. Advanced nanotherapies to promote neuroregeneration in the injured newborn brain. Adv Drug Deliv Rev 2019; 148:19-37. [PMID: 31678359 DOI: 10.1016/j.addr.2019.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/19/2019] [Accepted: 10/23/2019] [Indexed: 12/16/2022]
Abstract
Neonatal brain injury affects thousands of babies each year and may lead to long-term and permanent physical and neurological problems. Currently, therapeutic hypothermia is standard clinical care for term newborns with moderate to severe neonatal encephalopathy. Nevertheless, it is not completely protective, and additional strategies to restore and promote regeneration are urgently needed. One way to ensure recovery following injury to the immature brain is to augment endogenous regenerative pathways. However, novel strategies such as stem cell therapy, gene therapies and nanotechnology have not been adequately explored in this unique age group. In this perspective review, we describe current efforts that promote neuroprotection and potential targets that are unique to the developing brain, which can be leveraged to facilitate neuroregeneration.
Collapse
|
11
|
Hudry E, Andres-Mateos E, Lerner EP, Volak A, Cohen O, Hyman BT, Maguire CA, Vandenberghe LH. Efficient Gene Transfer to the Central Nervous System by Single-Stranded Anc80L65. Mol Ther Methods Clin Dev 2018; 10:197-209. [PMID: 30109242 PMCID: PMC6083902 DOI: 10.1016/j.omtm.2018.07.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 07/10/2018] [Indexed: 12/27/2022]
Abstract
Adeno-associated viral vectors (AAVs) have demonstrated potential in applications for neurologic disorders, and the discovery that some AAVs can cross the blood-brain barrier (BBB) after intravenous injection has further expanded these opportunities for non-invasive brain delivery. Anc80L65, a novel AAV capsid designed from in silico reconstruction of the viral evolutionary lineage, has previously demonstrated robust transduction capabilities after local delivery in various tissues such as liver, retina, or cochlea, compared with conventional AAVs. Here, we compared the transduction efficacy of Anc80L65 with conventional AAV9 in the CNS after intravenous, intracerebroventricular (i.c.v.), or intraparenchymal injections. Anc80L65 was more potent at targeting the brain and spinal cord after intravenous injection than AAV9, and mostly transduced astrocytes and a wide range of neuronal subpopulations. Although the efficacy of Anc80L65 and AAV9 is similar after direct intraparenchymal injection in the striatum, Anc80L65's diffusion throughout the CNS was more extensive than AAV9 after i.c.v. infusion, leading to widespread EGFP expression in the cerebellum. These findings demonstrate that Anc80L65 is a highly efficient gene transfer vector for the murine CNS. Systemic injection of Anc80L65 leads to notable expression in the CNS that does not rely on a self-complementary genome. These data warrant further testing in larger animal models.
Collapse
Affiliation(s)
- Eloise Hudry
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Eva Andres-Mateos
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Eli P. Lerner
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Adrienn Volak
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Olivia Cohen
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Bradley T. Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA
| | - Casey A. Maguire
- Department of Neurology, The Massachusetts General Hospital and NeuroDiscovery Center, Harvard Medical School, Boston, MA 02114, USA
| | - Luk H. Vandenberghe
- Grousbeck Gene Therapy Center, Schepens Eye Research Institute and Massachusetts Eye and Ear Infirmary, Boston, MA 02114, USA
- Ocular Genomics Institute, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
- The Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| |
Collapse
|
12
|
Electrical Impedance Changes at Different Phases of Cerebral Edema in Rats with Ischemic Brain Injury. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9765174. [PMID: 29967792 PMCID: PMC6009021 DOI: 10.1155/2018/9765174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 04/16/2018] [Accepted: 04/22/2018] [Indexed: 11/28/2022]
Abstract
Cerebral edema contributes significantly to the morbidity and mortality associated with many common neurologic conditions. Clinically, a diagnostic tool that can be used to monitor cerebral edema in real-time and differentiate between different types of cerebral edema is urgently needed. Because there are differences in electrical impedance between normal cortical tissue and cerebral edema tissue, electrical impedance tomography (EIT) can potentially be used to detect cerebral edema. Accurate recording of the electrical impedance properties of cerebral edema tissue at different time points is important when detecting cerebral edema with EIT. In this study, a rat cerebral edema model was established; then, following the onset of ischemic brain injury, variation in the electrical impedance of cerebral edema was measured at different time points within a 24-hour period and the corresponding morphologic variation was analyzed. After the first six hours, following the onset of ischemic brain injury, the resistivity of brain tissue increased (p < 0.05); during this period, brain cell volume increased (p < 0.05) and the intercellular space decreased (p < 0.05) (behaving like cytotoxic cerebral edema). From 6 to 24 hours, the resistivity of brain tissue decreased; during this time, brain cell volume unchanged (p > 0.05) while intercellular space increased (p < 0.05) (behaving like vasogenic cerebral edema). These findings support the notion that EIT can be used to monitor the development of cerebral edema in real-time and differentiate between different types of brain edema.
Collapse
|
13
|
Sokolov ME, Bashirov FV, Markosyan VA, Povysheva TV, Fadeev FO, Izmailov AA, Kuztetsov MS, Safiullov ZZ, Shmarov MM, Naroditskyi BS, Palotás A, Islamov RR. Triple-Gene Therapy for Stroke: A Proof-of-Concept in Vivo Study in Rats. Front Pharmacol 2018; 9:111. [PMID: 29497380 PMCID: PMC5818439 DOI: 10.3389/fphar.2018.00111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
Natural brain repair after stroke is extremely limited, and current therapeutic options are even more scarce with no clinical break-through in sight. Despite restricted regeneration in the central nervous system, we have previously proved that human umbilical cord blood mono-nuclear cells (UCB-MC) transduced with adenoviral vectors carrying genes encoding vascular endothelial growth factor (VEGF), glial cell-derived neurotrophic factor (GDNF), and neural cell adhesion molecule (NCAM) successfully rescued neurons in amyotrophic lateral sclerosis and spinal cord injury. This proof-of-principle project was aimed at evaluating the beneficial effects of the same triple-gene approach in stroke. Rats subjected to distal occlusion of the middle cerebral artery were treated intrathecally with a combination of these genes either directly or using our cell-based (UCB-MC) approach. Various techniques and markers were employed to evaluate brain injury and subsequent recovery after treatment. Brain repair was most prominent when therapeutic genes were delivered via adenoviral vector- or UCB-MC-mediated approach. Remodeling of brain cortex in the stroke area was confirmed by reduction of infarct volume and attenuated neural cell death, depletion of astrocytes and microglial cells, and increase in the number of oligodendroglial cells and synaptic proteins expression. These results imply that intrathecal injection of genetically engineered UCB-MC over-expressing therapeutic molecules (VEGF, GDNF, and NCAM) following cerebral blood vessel occlusion might represent a novel avenue for future research into treating stroke.
Collapse
Affiliation(s)
- Mikhail E Sokolov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Farid V Bashirov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Vage A Markosyan
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Tatyana V Povysheva
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Filip O Fadeev
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Andrey A Izmailov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Maxim S Kuztetsov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Zufar Z Safiullov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia
| | - Maxim M Shmarov
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - Boris S Naroditskyi
- Gamaleya Research Institute of Epidemiology and Microbiology, Moscow, Russia
| | - András Palotás
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Asklepios-Med (Private Medical Practice and Research Center), Szeged, Hungary
| | - Rustem R Islamov
- Department of Medical Biology and Genetics, Kazan State Medical University, Kazan, Russia.,Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia.,Kazan Institute of Biochemistry and Biophysics, Russian Academy of Sciences, Kazan, Russia
| |
Collapse
|
14
|
Wu Y, Wang X, Zhou X, Cheng B, Li G, Bai B. Temporal Expression of Apelin/Apelin Receptor in Ischemic Stroke and its Therapeutic Potential. Front Mol Neurosci 2017; 10:1. [PMID: 28167898 PMCID: PMC5253351 DOI: 10.3389/fnmol.2017.00001] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 01/04/2017] [Indexed: 02/03/2023] Open
Abstract
Stroke is one of the leading causes of death and disability worldwide, and ischemic stroke accounts for approximately 87% of cases. Improving post-stroke recovery is a major challenge in stroke treatment. Accumulated evidence indicates that the apelinergic system, consisting of apelin and apelin receptor (APLNR), is temporally dysregulated in ischemic stroke. Moreover, the apelinergic system plays a pivotal role in post-stroke recovery by inhibiting neuronal apoptosis and facilitating angiogenesis through various molecular pathways. In this review article, we summarize the temporal expression of apelin and APLNR in ischemic stroke and the mechanisms of their dysregulation. In addition, the protective role of the apelinergic system in ischemic stroke and the underlying mechanisms of its protective effects are discussed. Furthermore, critical issues in activating the apelinergic system as a potential therapy will also be discussed. The aim of this review article is to shed light on exploiting the activation of the apelinergic system to treat ischemic stroke.
Collapse
Affiliation(s)
- Yili Wu
- Department of Psychiatry, Jining Medical UniversityJining, China; Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Xin Wang
- Department of Psychiatry, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Xuan Zhou
- Department of Psychiatry, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Baohua Cheng
- Neurobiology Institute, Jining Medical University Jining, China
| | - Gongying Li
- Department of Psychiatry, Jining Medical UniversityJining, China; Shandong Key Laboratory of Behavioral Medicine, Jining Medical UniversityJining, China
| | - Bo Bai
- Collaborative Innovation Center for Birth Defect Research and Transformation of Shandong Province, Jining Medical University Jining, China
| |
Collapse
|
15
|
Dashkoff J, Lerner EP, Truong N, Klickstein JA, Fan Z, Mu D, Maguire CA, Hyman BT, Hudry E. Tailored transgene expression to specific cell types in the central nervous system after peripheral injection with AAV9. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2016; 3:16081. [PMID: 27933308 PMCID: PMC5142512 DOI: 10.1038/mtm.2016.81] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 10/22/2016] [Accepted: 10/24/2016] [Indexed: 01/06/2023]
Abstract
The capacity of certain adeno-associated virus (AAV) vectors to cross the blood–brain barrier after intravenous delivery offers a unique opportunity for noninvasive brain delivery. However, without a well-tailored system, the use of a peripheral route injection may lead to undesirable transgene expression in nontarget cells or organs. To refine this approach, the present study characterizes the transduction profiles of new self-complementary AAV9 (scAAV9) expressing the green fluorescent protein (GFP) either under an astrocyte (glial fibrillary acidic (GFA) protein) or neuronal (Synapsin (Syn)) promoter, after intravenous injection of adult mice (2 × 1013 vg/kg). ScAAV9-GFA-GFP and scAAV9-Syn-GFP robustly transduce astrocytes (11%) and neurons (17%), respectively, without aberrant expression leakage. Interestingly, while the percentages of GFP-positive astrocytes with scAAV9-GFA-GFP are similar to the performances observed with scAAV9-CBA-GFP (broadly active promoter), significant higher percentages of neurons express GFP with scAAV9-Syn-GFP. GFP-positive excitatory as well as inhibitory neurons are observed, as well as motor neurons in the spinal cord. Additionally, both activated (GFAP-positive) and resting astrocytes (GFAP-negative) express the reporter gene after scAAV9-GFA-GFP injection. These data thoroughly characterize the gene expression specificity of AAVs fitted with neuronal and astrocyte-selective promoters after intravenous delivery, which will prove useful for central nervous system (CNS) gene therapy approaches in which peripheral expression of transgene is a concern.
Collapse
Affiliation(s)
- Jonathan Dashkoff
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, Massachusetts, USA; MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School, Charlestown, Massachusetts, USA
| | - Eli P Lerner
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Nhi Truong
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Jacob A Klickstein
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Zhanyun Fan
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Dakai Mu
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Casey A Maguire
- Department of Neurology, The Massachusetts General Hospital, and NeuroDiscovery Center, Harvard Medical School , Boston, Massachusetts, USA
| | - Bradley T Hyman
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| | - Eloise Hudry
- MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital and Harvard Medical School , Charlestown, Massachusetts, USA
| |
Collapse
|