1
|
Lai W, Zhao Y, Chen Y, Dai Z, Chen R, Niu Y, Chen X, Chen S, Huang G, Shan Z, Zheng J, Hu Y, Chen Q, Gong S, Kang S, Guo H, Ma X, Song Y, Xia K, Wang J, Zhou L, So KF, Wang K, Qiu S, Zhang L, Chen J, Shi L. Autism patient-derived SHANK2B Y29X mutation affects the development of ALDH1A1 negative dopamine neuron. Mol Psychiatry 2024; 29:3180-3194. [PMID: 38704506 PMCID: PMC11449796 DOI: 10.1038/s41380-024-02578-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/06/2024]
Abstract
Autism spectrum disorder (ASD) encompasses a range of neurodevelopmental conditions. Different mutations on a single ASD gene contribute to heterogeneity of disease phenotypes, possibly due to functional diversity of generated isoforms. SHANK2, a causative gene in ASD, demonstrates this phenomenon, but there is a scarcity of tools for studying endogenous SHANK2 proteins in an isoform-specific manner. Here, we report a point mutation on SHANK2, which is found in a patient with autism, located on exon of the SHANK2B transcript variant (NM_133266.5), hereby SHANK2BY29X. This mutation results in an early stop codon and an aberrant splicing event that impacts SHANK2 transcript variants distinctly. Induced pluripotent stem cells (iPSCs) carrying this mutation, from the patient or isogenic editing, fail to differentiate into functional dopamine (DA) neurons, which can be rescued by genetic correction. Available SMART-Seq single-cell data from human midbrain reveals the abundance of SHANK2B transcript in the ALDH1A1 negative DA neurons. We then show that SHANK2BY29X mutation primarily affects SHANK2B expression and ALDH1A1 negative DA neurons in vitro during early neuronal developmental stage. Mice knocked in with the identical mutation exhibit autistic-like behavior, decreased occupancy of ALDH1A1 negative DA neurons and decreased dopamine release in ventral tegmental area (VTA). Our study provides novel insights on a SHANK2 mutation derived from autism patient and highlights SHANK2B significance in ALDH1A1 negative DA neuron.
Collapse
Affiliation(s)
- Wanjing Lai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yingying Zhao
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yalan Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Zhenzhu Dai
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ruhai Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yimei Niu
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Xiaoxia Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Shuting Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Guanqun Huang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Ziyun Shan
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiajun Zheng
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Yu Hu
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Qingpei Chen
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Siyi Gong
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Sai Kang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Hui Guo
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Xiaokuang Ma
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Youqiang Song
- School of Biomedical Sciences, University of Hong Kong, Hong Kong SAR, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, 410008, China
| | - Jie Wang
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Libing Zhou
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kwok-Fai So
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China
| | - Kai Wang
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
| | - Shenfeng Qiu
- Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, 850004, USA
| | - Li Zhang
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
| | - Jiekai Chen
- Center for Cell Lineage and Development, CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Joint School of Life Sciences, Guangzhou Medical University, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Centre for Regenerative Medicine and Health, Hong Kong Institute of Science & Innovation, Chinese Academy of Sciences, Hong Kong SAR, 999077, China.
| | - Lingling Shi
- Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangdong Key Laboratory of Non-human Primate Research, Guangzhou, 510632, China.
- Department of Psychiatry, the First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, 510632, China.
- Co-innovation Center of Neuro-regeneration, Nantong University, Nantong, Jiangsu, 226019, China.
- Department of Neurology, Hainan General Hospital (Hainan Affiliated Hospital of Hainan Medical University), Haikou, China.
| |
Collapse
|
2
|
Ding C, Zhou W, Shi Y, Shan S, Yuan Y, Zhang Y, Li F, Qiu Z. Srcap haploinsufficiency induced autistic-like behaviors in mice through disruption of Satb2 expression. Cell Rep 2024; 43:114231. [PMID: 38733588 DOI: 10.1016/j.celrep.2024.114231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/05/2024] [Accepted: 04/26/2024] [Indexed: 05/13/2024] Open
Abstract
Mutations in the SRCAP gene are among the genetic alterations identified in autism spectrum disorders (ASD). However, the pathogenic mechanisms remain unclear. In this study, we demonstrate that Srcap+/- mice manifest deficits in social novelty response, as well as increased repetitive behaviors, anxiety, and impairments in learning and memory. Notably, a reduction in parvalbumin-positive neurons is observed in the retrosplenial cortex (RSC) and dentate gyrus (DG) of these mice. Through RNA sequencing, we identify dysregulation in 27 ASD-related genes in Srcap+/- mice. Specifically, we find that Srcap regulates expression of Satb2 via H2A.z in the promoter. Therapeutic intervention via retro-orbital injection of adeno-associated virus (AAV)-Satb2 in neonatal Srcap+/- mice leads to amelioration of the neurodevelopmental and ASD-like abnormalities. Furthermore, the expression of Satb2 only in the RSC of adolescent mice rectifies social novelty impairments. These results underscore the pivotal role of Srcap in neurodevelopment, by regulating Satb2, providing valuable insights for the pathophysiology of ASD.
Collapse
Affiliation(s)
- Chaodong Ding
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Wei Zhou
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuhan Shi
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shifang Shan
- Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yiting Yuan
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuefang Zhang
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fei Li
- MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Developmental and Behavioral Pediatric & Child Primary Care, Brain and Behavioral Research Unit of Shanghai Institute for Pediatric Research, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zilong Qiu
- Songjiang Research Institute, Songjiang Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China; Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China; MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Woelfle S, Pedro MT, Wagner J, Schön M, Boeckers TM. Expression profiles of the autism-related SHANK proteins in the human brain. BMC Biol 2023; 21:254. [PMID: 37953224 PMCID: PMC10641957 DOI: 10.1186/s12915-023-01712-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 09/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND SHANKs are major scaffolding proteins at postsynaptic densities (PSDs) in the central nervous system. Mutations in all three family members have been associated with neurodevelopmental disorders such as autism spectrum disorders (ASDs). Despite the pathophysiological importance of SHANK2 and SHANK3 mutations in humans, research on the expression of these proteins is mostly based on rodent model organisms. RESULTS In the present study, cellular and neuropil SHANK2 expression was analyzed by immunofluorescence (IF) staining of post mortem human brain tissue from four male individuals (19 brain regions). Mouse brains were analyzed in comparison to evaluate the degree of phylogenetic conservation. Furthermore, SHANK2 and SHANK3 isoform patterns were compared in human and mouse brain lysates. While isoform expression and subcellular distribution were largely conserved, differences in neuropil levels of SHANK2 were found by IF staining: Maximum expression was concordantly measured in the cerebellum; however, higher SHANK2 expression was detected in the human brainstem and thalamus when compared to mice. One of the lowest SHANK2 levels was found in the human amygdala, a moderately expressing region in mouse. Quantification of SHANK3 IF in mouse brains unveiled a distribution comparable to humans. CONCLUSIONS In summary, these data show that the overall expression pattern of SHANK is largely conserved in defined brain regions; however, differences do exist, which need to be considered in the translation of rodent studies. The summarized expression patterns of SHANK2 and SHANK3 should serve as a reference for future studies.
Collapse
Affiliation(s)
- Sarah Woelfle
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Maria T Pedro
- Department of Neurosurgery, Ulm University, Campus Günzburg, Lindenallee 2, 89312, Günzburg, Germany
| | - Jan Wagner
- Department of Neurology, Ulm University and Universitäts- and Rehabilitationskliniken Ulm, 89081, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany.
- Deutsches Zentrum Für Neurodegenerative Erkrankungen, DZNE, Ulm Site, 89081, Ulm, Germany.
| |
Collapse
|
4
|
Pagano J, Landi S, Stefanoni A, Nardi G, Albanesi M, Bauer HF, Pracucci E, Schön M, Ratto GM, Boeckers TM, Sala C, Verpelli C. Shank3 deletion in PV neurons is associated with abnormal behaviors and neuronal functions that are rescued by increasing GABAergic signaling. Mol Autism 2023; 14:28. [PMID: 37528484 PMCID: PMC10394945 DOI: 10.1186/s13229-023-00557-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 06/27/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND Phelan-McDermid syndrome (PMS) is a neurodevelopmental disorder characterized by developmental delay, intellectual disability, and autistic-like behaviors and is primarily caused by haploinsufficiency of SHANK3 gene. Currently, there is no specific treatment for PMS, highlighting the need for a better understanding of SHANK3 functions and the underlying pathophysiological mechanisms in the brain. We hypothesize that SHANK3 haploinsufficiency may lead to alterations in the inhibitory system, which could be linked to the excitatory/inhibitory imbalance observed in models of autism spectrum disorder (ASD). Investigation of these neuropathological features may shed light on the pathogenesis of PMS and potential therapeutic interventions. METHODS We recorded local field potentials and visual evoked responses in the visual cortex of Shank3∆11-/- mice. Then, to understand the impact of Shank3 in inhibitory neurons, we generated Pv-cre+/- Shank3Fl/Wt conditional mice, in which Shank3 was deleted in parvalbumin-positive neurons. We characterized the phenotype of this murine model and we compared this phenotype before and after ganaxolone administration. RESULTS We found, in the primary visual cortex, an alteration of the gain control of Shank3 KO compared with Wt mice, indicating a deficit of inhibition on pyramidal neurons. This alteration was rescued after the potentiation of GABAA receptor activity by Midazolam. Behavioral analysis showed an impairment in grooming, memory, and motor coordination of Pv-cre+/- Shank3Fl/Wt compared with Pv-cre+/- Shank3Wt/Wt mice. These deficits were rescued with ganaxolone, a positive modulator of GABAA receptors. Furthermore, we demonstrated that treatment with ganaxolone also ameliorated evocative memory deficits and repetitive behavior of Shank3 KO mice. LIMITATIONS Despite the significant findings of our study, some limitations remain. Firstly, the neurobiological mechanisms underlying the link between Shank3 deletion in PV neurons and behavioral alterations need further investigation. Additionally, the impact of Shank3 on other classes of inhibitory neurons requires further exploration. Finally, the pharmacological activity of ganaxolone needs further characterization to improve our understanding of its potential therapeutic effects. CONCLUSIONS Our study provides evidence that Shank3 deletion leads to an alteration in inhibitory feedback on cortical pyramidal neurons, resulting in cortical hyperexcitability and ASD-like behavioral problems. Specifically, cell type-specific deletion of Shank3 in PV neurons was associated with these behavioral deficits. Our findings suggest that ganaxolone may be a potential pharmacological approach for treating PMS, as it was able to rescue the behavioral deficits in Shank3 KO mice. Overall, our study highlights the importance of investigating the role of inhibitory neurons and potential therapeutic interventions in neurodevelopmental disorders such as PMS.
Collapse
Affiliation(s)
- Jessica Pagano
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Silvia Landi
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Alessia Stefanoni
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Gabriele Nardi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Marica Albanesi
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Helen F Bauer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Enrico Pracucci
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
| | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Gian Michele Ratto
- CNR, Neuroscience Institute, Pisa, Italy
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, Italy
- Padova Neuroscience Center, Università degli Studi di Padova, Padua, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
- DZNE, Ulm Site, Ulm, Germany
| | - Carlo Sala
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy
| | - Chiara Verpelli
- CNR, Neuroscience Institute, Via Follereau 3, 20854, Vedano al Lambro, Milan, Italy.
| |
Collapse
|
5
|
Okuzono S, Fujii F, Matsushita Y, Setoyama D, Shinmyo Y, Taira R, Yonemoto K, Akamine S, Motomura Y, Sanefuji M, Sakurai T, Kawasaki H, Han K, Kato TA, Torisu H, Kang D, Nakabeppu Y, Sakai Y, Ohga S. Shank3a/b isoforms regulate the susceptibility to seizures and thalamocortical development in the early postnatal period of mice. Neurosci Res 2023:S0168-0102(23)00051-2. [PMID: 36871873 DOI: 10.1016/j.neures.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 02/19/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023]
Abstract
Epileptic seizures are distinct but frequent comorbidities in children with autism spectrum disorder (ASD). The hyperexcitability of cortical and subcortical neurons appears to be involved in both phenotypes. However, little information is available concerning which genes are involved and how they regulate the excitability of the thalamocortical network. In this study, we investigate whether an ASD-associated gene, SH3 and multiple ankyrin repeat domains 3 (Shank3), plays a unique role in the postnatal development of thalamocortical neurons. We herein report that Shank3a/b, the splicing isoforms of mouse Shank3, were uniquely expressed in the thalamic nuclei, peaking from two to four weeks after birth. Shank3a/b-knockout mice showed lower parvalbumin signals in the thalamic nuclei. Consistently, Shank3a/b-knockout mice were more susceptible to generalized seizures than wild-type mice after kainic acid treatments. Together, these data indicate that NT-Ank domain of Shank3a/b regulates molecular pathways that protect thalamocortical neurons from hyperexcitability during the early postnatal period of mice.
Collapse
Affiliation(s)
- Sayaka Okuzono
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Fumihiko Fujii
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yuki Matsushita
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Daiki Setoyama
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yohei Shinmyo
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Ryoji Taira
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Kousuke Yonemoto
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Satoshi Akamine
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshitomo Motomura
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Masafumi Sanefuji
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Takeshi Sakurai
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan
| | - Hiroshi Kawasaki
- Department of Medical Neuroscience, Graduate School of Medical Sciences, Kanazawa University, Kanazawa 920-8640, Japan
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul 02841, Republic of Korea
| | - Takahiro A Kato
- Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Hiroyuki Torisu
- Section of Pediatrics, Department of Medicine, Fukuoka Dental College, Fukuoka 814-0193, Japan
| | - Dongchon Kang
- Department of Clinical Chemistry and Laboratory Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Yusaku Nakabeppu
- Division of Neurofunctional Genomics, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Yasunari Sakai
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan.
| | - Shouichi Ohga
- Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| |
Collapse
|
6
|
Wang Y, Liu C, Deng J, Xu Q, Lin J, Li H, Hu M, Hu C, Li Q, Xu X. Behavioral and Sensory Deficits Associated with Dysfunction of GABAergic System in a Novel shank2-Deficient Zebrafish Model. Int J Mol Sci 2023; 24:2208. [PMID: 36768529 PMCID: PMC9916955 DOI: 10.3390/ijms24032208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 01/24/2023] Open
Abstract
Hyper-reactivity to sensory inputs is a common and debilitating symptom of autism spectrum disorder (ASD), but the underlying neural abnormalities remain unclear. Two of three patients in our clinical cohort screen harboring de novo SHANK2 mutations also exhibited high sensitivity to visual, auditory, and tactile stimuli, so we examined whether shank2 deficiencies contribute to sensory abnormalities and other ASD-like phenotypes by generating a stable shank2b-deficient zebrafish model (shank2b-/-). The adult shank2b-/- zebrafish demonstrated reduced social preference and kin preference as well as enhanced behavioral stereotypy, while larvae exhibited hyper-sensitivity to auditory noise and abnormal hyperactivity during dark-to-light transitions. This model thus recapitulated the core developmental and behavioral phenotypes of many previous genetic ASD models. Expression levels of γ-aminobutyric acid (GABA) receptor subunit mRNAs and proteins were also reduced in shank2b-/- zebrafish, and these animals exhibited greater sensitivity to drug-induced seizures. Our results suggest that GABAergic dysfunction is a major contributor to the sensory hyper-reactivity in ASD, and they underscore the need for interventions that target sensory-processing disruptions during early neural development to prevent disease progression.
Collapse
Affiliation(s)
- Yi Wang
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Chunxue Liu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Jingxin Deng
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Qiong Xu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Jia Lin
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hopstial of Fudan University, National Children’s Medical Center, 399 Wangyuan Road, Shanghai 201102, China
| | - Huiping Li
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Meixin Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Chunchun Hu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| | - Qiang Li
- Center for Translational Medicine, Institute of Pediatrics, Shanghai Key Laboratory of Birth Defect, Children’s Hopstial of Fudan University, National Children’s Medical Center, 399 Wangyuan Road, Shanghai 201102, China
| | - Xiu Xu
- Division of Child Health Care, Children’s Hospital of Fudan University, National Children’s Medical Center, 399 Wanyuan Road, Shanghai 201102, China
| |
Collapse
|
7
|
Kang M, Zhang Y, Kang HR, Kim S, Ma R, Yi Y, Lee S, Kim Y, Li H, Jin C, Lee D, Kim E, Han K. CYFIP2 p.Arg87Cys Causes Neurological Defects and Degradation of CYFIP2. Ann Neurol 2023; 93:155-163. [PMID: 36251395 DOI: 10.1002/ana.26535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 02/05/2023]
Abstract
Here, we report the generation and comprehensive characterization of a knockin mouse model for the hotspot p.Arg87Cys variant of the cytoplasmic FMR1-interacting protein 2 (CYFIP2) gene, which was recently identified in individuals diagnosed with West syndrome, a developmental and epileptic encephalopathy. The Cyfip2+/R87C mice recapitulated many neurological and neurobehavioral phenotypes of the patients, including spasmlike movements, microcephaly, and impaired social communication. Age-progressive cytoarchitectural disorganization and gliosis were also identified in the hippocampus of Cyfip2+/R87C mice. Beyond identifying a decrease in CYFIP2 protein levels in the Cyfip2+/R87C brains, we demonstrated that the p.Arg87Cys variant enhances ubiquitination and proteasomal degradation of CYFIP2. ANN NEUROL 2023;93:155-163.
Collapse
Affiliation(s)
- Muwon Kang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yinhua Zhang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Hyae Rim Kang
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Seoyeong Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Ruiying Ma
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Yunho Yi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Seungjoon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Yoonhee Kim
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea
| | - Huiling Li
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Chunmei Jin
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dongmin Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Anatomy, Korea University College of Medicine, Seoul, Republic of Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, Republic of Korea
| | - Kihoon Han
- Department of Neuroscience, Korea University College of Medicine, Seoul, Republic of Korea.,Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
8
|
Michetti C, Falace A, Benfenati F, Fassio A. Synaptic genes and neurodevelopmental disorders: From molecular mechanisms to developmental strategies of behavioral testing. Neurobiol Dis 2022; 173:105856. [PMID: 36070836 DOI: 10.1016/j.nbd.2022.105856] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 10/14/2022] Open
Abstract
Synaptopathies are a class of neurodevelopmental disorders caused by modification in genes coding for synaptic proteins. These proteins oversee the process of neurotransmission, mainly controlling the fusion and recycling of synaptic vesicles at the presynaptic terminal, the expression and localization of receptors at the postsynapse and the coupling between the pre- and the postsynaptic compartments. Murine models, with homozygous or heterozygous deletion for several synaptic genes or knock-in for specific pathogenic mutations, have been developed. They have proved to be extremely informative for understanding synaptic physiology, as well as for clarifying the patho-mechanisms leading to developmental delay, epilepsy and motor, cognitive and social impairments that are the most common clinical manifestations of neurodevelopmental disorders. However, the onset of these disorders emerges during infancy and adolescence while the behavioral phenotyping is often conducted in adult mice, missing important information about the impact of synaptic development and maturation on the manifestation of the behavioral phenotype. Here, we review the main achievements obtained by behavioral testing in murine models of synaptopathies and propose a battery of behavioral tests to improve classification, diagnosis and efficacy of potential therapeutic treatments. Our aim is to underlie the importance of studying behavioral development and better focusing on disease onset and phenotypes.
Collapse
Affiliation(s)
- Caterina Michetti
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy.
| | - Antonio Falace
- Pediatric Neurology, Neurogenetics and Neurobiology Unit and Laboratories, Children's Hospital A. Meyer-University of Florence, Florence, Italy
| | - Fabio Benfenati
- Center for Synaptic Neuroscience, Istituto Italiano di Tecnologia, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Anna Fassio
- Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy.
| |
Collapse
|
9
|
Yoo YE, Yoo T, Kang H, Kim E. Brain region and gene dosage-differential transcriptomic changes in Shank2-mutant mice. Front Mol Neurosci 2022; 15:977305. [PMID: 36311025 PMCID: PMC9612946 DOI: 10.3389/fnmol.2022.977305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/16/2022] [Indexed: 12/20/2022] Open
Abstract
Shank2 is an abundant excitatory postsynaptic scaffolding protein that has been implicated in various neurodevelopmental and psychiatric disorders, including autism spectrum disorder (ASD), intellectual disability, attention-deficit/hyperactivity disorder, and schizophrenia. Shank2-mutant mice show ASD-like behavioral deficits and altered synaptic and neuronal functions, but little is known about how different brain regions and gene dosages affect the transcriptomic phenotypes of these mice. Here, we performed RNA-Seq-based transcriptomic analyses of the prefrontal cortex, hippocampus, and striatum in adult Shank2 heterozygous (HT)- and homozygous (HM)-mutant mice lacking exons 6–7. The prefrontal cortical, hippocampal, and striatal regions showed distinct transcriptomic patterns associated with synapse, ribosome, mitochondria, spliceosome, and extracellular matrix (ECM). The three brain regions were also distinct in the expression of ASD-related and ASD-risk genes. These differential patterns were stronger in the prefrontal cortex where the HT transcriptome displayed increased synaptic gene expression and reverse-ASD patterns whereas the HM transcriptome showed decreased synaptic gene expression and ASD-like patterns. These results suggest brain region- and gene dosage-differential transcriptomic changes in Shank2-mutant mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, South Korea
- *Correspondence: Eunjoon Kim,
| |
Collapse
|
10
|
SARM1 deletion in parvalbumin neurons is associated with autism-like behaviors in mice. Cell Death Dis 2022; 13:638. [PMID: 35869039 PMCID: PMC9307765 DOI: 10.1038/s41419-022-05083-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Autism spectrum disorder (ASD), a group of neurodevelopmental disorder diseases, is characterized by social deficits, communication difficulties, and repetitive behaviors. Sterile alpha and TIR motif-containing 1 protein (SARM1) is known as an autism-associated protein and is enriched in brain tissue. Moreover, SARM1 knockdown mice exhibit autism-like behaviors. However, its specific mechanism in ASD pathogenesis remains unclear. Here we generated parvalbumin-positive interneurons (PVI)-specific conditional SARM1 knockout (SARM1PV-CKO) mice. SARM1PV-CKO male mice showed autism-like behaviors, such as mild social interaction deficits and repetitive behaviors. Moreover, we found that the expression level of parvalbumin was reduced in SARM1PV-CKO male mice, together with upregulated apoptosis-related proteins and more cleaved-caspase-3-positive PVIs, suggesting that knocking out SARM1 may cause a reduction in the number of PVIs due to apoptosis. Furthermore, the expression of c-fos was shown to increase in SARM1PV-CKO male mice, in combination with upregulation of excitatory postsynaptic proteins such as PSD-95 or neuroligin-1, indicating enhanced excitatory synaptic input in mutant mice. This notion was further supported by the partial rescue of autism-like behavior deficits by the administration of GABA receptor agonists in SARM1PV-CKO male mice. In conclusion, our findings suggest that SARM1 deficiency in PVIs may be involved in the pathogenesis of ASD.
Collapse
|
11
|
Lee E, Lee S, Shin JJ, Choi W, Chung C, Lee S, Kim J, Ha S, Kim R, Yoo T, Yoo YE, Kim J, Noh YW, Rhim I, Lee SY, Kim W, Lee T, Shin H, Cho IJ, Deisseroth K, Kim SJ, Park JM, Jung MW, Paik SB, Kim E. Excitatory synapses and gap junctions cooperate to improve Pv neuronal burst firing and cortical social cognition in Shank2-mutant mice. Nat Commun 2021; 12:5116. [PMID: 34433814 PMCID: PMC8387434 DOI: 10.1038/s41467-021-25356-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 08/05/2021] [Indexed: 02/07/2023] Open
Abstract
NMDA receptor (NMDAR) and GABA neuronal dysfunctions are observed in animal models of autism spectrum disorders, but how these dysfunctions impair social cognition and behavior remains unclear. We report here that NMDARs in cortical parvalbumin (Pv)-positive interneurons cooperate with gap junctions to promote high-frequency (>80 Hz) Pv neuronal burst firing and social cognition. Shank2–/– mice, displaying improved sociability upon NMDAR activation, show impaired cortical social representation and inhibitory neuronal burst firing. Cortical Shank2–/– Pv neurons show decreased NMDAR activity, which suppresses the cooperation between NMDARs and gap junctions (GJs) for normal burst firing. Shank2–/– Pv neurons show compensatory increases in GJ activity that are not sufficient for social rescue. However, optogenetic boosting of Pv neuronal bursts, requiring GJs, rescues cortical social cognition in Shank2–/– mice, similar to the NMDAR-dependent social rescue. Therefore, NMDARs and gap junctions cooperate to promote cortical Pv neuronal bursts and social cognition. How NMDAR and GABA neuronal dysfunctions result in impaired social behaviour is unclear. Here, the authors show that NMDARs and gap junctions in cortical PV interneurons modulate burst firing, affecting social behaviour.
Collapse
Affiliation(s)
- Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea.,Department of Anatomy, College of Medicine, Yonsei University, Seoul, Korea
| | - Seungjoon Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Jae Jin Shin
- Department of Brain and Cognitive Science, College of Natural Science, Seoul National University, Seoul, Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Korea
| | - Woochul Choi
- Program of Brain and Cognitive Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea
| | - Changuk Chung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Suho Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Seungmin Ha
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Ryunhee Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Taesun Yoo
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Ye-Eun Yoo
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Jisoo Kim
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Young Woo Noh
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Issac Rhim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Soo Yeon Lee
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Woohyun Kim
- Department of Biological Sciences, KAIST, Daejeon, Korea
| | - Taekyung Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea
| | - Hyogeun Shin
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Il-Joo Cho
- Center for BioMicrosystems, Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Korea
| | - Karl Deisseroth
- Department of Bioengineering, Department of Psychiatry and Behavioral Sciences, Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sang Jeong Kim
- Department of Physiology, College of Medicine, Seoul National University, Seoul, Korea
| | - Joo Min Park
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Korea.
| | - Min Whan Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea. .,Department of Biological Sciences, KAIST, Daejeon, Korea.
| | - Se-Bum Paik
- Program of Brain and Cognitive Engineering, Department of Bio and Brain Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Korea.
| | - Eunjoon Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, Korea. .,Department of Biological Sciences, KAIST, Daejeon, Korea.
| |
Collapse
|
12
|
Lee S, Kang H, Jung H, Kim E, Lee E. Gene Dosage- and Age-Dependent Differential Transcriptomic Changes in the Prefrontal Cortex of Shank2-Mutant Mice. Front Mol Neurosci 2021; 14:683196. [PMID: 34177464 PMCID: PMC8226033 DOI: 10.3389/fnmol.2021.683196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 05/18/2021] [Indexed: 11/20/2022] Open
Abstract
Shank2 is an abundant postsynaptic scaffolding protein that is known to regulate excitatory synapse assembly and synaptic transmission and has been implicated in various neurodevelopmental disorders, including autism spectrum disorders (ASD). Previous studies on Shank2-mutant mice provided mechanistic insights into their autistic-like phenotypes, but it remains unclear how transcriptomic patterns are changed in brain regions of the mutant mice in age- and gene dosage-dependent manners. To this end, we performed RNA-Seq analyses of the transcripts from the prefrontal cortex (PFC) of heterozygous and homozygous Shank2-mutant mice lacking exons 6 and 7 at juvenile (week 3) and adult (week 12) stages. Juvenile heterozygous Shank2-mutant mice showed upregulation of glutamate synapse-related genes, downregulation of ribosomal and mitochondrial genes, and transcriptomic changes that are opposite to those observed in ASD (anti-ASD) such as upregulation of ASD_down (downregulated in ASD), GABA neuron-related, and oligodendrocyte-related genes. Juvenile homozygous Shank2 mice showed upregulation of chromatin-related genes and transcriptomic changes that are in line with those occurring in ASD (pro-ASD) such as downregulation of ASD_down, GABA neuron-related, and oligodendrocyte-related genes. Adult heterozygous and homozygous Shank2-mutant mice both exhibited downregulation of ribosomal and mitochondrial genes and pro-ASD transcriptomic changes. Therefore, the gene dosage- and age-dependent effects of Shank2 deletions in mice include differential transcriptomic changes across distinct functional contexts, including synapses, chromatin, ribosomes, mitochondria, GABA neurons, and oligodendrocytes.
Collapse
Affiliation(s)
- Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, KISTI, Daejeon, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea.,Department of Anatomy, School of Medicine, Yonsei University, Seoul, South Korea
| |
Collapse
|
13
|
Jamadagni P, Breuer M, Schmeisser K, Cardinal T, Kassa B, Parker JA, Pilon N, Samarut E, Patten SA. Chromatin remodeller CHD7 is required for GABAergic neuron development by promoting PAQR3 expression. EMBO Rep 2021; 22:e50958. [PMID: 33900016 PMCID: PMC8183419 DOI: 10.15252/embr.202050958] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 03/07/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Mutations in the chromatin remodeller‐coding gene CHD7 cause CHARGE syndrome (CS). CS features include moderate to severe neurological and behavioural problems, clinically characterized by intellectual disability, attention‐deficit/hyperactivity disorder and autism spectrum disorder. To investigate the poorly characterized neurobiological role of CHD7, we here generate a zebrafish chd7−/− model. chd7−/− mutants have less GABAergic neurons and exhibit a hyperactivity behavioural phenotype. The GABAergic neuron defect is at least in part due to downregulation of the CHD7 direct target gene paqr3b, and subsequent upregulation of MAPK/ERK signalling, which is also dysregulated in CHD7 mutant human cells. Through a phenotype‐based screen in chd7−/− zebrafish and Caenorhabditis elegans, we show that the small molecule ephedrine restores normal levels of MAPK/ERK signalling and improves both GABAergic defects and behavioural anomalies. We conclude that chd7 promotes paqr3b expression and that this is required for normal GABAergic network development. This work provides insight into the neuropathogenesis associated with CHD7 deficiency and identifies a promising compound for further preclinical studies.
Collapse
Affiliation(s)
| | - Maximilian Breuer
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - Kathrin Schmeisser
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada
| | - Tatiana Cardinal
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Betelhem Kassa
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada
| | - J Alex Parker
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Nicolas Pilon
- Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département des sciences biologiques, Université du Québec à Montréal (UQAM), Montréal, QC, Canada.,Département de pédiatrie, Université de Montréal, Montréal, QC, Canada
| | - Eric Samarut
- Centre de recherche du Centre Hospitalier de l'Université de Montréal (CRCHUM), Montréal, QC, Canada.,Modelis inc., Montréal, QC, Canada
| | - Shunmoogum A Patten
- INRS- Centre Armand-Frappier Santé Biotechnologie, Laval, QC, Canada.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, QC, Canada
| |
Collapse
|
14
|
Geisler SM, Benedetti A, Schöpf CL, Schwarzer C, Stefanova N, Schwartz A, Obermair GJ. Phenotypic Characterization and Brain Structure Analysis of Calcium Channel Subunit α 2δ-2 Mutant (Ducky) and α 2δ Double Knockout Mice. Front Synaptic Neurosci 2021; 13:634412. [PMID: 33679366 PMCID: PMC7933509 DOI: 10.3389/fnsyn.2021.634412] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Auxiliary α2δ subunits of voltage-gated calcium channels modulate channel trafficking, current properties, and synapse formation. Three of the four isoforms (α2δ-1, α2δ-2, and α2δ-3) are abundantly expressed in the brain; however, of the available knockout models, only α2δ-2 knockout or mutant mice display an obvious abnormal neurological phenotype. Thus, we hypothesize that the neuronal α2δ isoforms may have partially specific as well as redundant functions. To address this, we generated three distinct α2δ double knockout mouse models by crossbreeding single knockout (α2δ-1 and -3) or mutant (α2δ-2/ducky) mice. Here, we provide a first phenotypic description and brain structure analysis. We found that genotypic distribution of neonatal litters in distinct α2δ-1/-2, α2δ-1/-3, and α2δ-2/-3 breeding combinations did not conform to Mendel's law, suggesting premature lethality of single and double knockout mice. Notably, high occurrences of infant mortality correlated with the absence of specific α2δ isoforms (α2Δ-2 > α2δ-1 > α2δ-3), and was particularly observed in cages with behaviorally abnormal parenting animals of α2δ-2/-3 cross-breedings. Juvenile α2δ-1/-2 and α2δ-2/-3 double knockout mice displayed a waddling gate similar to ducky mice. However, in contrast to ducky and α2δ-1/-3 double knockout animals, α2δ-1/-2 and α2δ-2/-3 double knockout mice showed a more severe disease progression and highly impaired development. The observed phenotypes within the individual mouse lines may be linked to differences in the volume of specific brain regions. Reduced cortical volume in ducky mice, for example, was associated with a progressively decreased space between neurons, suggesting a reduction of total synaptic connections. Taken together, our findings show that α2δ subunits differentially regulate premature survival, postnatal growth, brain development, and behavior, suggesting specific neuronal functions in health and disease.
Collapse
Affiliation(s)
- Stefanie M. Geisler
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Department of Pharmacology and Toxicology, Center for Molecular Biosciences, University of Innsbruck, Innsbruck, Austria
| | - Ariane Benedetti
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Clemens L. Schöpf
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
| | - Christoph Schwarzer
- Department of Pharmacology, Medical University Innsbruck, Innsbruck, Austria
| | - Nadia Stefanova
- Division of Neurobiology, Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Arnold Schwartz
- Department of Pharmacology and Systems Physiology, College of Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Gerald J. Obermair
- Institute of Physiology, Medical University Innsbruck, Innsbruck, Austria
- Division Physiology, Karl Landsteiner University of Health Sciences, Krems an der Donau, Austria
| |
Collapse
|
15
|
Wan L, Liu D, Xiao WB, Zhang BX, Yan XX, Luo ZH, Xiao B. Association of SHANK Family with Neuropsychiatric Disorders: An Update on Genetic and Animal Model Discoveries. Cell Mol Neurobiol 2021; 42:1623-1643. [PMID: 33595806 DOI: 10.1007/s10571-021-01054-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/02/2021] [Indexed: 12/14/2022]
Abstract
The Shank family proteins are enriched at the postsynaptic density (PSD) of excitatory glutamatergic synapses. They serve as synaptic scaffolding proteins and appear to play a critical role in the formation, maintenance and functioning of synapse. Increasing evidence from genetic association and animal model studies indicates a connection of SHANK genes defects with the development of neuropsychiatric disorders. In this review, we first update the current understanding of the SHANK family genes and their encoded protein products. We then denote the literature relating their alterations to the risk of neuropsychiatric diseases. We further review evidence from animal models that provided molecular insights into the biological as well as pathogenic roles of Shank proteins in synapses, and the potential relationship to the development of abnormal neurobehavioral phenotypes.
Collapse
Affiliation(s)
- Lily Wan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Du Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,Taikang Tongji Hospital, Wuhan, 430050, Hubei, China
| | - Wen-Biao Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bo-Xin Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University, Changsha, 410013, Hunan, China
| | - Zhao-Hui Luo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
| |
Collapse
|
16
|
Neklyudova AK, Portnova GV, Rebreikina AB, Voinova VY, Vorsanova SG, Iourov IY, Sysoeva OV. 40-Hz Auditory Steady-State Response (ASSR) as a Biomarker of Genetic Defects in the SHANK3 Gene: A Case Report of 15-Year-Old Girl with a Rare Partial SHANK3 Duplication. Int J Mol Sci 2021; 22:ijms22041898. [PMID: 33673024 PMCID: PMC7917917 DOI: 10.3390/ijms22041898] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/26/2021] [Accepted: 02/09/2021] [Indexed: 12/02/2022] Open
Abstract
SHANK3 encodes a scaffold protein involved in postsynaptic receptor density in glutamatergic synapses, including those in the parvalbumin (PV)+ inhibitory neurons—the key players in the generation of sensory gamma oscillations, such as 40-Hz auditory steady-state response (ASSR). However, 40-Hz ASSR was not studied in relation to SHANK3 functioning. Here, we present a 15-year-old girl (SH01) with previously unreported duplication of the first seven exons of the SHANK3 gene (22q13.33). SH01’s electroencephalogram (EEG) during 40-Hz click trains of 500 ms duration binaurally presented with inter-trial intervals of 500–800 ms were compared with those from typically developing children (n = 32). SH01 was diagnosed with mild mental retardation and learning disabilities (F70.88), dysgraphia, dyslexia, and smaller vocabulary than typically developing (TD) peers. Her clinical phenotype resembled the phenotype of previously described patients with 22q13.33 microduplications (≈30 reported so far). SH01 had mild autistic symptoms but below the threshold for ASD diagnosis and microcephaly. No seizures or MRI abnormalities were reported. While SH01 had relatively preserved auditory event-related potential (ERP) with slightly attenuated P1, her 40-Hz ASSR was totally absent significantly deviating from TD’s ASSR. The absence of 40-Hz ASSR in patients with microduplication, which affected the SHANK3 gene, indicates deficient temporal resolution of the auditory system, which might underlie language problems and represent a neurophysiological biomarker of SHANK3 abnormalities.
Collapse
Affiliation(s)
- Anastasia K. Neklyudova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Galina V. Portnova
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Anna B. Rebreikina
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
| | - Victoria Yu Voinova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Svetlana G. Vorsanova
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Ivan Y. Iourov
- Veltischev Research and Clinical Institute for Pediatrics of the Pirogov, Russian National Research Medical University, Ministry of Health of Russian Federation, 125412 Moscow, Russia; (V.Y.V.); (S.G.V.); (I.Y.I.)
- Mental Health Research Center, 117152 Moscow, Russia
| | - Olga V. Sysoeva
- Laboratory of Human Higher Nervous Activity, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Science, 117485 Moscow, Russia; (A.K.N.); (G.V.P.); (A.B.R.)
- Correspondence:
| |
Collapse
|
17
|
Hartig R, Wolf D, Schmeisser MJ, Kelsch W. Genetic influences of autism candidate genes on circuit wiring and olfactory decoding. Cell Tissue Res 2021; 383:581-595. [PMID: 33515293 PMCID: PMC7872953 DOI: 10.1007/s00441-020-03390-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/10/2020] [Indexed: 12/24/2022]
Abstract
Olfaction supports a multitude of behaviors vital for social communication and interactions between conspecifics. Intact sensory processing is contingent upon proper circuit wiring. Disturbances in genetic factors controlling circuit assembly and synaptic wiring can lead to neurodevelopmental disorders, such as autism spectrum disorder (ASD), where impaired social interactions and communication are core symptoms. The variability in behavioral phenotype expression is also contingent upon the role environmental factors play in defining genetic expression. Considering the prevailing clinical diagnosis of ASD, research on therapeutic targets for autism is essential. Behavioral impairments may be identified along a range of increasingly complex social tasks. Hence, the assessment of social behavior and communication is progressing towards more ethologically relevant tasks. Garnering a more accurate understanding of social processing deficits in the sensory domain may greatly contribute to the development of therapeutic targets. With that framework, studies have found a viable link between social behaviors, circuit wiring, and altered neuronal coding related to the processing of salient social stimuli. Here, the relationship between social odor processing in rodents and humans is examined in the context of health and ASD, with special consideration for how genetic expression and neuronal connectivity may regulate behavioral phenotypes.
Collapse
Affiliation(s)
- Renée Hartig
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - David Wolf
- Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany
| | - Michael J Schmeisser
- Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany.,Institute for Microscopic Anatomy and Neurobiology, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany
| | - Wolfgang Kelsch
- Department of Psychiatry & Psychotherapy, University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Focus Program Translational Neurosciences (FTN), University Medical Center, Johannes Gutenberg-University, 55131, Mainz, Germany. .,Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, 68159, Mannheim, Germany.
| |
Collapse
|
18
|
Shin S, Santi A, Huang S. Conditional Pten knockout in parvalbumin- or somatostatin-positive neurons sufficiently leads to autism-related behavioral phenotypes. Mol Brain 2021; 14:24. [PMID: 33504340 PMCID: PMC7839207 DOI: 10.1186/s13041-021-00731-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Disrupted GABAergic neurons have been extensively described in brain tissues from individuals with autism spectrum disorder (ASD) and animal models for ASD. However, the contribution of these aberrant inhibitory neurons to autism-related behavioral phenotypes is not well understood. We examined ASD-related behaviors in mice with conditional Pten knockout in parvalbumin (PV)-expressing or somatostatin (Sst)-expressing neurons, two common subtypes of GABAergic neurons. We found that mice with deletion of Pten in either PV-neurons or Sst-neurons displayed social deficits, repetitive behaviors and impaired motor coordination/learning. In addition, mice with one copy of Pten deletion in PV-neurons exhibited hyperlocomotion in novel open fields and home cages. We also examined anxiety behaviors and found that mice with Pten deletion in Sst-neurons displayed anxiety-like behaviors, while mice with Pten deletion in PV-neurons exhibited anxiolytic-like behaviors. These behavioral assessments demonstrate that Pten knockout in the subtype of inhibitory neurons sufficiently gives rise to ASD-core behaviors, providing evidence that both PV- and Sst-neurons may play a critical role in ASD symptoms.
Collapse
Affiliation(s)
- Sangyep Shin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201 USA
| | - Andrea Santi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201 USA
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD 21201 USA
| |
Collapse
|
19
|
Grabrucker S, Pagano J, Schweizer J, Urrutia-Ruiz C, Schön M, Thome K, Ehret G, Grabrucker AM, Zhang R, Hengerer B, Bockmann J, Verpelli C, Sala C, Boeckers TM. Activation of the medial preoptic area (MPOA) ameliorates loss of maternal behavior in a Shank2 mouse model for autism. EMBO J 2021; 40:e104267. [PMID: 33491217 PMCID: PMC7917557 DOI: 10.15252/embj.2019104267] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Impairments in social relationships and awareness are features observed in autism spectrum disorders (ASDs). However, the underlying mechanisms remain poorly understood. Shank2 is a high‐confidence ASD candidate gene and localizes primarily to postsynaptic densities (PSDs) of excitatory synapses in the central nervous system (CNS). We show here that loss of Shank2 in mice leads to a lack of social attachment and bonding behavior towards pubs independent of hormonal, cognitive, or sensitive deficits. Shank2−/− mice display functional changes in nuclei of the social attachment circuit that were most prominent in the medial preoptic area (MPOA) of the hypothalamus. Selective enhancement of MPOA activity by DREADD technology re‐established social bonding behavior in Shank2−/− mice, providing evidence that the identified circuit might be crucial for explaining how social deficits in ASD can arise.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jessica Pagano
- CNR Neuroscience Institute, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Johanna Schweizer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Kevin Thome
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Günter Ehret
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,DZNE, Ulm Site, Ulm, Germany
| |
Collapse
|
20
|
Kim KT, Kwak YJ, Han SC, Hwang JH. Impairment of motor coordination and interneuron migration in perinatal exposure to glufosinate-ammonium. Sci Rep 2020; 10:20647. [PMID: 33244012 PMCID: PMC7691990 DOI: 10.1038/s41598-020-76869-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 08/03/2020] [Indexed: 11/09/2022] Open
Abstract
Glufosinate-ammonium (GLA) is a broad-spectrum herbicide for agricultural weed control and crop desiccation. Due to many GLA-resistant crops being developed to effectively control weeds and increase harvest yields, herbicide usage and the residual GLA in food has increased significantly. Though perinatal exposure by the residual GLA in food might affect brain development, the developmental neurotoxicity of GLA is still unclear. Therefore, this study aimed to investigate the effects of perinatal exposure to GLA on cortical development. The analysis revealed that perinatal GLA exposure altered behavioral changes in offspring, especially motor functional behavior. Moreover, perinatal GLA exposure affected cortical development, particularly by disrupting interneuron migration. These results provide new evidence that early life exposure to GLA alters cortical development.
Collapse
Affiliation(s)
- Kyung-Tai Kim
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Ye-Jung Kwak
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea
| | - Su-Cheol Han
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
| | - Jeong Ho Hwang
- Jeonbuk Branch Institute, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeollabuk-do, 56212, Republic of Korea.
| |
Collapse
|
21
|
Wang X, Xu Z, Zhao F, Lin KJ, Foster JB, Xiao T, Kung N, Askwith CC, Bruno JP, Valentini V, Hodgetts KJ, Lin CLG. Restoring tripartite glutamatergic synapses: A potential therapy for mood and cognitive deficits in Gulf War illness. Neurobiol Stress 2020; 13:100240. [PMID: 33344696 PMCID: PMC7739039 DOI: 10.1016/j.ynstr.2020.100240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 07/05/2020] [Accepted: 07/05/2020] [Indexed: 01/13/2023] Open
Abstract
Gulf War illness is associated with a combination of exposure to war-related chemical agents and traumatic stress. Currently, there are no effective treatments, and the pathophysiology remains elusive. Neurological problems are among the most commonly reported symptoms. In this study, we investigated the glutamatergic system in the hippocampi of mice exposed to war-related chemical agents and stress. Mice developed Gulf War illness-like symptoms, including mood deficits, cognitive impairments, and fatigue. They exhibited the following pathological changes in hippocampi: elevated extracellular glutamate levels, impaired glutamatergic synapses, astrocyte atrophy, loss of interneurons, and decreased neurogenesis. LDN/OSU-215111 is a small-molecule that can strengthen the structure and function of both the astrocytic processes and the glutamatergic synapses that together form the tripartite synapses. We found that LDN/OSU-215111 effectively prevented the development of mood and cognitive deficits in mice when treatment was implemented immediately following the exposure. Moreover, when symptoms were already present, LDN/OSU-215111 still significantly ameliorated these deficits; impressively, benefits were sustained one month after treatment cessation, indicating disease modification. LDN/OSU-215111 effectively normalized hippocampal pathological changes. Overall, this study provides strong evidence that restoration of tripartite glutamatergic synapses by LDN/OSU-215111 is a potential therapy for Gulf War illness.
Collapse
Key Words
- BBB, Blood brain barrier
- CA, Cornu ammonis
- DCX, Doublecortin
- DEET, N, N-Diethyl-meta-toluamide
- DG, Dentate gyrus
- EAAT2, Excitatory amino acid transporter 2
- GABA, γ-aminobutyric acid
- GFAP, glial fibrillary acidic protein
- GWI, gulf war illness
- Gulf war illness
- LTP, Long term potentiation
- Mood deficits and cognitive impairments
- PB, Pyridostigmine bromide
- PSD95, Postsynaptic density protein 95
- PV, Parvalbumin
- TBS, Theta burst stimulation
- Therapy
- Traumatic stress
- Tripartite glutamatergic synapses
- fEPSP, field excitatory postsynaptic potentials
- sEPSC/mEPSC, Spontaneous/miniature excitatory postsynaptic current
- sIPSC/mIPSC, Spontaneous/miniature inhibitory postsynaptic current
- vGAT, Vesicular inhibitory amino acid transporter
- vGLUT1, Vesicular glutamate transporter 1
Collapse
Affiliation(s)
- Xueqin Wang
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Zan Xu
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Fangli Zhao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Kuanhung J. Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Joshua B. Foster
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Tianqi Xiao
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Nydia Kung
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - Candice C. Askwith
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| | - John P. Bruno
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
| | - Valentina Valentini
- Department of Psychology, College of Arts and Sciences, The Ohio State University, Columbus, OH, USA
- Department of Biomedical Sciences, University of Cagliari, Italy
| | - Kevin J. Hodgetts
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, USA
| | - Chien-liang Glenn Lin
- Department of Neuroscience, College of Medicine, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Li W, Liu R, Zheng M, Feng F, Liu D, Guo Y, Zhao G, Wen J. New insights into the associations among feed efficiency, metabolizable efficiency traits and related QTL regions in broiler chickens. J Anim Sci Biotechnol 2020; 11:65. [PMID: 32607230 PMCID: PMC7318453 DOI: 10.1186/s40104-020-00469-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 05/01/2020] [Indexed: 12/30/2022] Open
Abstract
Background Improving the feed efficiency would increase profitability for producers while also reducing the environmental footprint of livestock production. This study was conducted to investigate the relationships among feed efficiency traits and metabolizable efficiency traits in 180 male broilers. Significant loci and genes affecting the metabolizable efficiency traits were explored with an imputation-based genome-wide association study. The traits measured or calculated comprised three growth traits, five feed efficiency related traits, and nine metabolizable efficiency traits. Results The residual feed intake (RFI) showed moderate to high and positive phenotypic correlations with eight other traits measured, including average daily feed intake (ADFI), dry excreta weight (DEW), gross energy excretion (GEE), crude protein excretion (CPE), metabolizable dry matter (MDM), nitrogen corrected apparent metabolizable energy (AMEn), abdominal fat weight (AbF), and percentage of abdominal fat (AbP). Greater correlations were observed between growth traits and the feed conversion ratio (FCR) than RFI. In addition, the RFI, FCR, ADFI, DEW, GEE, CPE, MDM, AMEn, AbF, and AbP were lower in low-RFI birds than high-RFI birds (P < 0.01 or P < 0.05), whereas the coefficients of MDM and MCP of low-RFI birds were greater than those of high-RFI birds (P < 0.01). Five narrow QTLs for metabolizable efficiency traits were detected, including one 82.46-kb region for DEW and GEE on Gallus gallus chromosome (GGA) 26, one 120.13-kb region for MDM and AMEn on GGA1, one 691.25-kb region for the coefficients of MDM and AMEn on GGA5, one region for the coefficients of MDM and MCP on GGA2 (103.45–103.53 Mb), and one 690.50-kb region for the coefficient of MCP on GGA14. Linkage disequilibrium (LD) analysis indicated that the five regions contained high LD blocks, as well as the genes chromosome 26 C6orf106 homolog (C26H6orf106), LOC396098, SH3 and multiple ankyrin repeat domains 2 (SHANK2), ETS homologous factor (EHF), and histamine receptor H3-like (HRH3L), which are known to be involved in the regulation of neurodevelopment, cell proliferation and differentiation, and food intake. Conclusions Selection for low RFI significantly decreased chicken feed intake, excreta output, and abdominal fat deposition, and increased nutrient digestibility without changing the weight gain. Five novel QTL regions involved in the control of metabolizable efficiency in chickens were identified. These results, combined through nutritional and genetic approaches, should facilitate novel insights into improving feed efficiency in poultry and other species.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China.,College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Ranran Liu
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Maiqing Zheng
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Furong Feng
- Foshan Gaoming Xinguang Agricultural and animal Industrials Corporation, Foshan, 528515 China
| | - Dawei Liu
- Foshan Gaoming Xinguang Agricultural and animal Industrials Corporation, Foshan, 528515 China
| | - Yuming Guo
- College of Animal Science and Technology, China Agricultural University, Beijing, 100193 China
| | - Guiping Zhao
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| | - Jie Wen
- State Key Laboratory of Animal Nutrition; Key Laboratory of Animal (Poultry) Genetics Breeding and Reproduction, Ministry of Agriculture, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193 China
| |
Collapse
|
23
|
Yook C, Kim K, Kim D, Kang H, Kim SG, Kim E, Kim SY. A TBR1-K228E Mutation Induces Tbr1 Upregulation, Altered Cortical Distribution of Interneurons, Increased Inhibitory Synaptic Transmission, and Autistic-Like Behavioral Deficits in Mice. Front Mol Neurosci 2019; 12:241. [PMID: 31680851 PMCID: PMC6797848 DOI: 10.3389/fnmol.2019.00241] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/20/2019] [Indexed: 12/11/2022] Open
Abstract
Mutations in Tbr1, a high-confidence ASD (autism spectrum disorder)-risk gene encoding the transcriptional regulator TBR1, have been shown to induce diverse ASD-related molecular, synaptic, neuronal, and behavioral dysfunctions in mice. However, whether Tbr1 mutations derived from autistic individuals cause similar dysfunctions in mice remains unclear. Here we generated and characterized mice carrying the TBR1-K228E de novo mutation identified in human ASD and identified various ASD-related phenotypes. In heterozygous mice carrying this mutation (Tbr1+/K228E mice), levels of the TBR1-K228E protein, which is unable to bind target DNA, were strongly increased. RNA-Seq analysis of the Tbr1+/K228E embryonic brain indicated significant changes in the expression of genes associated with neurons, astrocytes, ribosomes, neuronal synapses, and ASD risk. The Tbr1+/K228E neocortex also displayed an abnormal distribution of parvalbumin-positive interneurons, with a lower density in superficial layers but a higher density in deep layers. These changes were associated with an increase in inhibitory synaptic transmission in layer 6 pyramidal neurons that was resistant to compensation by network activity. Behaviorally, Tbr1+/K228E mice showed decreased social interaction, increased self-grooming, and modestly increased anxiety-like behaviors. These results suggest that the human heterozygous TBR1-K228E mutation induces ASD-related transcriptomic, protein, neuronal, synaptic, and behavioral dysfunctions in mice.
Collapse
Affiliation(s)
- Chaehyun Yook
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Kyungdeok Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Hyojin Kang
- Division of National Supercomputing, Korea Institute of Science and Technology Information (KISTI), Daejeon, South Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, South Korea
| | - Soo Young Kim
- College of Pharmacy, Yeongnam University, Gyeongsan, South Korea
| |
Collapse
|
24
|
Yoo YE, Yoo T, Lee S, Lee J, Kim D, Han HM, Bae YC, Kim E. Shank3 Mice Carrying the Human Q321R Mutation Display Enhanced Self-Grooming, Abnormal Electroencephalogram Patterns, and Suppressed Neuronal Excitability and Seizure Susceptibility. Front Mol Neurosci 2019; 12:155. [PMID: 31275112 PMCID: PMC6591539 DOI: 10.3389/fnmol.2019.00155] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 06/03/2019] [Indexed: 11/13/2022] Open
Abstract
Shank3, a postsynaptic scaffolding protein involved in regulating excitatory synapse assembly and function, has been implicated in several brain disorders, including autism spectrum disorders (ASD), Phelan-McDermid syndrome, schizophrenia, intellectual disability, and mania. Here we generated and characterized a Shank3 knock-in mouse line carrying the Q321R mutation (Shank3 Q321R mice) identified in a human individual with ASD that affects the ankyrin repeat region (ARR) domain of the Shank3 protein. Homozygous Shank3 Q321R/Q321R mice show a selective decrease in the level of Shank3a, an ARR-containing protein variant, but not other variants. CA1 pyramidal neurons in the Shank3 Q321R/Q321R hippocampus show decreased neuronal excitability but normal excitatory and inhibitory synaptic transmission. Behaviorally, Shank3 Q321R/Q321R mice show moderately enhanced self-grooming and anxiolytic-like behavior, but normal locomotion, social interaction, and object recognition and contextual fear memory. In addition, these mice show abnormal electroencephalogram (EEG) patterns and decreased susceptibility to induced seizures. These results indicate that the Q321R mutation alters Shank3 protein stability, neuronal excitability, repetitive and anxiety-like behavior, EEG patterns, and seizure susceptibility in mice.
Collapse
Affiliation(s)
- Ye-Eun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Seungjoon Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| | - Hye-Min Han
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Yong-Chul Bae
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science, Daejeon, South Korea
| |
Collapse
|
25
|
Chung C, Ha S, Kang H, Lee J, Um SM, Yan H, Yoo YE, Yoo T, Jung H, Lee D, Lee E, Lee S, Kim J, Kim R, Kwon Y, Kim W, Kim H, Duffney L, Kim D, Mah W, Won H, Mo S, Kim JY, Lim CS, Kaang BK, Boeckers TM, Chung Y, Kim H, Jiang YH, Kim E. Early Correction of N-Methyl-D-Aspartate Receptor Function Improves Autistic-like Social Behaviors in Adult Shank2 -/- Mice. Biol Psychiatry 2019; 85:534-543. [PMID: 30466882 PMCID: PMC6420362 DOI: 10.1016/j.biopsych.2018.09.025] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 11/19/2022]
Abstract
BACKGROUND Autism spectrum disorder involves neurodevelopmental dysregulations that lead to visible symptoms at early stages of life. Many autism spectrum disorder-related mechanisms suggested by animal studies are supported by demonstrated improvement in autistic-like phenotypes in adult animals following experimental reversal of dysregulated mechanisms. However, whether such mechanisms also act at earlier stages to cause autistic-like phenotypes is unclear. METHODS We used Shank2-/- mice carrying a mutation identified in human autism spectrum disorder (exons 6 and 7 deletion) and combined electrophysiological and behavioral analyses to see whether early pathophysiology at pup stages is different from late pathophysiology at juvenile and adult stages and whether correcting early pathophysiology can normalize late pathophysiology and abnormal behaviors in juvenile and adult mice. RESULTS Early correction of a dysregulated mechanism in young mice prevents manifestation of autistic-like social behaviors in adult mice. Shank2-/- mice, known to display N-methyl-D-aspartate receptor (NMDAR) hypofunction and autistic-like behaviors at postweaning stages after postnatal day 21 (P21), show the opposite synaptic phenotype-NMDAR hyperfunction-at an earlier preweaning stage (∼P14). Moreover, this NMDAR hyperfunction at P14 rapidly shifts to NMDAR hypofunction after weaning (∼P24). Chronic suppression of the early NMDAR hyperfunction by the NMDAR antagonist memantine (P7-P21) prevents NMDAR hypofunction and autistic-like social behaviors from manifesting at later stages (∼P28 and P56). CONCLUSIONS Early NMDAR hyperfunction leads to late NMDAR hypofunction and autistic-like social behaviors in Shank2-/- mice, and early correction of NMDAR dysfunction has the long-lasting effect of preventing autistic-like social behaviors from developing at later stages.
Collapse
Affiliation(s)
- Changuk Chung
- Department of Biological Sciences, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Seungmin Ha
- Department of Biological Sciences, South Korea
| | - Hyojin Kang
- Department of Convergence Technology Research, Korea Institute of Science and Technology Information, Daejeon, South Korea
| | - Jiseok Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | | | - Haidun Yan
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Ye-Eun Yoo
- Department of Biological Sciences, South Korea
| | - Taesun Yoo
- Department of Biological Sciences, South Korea
| | - Hwajin Jung
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Dongwon Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Eunee Lee
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | | | - Jihye Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Ryunhee Kim
- Department of Biological Sciences, South Korea
| | | | - Woohyun Kim
- Department of Biological Sciences, South Korea
| | - Hyosang Kim
- Department of Biological Sciences, South Korea
| | - Lara Duffney
- Department of Pediatrics, Duke University, Durham, North Carolina
| | - Doyoun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea
| | - Won Mah
- Department of Anatomy and Neurobiology, School of Dentistry, Kyungpook National University, Daegu, South Korea
| | - Hyejung Won
- Department of Neurology, Center for Autism Research and Treatment, Semel Institute, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Seojung Mo
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Jin Yong Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Chae-Seok Lim
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Bong-Kiun Kaang
- School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Yeonseung Chung
- Department of Mathematical Sciences, Korea Advanced Institute for Science and Technology, South Korea
| | - Hyun Kim
- Department of Anatomy and Division of Brain Korea 21, Biomedical Science, College of Medicine, Korea University, Seoul, South Korea
| | - Yong-Hui Jiang
- Department of Pediatrics, Duke University, Durham, North Carolina; Department of Neurobiology, Duke University, Durham, North Carolina; Cell and Molecular Biology Program, Duke University, Durham, North Carolina; Duke Institute of Brain Science, Duke University, Durham, North Carolina; Genomics and Genetics Program, Duke University, Durham, North Carolina
| | - Eunjoon Kim
- Department of Biological Sciences, South Korea; Center for Synaptic Brain Dysfunctions, Institute for Basic Science, South Korea.
| |
Collapse
|
26
|
Guang S, Pang N, Deng X, Yang L, He F, Wu L, Chen C, Yin F, Peng J. Synaptopathology Involved in Autism Spectrum Disorder. Front Cell Neurosci 2018; 12:470. [PMID: 30627085 PMCID: PMC6309163 DOI: 10.3389/fncel.2018.00470] [Citation(s) in RCA: 154] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 11/19/2018] [Indexed: 12/24/2022] Open
Abstract
Autism spectrum disorder (ASD) encompasses a group of multifactorial neurodevelopmental disorders characterized by impaired social communication, social interaction and repetitive behaviors. ASD affects 1 in 59 children, and is about 4 times more common among boys than among girls. Strong genetic components, together with environmental factors in the early stage of development, contribute to the pathogenesis of ASD. Multiple studies have revealed that mutations in genes like NRXN, NLGN, SHANK, TSC1/2, FMR1, and MECP2 converge on common cellular pathways that intersect at synapses. These genes encode cell adhesion molecules, scaffolding proteins and proteins involved in synaptic transcription, protein synthesis and degradation, affecting various aspects of synapses including synapse formation and elimination, synaptic transmission and plasticity. This suggests that the pathogenesis of ASD may, at least in part, be attributed to synaptic dysfunction. In this article, we will review major genes and signaling pathways implicated in synaptic abnormalities underlying ASD, and discuss molecular, cellular and functional studies of ASD experimental models.
Collapse
Affiliation(s)
- Shiqi Guang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Nan Pang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Xiaolu Deng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Liwen Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Chen Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| |
Collapse
|
27
|
Ey E, Torquet N, de Chaumont F, Lévi-Strauss J, Ferhat AT, Le Sourd AM, Boeckers TM, Bourgeron T. Shank2 Mutant Mice Display Hyperactivity Insensitive to Methylphenidate and Reduced Flexibility in Social Motivation, but Normal Social Recognition. Front Mol Neurosci 2018; 11:365. [PMID: 30337855 PMCID: PMC6180161 DOI: 10.3389/fnmol.2018.00365] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Mouse models of autism can be used to study evolutionarily conserved mechanisms underlying behavioral abnormalities in social communication and repetitive behaviors. SHANK genes code for synaptic scaffolding proteins at excitatory synapses and mutations in all SHANK genes have been associated with autism. Here, we present three behavioral aspects of the mutant mice deleted for exon 16 in Shank2. First, we treated Shank2 mutant mice with methylphenidate to rescue the hyperactivity. Our failure to do so suggests that the hyperactivity displayed by Shank2 mutant mice is not related to the one displayed by the typical mouse models of hyperactivity, and might be more closely related to manic-like behaviors. Second, by testing the effect of group housing and social isolation on social interest, we highlighted that Shank2 mutant mice lack the typical flexibility to modulate social interest, in comparison with wild-type littermates. Finally, we established a new protocol to test for social recognition in a social context. We used this protocol to show that Shank2 mutant mice were able to discriminate familiar and unknown conspecifics in free interactions. Altogether, these studies shed some light on specific aspects of the behavioral defects displayed by the Shank2 mouse model. Such information could be used to orient therapeutic strategies and to design more specific tests to characterize the complex behavior of mouse models of autism.
Collapse
Affiliation(s)
- Elodie Ey
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Nicolas Torquet
- Sorbonne Université, UPMC Univ Paris 06, INSERM, CNRS, Neuroscience Paris Seine - Institut de Biologie Paris Seine (NPS - IBPS), Paris, France
| | | | - Julie Lévi-Strauss
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | | | - Anne-Marie Le Sourd
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Thomas Bourgeron
- CNRS UMR 3571, Human Genetics and Cognitive Functions, Institut Pasteur, Paris, France.,Université Paris Diderot, Sorbonne Paris Cité, Human Genetics and Cognitive Functions, Paris, France
| |
Collapse
|