1
|
Zhao P, Xiong H, Kuang G, Sun C, Zhang X, Huang Y, Luo S, Zhang L, Jiang J, He X. Analysis of epilepsy-associated variants in HCN3 - Functional implications and clinical observations. Epilepsia Open 2024. [PMID: 39361439 DOI: 10.1002/epi4.13049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/19/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024] Open
Abstract
OBJECTIVE This case study investigates the role of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels, which are integral membrane proteins crucial for regulating neuronal excitability. HCN channels are composed of four subunits (HCN1-4), with HCN1, HCN2, and HCN4 previously linked to epilepsy. However, the role of the HCN3 in epileptogenesis remains underexplored. METHODS We recruited a cohort of 298 epilepsy patients to screen for genetic variants in the HCN3 (NM_020897.3) using Sanger sequencing. We identified rare variants and conducted functional assays to evaluate their pathogenicity. RESULTS We identified three rare heterozygous variants in HCN3: c.1370G > A (R457H), c.1982G > A (R661Q), and c.1982G > A(P630L). In vitro functional analyses demonstrated that these variants affected the expression level of HCN3 protein without altering its membrane localization. Whole-cell voltage-clamp experiments showed that two variants (R457H and R661Q) significantly reduced current density in cells, while P630L has no effect on ion channel current. SIGNIFICANCE Our findings suggest that the identified HCN3 genetic variants disrupt HCN ion channel function, highlighting HCN3 as a novel candidate gene involved in epileptic disorders. This expands the genetic landscape of epilepsy and provides new insights into its molecular underpinnings. PLAIN LANGUAGE SUMMARY Epilepsy is a brain disease that can be caused by mutations in specific genes. We found three rare variants in HCN3 gene in 298 patients with epilepsy, and two of the three mutations could be pathogenic and cause epilepsy and another one is single-nucleotide polymorphism, which could have no effect and no contribution to the development of epilepsy.
Collapse
Affiliation(s)
- Peiwei Zhao
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Hongbo Xiong
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Gunagtao Kuang
- Department of Neuroelectrophysiology, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Chen Sun
- Maternal Health Care Department, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiankai Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yufeng Huang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Sukun Luo
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Lei Zhang
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Jun Jiang
- Department of Cardiology, Zhongnan Hospital, Wuhan University, Wuhan, China
| | - Xuelian He
- Precision Medical Center, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
- Clinical Medical Research Center for Birth Defect Prevention and Treatmentin Wuhan, Wuhan Children's Hospital (Wuhan Maternal and Child Healthcare Hospital), Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| |
Collapse
|
2
|
Kobren SN, Moldovan MA, Reimers R, Traviglia D, Li X, Barnum D, Veit A, Corona RI, Carvalho Neto GDV, Willett J, Berselli M, Ronchetti W, Nelson SF, Martinez-Agosto JA, Sherwood R, Krier J, Kohane IS, Sunyaev SR. Joint, multifaceted genomic analysis enables diagnosis of diverse, ultra-rare monogenic presentations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.13.580158. [PMID: 38405764 PMCID: PMC10888768 DOI: 10.1101/2024.02.13.580158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Genomics for rare disease diagnosis has advanced at a rapid pace due to our ability to perform "N-of-1" analyses on individual patients with ultra-rare diseases. The increasing sizes of ultra-rare disease cohorts internationally newly enables cohort-wide analyses for new discoveries, but well-calibrated statistical genetics approaches for jointly analyzing these patients are still under development.1,2 The Undiagnosed Diseases Network (UDN) brings multiple clinical, research and experimental centers under the same umbrella across the United States to facilitate and scale N-of-1 analyses. Here, we present the first joint analysis of whole genome sequencing data of UDN patients across the network. We introduce new, well-calibrated statistical methods for prioritizing disease genes with de novo recurrence and compound heterozygosity. We also detect pathways enriched with candidate and known diagnostic genes. Our computational analysis, coupled with a systematic clinical review, recapitulated known diagnoses and revealed new disease associations. We further release a software package, RaMeDiES, enabling automated cross-analysis of deidentified sequenced cohorts for new diagnostic and research discoveries. Gene-level findings and variant-level information across the cohort are available in a public-facing browser (https://dbmi-bgm.github.io/udn-browser/). These results show that N-of-1 efforts should be supplemented by a joint genomic analysis across cohorts.
Collapse
Affiliation(s)
| | | | | | - Daniel Traviglia
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Xinyun Li
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT
| | | | - Alexander Veit
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Rosario I. Corona
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - George de V. Carvalho Neto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Julian Willett
- Department of Pathology and Laboratory Medicine, NewYork-Presbyterian Weill Cornell Medical Center, New York, NY
| | - Michele Berselli
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - William Ronchetti
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Julian A. Martinez-Agosto
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Richard Sherwood
- Division of Genetics, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, MA
| | - Joel Krier
- Department of Genetics, Atrius Health, Boston, MA
| | - Isaac S. Kohane
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| | | | - Shamil R. Sunyaev
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA
| |
Collapse
|
3
|
Mosca I, Freri E, Ambrosino P, Belperio G, Granata T, Canafoglia L, Ragona F, Solazzi R, Filareto I, Castellotti B, Messina G, Gellera C, DiFrancesco JC, Soldovieri MV, Taglialatela M. Case report: Marked electroclinical improvement by fluoxetine treatment in a patient with KCNT1-related drug-resistant focal epilepsy. Front Cell Neurosci 2024; 18:1367838. [PMID: 38644974 PMCID: PMC11027738 DOI: 10.3389/fncel.2024.1367838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/11/2024] [Indexed: 04/23/2024] Open
Abstract
Variants in KCNT1 are associated with a wide spectrum of epileptic phenotypes, including epilepsy of infancy with migrating focal seizures (EIMFS), non-EIMFS developmental and epileptic encephalopathies, autosomal dominant or sporadic sleep-related hypermotor epilepsy, and focal epilepsy. Here, we describe a girl affected by drug-resistant focal seizures, developmental delay and behavior disorders, caused by a novel, de novo heterozygous missense KCNT1 variant (c.2809A > G, p.S937G). Functional characterization in transiently transfected Chinese Hamster Ovary (CHO) cells revealed a strong gain-of-function effect determined by the KCNT1 p.S937G variant compared to wild-type, consisting in an increased maximal current density and a hyperpolarizing shift in current activation threshold. Exposure to the antidepressant drug fluoxetine inhibited currents expressed by both wild-type and mutant KCNT1 channels. Treatment of the proband with fluoxetine led to a prolonged electroclinical amelioration, with disappearance of seizures and better EEG background organization, together with an improvement in behavior and mood. Altogether, these results suggest that, based on the proband's genetic and functional characteristics, the antidepressant drug fluoxetine may be repurposed for the treatment of focal epilepsy caused by gain-of-function variants in KCNT1. Further studies are needed to verify whether this approach could be also applied to other phenotypes of the KCNT1-related epilepsies spectrum.
Collapse
Affiliation(s)
- Ilaria Mosca
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Paolo Ambrosino
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Giorgio Belperio
- Department of Science and Technology, University of Sannio, Benevento, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Laura Canafoglia
- Department of Diagnostic and Technology, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Ilaria Filareto
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico “Carlo Besta”, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Giuliana Messina
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico C. Besta, Milan, Italy
| | | | - Maria Virginia Soldovieri
- Department of Medicine and Health Sciences “Vincenzo Tiberio”, University of Molise, Campobasso, Italy
| | | |
Collapse
|
4
|
DiFrancesco JC, Ragona F, Murano C, Frosio A, Melgari D, Binda A, Calamaio S, Prevostini R, Mauri M, Canafoglia L, Castellotti B, Messina G, Gellera C, Previtali R, Veggiotti P, Milanesi R, Barbuti A, Solazzi R, Freri E, Granata T, Rivolta I. A novel de novo HCN2 loss-of-function variant causing developmental and epileptic encephalopathy treated with a ketogenic diet. Epilepsia 2023; 64:e222-e228. [PMID: 37746765 DOI: 10.1111/epi.17777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 09/26/2023]
Abstract
Missense variants of hyperpolarization-activated, cyclic nucleotide-gated (HCN) ion channels cause variable phenotypes, ranging from mild generalized epilepsy to developmental and epileptic encephalopathy (DEE). Although variants of HCN1 are an established cause of DEE, those of HCN2 have been reported in generalized epilepsies. Here we describe the first case of DEE caused by the novel de novo heterozygous missense variant c.1379G>A (p.G460D) of HCN2. Functional characterization in transfected HEK293 cells and neonatal rat cortical neurons revealed that HCN2 p.G460D currents were strongly reduced compared to wild-type, consistent with a dominant negative loss-of-function effect. Immunofluorescence staining showed that mutant channels are retained within the cell and do not reach the membrane. Moreover, mutant HCN2 also affect HCN1 channels, by reducing the Ih current expressed by the HCN1-HCN2 heteromers. Due to the persistence of frequent seizures despite pharmacological polytherapy, the patient was treated with a ketogenic diet, with a significant and long-lasting reduction of episodes. In vitro experiments conducted in a ketogenic environment demonstrated that the clinical improvement observed with this dietary regimen was not mediated by a direct action on HCN2 activity. These results expand the clinical spectrum related to HCN2 channelopathies, further broadening our understanding of the pathogenesis of DEE.
Collapse
Affiliation(s)
| | - Francesca Ragona
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Carmen Murano
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
| | - Anthony Frosio
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Dario Melgari
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
| | - Serena Calamaio
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Rachele Prevostini
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| | - Mario Mauri
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
| | - Laura Canafoglia
- Integrated Diagnostics for Epilepsy, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Barbara Castellotti
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giuliana Messina
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Cinzia Gellera
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Roberto Previtali
- Pediatric Neurology Unit, V. Buzzi Hospital, University of Milan, Milan, Italy
| | | | - Raffaella Milanesi
- Department of Veterinary Medicine and Animal Science, University of Milan, Lodi, Italy
| | - Andrea Barbuti
- The Cell Physiology MiLab, Department of Biosciences, University of Milano, Milan, Italy
| | - Roberta Solazzi
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Freri
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Ilaria Rivolta
- School of Medicine and Surgery, University of Milano-Bicocca, Milan Center for Neuroscience (NeuroMI), Monza, Italy
- IMTC - Institute of Molecular and Translational Cardiology, San Donato Milanese, Italy
| |
Collapse
|
5
|
Ślęczkowska M, Misra K, Santoro S, Gerrits MM, Hoeijmakers JGJ. Ion Channel Genes in Painful Neuropathies. Biomedicines 2023; 11:2680. [PMID: 37893054 PMCID: PMC10604193 DOI: 10.3390/biomedicines11102680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Neuropathic pain (NP) is a typical symptom of peripheral nerve disorders, including painful neuropathy. The biological mechanisms that control ion channels are important for many cell activities and are also therapeutic targets. Disruption of the cellular mechanisms that govern ion channel activity can contribute to pain pathophysiology. The voltage-gated sodium channel (VGSC) is the most researched ion channel in terms of NP; however, VGSC impairment is detected in only <20% of painful neuropathy patients. Here, we discuss the potential role of the other peripheral ion channels involved in sensory signaling (transient receptor potential cation channels), neuronal excitation regulation (potassium channels), involuntary action potential generation (hyperpolarization-activated cyclic nucleotide-gated channels), thermal pain (anoctamins), pH modulation (acid sensing ion channels), and neurotransmitter release (calcium channels) related to pain and their prospective role as therapeutic targets for painful neuropathy.
Collapse
Affiliation(s)
- Milena Ślęczkowska
- Department of Toxicogenomics, Maastricht University, 6229 ER Maastricht, The Netherlands;
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| | - Kaalindi Misra
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Silvia Santoro
- Laboratory of Human Genetics of Neurological Disorders, IRCCS San Raffaele Scientific Institute, INSPE, 20132 Milan, Italy; (K.M.); (S.S.)
| | - Monique M. Gerrits
- Department of Clinical Genetics, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands;
| | - Janneke G. J. Hoeijmakers
- Department of Neurology, School of Mental Health and Neuroscience, Maastricht University Medical Centre+, 6229 ER Maastricht, The Netherlands
| |
Collapse
|
6
|
Verkerk AO, Wilders R. The Action Potential Clamp Technique as a Tool for Risk Stratification of Sinus Bradycardia Due to Loss-of-Function Mutations in HCN4: An In Silico Exploration Based on In Vitro and In Vivo Data. Biomedicines 2023; 11:2447. [PMID: 37760888 PMCID: PMC10525944 DOI: 10.3390/biomedicines11092447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
These days, in vitro functional analysis of gene variants is becoming increasingly important for risk stratification of cardiac ion channelopathies. So far, such risk stratification has been applied to SCN5A, KCNQ1, and KCNH2 gene variants associated with Brugada syndrome and long QT syndrome types 1 and 2, respectively, but risk stratification of HCN4 gene variants related to sick sinus syndrome has not yet been performed. HCN4 is the gene responsible for the hyperpolarization-activated 'funny' current If, which is an important modulator of the spontaneous diastolic depolarization underlying the sinus node pacemaker activity. In the present study, we carried out a risk classification assay on those loss-of-function mutations in HCN4 for which in vivo as well as in vitro data have been published. We used the in vitro data to compute the charge carried by If (Qf) during the diastolic depolarization phase of a prerecorded human sinus node action potential waveform and assessed the extent to which this Qf predicts (1) the beating rate of the comprehensive Fabbri-Severi model of a human sinus node cell with mutation-induced changes in If and (2) the heart rate observed in patients carrying the associated mutation in HCN4. The beating rate of the model cell showed a very strong correlation with Qf from the simulated action potential clamp experiments (R2 = 0.95 under vagal tone). The clinically observed minimum or resting heart rates showed a strong correlation with Qf (R2 = 0.73 and R2 = 0.71, respectively). While a translational perspective remains to be seen, we conclude that action potential clamp on transfected cells, without the need for further voltage clamp experiments and data analysis to determine individual biophysical parameters of If, is a promising tool for risk stratification of sinus bradycardia due to loss-of-function mutations in HCN4. In combination with an If blocker, this tool may also prove useful when applied to human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) obtained from mutation carriers and non-carriers.
Collapse
Affiliation(s)
- Arie O. Verkerk
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
- Department of Experimental Cardiology, Heart Center, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Ronald Wilders
- Department of Medical Biology, Amsterdam Cardiovascular Sciences, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| |
Collapse
|
7
|
Crunelli V, David F, Morais TP, Lorincz ML. HCN channels and absence seizures. Neurobiol Dis 2023; 181:106107. [PMID: 37001612 DOI: 10.1016/j.nbd.2023.106107] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/20/2023] [Accepted: 03/25/2023] [Indexed: 03/31/2023] Open
Abstract
Hyperpolarization-activation cyclic nucleotide-gated (HCN) channels were for the first time implicated in absence seizures (ASs) when an abnormal Ih (the current generated by these channels) was reported in neocortical layer 5 neurons of a mouse model. Genetic studies of large cohorts of children with Childhood Absence Epilepsy (where ASs are the only clinical symptom) have identified only 3 variants in HCN1 (one of the genes that code for the 4 HCN channel isoforms, HCN1-4), with one (R590Q) mutation leading to loss-of-function. Due to the multi-faceted effects that HCN channels exert on cellular excitability and neuronal network dynamics as well as their modulation by environmental factors, it has been difficult to identify the detailed mechanism by which different HCN isoforms modulate ASs. In this review, we systematically and critically analyze evidence from established AS models and normal non-epileptic animals with area- and time-selective ablation of HCN1, HCN2 and HCN4. Notably, whereas knockout of rat HCN1 and mouse HCN2 leads to the expression of ASs, the pharmacological block of all HCN channel isoforms abolishes genetically determined ASs. These seemingly contradictory results could be reconciled by taking into account the well-known opposite effects of Ih on cellular excitability and network function. Whereas existing evidence from mouse and rat AS models indicates that pan-HCN blockers may provide a novel approach for the treatment of human ASs, the development of HCN isoform-selective drugs would greatly contribute to current research on the role for these channels in ASs generation and maintenance as well as offer new potential clinical applications.
Collapse
Affiliation(s)
- Vincenzo Crunelli
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK.
| | - Francois David
- Integrative Neuroscience and Cognition Center, Paris University, Paris, France
| | - Tatiana P Morais
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, Malta University, Msida, Malta
| | - Magor L Lorincz
- Neuroscience Division, School of Bioscience, Cardiff University, Cardiff, UK; Department of Physiology, Szeged University, Szeged, Hungary.
| |
Collapse
|
8
|
The Role of RYR2 in Atrial Fibrillation. Case Rep Cardiol 2023; 2023:6555998. [PMID: 36969731 PMCID: PMC10033205 DOI: 10.1155/2023/6555998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/17/2023] Open
Abstract
Background. Atrial fibrillation (AF) is a common arrhythmia in elderly patients and is associated with increased risk of mortality. The pathogenesis of AF is complex and based on multiple genetic and environmental factors. Genome-wide association studies identified several loci in AF patients, indicating the complex genetic architecture of this disease. In rare cases, familial forms of AF have been described. Today, pathogenic variants in at least 11 different genes are associated with monogenic AF. Case presentation. The 37-year-old male patient presented to our emergency department with AF. At the age of 35, he had already been diagnosed with paroxysmal AF. Additionally, his 34-year-old brother had also been diagnosed with AF as well as nonobstructive hypertrophic cardiomyopathy. Moreover, the patient’s father was diagnosed with AF in his twenties. Transthoracic echocardiography and cardiac MRI revealed a reduced systolic left ventricular ejection without any signs of hypertrophic cardiomyopathy. Genetic testing identified the heterozygous missense variants c.3371C > T, p.(Pro1124Leu) in RYR2 (NM_001035.3) and c.2524C > A, p.(Pro842Thr) in HCN4 (NM_005477.3) in the patient’s and his brother’s DNA. Discussion. This case of familial AF helps to strengthen the role of RYR2 as a disease gene in the context of AF. Although the variant in RYR2 needs to be classified formally as variant of unknown significance, we regard it as probably disease-causing due to the previously published data. As RYR2 has already been identified as a possible target for prevention and therapy of AF, the knowledge of variants in RYR2 might become even more crucial for individual molecular therapies in the future.
Collapse
|
9
|
Yu C, Deng XJ, Xu D. Gene mutations in comorbidity of epilepsy and arrhythmia. J Neurol 2023; 270:1229-1248. [PMID: 36376730 DOI: 10.1007/s00415-022-11430-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
Epilepsy is one of the most common neurological disorders, and sudden unexpected death in epilepsy (SUDEP) is the most severe outcome of refractory epilepsy. Arrhythmia is one of the heterogeneous factors in the pathophysiological mechanism of SUDEP with a high incidence in patients with refractory epilepsy, increasing the risk of premature death. The gene co-expressed in the brain and heart is supposed to be the genetic basis between epilepsy and arrhythmia, among which the gene encoding ion channel contributes to the prevalence of "cardiocerebral channelopathy" theory. Nevertheless, this theory could only explain the molecular mechanism of comorbid arrhythmia in part of patients with epilepsy (PWE). Therefore, we summarized the mutant genes that can induce comorbidity of epilepsy and arrhythmia and the possible corresponding treatments. These variants involved the genes encoding sodium, potassium, calcium and HCN channels, as well as some non-ion channel coding genes such as CHD4, PKP2, FHF1, GNB5, and mitochondrial genes. The relationship between genotype and clinical phenotype was not simple linear. Indeed, genes co-expressed in the brain and heart could independently induce epilepsy and/or arrhythmia. Mutant genes in brain could affect cardiac rhythm through central or peripheral regulation, while in the heart it could also affect cerebral electrical activity by changing the hemodynamics or internal environment. Analysis of mutations in comorbidity of epilepsy and arrhythmia could refine and expand the theory of "cardiocerebral channelopathy" and provide new insights for risk stratification of premature death and corresponding precision therapy in PWE.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Xue-Jun Deng
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
10
|
Al Anazi AH, Ammar AS, Al-Hajj M, Cyrus C, Aljaafari D, Khoda I, Abdelfatah AK, Alsulaiman AA, Alanazi F, Alanazi R, Gandla D, Lad H, Barayan S, Keating BJ, Al-Ali AK. Whole-exome sequencing of a Saudi epilepsy cohort reveals association signals in known and potentially novel loci. Hum Genomics 2022; 16:71. [PMID: 36539902 PMCID: PMC9764464 DOI: 10.1186/s40246-022-00444-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Epilepsy, a serious chronic neurological condition effecting up to 100 million people globally, has clear genetic underpinnings including common and rare variants. In Saudi Arabia, the prevalence of epilepsy is high and caused mainly by perinatal and genetic factors. No whole-exome sequencing (WES) studies have been performed to date in Saudi Arabian epilepsy cohorts. This offers a unique opportunity for the discovery of rare genetic variants impacting this disease as there is a high rate of consanguinity among large tribal pedigrees. RESULTS We performed WES on 144 individuals diagnosed with epilepsy, to interrogate known epilepsy-related genes for known and functional novel variants. We also used an American College of Medical Genetics (ACMG) guideline-based variant prioritization approach in an attempt to discover putative causative variants. We identified 32 potentially causative pathogenic variants across 30 different genes in 44/144 (30%) of these Saudi epilepsy individuals. We also identified 232 variants of unknown significance (VUS) across 101 different genes in 133/144 (92%) subjects. Strong enrichment of variants of likely pathogenicity was observed in previously described epilepsy-associated loci, and a number of putative pathogenic variants in novel loci are also observed. CONCLUSION Several putative pathogenic variants in known epilepsy-related loci were identified for the first time in our population, in addition to several potential new loci which may be prioritized for further investigation.
Collapse
Affiliation(s)
- Abdulrahman H. Al Anazi
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed S. Ammar
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Mahmoud Al-Hajj
- grid.415296.d0000 0004 0607 1539Department of Neurosurgery, King Fahd Hospital, Alhafof, Saudi Arabia
| | - Cyril Cyrus
- grid.411975.f0000 0004 0607 035XDepartment of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441 Dammam, Saudi Arabia
| | - Danah Aljaafari
- grid.411975.f0000 0004 0607 035XDepartment of Neurology, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Iname Khoda
- grid.411975.f0000 0004 0607 035XDepartment of Neurology, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Ahmed K. Abdelfatah
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Abdullah A. Alsulaiman
- grid.411975.f0000 0004 0607 035XDepartment of Neurology, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Firas Alanazi
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Rawan Alanazi
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Divya Gandla
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - Hetal Lad
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - Samar Barayan
- grid.411975.f0000 0004 0607 035XDepartment of Neurosurgery, King Fahd Hospital of the University, Alkhobar, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Brendan J. Keating
- grid.25879.310000 0004 1936 8972Department of Surgery, University of Pennsylvania School of Medicine, Philadelphia, PA USA
| | - Amein K. Al-Ali
- grid.411975.f0000 0004 0607 035XDepartment of Clinical Biochemistry, College of Medicine, Imam Abdulrahman Bin Faisal University, P. O. Box 1982, 31441 Dammam, Saudi Arabia
| |
Collapse
|
11
|
Kessi M, Peng J, Duan H, He H, Chen B, Xiong J, Wang Y, Yang L, Wang G, Kiprotich K, Bamgbade OA, He F, Yin F. The Contribution of HCN Channelopathies in Different Epileptic Syndromes, Mechanisms, Modulators, and Potential Treatment Targets: A Systematic Review. Front Mol Neurosci 2022; 15:807202. [PMID: 35663267 PMCID: PMC9161305 DOI: 10.3389/fnmol.2022.807202] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/06/2022] [Indexed: 12/04/2022] Open
Abstract
Background Hyperpolarization-activated cyclic nucleotide-gated (HCN) current reduces dendritic summation, suppresses dendritic calcium spikes, and enables inhibitory GABA-mediated postsynaptic potentials, thereby suppressing epilepsy. However, it is unclear whether increased HCN current can produce epilepsy. We hypothesized that gain-of-function (GOF) and loss-of-function (LOF) variants of HCN channel genes may cause epilepsy. Objectives This systematic review aims to summarize the role of HCN channelopathies in epilepsy, update genetic findings in patients, create genotype–phenotype correlations, and discuss animal models, GOF and LOF mechanisms, and potential treatment targets. Methods The review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses statement, for all years until August 2021. Results We identified pathogenic variants of HCN1 (n = 24), HCN2 (n = 8), HCN3 (n = 2), and HCN4 (n = 6) that were associated with epilepsy in 74 cases (43 HCN1, 20 HCN2, 2 HCN3, and 9 HCN4). Epilepsy was associated with GOF and LOF variants, and the mechanisms were indeterminate. Less than half of the cases became seizure-free and some developed drug-resistant epilepsy. Of the 74 cases, 12 (16.2%) died, comprising HCN1 (n = 4), HCN2 (n = 2), HCN3 (n = 2), and HCN4 (n = 4). Of the deceased cases, 10 (83%) had a sudden unexpected death in epilepsy (SUDEP) and 2 (16.7%) due to cardiopulmonary failure. SUDEP affected more adults (n = 10) than children (n = 2). HCN1 variants p.M234R, p.C329S, p.V414M, p.M153I, and p.M305L, as well as HCN2 variants p.S632W and delPPP (p.719–721), were associated with different phenotypes. HCN1 p.L157V and HCN4 p.R550C were associated with genetic generalized epilepsy. There are several HCN animal models, pharmacological targets, and modulators, but precise drugs have not been developed. Currently, there are no HCN channel openers. Conclusion We recommend clinicians to include HCN genes in epilepsy gene panels. Researchers should explore the possible underlying mechanisms for GOF and LOF variants by identifying the specific neuronal subtypes and neuroanatomical locations of each identified pathogenic variant. Researchers should identify specific HCN channel openers and blockers with high binding affinity. Such information will give clarity to the involvement of HCN channelopathies in epilepsy and provide the opportunity to develop targeted treatments.
Collapse
Affiliation(s)
- Miriam Kessi
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- Department of Pediatrics, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Haolin Duan
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Hailan He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Baiyu Chen
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Juan Xiong
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Ying Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Lifen Yang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Guoli Wang
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Karlmax Kiprotich
- Department of Epidemiology and Medical Statistics, School of Public Health, Moi University, Eldoret, Kenya
| | - Olumuyiwa A. Bamgbade
- Department of Anesthesiology and Pharmacology, University of British Columbia, Vancouver, BC, Canada
| | - Fang He
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
| | - Fei Yin
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
- Hunan Intellectual and Developmental Disabilities Research Center, Changsha, China
- *Correspondence: Fei Yin
| |
Collapse
|
12
|
Ng LCT, Li YX, Van Petegem F, Accili EA. Altered cyclic nucleotide-binding and pore opening in a diseased human HCN4 channel. Biophys J 2022; 121:1166-1183. [PMID: 35219649 PMCID: PMC9034293 DOI: 10.1016/j.bpj.2022.02.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/20/2021] [Accepted: 02/22/2022] [Indexed: 11/16/2022] Open
Abstract
A growing number of nonsynonymous mutations in the human HCN4 channel gene, the major component of the funny channel of the sinoatrial node, are associated with disease but how they impact channel structure and function, and, thus, how they result in disease, is not clear for any of them. Here, we study the S672R mutation, in the cyclic nucleotide-binding domain of the channel, which has been associated with an inherited bradycardia in an Italian family. This may be the best studied of all known mutations, yet the underlying molecular and atomistic mechanisms remain unclear and controversial. We combine measurements of binding by isothermal titration calorimetry to a naturally occurring tetramer of the HCN4 C-terminal region with a mathematical model to show that weaker binding of cAMP to the mutant channel contributes to a lower level of facilitation of channel opening at submicromolar ligand concentrations but that, in general, facilitation occurs over a range that is similar between the mutant and wild-type because of enhanced opening of the mutant channel when liganded. We also show that the binding affinity for cGMP, which produces the same maximum facilitation of HCN4 opening as cAMP, is weaker in the mutant HCN4 channel but that, for both wild-type and mutant, high-affinity binding of cGMP occurs in a range of concentrations below 1 μM. Thus, binding of cGMP to the HCN4 channel may be relevant normally in vivo and reduced binding of cGMP, as well as cAMP, to the mutant channel may contribute to the reduced resting heart rate observed in the affected family.
Collapse
Affiliation(s)
- Leo C T Ng
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada
| | - Yue Xian Li
- Department of Mathematics, University of British Columbia, Vancouver, Canada
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | - Eric A Accili
- Department of Cellular and Physiological Sciences, University of British Columbia, Vancouver, Canada.
| |
Collapse
|
13
|
Bleakley LE, McKenzie CE, Soh MS, Forster IC, Pinares-Garcia P, Sedo A, Kathirvel A, Churilov L, Jancovski N, Maljevic S, Berkovic SF, Scheffer IE, Petrou S, Santoro B, Reid CA. Cation leak underlies neuronal excitability in an HCN1 developmental and epileptic encephalopathy. Brain 2021; 144:2060-2073. [PMID: 33822003 PMCID: PMC8370418 DOI: 10.1093/brain/awab145] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 02/12/2021] [Accepted: 03/20/2021] [Indexed: 01/09/2023] Open
Abstract
Pathogenic variants in HCN1 are associated with developmental and epileptic encephalopathies. The recurrent de novo HCN1 M305L pathogenic variant is associated with severe developmental impairment and drug-resistant epilepsy. We engineered the homologue Hcn1 M294L heterozygous knock-in (Hcn1M294L) mouse to explore the disease mechanism underlying an HCN1 developmental and epileptic encephalopathy. The Hcn1M294L mouse recapitulated the phenotypic features of patients with the HCN1 M305L variant, including spontaneous seizures and a learning deficit. Active epileptiform spiking on the electrocorticogram and morphological markers typical of rodent seizure models were observed in the Hcn1M294L mouse. Lamotrigine exacerbated seizures and increased spiking, whereas sodium valproate reduced spiking, mirroring drug responses reported in a patient with this variant. Functional analysis in Xenopus laevis oocytes and layer V somatosensory cortical pyramidal neurons in ex vivo tissue revealed a loss of voltage dependence for the disease variant resulting in a constitutively open channel that allowed for cation 'leak' at depolarized membrane potentials. Consequently, Hcn1M294L layer V somatosensory cortical pyramidal neurons were significantly depolarized at rest. These neurons adapted through a depolarizing shift in action potential threshold. Despite this compensation, layer V somatosensory cortical pyramidal neurons fired action potentials more readily from rest. A similar depolarized resting potential and left-shift in rheobase was observed for CA1 hippocampal pyramidal neurons. The Hcn1M294L mouse provides insight into the pathological mechanisms underlying hyperexcitability in HCN1 developmental and epileptic encephalopathy, as well as being a preclinical model with strong construct and face validity, on which potential treatments can be tested.
Collapse
Affiliation(s)
- Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Chaseley E McKenzie
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ming S Soh
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Ian C Forster
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Paulo Pinares-Garcia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Alicia Sedo
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Anirudh Kathirvel
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Leonid Churilov
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
- Melbourne Medical School, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Nikola Jancovski
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Samuel F Berkovic
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| | - Ingrid E Scheffer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
- Department of Paediatrics, University of Melbourne, Royal Children’s Hospital, Parkville, Victoria 3052, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
| | - Bina Santoro
- Department of Neuroscience, The Kavli Institute for Brain Science, Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027, USA
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria 3052, Australia
- Department of Medicine, Epilepsy Research Centre, University of Melbourne, Austin Health, Heidelberg, Victoria 3084, Australia
| |
Collapse
|
14
|
Porro A, Abbandonato G, Veronesi V, Russo A, Binda A, Antolini L, Granata T, Castellotti B, Marini C, Moroni A, DiFrancesco JC, Rivolta I. Do the functional properties of HCN1 mutants correlate with the clinical features in epileptic patients? PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 166:147-155. [PMID: 34310985 DOI: 10.1016/j.pbiomolbio.2021.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 10/20/2022]
Abstract
The altered function of the Hyperpolarization-activated Cyclic-Nucleotide-gated (HCN) ion channels plays an important role in the pathogenesis of epilepsy in humans. In particular, HCN1 missense mutations have been recently identified in patients with different epileptic phenotypes, varying from mild to severe. Their electrophysiological characterization shows that mutated channels can act both with loss-of-function and gain-of-function mechanisms of action, without an evident correlation with the phenotype. In search for a correlation between clinical features and biophysical properties of the mutations, in this work we considered sixteen HCN1 mutations, found in eighteen Early Infantile Epileptic Encephalopathy (EIEE) patients. Statistical analysis did not establish any significant correlation between the clinical parameters and the current properties of the mutant channels. The lack of significance of our results could depend on the small number of mutations analyzed, epilepsy-associated with certainty. With the progressive increase of Next Generation Sequencing in patients with early-onset epilepsy, it is expected that the number of patients with HCN1 mutations will grow steadily. Functional characterization of epilepsy-associated HCN1 mutations remains a fundamental tool for a better understanding of the pathogenetic mechanisms leading to the disease in humans.
Collapse
Affiliation(s)
| | | | - Valentina Veronesi
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Alberto Russo
- Department of Biosciences, University of Milan, Milan, Italy.
| | - Anna Binda
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Laura Antolini
- School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.
| | - Tiziana Granata
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Barbara Castellotti
- Unit of Genetics of Neurodegenerative and Metabolic Diseases, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy.
| | - Carla Marini
- Department of Child Neuropsychiatry, Children's Hospital, Ancona, Italy.
| | - Anna Moroni
- Department of Biosciences, University of Milan, Milan, Italy.
| | - Jacopo C DiFrancesco
- Department of Pediatric Neuroscience, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy; Department of Neurology, Epilepsy Center, ASST San Gerardo Hospital, University of Milano- Bicocca, Monza, Italy.
| | - Ilaria Rivolta
- School of Medicine and Surgery and Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy.
| |
Collapse
|
15
|
Concepcion FA, Khan MN, Ju Wang JD, Wei AD, Ojemann JG, Ko AL, Shi Y, Eng JK, Ramirez JM, Poolos NP. HCN Channel Phosphorylation Sites Mapped by Mass Spectrometry in Human Epilepsy Patients and in an Animal Model of Temporal Lobe Epilepsy. Neuroscience 2021; 460:13-30. [PMID: 33571596 DOI: 10.1016/j.neuroscience.2021.01.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/07/2021] [Accepted: 01/26/2021] [Indexed: 10/22/2022]
Abstract
Because hyperpolarization-activated cyclic nucleotide-gated (HCN) ion channels modulate the excitability of cortical and hippocampal principal neurons, these channels play a key role in the hyperexcitability that occurs during the development of epilepsy after a brain insult, or epileptogenesis. In epileptic rats generated by pilocarpine-induced status epilepticus, HCN channel activity is downregulated by two main mechanisms: a hyperpolarizing shift in gating and a decrease in amplitude of the current mediated by HCN channels, Ih. Because these mechanisms are modulated by various phosphorylation signaling pathways, we hypothesized that phosphorylation changes occur at individual HCN channel amino acid residues (phosphosites) during epileptogenesis. We collected CA1 hippocampal tissue from male Sprague Dawley rats made epileptic by pilocarpine-induced status epilepticus, and age-matched naïve controls. We also included resected human brain tissue containing epileptogenic zones (EZs) where seizures arise for comparison to our chronically epileptic rats. After enrichment for HCN1 and HCN2 isoforms by immunoprecipitation and trypsin in-gel digestion, the samples were analyzed by mass spectrometry. We identified numerous phosphosites from HCN1 and HCN2 channels, representing a novel survey of phosphorylation sites within HCN channels. We found high levels of HCN channel phosphosite homology between humans and rats. We also identified a novel HCN1 channel phosphosite S791, which underwent significantly increased phosphorylation during the chronic epilepsy stage. Heterologous expression of a phosphomimetic mutant, S791D, replicated a hyperpolarizing shift in Ih gating seen in neurons from chronically epileptic rats. These results show that HCN1 channel phosphorylation is altered in epilepsy and may be of pathogenic importance.
Collapse
Affiliation(s)
- F A Concepcion
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - M N Khan
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States
| | - J-D Ju Wang
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - A D Wei
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States
| | - J G Ojemann
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - A L Ko
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - Y Shi
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA, United States
| | - J K Eng
- Proteomics Resource, University of Washington, Seattle, WA, United States
| | - J-M Ramirez
- Seattle Children's Research Institute, Center for Integrative Brain Research, Seattle, WA, United States; Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| | - N P Poolos
- Department of Neurology and Regional Epilepsy Center, University of Washington, Seattle, WA, United States.
| |
Collapse
|
16
|
Testing broad-spectrum and isoform-preferring HCN channel blockers for anticonvulsant properties in mice. Epilepsy Res 2020; 168:106484. [DOI: 10.1016/j.eplepsyres.2020.106484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/23/2020] [Accepted: 10/05/2020] [Indexed: 12/19/2022]
|
17
|
Hsieh LS, Wen JH, Nguyen LH, Zhang L, Getz S, Torres-Reveron J, Wang Y, Spencer DD, Bordey A. Ectopic HCN4 expression drives mTOR-dependent epilepsy in mice. Sci Transl Med 2020; 12:12/570/eabc1492. [PMID: 33208499 PMCID: PMC9888000 DOI: 10.1126/scitranslmed.abc1492] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 07/31/2020] [Indexed: 02/03/2023]
Abstract
The causative link between focal cortical malformations (FCMs) and epilepsy is well accepted, especially among patients with focal cortical dysplasia type II (FCDII) and tuberous sclerosis complex (TSC). However, the mechanisms underlying seizures remain unclear. Using a mouse model of TSC- and FCDII-associated FCM, we showed that FCM neurons were responsible for seizure activity via their unexpected abnormal expression of the hyperpolarization-activated cyclic nucleotide-gated potassium channel isoform 4 (HCN4), which is normally not present in cortical pyramidal neurons after birth. Increasing intracellular cAMP concentrations, which preferentially affects HCN4 gating relative to the other isoforms, drove repetitive firing of FCM neurons but not control pyramidal neurons. Ectopic HCN4 expression was dependent on the mechanistic target of rapamycin (mTOR), preceded the onset of seizures, and was also found in diseased neurons in tissue resected from patients with TSC and FCDII. Last, blocking HCN4 channel activity in FCM neurons prevented epilepsy in the mouse model. These findings suggest that HCN4 play a main role in seizure and identify a cAMP-dependent seizure mechanism in TSC and FCDII. Furthermore, the unique expression of HCN4 exclusively in FCM neurons suggests that gene therapy targeting HCN4 might be effective in reducing seizures in FCDII or TSC.
Collapse
Affiliation(s)
- Lawrence S. Hsieh
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - John H. Wen
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Lena H. Nguyen
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Longbo Zhang
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Stephanie Getz
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Juan Torres-Reveron
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Ying Wang
- Emergency Department, Xiangya Hospital, Central South University, 87 Xiangya Street, Changsha, Hunan 410008, China
| | - Dennis D. Spencer
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA
| | - Angélique Bordey
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Department of Cellular & Molecular Physiology, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,To whom correspondence should be addressed: Angélique Bordey, Ph.D., Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, FMB 422, New Haven, CT 06520-8082, Phone: 203-737-2515, Fax: 203-737-2159,
| |
Collapse
|
18
|
Kharouf Q, Phillips AM, Bleakley LE, Morrisroe E, Oyrer J, Jia L, Ludwig A, Jin L, Nicolazzo JA, Cerbai E, Romanelli MN, Petrou S, Reid CA. The hyperpolarization-activated cyclic nucleotide-gated 4 channel as a potential anti-seizure drug target. Br J Pharmacol 2020; 177:3712-3729. [PMID: 32364262 DOI: 10.1111/bph.15088] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/24/2020] [Accepted: 04/16/2020] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND AND PURPOSE Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are encoded by four genes (HCN1-4) with distinct biophysical properties and functions within the brain. HCN4 channels activate slowly at robust hyperpolarizing potentials, making them more likely to be engaged during hyperexcitable neuronal network activity seen during seizures. HCN4 channels are also highly expressed in thalamic nuclei, a brain region implicated in seizure generalization. Here, we assessed the utility of targeting the HCN4 channel as an anti-seizure strategy using pharmacological and genetic approaches. EXPERIMENTAL APPROACH The impact of reducing HCN4 channel function on seizure susceptibility and neuronal network excitability was studied using an HCN4 channel preferring blocker (EC18) and a conditional brain specific HCN4 knockout mouse model. KEY RESULTS EC18 (10 mg·kg-1 ) and brain-specific HCN4 channel knockout reduced seizure susceptibility and proconvulsant-mediated cortical spiking recorded using electrocorticography, with minimal effects on other mouse behaviours. EC18 (10 μM) decreased neuronal network bursting in mouse cortical cultures. Importantly, EC18 was not protective against proconvulsant-mediated seizures in the conditional HCN4 channel knockout mouse and did not reduce bursting behaviour in AAV-HCN4 shRNA infected mouse cortical cultures. CONCLUSIONS AND IMPLICATIONS These data suggest the HCN4 channel as a potential pharmacologically relevant target for anti-seizure drugs that is likely to have a low side-effect liability in the CNS.
Collapse
Affiliation(s)
- Qays Kharouf
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia.,School of Biosciences, University of Melbourne, Parkville, Victoria, Australia
| | - Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Emma Morrisroe
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Julia Oyrer
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Linghan Jia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Andreas Ludwig
- Institut für Experimentelle und Klinische Pharmakologie und Toxikologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Liang Jin
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health, (NEUROFARBA), University of Florence, Florence, Italy
| | - M Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health, (NEUROFARBA), University of Florence, Florence, Italy
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
19
|
Liu Y, Zhang Y, Zarrei M, Dong R, Yang X, Zhao D, Scherer SW, Gai Z. Refining critical regions in 15q24 microdeletion syndrome pertaining to autism. Am J Med Genet B Neuropsychiatr Genet 2020; 183:217-226. [PMID: 31953991 DOI: 10.1002/ajmg.b.32778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 11/29/2019] [Accepted: 12/16/2019] [Indexed: 12/26/2022]
Abstract
Chromosome 15q24 microdeletion syndrome is characterized by developmental delay, facial dysmorphism, hearing loss, hypotonia, recurrent infection, and other congenital malformations including microcephaly, scoliosis, joint laxity, digital anomalies, as well as sometimes having autism spectrum disorder (ASD) and attention deficit hyperactivity disorder. Here, we report a boy with a 2.58-Mb de novo deletion at chromosome 15q24. He is diagnosed with ASD and having multiple phenotypes similar to those reported in cases having 15q24 microdeletion syndrome. To delineate the critical genes and region that might be responsible for these phenotypes, we reviewed all previously published cases. We observe a potential minimum critical region of 650 kb (LCR15q24A-B) affecting NEO1 among other genes that might pertinent to individuals with ASD carrying this deletion. In contrast, a previously defined minimum critical region downstream of the 650-kb interval (LCR15q24B-D) is more likely associated with the developmental delay, facial dysmorphism, recurrent infection, and other congenital malformations. As a result, the ASD phenotype in this individual is potentially attributed by genes particularly NEO1 within the newly proposed critical region.
Collapse
Affiliation(s)
- Yi Liu
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Yanqing Zhang
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, 250022, China
| | - Mehdi Zarrei
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rui Dong
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Xiaomeng Yang
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| | - Dongmei Zhao
- Pediatric Health Care Institute, Qilu Children's Hospital of Shandong University, Ji'nan, 250022, China
| | - Stephen W Scherer
- The Centre for Applied Genomics, The Hospital for Sick Children, Toronto, Ontario, Canada.,McLaughlin Centre and Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Zhongtao Gai
- Pediatric Research Institute, Qilu Children's Hospital of Shandong University, Ji'nan, China
| |
Collapse
|
20
|
Rivolta I, Binda A, Masi A, DiFrancesco JC. Cardiac and neuronal HCN channelopathies. Pflugers Arch 2020; 472:931-951. [PMID: 32424620 DOI: 10.1007/s00424-020-02384-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 12/31/2022]
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are expressed as four different isoforms (HCN1-4) in the heart and in the central and peripheral nervous systems. In the voltage range of activation, HCN channels carry an inward current mediated by Na+ and K+, termed If in the heart and Ih in neurons. Altered function of HCN channels, mainly HCN4, is associated with sinus node dysfunction and other arrhythmias such as atrial fibrillation, ventricular tachycardia, and atrioventricular block. In recent years, several data have also shown that dysfunctional HCN channels, in particular HCN1, but also HCN2 and HCN4, can play a pathogenic role in epilepsy; these include experimental data from animal models, and data collected over genetic mutations of the channels identified and characterized in epileptic patients. In the central nervous system, alteration of the Ih current could predispose to the development of neurodegenerative diseases such as Parkinson's disease; since HCN channels are widely expressed in the peripheral nervous system, their dysfunctional behavior could also be associated with the pathogenesis of neuropathic pain. Given the fundamental role played by the HCN channels in the regulation of the discharge activity of cardiac and neuronal cells, the modulation of their function for therapeutic purposes is under study since it could be useful in various pathological conditions. Here we review the present knowledge of the HCN-related channelopathies in cardiac and neurological diseases, including clinical, genetic, therapeutic, and physiopathological aspects.
Collapse
Affiliation(s)
- Ilaria Rivolta
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Anna Binda
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy
| | - Alessio Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | - Jacopo C DiFrancesco
- School of Medicine and Surgery, Milan Center for Neuroscience (NeuroMI), University of Milano-Bicocca, Monza, Italy. .,Department of Neurology, ASST San Gerardo Hospital, University of Milano-Bicocca, Via Pergolesi, 33, 20900, Monza, MB, Italy.
| |
Collapse
|
21
|
Shademan B, Biray Avci C, Nikanfar M, Nourazarian A. Application of Next-Generation Sequencing in Neurodegenerative Diseases: Opportunities and Challenges. Neuromolecular Med 2020; 23:225-235. [PMID: 32399804 DOI: 10.1007/s12017-020-08601-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/01/2020] [Indexed: 12/28/2022]
Abstract
Genetic factors (gene mutations) lead to various rare and prevalent neurological diseases. Identification of underlying mutations in neurodegenerative diseases is of paramount importance due to the heterogeneous nature of the genome and different clinical manifestations. An early and accurate molecular diagnosis are cardinal for neurodegenerative patients to undergo proper therapeutic regimens. The next-generation sequencing (NGS) method examines up to millions of sequences at a time. As a result, the rare molecular diagnoses, previously presented with "unknown causes", are now possible in a short time. This method generates a large amount of data that can be utilized in patient management. Since each person has a unique genome, the NGS has transformed diagnostic and therapeutic strategies into sequencing and individual genomic mapping. However, this method has disadvantages like other diagnostic methods. Therefore, in this review, we aimed to briefly summarize the NGS method and correlated studies to unravel the genetic causes of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, epilepsy, and MS. Finally, we discuss the NGS challenges and opportunities in neurodegenerative diseases.
Collapse
Affiliation(s)
- Behrouz Shademan
- Department of Medical Biology, Medical Faculty, Ege University, 35100, Bornova, Izmir, Turkey
| | - Cigir Biray Avci
- Department of Medical Biology, Medical Faculty, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Masoud Nikanfar
- Department of Neurology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Nourazarian
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Golgasht St., 51666-16471, Tabriz, Iran. .,Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
22
|
Oyrer J, Bleakley LE, Richards KL, Maljevic S, Phillips AM, Petrou S, Nowell CJ, Reid CA. Using a Multiplex Nucleic Acid in situ Hybridization Technique to Determine HCN4 mRNA Expression in the Adult Rodent Brain. Front Mol Neurosci 2019; 12:211. [PMID: 31555092 PMCID: PMC6724756 DOI: 10.3389/fnmol.2019.00211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/16/2019] [Indexed: 12/28/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels carry a non-selective cationic conductance, Ih, which is important for modulating neuron excitability. Four genes (HCN1-4) encode HCN channels, with each gene having distinct expression and biophysical profiles. Here we use multiplex nucleic acid in situ hybridization to determine HCN4 mRNA expression within the adult mouse brain. We take advantage of this approach to detect HCN4 mRNA simultaneously with either HCN1 or HCN2 mRNA and markers of excitatory (VGlut-positive) and inhibitory (VGat-positive) neurons, which was not previously reported. We have developed a Fiji-based analysis code that enables quantification of mRNA expression within identified cell bodies. The highest HCN4 mRNA expression was found in the habenula (medial and lateral) and the thalamus. HCN4 mRNA was particularly high in the medial habenula with essentially no co-expression of HCN1 or HCN2 mRNA. An absence of Ih-mediated “sag” in neurons recorded from the medial habenula of knockout mice confirmed that HCN4 channels are the predominant subtype in this region. Analysis in the thalamus revealed HCN4 mRNA in VGlut2-positive excitatory neurons that was always co-expressed with HCN2 mRNA. In contrast, HCN4 mRNA was undetectable in the nucleus reticularis. HCN4 mRNA expression was high in a subset of VGat-positive cells in the globus pallidus external. The majority of these neurons co-expressed HCN2 mRNA while a smaller subset also co-expressed HCN1 mRNA. In the striatum, a small subset of large cells which are likely to be giant cholinergic interneurons co-expressed high levels of HCN4 and HCN2 mRNA. The amygdala, cortex and hippocampus expressed low levels of HCN4 mRNA. This study highlights the heterogeneity of HCN4 mRNA expression in the brain and provides a morphological framework on which to better investigate the functional roles of HCN4 channels.
Collapse
Affiliation(s)
- Julia Oyrer
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Lauren E Bleakley
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Kay L Richards
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Snezana Maljevic
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - A Marie Phillips
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia.,School of Biosciences, The University of Melbourne, Parkville, VIC, Australia
| | - Steven Petrou
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Cameron J Nowell
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - Christopher A Reid
- Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
23
|
DiFrancesco JC, Castellotti B, Milanesi R, Ragona F, Freri E, Canafoglia L, Franceschetti S, Ferrarese C, Magri S, Taroni F, Costa C, Labate A, Gambardella A, Solazzi R, Binda A, Rivolta I, Di Gennaro G, Casciato S, D’Incerti L, Barbuti A, DiFrancesco D, Granata T, Gellera C. HCN ion channels and accessory proteins in epilepsy: genetic analysis of a large cohort of patients and review of the literature. Epilepsy Res 2019; 153:49-58. [DOI: 10.1016/j.eplepsyres.2019.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/01/2019] [Accepted: 04/08/2019] [Indexed: 11/28/2022]
|
24
|
Romanelli MN, Del Lungo M, Guandalini L, Zobeiri M, Gyökeres A, Árpádffy-Lovas T, Koncz I, Sartiani L, Bartolucci G, Dei S, Manetti D, Teodori E, Budde T, Cerbai E. EC18 as a Tool To Understand the Role of HCN4 Channels in Mediating Hyperpolarization-Activated Current in Tissues. ACS Med Chem Lett 2019; 10:584-589. [PMID: 30996800 DOI: 10.1021/acsmedchemlett.8b00587] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/06/2019] [Indexed: 12/31/2022] Open
Abstract
Hyperpolarization-activated cyclic nucleotide-gated (HCN) channels are membrane proteins encoded by four genes (HCN1-4) and widely distributed in the central and peripheral nervous system and in the heart. HCN channels are involved in several physiological functions, including the generation of rhythmic activity, and are considered important drug targets if compounds with isoform selectivity are developed. At present, however, few compounds are known, which are able to discriminate among HCN channel isoforms. The inclusion of the three-methylene chain of zatebradine into a cyclohexane ring gave a compound (3a) showing a 5-fold preference for HCN4 channels, and ability to selectively modulate Ih in different tissues. Compound 3a has been tested for its ability to reduce Ih and to interact with other ion channels in the heart and the central nervous system. Its preference for HCN4 channels makes this compound useful to elucidate the contribution of this isoform in the physiological and pathological processes involving hyperpolarization-activated current.
Collapse
Affiliation(s)
- Maria Novella Romanelli
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Martina Del Lungo
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Luca Guandalini
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Mehrnoush Zobeiri
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster 48149, Germany
| | - András Gyökeres
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary
| | - Tamás Árpádffy-Lovas
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary
| | - Istvan Koncz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged H-6720, Hungary
| | - Laura Sartiani
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Gianluca Bartolucci
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Silvia Dei
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Dina Manetti
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Elisabetta Teodori
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| | - Thomas Budde
- Institute of Physiology I, Westfälische Wilhelms-University Münster, Münster 48149, Germany
| | - Elisabetta Cerbai
- Department of Neurosciences, Psychology, Drug Research and Child Health (NeuroFarBa), University of Florence, Florence 50139, Italy
| |
Collapse
|