1
|
Cheng Y, Zhao C, Bin Y, Liu Y, Cheng L, Xia F, Tian X, Liu X, Liu S, Ying B, Shao Z, Yan W. The pathophysiological functions and therapeutic potential of GPR39: Focus on agonists and antagonists. Int Immunopharmacol 2024; 143:113491. [PMID: 39549543 DOI: 10.1016/j.intimp.2024.113491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/21/2024] [Indexed: 11/18/2024]
Abstract
G protein-coupled receptor 39 (GPR39), a member of the growth hormone-releasing peptide family, exhibits widespread expression across various tissues and demonstrates high constitutive activity, primarily activated by zinc ions. It plays critical roles in cell proliferation, differentiation, survival, apoptosis, and ion transport through the recruitment of Gq/11, Gs, G12/13, and β-arrestin proteins. GPR39 is involved in anti-inflammatory and antioxidant responses, highlighting its diverse pathophysiological functions. Recent discoveries of endogenous ligands have enhanced our understanding of GPR39's physiological roles. Aberrant expression and reactivation of GPR39 have been implicated in a range of diseases, particularly central nervous system disorders, endocrine disruptions, cardiovascular diseases, cancers, and liver conditions. These findings position GPR39 as a promising therapeutic target, with the efficacy of synthetic ligands validated in various in vivo models. Nonetheless, their clinical applicability remains uncertain, necessitating further exploration of novel agonists-especially biased agonists-and antagonists. This review examines the unique residues contributing to the high constitutive activity of GPR39, its endogenous and synthetic ligands, and its pathophysiological implications, aiming to elucidate its pharmacological potential for clinical application in disease treatment.
Collapse
Affiliation(s)
- Yuhui Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Chang Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yan Bin
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuan Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Lin Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610000 China
| | - Fan Xia
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaowen Tian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xinlei Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Sicen Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Binwu Ying
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| | - Zhenhua Shao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Tianfu Jincheng Laboratory, Frontiers Medical Center, Chengdu 610212, Sichuan, China.
| | - Wei Yan
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China; Division of Nephrology and Kidney Research Institute, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
2
|
Vereertbrugghen A, Pizzano M, Cernutto A, Sabbione F, Keitelman IA, Aguilar DV, Podhorzer A, Fuentes F, Corral-Vázquez C, Guzmán M, Giordano MN, Trevani A, de Paiva CS, Galletti JG. CD4 + T cells drive corneal nerve damage but not epitheliopathy in an acute aqueous-deficient dry eye model. Proc Natl Acad Sci U S A 2024; 121:e2407648121. [PMID: 39560641 PMCID: PMC11621630 DOI: 10.1073/pnas.2407648121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024] Open
Abstract
Dry eye disease (DED) is characterized by a dysfunctional tear film in which the corneal epithelium and its abundant nerves are affected by ocular desiccation and inflammation. Although adaptive immunity and specifically CD4+ T cells play a role in DED pathogenesis, the exact contribution of these cells to corneal epithelial and neural damage remains undetermined. To address this, we explored the progression of a surgical DED model in wild-type (WT) and T cell-deficient mice. We observed that adaptive immune-deficient mice developed all aspects of DED comparably to WT mice except for the absence of functional and morphological corneal nerve changes, nerve damage-associated transcriptomic signature in the trigeminal ganglia, and sustained tear cytokine levels. Adoptive transfer of CD4+ T cells from WT DED mice to T cell-deficient mice reproduced corneal nerve damage but not epitheliopathy. Conversely, T cell-deficient mice reconstituted solely with naïve CD4+ T cells developed corneal nerve impairment and epitheliopathy upon DED induction, thus replicating the WT DED phenotype. Collectively, our data show that while corneal neuropathy is driven by CD4+ T cells in DED, corneal epithelial damage develops independently of the adaptive immune response. These findings have implications for T cell-targeting therapies currently in use for DED.
Collapse
Affiliation(s)
- Alexia Vereertbrugghen
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Manuela Pizzano
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Agostina Cernutto
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Florencia Sabbione
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Irene A. Keitelman
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Douglas Vera Aguilar
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Ariel Podhorzer
- Flow Cytometry Unit, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Federico Fuentes
- Confocal Microscopy Unit, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Celia Corral-Vázquez
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Mauricio Guzmán
- Translational Clinical Research Program, Hospital del Mar Research Institute, Barcelona08003, Spain
| | - Mirta N. Giordano
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | - Analía Trevani
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| | | | - Jeremías G. Galletti
- Innate Immunity Laboratory, Institute of Experimental Medicine (National Scientific and Technical Research Council/National Academy of Medicine of Buenos Aires), Buenos Aires1425, Argentina
| |
Collapse
|
3
|
Mohos V, Harmat M, Kun J, Aczél T, Zsidó BZ, Kitka T, Farkas S, Pintér E, Helyes Z. Topiramate inhibits adjuvant-induced chronic orofacial inflammatory allodynia in the rat. Front Pharmacol 2024; 15:1461355. [PMID: 39221150 PMCID: PMC11361966 DOI: 10.3389/fphar.2024.1461355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Chronic orofacial pain disorders are common debilitating conditions, affecting the trigeminal system. Its underlying pathophysiological mechanisms are still unclear and the therapy is often unsatisfactory, therefore, preclinical models are crucial to identify the key mediators and novel treatment options. Complete Freund's adjuvant (CFA)-induced orofacial inflammatory allodynia/hyperalgesia is commonly used in rodents, but it has not been validated with currently used drugs. Here we tested the effects of the adjuvant analgesic/antiepileptic voltage-gated Na+ channel blocker complex mechanism of action topiramate in comparison with the gold standard antimigraine serotonin 5-HT1B/D receptor agonist sumatriptan in this model. CFA was injected subcutaneously into the right whisker pad of male Sprague-Dawley rats (250-300 g), then mechanonociceptive threshold values were investigated with von Frey filaments (3, 5, and 7 days after CFA injection). Effects of topiramate (30 mg/kg per os) and sumatriptan (1 mg/kg subcutaneous) on the adjuvant-induced chronic inflammatory orofacial allodynia were investigated 60, 120, and 180 min after the treatments each day. To determine the optimal concentration for drug effect analysis, we tested the effects of two different CFA-concentrations (1 and 0.5 mg/mL) on mechanonociceptive thresholds. Both concentrations of CFA induced a chronic orofacial allodynia in 60% of all rats. Although, higher CFA concentration induced greater allodynia, much more stable threshold reduction was observed with the lower CFA concentration: on day 3 the thresholds decreased from 18.30 g to approximately 11 g (low) and 5 g (high), respectively, however a slight increase was observed in the case of higher CFA concentration (on days 5, 7, and 11). In all investigation days, topiramate showed significant anti-allodynic effect comparing the pre and post drug dose and comparing the vehicle treated to the drug treated groups. Sumatriptan also caused a significant threshold increase compared to pre dose thresholds (day 3) and also showed a slight anti-allodynic effect compared to the vehicle-treated group (day 3 and 5). In the present study CFA-induced chronic orofacial allodynia was reversed by topiramate in rats validating the model with the adjuvant analgesic. Other than establishing a validated orofacial pain-related syndrome model in rats, new ways are opened for the repurposing of topiramate.
Collapse
Affiliation(s)
- Violetta Mohos
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Máté Harmat
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Jozsef Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- Hungarian Centre for Genomics and Bioinformatics, Szentágothai Research Centre, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Tímea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Balázs Zoltán Zsidó
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
| | - Tamás Kitka
- Uzsoki Cardiovascular Center Ltd., Budapest, Hungary
| | - Sándor Farkas
- Uzsoki Cardiovascular Center Ltd., Budapest, Hungary
| | - Erika Pintér
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Pain Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Pain Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| |
Collapse
|
4
|
Liu Z, Shan Z, Yang H, Xing Y, Guo W, Cheng J, Jiang Y, Cai S, Wu C, Liu JA, Cheung CW, Pan Y. Quercetin, Main Active Ingredient of Moutan Cortex, Alleviates Chronic Orofacial Pain via Block of Voltage-Gated Sodium Channel. Anesth Analg 2024; 138:1324-1336. [PMID: 37968831 PMCID: PMC11081480 DOI: 10.1213/ane.0000000000006730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/15/2023] [Indexed: 11/17/2023]
Abstract
BACKGROUND Chronic orofacial pain (COP) therapy is challenging, as current medical treatments are extremely lacking. Moutan Cortex (MC) is a traditional Chinese medicine herb widely used for chronic inflammatory diseases. However, the mechanism behind MC in COP therapy has not been well-established. The purpose of this study was to identify the active ingredients of MC and their specific underlying mechanisms in COP treatment. METHODS In this study, the main active ingredients and compound-target network of MC in COP therapy were identified through network pharmacology and bioinformatics analysis. Adult male Sprague-Dawley rats received oral mucosa lipopolysaccharide (LPS) injection to induce COP. Pain behaviors were evaluated by orofacial mechanical nociceptive assessment after intraganglionar injection. In vitro inflammatory cytokines in LPS-pretreated human periodontal ligament stem cells (hPDLSCs) and rat primary cultural trigeminal ganglion (TG) neurons were quantified by real-time quantitative polymerase chain reaction (RT-qPCR). Schrödinger software was used to verify the molecular docking of quercetin and critical targets. Whole-cell recording electrophysiology was used to evaluate the effect of quercetin on voltage-gated sodium (Na v ) channel in rat TG neurons. RESULTS The assembled compound-target network consisted of 4 compounds and 46 targets. As 1 of the active components of MC correlated with most related targets, quercetin alleviated mechanical allodynia in LPS-induced rat model of COP (mechanical allodynia threshold median [interquartile range (IQR) 0.5 hours after drug administration: vehicle 1.3 [0.6-2.0] g vs quercetin 7.0 [6.0-8.5] g, P = .002). Gene ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis revealed that immune response and membrane functions play essential roles in MC-COP therapy. Five of the related targets were identified as core targets by protein-protein interaction analysis. Quercetin exerted an analgesic effect, possibly through blocking Na v channel in TG sensory neurons (peak current density median [IQR]: LPS -850.2 [-983.6 to -660.7] mV vs LPS + quercetin -589.6 [-711.0 to -147.8] mV, P = .006) while downregulating the expression level of proinflammatory cytokines-FOS (normalized messenger RNA [mRNA] level mean ± standard error of mean [SEM]: LPS [2. 22 ± 0.33] vs LPS + quercetin [1. 33 ± 0.14], P = .034) and TNF-α (normalized mRNA level mean ± SEM: LPS [8. 93 ± 0.78] vs LPS + quercetin [3. 77 ± 0.49], P < .0001). CONCLUSIONS Identifying Na v as the molecular target of quercetin clarifies the analgesic mechanism of MC, and provides ideas for the development of novel selective and efficient chronic pain relievers.
Collapse
Affiliation(s)
- Zhanli Liu
- From the Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Zhiming Shan
- From the Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Haoyi Yang
- From the Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Yanmei Xing
- From the Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Weijie Guo
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Jing Cheng
- From the Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Yuanxu Jiang
- From the Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Song Cai
- Health Science Center, Shenzhen University, Shenzhen, China
| | - Chaoran Wu
- From the Department of Anesthesiology, Shenzhen People’s Hospital (The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, China
| | - Jessica Aijia Liu
- Department of Neuroscience, City University of Hong Kong, Hong Kong, China
| | - Chi Wai Cheung
- Laboratory and Clinical Research Institute for Pain, Department of Anaesthesiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, the University of Hong Kong, Hong Kong, China
| | - Yunping Pan
- Department of Periodontology & Oral Mucosa, Shenzhen Stomatology Hospital, Shenzhen, China
| |
Collapse
|
5
|
Salmeri N, Viganò P, Cavoretto P, Marci R, Candiani M. The kisspeptin system in and beyond reproduction: exploring intricate pathways and potential links between endometriosis and polycystic ovary syndrome. Rev Endocr Metab Disord 2024; 25:239-257. [PMID: 37505370 DOI: 10.1007/s11154-023-09826-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2023] [Indexed: 07/29/2023]
Abstract
Endometriosis and polycystic ovary syndrome (PCOS) are two common female reproductive disorders with a significant impact on the health and quality of life of women affected. A novel hypothesis by evolutionary biologists suggested that these two diseases are inversely related to one another, representing a pair of diametrical diseases in terms of opposite alterations in reproductive physiological processes but also contrasting phenotypic traits. However, to fully explain the phenotypic features observed in women with these conditions, we need to establish a potential nexus system between the reproductive system and general biological functions. The recent discovery of kisspeptin as pivotal mediator of internal and external inputs on the hypothalamic-pituitary-gonadal axis has led to a new understanding of the neuroendocrine upstream regulation of the human reproductive system. In this review, we summarize the current knowledge on the physiological roles of kisspeptin in human reproduction, as well as its involvement in complex biological functions such as metabolism, inflammation and pain sensitivity. Importantly, these functions are known to be dysregulated in both PCOS and endometriosis. Within the evolving scientific field of "kisspeptinology", we critically discuss the clinical relevance of these discoveries and their potential translational applications in endometriosis and PCOS. By exploring the possibilities of manipulating this complex signaling system, we aim to pave the way for novel targeted therapies in these reproductive diseases.
Collapse
Affiliation(s)
- Noemi Salmeri
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Paola Viganò
- Infertility Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via M. Fanti 6, 20122, Milan, Italy.
| | - Paolo Cavoretto
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| | - Roberto Marci
- Gynecology & Obstetrics, University of Ferrara, 44121, Ferrara, Italy
| | - Massimo Candiani
- Gynecology and Obstetrics Unit, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
| |
Collapse
|
6
|
Liu T, Xu C, Guo J, He Z, Zhang Y, Feng Y. Whole Blood Transcriptome Analysis in Patients with Trigeminal Neuralgia: a Prospective Clinical Study. J Mol Neurosci 2024; 74:16. [PMID: 38300339 DOI: 10.1007/s12031-024-02195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 01/28/2024] [Indexed: 02/02/2024]
Abstract
Trigeminal neuralgia (TN) brings a huge burden to patients, without long-term effective treatment. This study aimed to explore the differentially expressed genes (DEGs) and related enrichment pathways in patients with TN. This was a study of transcriptome sequencing and bioinformatics analysis of human samples. Whole blood samples were collected from the TN patients and pain-free controls. RNA was extracted to conduct the RNA-sequencing and the subsequent bioinformatics analysis. DEGs between the two groups were derived. Kyoto encyclopedia of genes and genomes (KEGG) and Gene ontology (GO) was used to find the enrichment pathways of DEGs. Protein protein interaction (PPI) network was used to depict the interaction between DEGs and find the most important gene, hub gene. Compared with the control group, there were 117 up-regulated DEGs and 103 down-regulated DEGs in the whole blood of patients in the TN group. Pathway enrichment analysis showed that DEGs were mainly enriched in the neuroimmune and metabolic pathways. The PPI network demonstrated that colony stimulating factor 2 (CSF2) was the most important hub gene in the whole blood of TN patients. This study shows the expression of the transcriptome in the whole blood samples of TN patients. The neuroimmune responses and key hub gene CSF2 in the whole blood cells play a vital role in the occurrence of TN. Our research provides a theoretical basis for the diagnosis and treatments of TN. This study was registered at clinicaltrials.gov in June 2021 (No. NCT04923399).
Collapse
Affiliation(s)
- Tianyu Liu
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Chao Xu
- Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiaqi Guo
- Shanghai Minhang Center for Disease Control and Prevention, Shanghai, China
| | - Zile He
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Yunpeng Zhang
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China
| | - Yi Feng
- Department of Anesthesiology, Peking University People's Hospital, Xizhimen South Street 11, Beijing, 100044, China.
- Key Laboratory for Neuroscience, Ministry of Education/National Health Commission of China, Peking University, Xueyuan road 38, Beijing, 100191, China.
| |
Collapse
|
7
|
Takács-Lovász K, Aczél T, Borbély É, Szőke É, Czuni L, Urbán P, Gyenesei A, Helyes Z, Kun J, Bölcskei K. Hemokinin-1 induces transcriptomic alterations in pain-related signaling processes in rat primary sensory neurons independent of NK1 tachykinin receptor activation. Front Mol Neurosci 2023; 16:1186279. [PMID: 37965042 PMCID: PMC10641776 DOI: 10.3389/fnmol.2023.1186279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/18/2023] [Indexed: 11/16/2023] Open
Abstract
The tachykinin hemokinin-1 (HK-1) is involved in immunological processes, inflammation, and pain. Although the neurokinin 1 receptor (NK1R) is described as its main target, several effects are mediated by currently unidentified receptor(s). The role of HK-1 in pain is controversial, depending on the involvement of peripheral and central sensitization mechanisms in different models. We earlier showed the ability of HK-1 to activate the trigeminovascular system, but the mechanisms need to be clarified. Therefore, in this study, we investigated HK-1-induced transcriptomic alterations in cultured rat trigeminal ganglion (TRG) primary sensory neurons. HK-1 was applied for 6 or 24 h in 1 μM causing calcium-influx in these neurons, 500 nM not inducing calcium-entry was used for comparison. Next-generation sequencing was performed on the isolated RNA, and transcriptomic changes were analyzed to identify differentially expressed (DE) genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. NK1R and Neurokinin receptor 2 (NK2R) were not detected. Neurokinin receptor 3 (NK3R) was around the detection limit, which suggests the involvement of other NKR isoforms or other receptors in HK-1-induced sensory neuronal activation. We found protease-activated receptor 1 (PAR1) and epidermal growth factor receptor (EGFR) as DE genes in calcium signaling. The transmembrane protein anthrax toxin receptor 2 (ANTXR2), a potential novel pain-related target, was upregulated. Acid-sensing ion channel 1; 3 (Asic1,3), N-methyl-D-aspartate (NMDA) and alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) glutamate receptors decreased, myelin production and maintenance related genes (Mbp, Pmp2, Myef2, Mpz) and GNDF changed by HK-1 treatment. Our data showed time and dose-dependent effects of HK-1 in TRG cell culture. Result showed calcium signaling as altered event, however, we did not detect any of NK receptors. Presumably, the activation of TRG neurons is independent of NK receptors. ANTXR2 is a potential new target, PAR-1 has also important role in pain, however their connection to HK-1 is unknown. These findings might highlight new targets or key mediators to solve how HK-1 acts on TRG.
Collapse
Affiliation(s)
- Krisztina Takács-Lovász
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| | - Éva Borbély
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Research Group, Budapest, Hungary
| | - Lilla Czuni
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- National Laboratory for Drug Research and Development, Budapest, Hungary
- Hungarian Research Network, PTE HUN-REN Chronic Research Group, Budapest, Hungary
- PharmInVivo Ltd., Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School and Centre for Neuroscience, University of Pécs, Pécs, Hungary
| |
Collapse
|
8
|
Wang W, Wang T, Gao Y, Liang G, Pu Y, Zhang J. Model of neural development by differentiating human induced pluripotent stem cells into neural progenitor cells to study the neurodevelopmental toxicity of lead. Food Chem Toxicol 2023; 179:113947. [PMID: 37467947 DOI: 10.1016/j.fct.2023.113947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/04/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
Lead (Pb) exposure causes immeasurable damage to multiple human systems, particularly the central nervous system (CNS). In this study, human induced pluripotent stem cells (hiPSCs) were differentiated into neural progenitor cells (NPCs) to investigate the neurotoxic effects of Pb. The hiPSCs were treated with 0, 0.5, 1.0, 2.5, 5.0 and 10.0 μmol/L Pb for 7 days, whereas embryoid bodies (EBs) and NPCs were treated with 0, 0.1, 0.5, and 1.0 μmol/L Pb for 7 days. Pb exposure disrupted the cell cycle and caused apoptosis in hiPSCs, EBs, and NPCs. Besides, Pb inhibited the differentiation of NPCs and EBs. Whole exome sequencing revealed 2509, 2413, and 1984 single nucleotide variants (SNVs) caused by Pb in hiPSCs, EBs, and NPCs, respectively. The common mutation sites in the exon region were mostly nonsynonymous mutations. We identified 18, 19, and 18 common deleterious mutations in hiPSCs, EBs, and NPCs, respectively. Additionally, Online Mendelian Inheritance in Man database analysis revealed 30, 20, and 13 genes related to CNS disorders in hiPSCs, EBs, and NPCs, respectively. Our findings suggest that this in vitro model may supplement animal models and be applied to the study of neurodevelopmental toxicity in the future.
Collapse
Affiliation(s)
- Wei Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tong Wang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yu Gao
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Geyu Liang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Yuepu Pu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Juan Zhang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education of China, School of Public Health, Southeast University, Nanjing, 210009, China; Jiangsu Institute for Sports and Health (JISH), Nanjing, 211100, China.
| |
Collapse
|
9
|
Liu M, Li X, Wang J, Ji Y, Gu J, Wei Y, Peng L, Tian C, Lv P, Wang P, Liu X, Li W. Identification and validation of Rab11a in Rat orofacial inflammatory pain model induced by CFA. Neurochem Int 2023:105550. [PMID: 37268020 DOI: 10.1016/j.neuint.2023.105550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/29/2023] [Accepted: 05/14/2023] [Indexed: 06/04/2023]
Abstract
Orofacial pain (OFP) is a clinically very common and the most troubling condition; however, there is few effective way to relieve OFP. Rab11a, a small molecule guanosine triphosphate enzyme, is one of the Rab member family playing a vital role in intracellular endocytosis and the pain process. Therefore, we investigated the hub genes of rat OFP model induced by Complete Freund's Adjuvant (CFA) via re-analyzing microarray data (GSE111160). We found that Rab11a acted as a key hub gene in the process of OFP. During the validation of Rab11a, the OFP model was established by peripheral injection of CFA, which decreased the head withdrawal threshold (HWT) and head withdrawal lantency (HWL). Rab11a was observed in NeuN of Sp5C instead of GFAP/IBA-1, and double-IF of Rab11a and Fos positive cells were increased on the 7th day after CFA modeling statistically. Rab11a protein expression in TG and Sp5C of CFA group was also significantly increased. Interestingly, injection of Rab11a-targeted short hairpin RNA (Rab11a-shRNA) into Sp5C could reverse the decrease in HWT and HWL and reduce the expression level of Rab11a. Electrophysiological recording further demonstrated that the activity of Sp5C neuron was improved in CFA group, while Rab11a-shRNA considerably decreased the enhancement of Sp5C neuronal activity. Finally, we detected the expression level of p-PI3K, p-AKT, and p-mTOR in Sp5C of rats after injecting the Rab11a-shRNA virus. To our surprise, CFA upregulated the phosphorylation of PI3K, AKT and mTOR in Sp5C, and Rab11a-shRNA downregulated these molecules' expression. Our data suggest that CFA activates the PI3K/AKT signaling pathway through up-regulating Rab11a expression, which can induce OFP hyperalgesia development furtherly. Targeting Rab11a may be a novel treatment strategy for OFP.
Collapse
Affiliation(s)
- Miaomiao Liu
- Department of Respiratory and Critical Care Medicine, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Li
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China
| | - Jian Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuanyuan Ji
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Junxiang Gu
- Department of Neurosurgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Yi Wei
- Department of Anatomy, School of Medicine, Northwest University, Xi'an, Shaanxi, China
| | - Liwei Peng
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chao Tian
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peiyuan Lv
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Peng Wang
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xin Liu
- Department of Stomatology, The 960th Hospital of People's Liberation Army, Jinan, Shandong, China.
| | - Weixin Li
- Department of Neurosurgery, Tangdu Hospital of the Fourth Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
10
|
Exploring the Tryptophan Metabolic Pathways in Migraine-Related Mechanisms. Cells 2022; 11:cells11233795. [PMID: 36497053 PMCID: PMC9736455 DOI: 10.3390/cells11233795] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/16/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Migraine is a complex neurovascular disorder, which causes intense socioeconomic problems worldwide. The pathophysiology of disease is enigmatic; accordingly, therapy is not sufficient. In recent years, migraine research focused on tryptophan, which is metabolized via two main pathways, the serotonin and kynurenine pathways, both of which produce neuroactive molecules that influence pain processing and stress response by disturbing neural and brain hypersensitivity and by interacting with molecules that control vascular and inflammatory actions. Serotonin has a role in trigeminal pain processing, and melatonin, which is another product of this pathway, also has a role in these processes. One of the end products of the kynurenine pathway is kynurenic acid (KYNA), which can decrease the overexpression of migraine-related neuropeptides in experimental conditions. However, the ability of KYNA to cross the blood-brain barrier is minimal, necessitating the development of synthetic analogs with potentially better pharmacokinetic properties to exploit its therapeutic potential. This review summarizes the main translational and clinical findings on tryptophan metabolism and certain neuropeptides, as well as therapeutic options that may be useful in the prevention and treatment of migraine.
Collapse
|
11
|
Pohóczky K, Kun J, Szentes N, Aczél T, Urbán P, Gyenesei A, Bölcskei K, Szőke É, Sensi S, Dénes Á, Goebel A, Tékus V, Helyes Z. Discovery of novel targets in a complex regional pain syndrome mouse model by transcriptomics: TNF and JAK-STAT pathways. Pharmacol Res 2022; 182:106347. [PMID: 35820612 DOI: 10.1016/j.phrs.2022.106347] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 06/08/2022] [Accepted: 07/05/2022] [Indexed: 11/19/2022]
Abstract
Complex Regional Pain Syndrome (CRPS) represents severe chronic pain, hypersensitivity, and inflammation induced by sensory-immune-vascular interactions after a small injury. Since the therapy is unsatisfactory, there is a great need to identify novel drug targets. Unbiased transcriptomic analysis of the dorsal root ganglia (DRG) was performed in a passive transfer-trauma mouse model, and the predicted pathways were confirmed by pharmacological interventions. In the unilateral L3-5 DRGs 125 genes were differentially expressed in response to plantar incision and injecting IgG of CRPS patients. These are related to inflammatory and immune responses, cytokines, chemokines and neuropeptides. Pathway analysis revealed the involvement of Tumor Necrosis Factor (TNF) and Janus kinase (JAK-STAT) signaling. The relevance of these pathways was proven by abolished CRPS IgG-induced hyperalgesia and reduced microglia and astrocyte markers in pain-associated central nervous system regions after treatment with the soluble TNF alpha receptor etanercept or JAK inhibitor tofacitinib. These results provide the first evidence for CRPS-related neuroinflammation and abnormal cytokine signaling at the level of the primary sensory neurons in a translational mouse model and suggest that etanercept and tofacitinib might have drug repositioning potentials for CRPS-related pain.
Collapse
Affiliation(s)
- Krisztina Pohóczky
- Faculty of Pharmacy, Department of Pharmacology, University of Pécs, H-7624 Pécs, Hungary; Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Nikolett Szentes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| | - Tímea Aczél
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Péter Urbán
- Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Attila Gyenesei
- Bioinformatic Research Group, Genomics and Bioinformatics Core Facility, János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Éva Szőke
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| | - Serena Sensi
- Department of Translational Medicine, University of Liverpool, Liverpool L9 7AL, United Kingdom; Department of Pain Medicine, The Walton Centre National Health Service Foundation Trust, Liverpool L9 7LJ, United Kingdom
| | - Ádám Dénes
- Momentum Laboratory of Neuroimmunology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Andreas Goebel
- Department of Translational Medicine, University of Liverpool, Liverpool L9 7AL, United Kingdom; Department of Pain Medicine, The Walton Centre National Health Service Foundation Trust, Liverpool L9 7LJ, United Kingdom
| | - Valéria Tékus
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; Faculty of Health Sciences, Department of Laboratory Diagnostics, University of Pécs, H-7624 Pécs, Hungary.
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary; János Szentágothai Research Centre & Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary; PharmInVivo Ltd., H-7629 Pécs, Hungary; Chronic Pain Research Group, Eötvös Lorand Research Network, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
12
|
Liu Q, Mai L, Yang S, Jia S, Chu Y, He H, Fan W, Huang F. Transcriptional Alterations of Mouse Trigeminal Ganglion Neurons Following Orofacial Inflammation Revealed by Single-Cell Analysis. Front Cell Neurosci 2022; 16:885569. [PMID: 35722619 PMCID: PMC9200971 DOI: 10.3389/fncel.2022.885569] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/16/2022] [Indexed: 11/20/2022] Open
Abstract
Orofacial inflammation leads to transcriptional alterations in trigeminal ganglion (TG) neurons. However, diverse alterations and regulatory mechanisms following orofacial inflammatory pain in different types of TG neurons remain unclear. Here, orofacial inflammation was induced by injection of complete Freund’s adjuvant (CFA) in mice. After 7 days, we performed single-cell RNA-sequencing on TG cells of mice from control and treatment groups. We identified primary sensory neurons, Schwann cells, satellite glial cells, oligodendrocyte-like cells, immune cells, fibroblasts, and endothelial cells in TG tissue. After principal component analysis and hierarchical clustering, we identified six TG neuronal subpopulations: peptidergic nociceptors (PEP1 and PEP2), non-peptidergic nociceptors (NP1 and NP2), C-fiber low-threshold mechanoreceptors (cLTMR) and myelinated neurons (Nefh-positive neurons, NF) based on annotated marker gene expression. We also performed differential gene expression analysis among TG neuronal subtypes, identifying several differential genes involved in the inflammatory response, neuronal excitability, neuroprotection, and metabolic processes. Notably, we identified several potential novel targets associated with pain modulation, including Arl6ip1, Gsk3b, Scn7a, and Zbtb20 in PEP1, Rgs7bp in PEP2, and Bhlha9 in cLTMR. The established protein–protein interaction network identified some hub genes, implying their critical involvement in regulating orofacial inflammatory pain. Our study revealed the heterogeneity of TG neurons and their diverse neuronal transcriptomic responses to orofacial inflammation, providing a basis for the development of therapeutic strategies for orofacial inflammatory pain.
Collapse
Affiliation(s)
- Qing Liu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Lijia Mai
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shengyan Yang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Shilin Jia
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Yanhao Chu
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Hongwen He
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
| | - Wenguo Fan
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- *Correspondence: Wenguo Fan,
| | - Fang Huang
- Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Stomatology, Guangzhou, China
- Fang Huang,
| |
Collapse
|
13
|
Characterization of Acetylation of Histone H3 at Lysine 9 in the Trigeminal Ganglion of a Rat Trigeminal Neuralgia Model. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1300387. [PMID: 35571235 PMCID: PMC9095355 DOI: 10.1155/2022/1300387] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/12/2022] [Indexed: 11/17/2022]
Abstract
Trigeminal neuralgia (TN) is a chronic neuropathic pain disorder characterized by spontaneous and elicited paroxysms of electric-shock-like or stabbing pain in a region of the face. The epigenetic regulation of TN is still obscure. In current study, a rat TN model subject to carbamazepine (CBZ) treatment was established, and transcriptome- and genome-scale profiling of H3K9ac and HDAC3 was performed by RNA-seq and ChIP-seq. We observed that H3K9ac levels in the trigeminal ganglion were lower in the TN rats compared with those in the control, and CBZ treatment led to recovery of H3K9ac levels. Further, we found that HDAC3 was overactivated, which interfered with H3K9 acetylation due to higher phosphorylation in TN compared with that in the control. Finally, the phosphokinase leucine-rich repeat kinase 2 (LRRK2) was demonstrated to contribute to HDAC3 activity via the MAPK signaling pathway. Taken together, we identified a regulatory mechanism in which the phosphate groups transferred from activated ERK and LRRK2 to HDAC3 caused genome-scale deacetylation at H3K9 and resulted in the silencing of a large number of genes in TN. The kinases or important enzymes within this regulatory axis may represent important targets for TN therapy and prevention.
Collapse
|
14
|
PACAP-38 Induces Transcriptomic Changes in Rat Trigeminal Ganglion Cells Related to Neuroinflammation and Altered Mitochondrial Function Presumably via PAC1/VPAC2 Receptor-Independent Mechanism. Int J Mol Sci 2022; 23:ijms23042120. [PMID: 35216232 PMCID: PMC8874739 DOI: 10.3390/ijms23042120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) is a broadly expressed neuropeptide which has diverse effects in both the peripheral and central nervous systems. While its neuroprotective effects have been shown in a variety of disease models, both animal and human data support the role of PACAP in migraine generation. Both PACAP and its truncated derivative PACAP(6-38) increased calcium influx in rat trigeminal ganglia (TG) primary sensory neurons in most experimental settings. PACAP(6-38), however, has been described as an antagonist for PACAP type I (known as PAC1), and Vasoactive Intestinal Polypeptide Receptor 2 (also known as VPAC2) receptors. Here, we aimed to compare the signaling pathways induced by the two peptides using transcriptomic analysis. Rat trigeminal ganglion cell cultures were incubated with 1 µM PACAP-38 or PACAP(6-38). Six hours later RNA was isolated, next-generation RNA sequencing was performed and transcriptomic changes were analyzed to identify differentially expressed genes. Functional analysis was performed for gene annotation using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Reactome databases. We found 200 common differentially expressed (DE) genes for these two neuropeptides. Both PACAP-38 and PACAP(6-38) treatments caused significant downregulation of NADH: ubiquinone oxidoreductase subunit B6 and upregulation of transient receptor potential cation channel, subfamily M, member 8. The common signaling pathways induced by both peptides indicate that they act on the same target, suggesting that PACAP activates trigeminal primary sensory neurons via a mechanism independent of the identified and cloned PAC1/VPAC2 receptor, either via another target structure or a different splice variant of PAC1/VPAC2 receptors. Identification of the target could help to understand key mechanisms of migraine.
Collapse
|
15
|
Aczél T, Körtési T, Kun J, Urbán P, Bauer W, Herczeg R, Farkas R, Kovács K, Vásárhelyi B, Karvaly GB, Gyenesei A, Tuka B, Tajti J, Vécsei L, Bölcskei K, Helyes Z. Identification of disease- and headache-specific mediators and pathways in migraine using blood transcriptomic and metabolomic analysis. J Headache Pain 2021; 22:117. [PMID: 34615455 PMCID: PMC8493693 DOI: 10.1186/s10194-021-01285-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Recent data suggest that gene expression profiles of peripheral white blood cells can reflect changes in the brain. We aimed to analyze the transcriptome of peripheral blood mononuclear cells (PBMC) and changes of plasma metabolite levels of migraineurs in a self-controlled manner during and between attacks. METHODS Twenty-four patients with migraine were recruited and blood samples were collected in a headache-free (interictal) period and during headache (ictal) to investigate disease- and headache-specific alterations. Control samples were collected from 13 age- and sex-matched healthy volunteers. RNA was isolated from PBMCs and single-end 75 bp RNA sequencing was performed using Illumina NextSeq 550 instrument followed by gene-level differential expression analysis. Functional analysis was carried out on information related to the role of genes, such as signaling pathways and biological processes. Plasma metabolomic measurement was performed with the Biocrates MxP Quant 500 Kit. RESULTS We identified 144 differentially-expressed genes in PBMCs between headache and headache-free samples and 163 between symptom-free patients and controls. Network analysis revealed that enriched pathways included inflammation, cytokine activity and mitochondrial dysfunction in both headache and headache-free samples compared to controls. Plasma lactate, succinate and methionine sulfoxide levels were higher in migraineurs while spermine, spermidine and aconitate were decreased during attacks. CONCLUSIONS It is concluded that enhanced inflammatory and immune cell activity, and oxidative stress can play a role in migraine susceptibility and headache generation.
Collapse
Affiliation(s)
- Timea Aczél
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Tamás Körtési
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- Faculty of Health Sciences and Social Studies, University of Szeged, Temesvári krt. 31, Szeged, H-6726, Hungary
| | - József Kun
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Péter Urbán
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Witold Bauer
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Herczeg
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Róbert Farkas
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Krisztián Kovács
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Barna Vásárhelyi
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Gellért B Karvaly
- Department of Laboratory Medicine, Semmelweis University, Nagyvárad tér 4, Budapest, H-1089, Hungary
| | - Attila Gyenesei
- Szentágothai Research Centre, Bioinformatics Research Group, Genomics and Bioinformatics Core Facility, University of Pécs, Ifjúság útja 20, Pécs, H-7624, Hungary
| | - Bernadett Tuka
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Kata Bölcskei
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Molecular Pharmacology Research Group and Centre for Neuroscience, University of Pécs Szentágothai Research Centre, University of Pécs Medical School, Szigeti út 12, Pécs, H-7624, Hungary.
| |
Collapse
|
16
|
Du K, Wu W, Feng X, Ke J, Xie H, Chen Y. Puerarin Attenuates Complete Freund's Adjuvant-Induced Trigeminal Neuralgia and Inflammation in a Mouse Model via Sirt1-Mediated TGF-β1/Smad3 Inhibition. J Pain Res 2021; 14:2469-2479. [PMID: 34421312 PMCID: PMC8373046 DOI: 10.2147/jpr.s323588] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/05/2021] [Indexed: 12/11/2022] Open
Abstract
Background Puerarin, an active compound of radix puerariae, is a major compound used in Chinese herbal medicines and it has been well known for its pharmacological effects, including antioxidant, anti‑inflammatory, neuroprotective and cardioprotective properties. The aim of the present study was to determine the role of puerarin (Pue) in complete Freund’s adjuvant (CFA)-induced trigeminal neuralgia (TN) and the effects of this compound on Sirt1 activity and on the progression of CFA-induced TN. Methods Mice were injected with CFA on the unilateral face to induce TN. A cell model of inflammation-associated TN was established by interleukin-1β (IL-1β; 10 ng/mL) and tumor necrosis factor-α (TNF-α; 50 ng/mL) stimulation of neurons. Reverse transcription-quantitative PCR and Western blot analyses were performed to analyze mRNA and protein expression levels in trigeminal ganglion and nerve cells. Terminal-deoxynucleotidyl transferase mediated nick end labeling (TUNEL) staining was used to determine nerve cell apoptosis following IL-1β/TNF-α or Pue treatment. Results Pue is a conceivable Sirtuin1 (Sirt1) activator used for the prevention of trigeminal nerve injury that attenuates CFA-induced TN and inflammatory cytokine-evoked overactivation of neuronal inflammation and apoptosis. Treatment of mice with inflammatory cytokines induced upregulation of cleaved caspase-3 protein expression, which was neutralized by Pue supplementation. Both in vivo and in vitro experiments led to the conclusion that Pue modulated Sirt1 activation and repressed transforming growth factor-β1 (TGF-β1) protein expression and drosophila mothers against decapentaplegic homolog3 (Smad3) phosphorylation in order to exert neuroprotection. Conclusion The findings suggested that Pue functioned as a potential Sirt1 activator to improve neuroinflammation-induced TN and neuronal apoptosis via the suppression of TGF-β1/Smad3 activity. The pharmacological activity of Pue provides a new perspective for the effective prevention and treatment of TN.
Collapse
Affiliation(s)
- Kairong Du
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, Peoples Republic of China
| | - Wei Wu
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, Peoples Republic of China
| | - Xiaobo Feng
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, Peoples Republic of China
| | - Jianjuan Ke
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, Peoples Republic of China
| | - Hengtao Xie
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, Peoples Republic of China
| | - Yingying Chen
- Department of Anesthesiology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei Province, Peoples Republic of China
| |
Collapse
|
17
|
Xu Y, Barnes AP, Alkayed NJ. Role of GPR39 in Neurovascular Homeostasis and Disease. Int J Mol Sci 2021; 22:8200. [PMID: 34360964 PMCID: PMC8346997 DOI: 10.3390/ijms22158200] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/26/2022] Open
Abstract
GPR39, a member of the ghrelin family of G protein-coupled receptors, is zinc-responsive and contributes to the regulation of diverse neurovascular and neurologic functions. Accumulating evidence suggests a role as a homeostatic regulator of neuronal excitability, vascular tone, and the immune response. We review GPR39 structure, function, and signaling, including constitutive activity and biased signaling, and summarize its expression pattern in the central nervous system. We further discuss its recognized role in neurovascular, neurological, and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yifan Xu
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Anthony P. Barnes
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA;
| | - Nabil J. Alkayed
- Department of Anesthesiology and Perioperative Medicine, Oregon Health and Science University, Portland, OR 97239, USA;
- Knight Cardiovascular Institute, Oregon Health and Science University, Portland, OR 97239, USA;
| |
Collapse
|
18
|
Abstract
Trigeminal neuralgia (TN) is a severe facial pain disease of unknown cause and unclear genetic background. To examine the existing knowledge about genetics in TN, we performed a systematic study asking about the prevalence of familial trigeminal neuralgia, and which genes that have been identified in human TN studies and in animal models of trigeminal pain. MedLine, Embase, Cochrane Library and Web of Science were searched from inception to January 2021. 71 studies were included in the systematic review. Currently, few studies provide information about the prevalence of familial TN; the available evidence indicates that about 1–2% of TN cases have the familial form. The available human studies propose the following genes to be possible contributors to development of TN: CACNA1A, CACNA1H, CACNA1F, KCNK1, TRAK1, SCN9A, SCN8A, SCN3A, SCN10A, SCN5A, NTRK1, GABRG1, MPZ gene, MAOA gene and SLC6A4. Their role in familial TN still needs to be addressed. The experimental animal studies suggest an emerging role of genetics in trigeminal pain, though the animal models may be more relevant for trigeminal neuropathic pain than TN per se. In summary, this systematic review suggests a more important role of genetic factors in TN pathogenesis than previously assumed.
Collapse
Affiliation(s)
| | - Aslan Lashkarivand
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per Kristian Eide
- Department of Neurosurgery, Oslo University Hospital-Rikshospitalet, Oslo, Norway.,Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
19
|
Hemokinin-1 Gene Expression Is Upregulated in Trigeminal Ganglia in an Inflammatory Orofacial Pain Model: Potential Role in Peripheral Sensitization. Int J Mol Sci 2020; 21:ijms21082938. [PMID: 32331300 PMCID: PMC7215309 DOI: 10.3390/ijms21082938] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/12/2020] [Accepted: 04/19/2020] [Indexed: 12/19/2022] Open
Abstract
A large percentage of primary sensory neurons in the trigeminal ganglia (TG) contain neuropeptides such as tachykinins or calcitonin gene-related peptide. Neuropeptides released from the central terminals of primary afferents sensitize the secondary nociceptive neurons in the trigeminal nucleus caudalis (TNC), but also activate glial cells contributing to neuroinflammation and consequent sensitization in chronic orofacial pain and migraine. In the present study, we investigated the newest member of the tachykinin family, hemokinin-1 (HK-1) encoded by the Tac4 gene in the trigeminal system. HK-1 had been shown to participate in inflammation and hyperalgesia in various models, but its role has not been investigated in orofacial pain or headache. In the complete Freund’s adjuvant (CFA)-induced inflammatory orofacial pain model, we showed that Tac4 expression increased in the TG in response to inflammation. Duration-dependent Tac4 upregulation was associated with the extent of the facial allodynia. Tac4 was detected in both TG neurons and satellite glial cells (SGC) by the ultrasensitive RNAscope in situ hybridization. We also compared gene expression changes of selected neuronal and glial sensitization and neuroinflammation markers between wild-type and Tac4-deficient (Tac4-/-) mice. Expression of the SGC/astrocyte marker in the TG and TNC was significantly lower in intact and saline/CFA-treated Tac4-/- mice. The procedural stress-related increase of the SGC/astrocyte marker was also strongly attenuated in Tac4-/- mice. Analysis of TG samples with a mouse neuroinflammation panel of 770 genes revealed that regulation of microglia and cytotoxic cell-related genes were significantly different in saline-treated Tac4-/- mice compared to their wild-types. It is concluded that HK-1 may participate in neuron-glia interactions both under physiological and inflammatory conditions and mediate pain in the trigeminal system.
Collapse
|
20
|
Cseh EK, Veres G, Körtési T, Polyák H, Nánási N, Tajti J, Párdutz Á, Klivényi P, Vécsei L, Zádori D. Neurotransmitter and tryptophan metabolite concentration changes in the complete Freund's adjuvant model of orofacial pain. J Headache Pain 2020; 21:35. [PMID: 32316909 PMCID: PMC7175490 DOI: 10.1186/s10194-020-01105-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Accepted: 04/08/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND The neurochemical background of the evolution of headache disorders, still remains partially undiscovered. Accordingly, our aim was to further explore the neurochemical profile of Complete Freund's adjuvant (CFA)-induced orofacial pain, involving finding the shift point regarding small molecule neurotransmitter concentrations changes vs. that of the previously characterized headache-related neuropeptides. The investigated neurotransmitters consisted of glutamate, γ-aminobutyric acid, noradrenalin and serotonin. Furthermore, in light of its influence on glutamatergic neurotransmission, we measured the level of kynurenic acid (KYNA) and its precursors in the kynurenine (KYN) pathway (KP) of tryptophan metabolism. METHODS The effect of CFA was evaluated in male Sprague Dawley rats. Animals were injected with CFA (1 mg/ml, 50 μl/animal) into the right whisker pad. We applied high-performance liquid chromatography to determine the concentrations of the above-mentioned compounds from the trigeminal nucleus caudalis (TNC) and somatosensory cortex (ssCX) of rats. Furthermore, we measured some of these metabolites from the cerebrospinal fluid and plasma as well. Afterwards, we carried out permutation t-tests as post hoc analysis for pairwise comparison. RESULTS Our results demonstrated that 24 h after CFA treatment, the level of glutamate, KYNA and that of its precursor, KYN was still elevated in the TNC, all diminishing by 48 h. In the ssCX, significant concentration increases of KYNA and serotonin were found. CONCLUSION This is the first study assessing neurotransmitter changes in the TNC and ssCX following CFA treatment, confirming the dominant role of glutamate in early pain processing and a compensatory elevation of KYNA with anti-glutamatergic properties. Furthermore, the current findings draw attention to the limited time interval where medications can target the glutamatergic pathways.
Collapse
Affiliation(s)
- Edina K Cseh
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Gábor Veres
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Tamás Körtési
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Helga Polyák
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Nikolett Nánási
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Árpád Párdutz
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Péter Klivényi
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
- MTA-SZTE Neuroscience Research Group, Szeged, Hungary
| | - Dénes Zádori
- Department of Neurology, Interdisciplinary Excellence Center, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
| |
Collapse
|
21
|
Serum Levels of Kisspeptin Are Elevated in Patients with Pancreatic Cancer. DISEASE MARKERS 2019; 2019:5603474. [PMID: 31772690 PMCID: PMC6854939 DOI: 10.1155/2019/5603474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 02/06/2023]
Abstract
Pancreatic adenocarcinoma (PDAC) still represents a devastating disease associated with a very limited survival. Novel biomarkers allowing an early diagnosis as well as an optimal selection of suitable treatment options for individual patients are urgently needed to improve the dismal outcome of PDAC patients. Recently, alterations of Kisspeptin serum levels, a member of the adipokine family, were described in various types of cancers. However, the role of circulating Kisspeptin as a biomarker in PDAC patients is poorly defined. In this study, we measured Kisspeptin serum levels in a cohort of 128 prospectively enrolled PDAC patients undergoing surgical resection as well as 36 healthy controls. Kisspeptin concentrations were elevated in PDAC patients compared to control samples. Nevertheless, Kisspeptin serum levels were independent of tumor-related factors such as the tumor grading, TNM stage, or clinical features such as the ECOG performance status. Finally, in our analysis, neither preoperative nor postoperative Kisspeptin levels turned out as a significant predictor of overall survival after tumor resection. In conclusion, our data suggest that Kisspeptin concentrations are altered in PDAC patients but do not allow to predict patients' outcome after resection of PDAC.
Collapse
|
22
|
Martínez-García MÁ, Migueláñez-Medrán BC, Goicoechea C. Animal models in the study and treatment of orofacial pain. J Clin Exp Dent 2019; 11:e382-e390. [PMID: 31110619 PMCID: PMC6522107 DOI: 10.4317/jced.55429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/06/2019] [Indexed: 12/22/2022] Open
Abstract
Background Pain is one of the first causes of medical consultation in the world and by extension of dental consultation too. Orofacial pain comprehends the oral and facial regions including teeth, oral mucosa, gingiva, tongue and lips, but also the muscles of the jaw and neck, the temporomandibular joint, face, head and neck. Despite its highly estimated prevalence, it appears controversial and hard to quantify given the lack of common criteria to select the population under study and the difficulties to classify the different types of pain. Although for many patients the problem eventually fades after tissue healing, certain sub-chronic and chronic pain conditions remain notoriously undertreated. In this respect, animal models can be of great help. Material and Methods A systematic search was conducted in PubMed-Medline with appropriate keywords: orofacial pain, prevalence and dentist. Seven groups were generated and a second search based on each of these groups and on animal models was made. Search was restricted to English and Spanish, but no time restriction was applied. Results There are as yet few experimental models of orofacial pain: there hardly exists no other than trigeminal nerve injury for neuropathic pain, a bunch of oral squamous cell carcinoma models (mainly referred to the tongue) for cancer pain and none for the painful swelling of salivary glands. Similarly occurs for the burning mouth syndrome. A few more exist for inflammatory odontalgiae, aphthae, joint, myofascial and muscle inflammatory pains, although scarcely diverse as regards the nature of the noxious stimulus. Conclusions Given the relevance of envisaging the mechanistic of the various types of orofacial pain, new experimental models are needed on the basis of the dentist's perspective for their correct management. Key words:Orofacial pain, neuralgia, odontalgia, oral cancer, animal models.
Collapse
Affiliation(s)
- Miguel-Ángel Martínez-García
- PhD, Visiting Professor. Area of Pharmacology, Nutrition and Bromatology. Department of Basic Health Sciences. School of Health Sciences. Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid (Spain) - I+D+i Medicinal Chemistry Institute (IQM) associated unit, (CSIC)
| | - Blanca C Migueláñez-Medrán
- DDS, PhD. Adjunct Professor. Area of Stomatology. Department of Medicine and Surgery, Psychology, Preventive Medicine and Public Health, Immunology and Medical Microbiology, Nursing and Stomatology. School of Health Sciences. Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid, Spain
| | - Carlos Goicoechea
- PhD, Professor. Area of Pharmacology, Nutrition and Bromatology. Department of Basic Health Sciences. School of Health Sciences. Universidad Rey Juan Carlos (URJC), Alcorcón, Madrid (Spain) - I+D+i Medicinal Chemistry Institute (IQM) associated unit, (CSIC)
| |
Collapse
|
23
|
Körtési T, Tuka B, Nyári A, Vécsei L, Tajti J. The effect of orofacial complete Freund's adjuvant treatment on the expression of migraine-related molecules. J Headache Pain 2019; 20:43. [PMID: 31035923 PMCID: PMC6734445 DOI: 10.1186/s10194-019-0999-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022] Open
Abstract
Background Migraine is a neurovascular primary headache disorder, which causes significant socioeconomic problems worldwide. The pathomechanism of disease is enigmatic, but activation of the trigeminovascular system (TS) appears to be essential during the attack. Migraine research of recent years has focused on neuropeptides, such as calcitonin gene-related peptide (CGRP) and pituitary adenylate cyclase-activating polypeptide 1–38 (PACAP1–38) as potential pathogenic factors and possible therapeutic offensives. The goal of present study was to investigate the simultaneous expression of CGRP and precursor of PACAP1–38 (preproPACAP) in the central region of the TS in a time-dependent manner following TS activation in rats. Methods The right whisker pad of rats was injected with 50 μl Complete Freund’s Adjuvant (CFA) or saline. A mechanical allodynia test was performed with von Frey filaments before and after treatment. Transcardial perfusion of the animals was initiated 24, 48, 72 and 120 h after injection, followed by the dissection of the nucleus trigeminus caudalis (TNC). After preparation, the samples were stored at − 80 °C until further use. The relative optical density of CGRP and preproPACAP was analyzed by Western blot. One-way ANOVA and Kruskal-Wallis followed by Tukey post hoc test were used to evaluate the data. Regression analysis was applied to explore the correlation between neuropeptides expression and hyperalgesia. Results Orofacial CFA injection resulted in significant CGRP and preproPACAP release in the TNC 24, 48, 72 and 120 h after the treatment. The level of neuropeptides reached its maximum at 72 h after CFA injection, corresponding to the peak of facial allodynia. Negative, linear correlation was detected between the expression level of neuropeptides and value of mechanonociceptive threshold. Conclusion This is the first study which suggests that the expression of CGRP and preproPACAP simultaneously increases in the central region of activated TS and it influences the formation of mechanical hyperalgesia. Our results contribute to a better understanding of migraine pathogenesis and thereby to the development of more effective therapeutic approaches.
Collapse
Affiliation(s)
- Tamás Körtési
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - Bernadett Tuka
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H 6725, Hungary
| | - Aliz Nyári
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - László Vécsei
- MTA-SZTE Neuroscience Research Group, University of Szeged, Semmelweis u. 6, Szeged, H 6725, Hungary.,Department of Neurology, Interdisciplinary Excellence Centre, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary
| | - János Tajti
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center University of Szeged, Semmelweis u. 6, Szeged, H-6725, Hungary.
| |
Collapse
|