1
|
Chen JXY, Vipin A, Sandhu GK, Leow YJ, Zailan FZ, Tanoto P, Lee ES, Lee KL, Cheung C, Kandiah N. Blood-brain barrier integrity disruption is associated with both chronic vascular risk factors and white matter hyperintensities. J Prev Alzheimers Dis 2025; 12:100029. [PMID: 39863325 DOI: 10.1016/j.tjpad.2024.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/21/2024] [Accepted: 12/02/2024] [Indexed: 01/27/2025]
Abstract
BACKGROUND Cardiovascular risk factors (CRFs) like hypertension, high cholesterol, and diabetes mellitus are increasingly linked to cognitive decline and dementia, especially in cerebral small vessel disease (cSVD). White matter hyperintensities (WMH) are closely associated with cognitive impairment, but the mechanisms behind their development remain unclear. Blood-brain barrier (BBB) dysfunction may be a key factor, particularly in cSVD. OBJECTIVE This study explores the relationship between CRFs, BBB integrity, and WMH burden. DESIGN, SETTING, AND PARTICIPANTS The study included 155 participants from the Biomarkers and Cognition Study, Singapore (BIOCIS). CRFs were assessed through blood tests for glucose and lipid profiles, and blood pressure measurements. WMH volumes were quantified using MRI. MEASUREMENTS BBB integrity was evaluated using a Transendothelial Electrical Resistance (TEER) assay with human brain microvascular endothelial cells (hBMEC) exposed to participant plasma. RESULTS Plasma from individuals with a higher WMH burden was associated with increased BBB disruption in hBMEC. Higher systolic and diastolic blood pressure, as well as body mass index, were correlated with greater BBB disruption. Regression analyses revealed that elevated blood glucose and lipid levels were linked to increased BBB disruption. Both periventricular and subcortical WMH burdens were associated with increased BBB disruption. CONCLUSION This study highlights a relationship between CRFs, BBB disruption, and WMH burden, suggesting that CRFs may impair BBB integrity and contribute to WMH and cognitive decline in cSVD.
Collapse
Affiliation(s)
- James Xiao Yuan Chen
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ashwati Vipin
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Gurveen Kaur Sandhu
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Yi Jin Leow
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Fatin Zahra Zailan
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Pricilia Tanoto
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Ee Soo Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; School of Pharmacy, University of Nottingham Malaysia, Selangor, Malaysia
| | - Khang Leng Lee
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore
| | - Christine Cheung
- Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore; Institute of Molecular and Cell Biology, Agency for Science, Technology and Research, Singapore
| | - Nagaendran Kandiah
- Dementia Research Centre (Singapore), Lee Kong Chian School of Medicine - Nanyang Technological University, Singapore.
| |
Collapse
|
2
|
Haessler A, Gier S, Jung N, Windbergs M. The Aβ 42:Aβ 40 ratio modulates aggregation in beta-amyloid oligomers and drives metabolic changes and cellular dysfunction. Front Cell Neurosci 2024; 18:1516093. [PMID: 39717390 PMCID: PMC11664223 DOI: 10.3389/fncel.2024.1516093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The pathophysiological role of Aβ42 oligomers in the onset of Alzheimer's disease (AD) is heavily disputed, pivoting research toward investigating mixed oligomers composed of Aβ42 and Aβ40, which is more abundant but less aggregation-prone. This study investigates Aβ42:Aβ40 oligomers in different ratios, examining their adverse effects on endothelial cells, neurons, astroglia, and microglia, as well as in a human blood-brain barrier (BBB) model. Combining label-free Raman microscopy with complementary imaging techniques and biochemical assays, we show the prominent impact of Aβ40 on Aβ42 fibrillation, suggesting an inhibitory effect on aggregation. Mixed oligomers, especially with low proportions of Aβ42, were equally detrimental as pure Aβ42 oligomers regarding cell viability, functionality, and metabolism. They also differentially affected lipid droplet metabolism in BBB-associated microglia, indicating distinct pathophysiological responses. Our findings demonstrate the overarching significance of the Aβ42:Aβ40 ratio in Aβ oligomers, challenging the traditional focus on Aβ42 in AD research.
Collapse
Affiliation(s)
| | | | | | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Liu J, Pang SY, Zhou SY, He QY, Zhao RY, Qu Y, Yang Y, Guo ZN. Lipocalin-2 aggravates blood-brain barrier dysfunction after intravenous thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway. Redox Biol 2024; 76:103342. [PMID: 39265498 PMCID: PMC11415874 DOI: 10.1016/j.redox.2024.103342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/25/2024] [Accepted: 09/03/2024] [Indexed: 09/14/2024] Open
Abstract
BACKGROUND Disruption of the blood-brain barrier (BBB) is a major contributor to hemorrhagic transformation (HT) in patients with acute ischemic stroke (AIS) following intravenous thrombolysis (IVT). However, the clinical therapies aimed at BBB protection after IVT remain limited. METHODS One hundred patients with AIS who underwent IVT were enrolled (42 with HT and 58 without HT 24 h after IVT). Based on the cytokine chip, the serum levels of several AIS-related proteins, including LCN2, ferritin, matrix metalloproteinase-3, vascular endothelial-derived growth factor, and X-linked inhibitor of apoptosis, were detected upon admission, and their associations with HT were analyzed. After finding that LCN2 was related to HT in patients with IVT, we clarified whether the modulation of LCN2 influenced BBB dysfunction and HT after thrombolysis and investigated the potential mechanism. RESULTS In patients with AIS following IVT, logistic regression analysis showed that baseline serum LCN2 (p = 0.023) and ferritin (p = 0.046) levels were independently associated with HT. A positive correlation between serum LCN2 and ferritin levels was identified in patients with HT. In experimental studies, recombinant LCN2 (rLCN2) significantly aggravated BBB dysfunction and HT in the thromboembolic stroke rats after thrombolysis, whereas LCN2 inhibition by ZINC006440089 exerted opposite effects. Further mechanistic studies showed that, LCN2 promoted endothelial cell ferroptosis, accompanied by the induction of high mobility group box 1 (HMGB1) and the inhibition of nuclear translocation of nuclear factor E2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) proteins. Ferroptosis inhibitor ferrostatin-1 (fer-1) significantly restricted the LCN2-mediated BBB disruption. Transfection of LCN2 and HMGB1 siRNA inhibited the endothelial cell ferroptosis, and this effects was reversed by Nrf2 siRNA. CONCLUSION LCN2 aggravated BBB disruption after thrombolysis by promoting endothelial cell ferroptosis via regulating the HMGB1/Nrf2/HO-1 pathway, this may provide a promising therapeutic target for the prevention of HT after IVT.
Collapse
Affiliation(s)
- Jie Liu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Shu-Yan Pang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Sheng-Yu Zhou
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Qian-Yan He
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Ruo-Yu Zhao
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yang Qu
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China
| | - Yi Yang
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Chang Chun, China.
| | - Zhen-Ni Guo
- Stroke Center, Department of Neurology, The First Hospital of Jilin University, Chang Chun, China; Neuroscience Research Center, Department of Neurology, First Hospital of Jilin University, Chang Chun, China.
| |
Collapse
|
4
|
Kalantari L, Hajjafari A, Goleij P, Rezaee A, Amirlou P, Farsad S, Foroozand H, Arefnezhad R, Rezaei-Tazangi F, Jahani S, Yazdani T, Nazari A. Umbilical cord mesenchymal stem cells: A powerful fighter against colon cancer? Tissue Cell 2024; 90:102523. [PMID: 39154502 DOI: 10.1016/j.tice.2024.102523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 08/20/2024]
Abstract
Colon cancer (CC) stands as one of the most common malignancies related to the gastrointestinal system, whose increasing incidence and death rates have been reported all over the world. Standard treatments for fighting cancers like CC comprise surgical approaches, chemotherapy, and radiotherapy, which are suggested by clinicians according to patients' conditions and disease stages. However, patients who utilize these modalities may suffer from serious side effects and adverse outcomes, for example, toxicity and tumor recurrence, as well as a low 5-year survival rate. The present shreds of evidence showed that mesenchymal stem cells (MSCs) can have a suitable capacity for treating different health problems, especially neoplasms. These multipotent stem cells can be isolated from several sources, such as the umbilical cord, bone marrow, adipose tissue, and placenta. Among these mesenchymal sources, umbilical cord-MSCs have gathered much attention in scientific societies due to their advantages (e.g., low immunogenicity, lack of ethical problems, and easy collection). These days, the efficacy of umbilical cord-MSCs and umbilical cord-MSCs-based strategies, such as conditioned medium, extracellular vesicles, and exosomes, on CC have been explored, and promising findings have been stated. Therefore, in this review, we aimed to summarize and debate evidence regarding the effects of UC-MSCs and their related products on CC with a focus on molecular and cellular mechanisms involved in its treatment and pathogenesis of this malignant tumor.
Collapse
Affiliation(s)
- Leila Kalantari
- Student Research Committee, Fasa University of Medical Sciences, Fasa, Iran; School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
| | - Ashkan Hajjafari
- Department of Pathobiology, Faculty of Veterinary Medicine Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Pouya Goleij
- Department of Genetics, Sana Institute of Higher Education, Sari, Iran; USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aryan Rezaee
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Parsa Amirlou
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shirin Farsad
- Faculty of Basic Science, Islamic Azad University, Qom, Iran
| | - Hassan Foroozand
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Arefnezhad
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran; Coenzyme R Research Institute, Tehran, Iran
| | - Fatemeh Rezaei-Tazangi
- Department of Anatomy, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Saleheh Jahani
- Pathology department, University of California, SanDiego, United States
| | - Taha Yazdani
- Student Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Nazari
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Fan YY, Luo RY, Wang MT, Yuan CY, Sun YY, Jing JY. Mechanisms underlying delirium in patients with critical illness. Front Aging Neurosci 2024; 16:1446523. [PMID: 39391586 PMCID: PMC11464339 DOI: 10.3389/fnagi.2024.1446523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Delirium is an acute, global cognitive disorder syndrome, also known as acute brain syndrome, characterized by disturbance of attention and awareness and fluctuation of symptoms. Its incidence is high among critically ill patients. Once patients develop delirium, it increases the risk of unplanned extubation, prolongs hospital stay, increases the risk of nosocomial infection, post-intensive care syndrome-cognitive impairment, and even death. Therefore, it is of great importance to understand how delirium occurs and to reduce the incidence of delirium in critically ill patients. This paper reviews the potential pathophysiological mechanisms of delirium in critically ill patients, with the aim of better understanding its pathophysiological processes, guiding the formulation of effective prevention and treatment strategies, providing a basis for clinical medication.
Collapse
Affiliation(s)
- Ying-Ying Fan
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ruo-Yu Luo
- School of Nursing, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Meng-Tian Wang
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Chao-Yun Yuan
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Yuan-Yuan Sun
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| | - Ji-Yong Jing
- Zhejiang Provincial People’s Hospital, People’s Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
6
|
Qin YJ, Huang G, Liao J, Jiang L, Tang F, Tang N, Hong Y, Shen C, Lan Q, Xu F, Chen L. Ucf-101 alleviates Ischaemia/Reperfusion induced retinal inflammation and injury via suppressing oxidative damage. J Mol Histol 2024; 55:455-464. [PMID: 38877338 DOI: 10.1007/s10735-024-10213-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
The Omi/HtrA2 inhibitor 5-[5-(2-nitrophenyl) furfuryliodine]-1,3-diphenyl-2-thiobarbituric acid (Ucf-101) has shown neuroprotective effects in the central nervous system. However, whether Ucf-101 can protect retinal ganglion cells (RGCs) after retinal ischemia/reperfusion (IR) has not been investigated. We aimed to investigate the effects of Ucf-101 on RGCs apoptosis and inflammation after IR-induced retinal injury in mice. We injected Ucf-101 into the mouse vitreous body immediately after IR injury. After 7 days, hematoxylin and eosin staining was conducted to assess retinal tissue damage. Next, retrograde labeling with FluoroGold, counting of RGCs and TUNEL staining were conducted to evaluate apoptosis. Immunohistochemistry, immunofluorescence staining, and western blotting were conducted to analyze protein levels. IR injury-induced retinal tissue damage could be prevented by Ucf-101 treatment. The number of TUNEL-positive RGCs was reduced by Ucf-101 treatment in mice with IR injury. Ucf-101 treatment inhibited the upregulation of Bax, cleaved caspase-3 and cleaved caspase-9 and activated the JNK/ERK/P38 signaling pathway. Furthermore, Ucf-101 treatment inhibited the upregulation of glial fibrillary acidic protein (GFAP), vimentin, Iba1 and CD68 in mice with IR injury. Ucf-101 prevents retinal tissue damage, improves the survival of RGCs, and suppresses microglial overactivation after IR injury. Ucf-101 might be a potential target to prevent RGCs apoptosis and inflammation in neurodegenerative eye diseases.
Collapse
Affiliation(s)
- Yuan-Jun Qin
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
- Department of Ophthalmology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Guangyi Huang
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jing Liao
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Li Jiang
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fen Tang
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Ningning Tang
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Yiyi Hong
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Chaolan Shen
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qianqian Lan
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Fan Xu
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| | - Lifei Chen
- Institute of Ophthalmic Diseases, Department of Ophthalmology, Guangxi Academy of Medical Sciences, The People's Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.
| |
Collapse
|
7
|
Palacios Y, Ramón-Luing LA, Ruiz A, García-Martínez A, Sánchez-Monciváis A, Barreto-Rodríguez O, Falfán-Valencia R, Pérez-Rubio G, Medina-Quero K, Buendia-Roldan I, Chavez-Galan L. COVID-19 patients with high TNF/IFN-γ levels show hallmarks of PANoptosis, an inflammatory cell death. Microbes Infect 2023; 25:105179. [PMID: 37394112 DOI: 10.1016/j.micinf.2023.105179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023]
Abstract
TNF and IFN-γ trigger cell damage during SARS CoV-2 infection; these cytokines can induce senescence and a cell death process called PANoptosis. This study included 138 vaccine-naïve COVID-19 patients, who were divided into four groups (Gp) according to the plasma level of TNF and IFN-γ (High [Hi] or Normal-Low [No-Low]), Gp 1: TNFHi/IFNγHi; Gp 2: TNFHi/IFNγNo-Low; Gp 3: TNFNo-Low/IFNγHi; and Gp 4: TNFNo-Low/IFNγNo-Low. Thirty-five apoptosis-related proteins and molecules related to cell death and senescence were evaluated. Our results showed that groups did not display differences in age and comorbidities. However, 81% of the Gp 1 patients had severe COVID-19, and 44% died. Notably, the p21/CDKN1A was increased in Gp 2 and Gp 3. Moreover, Gp 1 showed higher TNFR1, MLKL, RIPK1, NLRP3, Caspase 1, and HMGB-1 levels, suggesting elevated TNF and IFN-γ levels simultaneously activate diverse cell death pathways because it is not observed when only one of these cytokines is increased. Thus, high TNF/IFN-γ levels are predominant in severe COVID-19 status, and patients display cell alterations associated with the activation of diverse cell death pathways, including a possible senescent phenotype.
Collapse
Affiliation(s)
- Yadira Palacios
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Lucero A Ramón-Luing
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Andy Ruiz
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | | | - Anahí Sánchez-Monciváis
- Laboratorio de Inmunología, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| | - Omar Barreto-Rodríguez
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Ramces Falfán-Valencia
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Gloria Pérez-Rubio
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Karen Medina-Quero
- Laboratorio de Inmunología, Escuela Militar de Graduados de Sanidad, SEDENA, Mexico City 11200, Mexico
| | - Ivette Buendia-Roldan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico
| | - Leslie Chavez-Galan
- Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City 14080, Mexico.
| |
Collapse
|
8
|
He C, Xu Y, Sun J, Li L, Zhang JH, Wang Y. Autophagy and Apoptosis in Acute Brain Injuries: From Mechanism to Treatment. Antioxid Redox Signal 2023; 38:234-257. [PMID: 35579958 DOI: 10.1089/ars.2021.0094] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Significance: Autophagy and apoptosis are two important cellular mechanisms behind brain injuries, which are severe clinical situations with increasing incidences worldwide. To search for more and better treatments for brain injuries, it is essential to deepen the understanding of autophagy, apoptosis, and their interactions in brain injuries. This article first analyzes how autophagy and apoptosis participate in the pathogenetic processes of brain injuries respectively and mutually, then summarizes some promising treatments targeting autophagy and apoptosis to show the potential clinical applications in personalized medicine and precision medicine in the future. Recent Advances: Most current studies suggest that apoptosis is detrimental to brain recovery. Several studies indicate that autophagy can cause unnecessary death of neurons after brain injuries, while others show that autophagy is beneficial for acute brain injuries (ABIs) by facilitating the removal of damaged proteins and organelles. Whether autophagy is beneficial or detrimental in ABIs depends on many factors, and the results from different research groups are diverse or even controversial, making this topic more appealing to be explored further. Critical Issues: Neuronal autophagy and apoptosis are two primary pathological processes in ABIs. How they interact with each other and how their regulations affect the outcome and prognosis of brain injuries remain uncertain, making these answers more critical. Future Directions: Insights into the interplay between autophagy and apoptosis and the accurate regulations of their balance in ABIs may promote personalized and precise treatments in the field of brain injuries. Antioxid. Redox Signal. 38, 234-257.
Collapse
Affiliation(s)
- Chuyu He
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Yanjun Xu
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Jing Sun
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| | - Layla Li
- Faculty of Medicine, International School, Jinan University, Guangzhou, China
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, California, USA.,Department of Neurosurgery, Loma Linda University, Loma Linda, California, USA
| | - Yuechun Wang
- Department of Physiology, Basic Medical and Public Health School, Jinan University, Guangzhou, China
| |
Collapse
|
9
|
Zhao L, Li Y, Wang Y, Ge Z, Zhu H, Zhou X, Li Y. Non-hepatic Hyperammonemia: A Potential Therapeutic Target for Sepsis-associated Encephalopathy. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2022; 21:738-751. [PMID: 34939553 DOI: 10.2174/1871527321666211221161534] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/10/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022]
Abstract
Sepsis-Associated Encephalopathy (SAE) is a common complication in the acute phase of sepsis, and patients who develop SAE have a higher mortality rate, longer hospital stay, and worse quality of life than other sepsis patients. Although the incidence of SAE is as high as 70% in sepsis patients, no effective treatment is available for this condition. To develop an effective treatment for SAE, it is vital to explore its pathogenesis. It is known that hyperammonemia is a possible factor in the pathogenesis of hepatic encephalopathy as ammonia is a potent neurotoxin. Furthermore, our previous studies indicate that non-hepatic hyperammonemia seems to occur more often in sepsis patients; it was also found that >50% of sepsis patients with non-hepatic hyperammonemia exhibited encephalopathy and delirium. Substatistical analyses indicate that non-hepatic hyperammonemia is an independent risk factor for SAE. This study updates the definition, clinical manifestations, and diagnosis of SAE; it also investigates the possible treatment options available for non-hepatic hyperammonemia in patients with sepsis and the mechanisms by which non-hepatic hyperammonemia causes encephalopathy.
Collapse
Affiliation(s)
- Lina Zhao
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Yun Li
- Department of Anesthesiology, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
| | - Yunying Wang
- Department of Critical Care Medicine, Chifeng Municipal Hospital, Chifeng Clinical Medical College of Inner Mongolia Medical University, Chifeng 024000, China
| | - Zengzheng Ge
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Huadong Zhu
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiuhua Zhou
- Department of Critical Care Medicine, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Yi Li
- Emergency Department, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, China
| |
Collapse
|
10
|
Guo Y, Han L, Han S, Tang H, Wang S, Cui C, Chen B, Li H, Shu Y. Specific knockdown of Htra2 by CRISPR-CasRx prevents acquired sensorineural hearing loss in mice. MOLECULAR THERAPY. NUCLEIC ACIDS 2022; 28:643-655. [PMID: 35615000 PMCID: PMC9112053 DOI: 10.1016/j.omtn.2022.04.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 04/22/2022] [Indexed: 12/26/2022]
Abstract
CasRx, a recently discovered member of the type VI CRISPR system with minimum size, offers a new approach for RNA manipulation with high efficiency and specificity in prokaryotes and eukaryotes. However, in vivo studies of functional recovery using the CasRx system have not been well characterized. Here, we sought to establish an adeno-associated virus (AAV)-CasRx-guide RNA (gRNA) system for the specific knockdown of Htra2 transcript to protect mice from aminoglycosides-induced hearing loss. For the study, we verified an optimized gRNA in vitro, which was packaged into a single AAV with CasRx, and injected the packaged AAV into mice with hearing loss induced by neomycin and auditory functions investigated by auditory brainstem response tests. Upon using the AAV-CasRx-gRNA system, we found the knockdown of Htra2 transcript led to less cochlear hair cell loss and improved auditory function, with low off-target and adverse side effects. Additionally, the decrease in Htra2 significantly inhibits mRNA expression of Casp3 and Casp9. In conclusion, the AAV-CasRx-gRNA-mediated knockdown of Htra2 transcript in mice has been proved effective and safe for preventing hearing loss induced by aminoglycosides and, thus, represents a promising genetic approach for the future clinical applications for treating non-inherited hearing loss.
Collapse
Affiliation(s)
- Yang Guo
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China
| | - Lei Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China.,Department of Otorhinolaryngology, The Second Affiliated Hospital, University of South China, Hengyang 421001, China
| | - Shuang Han
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China.,Department of Otolaryngology Head and Neck Surgery, The Second Hospital of Jilin University, Changchun 130041, China
| | - Honghai Tang
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China
| | - Shengyi Wang
- Institute of Biomedical Science, Fudan University, Shanghai 200032, China
| | - Chong Cui
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China
| | - Bing Chen
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China
| | - Huawei Li
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China.,The Institutes of Brain Science and the Collaborative Innovation Center for Brain Science, Fudan University, Shanghai 200032, China
| | - Yilai Shu
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200031, China.,Institute of Biomedical Science, Fudan University, Shanghai 200032, China.,NHC Key Laboratory of Hearing Medicine (Fudan University), Shanghai 200032, China
| |
Collapse
|
11
|
Pathogenesis of sepsis-associated encephalopathy: more than blood-brain barrier dysfunction. Mol Biol Rep 2022; 49:10091-10099. [PMID: 35639274 DOI: 10.1007/s11033-022-07592-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 05/11/2022] [Indexed: 12/19/2022]
Abstract
Sepsis-associated encephalopathy is a common neurological complication of sepsis and is responsible for higher mortality and poorer long-term outcomes in septic patients. Sepsis-associated encephalopathy symptoms can range from mild delirium to deep coma, which occurs in up to 70% of patients in intensive care units. The pathological changes in the brain associated with sepsis include cerebral ischaemia, cerebral haemorrhage, abscess and progressive multifocal necrotic leukoencephalopathy. Several mechanisms are involved in the pathogenesis of sepsis-associated encephalopathy, such as blood-brain barrier dysfunction, cerebral blood flow impairment, glial cell activation, leukocyte transmigration, and neurotransmitter disturbances. These events are interrelated and influence each other, therefore they do not act as independent factors. This review is focused on new evidence showing the pathological process of sepsis-associated encephalopathy.
Collapse
|
12
|
DU K, Lu F, Xie C, Ding H, Shen Y, Gao Y, Lu S, Zhuo X. Toxoplasma gondii infection induces cell apoptosis via multiple pathways revealed by transcriptome analysis. J Zhejiang Univ Sci B 2022; 23:315-327. [PMID: 35403386 DOI: 10.1631/jzus.b2100877] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Toxoplasma gondii is a worldwide parasite that can infect almost all kinds of mammals and cause fatal toxoplasmosis in immunocompromised patients. Apoptosis is one of the principal strategies of host cells to clear pathogens and maintain organismal homeostasis, but the mechanism of cell apoptosis induced by T. gondii remains obscure. To explore the apoptosis influenced by T. gondii, Vero cells infected or uninfected with the parasite were subjected to apoptosis detection and subsequent dual RNA sequencing (RNA-seq). Using high-throughput Illumina sequencing and bioinformatics analysis, we found that pro-apoptosis genes such as DNA damage-inducible transcript 3 (DDIT3), growth arrest and DNA damage-inducible α (GADD45A), caspase-3 (CASP3), and high-temperature requirement protease A2 (HtrA2) were upregulated, and anti-apoptosis genes such as poly(adenosine diphosphate (ADP)-ribose) polymerase family member 3 (PARP3), B-cell lymphoma 2 (Bcl-2), and baculoviral inhibitor of apoptosis protein (IAP) repeat containing 5 (BIRC5) were downregulated. Besides, tumor necrosis factor (TNF) receptor-associated factor 1 (TRAF1), TRAF2, TNF receptor superfamily member 10b (TNFRSF10b), disabled homolog 2 (DAB2)-interacting protein (DAB2IP), and inositol 1,4,5-trisphosphate receptor type 3 (ITPR3) were enriched in the upstream of TNF, TNF-related apoptosis-inducing ligand (TRAIL), and endoplasmic reticulum (ER) stress pathways, and TRAIL-receptor 2 (TRAIL-R2) was regarded as an important membrane receptor influenced by T. gondii that had not been previously considered. In conclusion, the T. gondii RH strain could promote and mediate apoptosis through multiple pathways mentioned above in Vero cells. Our findings improve the understanding of the T. gondii infection process through providing new insights into the related cellular apoptosis mechanisms.
Collapse
Affiliation(s)
- Kaige DU
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.,Shandong Center for Disease Control and Prevention, Jinan 250021, China
| | - Fei Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Chengzuo Xie
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Haojie Ding
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yu Shen
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Yafan Gao
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China
| | - Shaohong Lu
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| | - Xunhui Zhuo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310053, China.
| |
Collapse
|
13
|
The Improvement of Sepsis-Associated Encephalopathy by P2X7R Inhibitor through Inhibiting the Omi/HtrA2 Apoptotic Signaling Pathway. Behav Neurol 2022; 2022:3777351. [PMID: 35126784 PMCID: PMC8813303 DOI: 10.1155/2022/3777351] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 12/14/2021] [Accepted: 01/05/2022] [Indexed: 12/15/2022] Open
Abstract
The pathogenesis of sepsis-associated encephalopathy (SAE) involves many aspects, including intracellular peroxidative stress damage, mitochondrial dysfunction, and cell apoptosis. In this study, we mainly explored the influence of P2X7R on the cognitive function of SAE and its molecular mechanism. We established a sepsis model using lipopolysaccharide (LPS) stimulation, followed by an assessment of cognitive function using Morris water maze, and then Western Blot was used to analyze the expression of tight junction proteins ZO-1 and Occludin in the hippocampus of mice. TUNEL assay was used to analyze the apoptosis of brain cells in frozen brain slices of mice during sepsis. Human brain microvascular endothelial cells (HBMECs) were used to research the molecular mechanism of brain cell damage induced by P2X7R. The results showed that P2X7R inhibitors dramatically improved the survival rate of mice, relieved the cognitive dysfunction caused by LPS stimulation, and significantly reduced the brain cell apoptosis caused by LPS. In addition, the inhibition of P2X7R can also reduce the production and accumulation of reactive oxygen species (ROS) in HBMECs in vitro and inhibit the apoptosis signaling pathway associated with mitochondrial serine protease Omi/HtrA2 in HBMECs in vitro. These results suggest that P2X7R has strong value as a potential target for the treatment of SAE.
Collapse
|
14
|
Peng X, Luo Z, He S, Zhang L, Li Y. Blood-Brain Barrier Disruption by Lipopolysaccharide and Sepsis-Associated Encephalopathy. Front Cell Infect Microbiol 2021; 11:768108. [PMID: 34804998 PMCID: PMC8599158 DOI: 10.3389/fcimb.2021.768108] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 12/29/2022] Open
Abstract
As a complex multicellular structure of the vascular system at the central nervous system (CNS), the blood-brain barrier (BBB) separates the CNS from the system circulation and regulates the influx and efflux of substances to maintain the steady-state environment of the CNS. Lipopolysaccharide (LPS), the cell wall component of Gram-negative bacteria, can damage the barrier function of BBB and further promote the occurrence and development of sepsis-associated encephalopathy (SAE). Here, we conduct a literature review of the direct and indirect damage mechanisms of LPS to BBB and the relationship between these processes and SAE. We believe that after LPS destroys BBB, a large number of inflammatory factors and neurotoxins will enter and damage the brain tissue, which will activate brain immune cells to mediate inflammatory response and in turn further destroys BBB. This vicious circle will ultimately lead to the progression of SAE. Finally, we present a succinct overview of the treatment of SAE by restoring the BBB barrier function and summarize novel opportunities in controlling the progression of SAE by targeting the BBB.
Collapse
Affiliation(s)
- Xiaoyao Peng
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Zhixuan Luo
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Shuang He
- Department of Clinical Medicine, School of Clinical Medicine, Southwest Medical University, Luzhou, China
| | - Luhua Zhang
- Department of Pathogenic Biology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| | - Ying Li
- Department of Immunology, School of Basic Medical Sciences, Southwest Medical University, Luzhou, China
| |
Collapse
|
15
|
Omi inhibition ameliorates neuron apoptosis and neurological deficit after subarachnoid hemorrhage in rats. Genes Genomics 2021; 43:1423-1432. [PMID: 34677809 PMCID: PMC8606397 DOI: 10.1007/s13258-021-01176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 10/04/2021] [Indexed: 11/03/2022]
Abstract
Background Subarachnoid hemorrhage (SAH) is a severe neurological emergency, resulting in cognitive impairments and threatening human's health. Currently, SAH has no effective treatment. It is urgent to search for an effective therapy for SAH. Objective To explore the expression of Omi protein after subarachnoid hemorrhage in rats. Methods SAH rat model was established by injecting blood into the prechiasmatic cistern. Neurological deficit was assessed by detecting neurological deficit scores and brain tissue water contents. Apoptotic cells were evaluated by TUNEL staining and IHC staining. Omi and Cleaved caspase 3 expressions in nerve cells were determined by double staining using IF. Apoptosis-related proteins were measured by Western blotting assay. Results SAH rat model was successfully established, showing more apoptotic cells and high neurological deficit scores in SAH rat. In SAH rat model, Omi expression in nerve cells was elevated and the upregulation of Omi mainly occurred in cytoplasm, accompanied by the degradation of XIAP and the increased cleaved caspase 3/9 and cleaved PARP. Once treated with UCF-101, a specific inhibitor of Omi, the increased cell apoptosis, left/right brain moisture contents and neurological deficits were notably reversed in SAH rat brain. Of note, SAH-induced the increases of apoptosis-related protein in nerve cells were also rescued by the administration of UCF-101. Conclusions UCF-101-mediated Omi inhibition decreased the degradation of XIAP and subsequently inhibited the activation of apoptosis-related proteins, decreased nerve cell apoptosis, leading to the improvement on early brain injury in SAH rat. UCF-101-based Omi inhibition may be used to treat SAH with great potential application.
Collapse
|
16
|
Huang Y, Chen R, Jiang L, Li S, Xue Y. Basic research and clinical progress of sepsis-associated encephalopathy. JOURNAL OF INTENSIVE MEDICINE 2021; 1:90-95. [PMID: 36788800 PMCID: PMC9923961 DOI: 10.1016/j.jointm.2021.08.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 07/22/2021] [Accepted: 08/18/2021] [Indexed: 01/02/2023]
Abstract
Sepsis-associated encephalopathy (SAE), a major cerebral complication of sepsis, occurs in 70% of patients admitted to the intensive care unit (ICU). This condition can cause serious impairment of consciousness and is associated with a high mortality rate. Thus far, several experimental screenings and radiological techniques (e.g., electroencephalography) have been used for the non-invasive assessment of the structure and function of the brain in patients with SAE. Nevertheless, the pathogenesis of SAE is complicated and remains unclear. In the present article, we reviewed the currently available literature on the epidemiology, clinical manifestations, pathology, diagnosis, and management of SAE. However, currently, there is no ideal pharmacological treatment for SAE. Treatment targeting mitochondrial dysfunction may be useful in the management of SAE.
Collapse
Affiliation(s)
- Ying Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China,Corresponding author: Ying Huang, Department of Anesthesiology and Surgical Intensive Care Unit, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 1665 Kongjiang Road, Shanghai 200092, China.
| | - Ruman Chen
- Department of Blood Purification, Hainan General Hospital Affiliated to Hainan Medical University, Haikou, Hainan 570311, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Yuchen Xue
- Department of Anesthesiology and Surgical Intensive Care Unit, Xin-Hua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| |
Collapse
|
17
|
Sulfasalazine maintains blood-brain barrier integrity and relieves lipopolysaccharide-induced inflammation in hCMEC/D3 cells. Neuroreport 2021; 32:672-677. [PMID: 33913929 DOI: 10.1097/wnr.0000000000001632] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Sulfasalazine is a recognized therapy for inflammatory bowel disease and is of paramount importance for maintaining intestinal barrier homeostasis. However, its effects on blood-brain barrier (BBB) function and inflammation have not yet been explored. We sought to examine whether sulfasalazine has anti-inflammatory and antiapoptotic effects on the BBB. hCMEC/D3 cells are a well-established BBB in vitro model, were treated with 1 μg/mL Escherichia coli O111:B4 lipopolysaccharide for 12 h. The cell counting kit-8 assay was used to assess cell viability. The cells were also treated with gradient concentrations of sulfasalazine for 12 h. The levels of apoptosis-related proteins and inflammatory factors (IL-1χ and TNF-α IL-6) were measured by western blotting. ZO-1 and F-actin expression was measured by immunofluorescence staining. This study confirmed that 5 mM sulfasalazine improved the maintenance of BBB integrity and relieved lipopolysaccharide-induced inflammatory apoptosis and showed that sulfasalazine might be an effective treatment for BBB disruption.
Collapse
|
18
|
Zheng J, Long M, Qin Z, Wang F, Chen Z, Li L. Nicorandil inhibits cardiomyocyte apoptosis and improves cardiac function by suppressing the HtrA2/XIAP/PARP signaling after coronary microembolization in rats. Pharmacol Res Perspect 2021; 9:e00699. [PMID: 33448699 PMCID: PMC7809785 DOI: 10.1002/prp2.699] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/16/2020] [Indexed: 12/14/2022] Open
Abstract
Cardiomyocyte apoptosis is a key factor in the deterioration of cardiac function after coronary microembolization (CME). Nicorandil (NIC) affects myocardial injury, which may be related to the inhibition of apoptosis. However, the specific mechanism of cardioprotection has not been elucidated. Therefore, we analyzed the impact of NIC on cardiac function in rats subjected to CME and its effect on the high-temperature requirement peptidase 2/X-linked inhibitor of apoptosis protein/poly ADP-ribose polymerase (HtrA2/XIAP/PARP) pathway. Sprague Dawley rats were divided into four groups: Sham, CME, CME + NIC, and CME + UCF. Echocardiography was performed 9 hours after CME. Myocardial injury markers were evaluated in blood samples, and the heart tissue was collected for hematoxylin-eosin staining, hematoxylin basic fuchsin picric acid staining staining, TdT-mediated DUTP nick end labeling (TUNEL) staining, Western blot analysis of the HtrA2/XIAP/PARP pathway, and transmission electron microscopy. NIC ameliorated cardiac dysfunctioncaused by CME and reduced serum levels of CK-MB and LDH. In addition, NIC decreased myocardial microinfarct size and apoptotic index. NIC reduced the Bax/Bcl-2 ratio, levels of cleaved caspase 3/9, cytoplasmic HtrA2, and cleaved PARP, and increased the level of XIAP. The effects of NIC were similar to those of the HtrA2 inhibitor, UCF101. This study demonstrated that NIC reduces CME-induced myocardial injury, reduces mitochondrial damage, and improves myocardial function. The reduction in cardiomyocyte apoptosis by NIC may be mediated by the HtrA2/XIAP/PARP signaling pathway.
Collapse
Affiliation(s)
- Jing Zheng
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Manyun Long
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Zhenbai Qin
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Fen Wang
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhiqing Chen
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| | - Lang Li
- Department of Cardiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
- Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention, Nanning, China
- Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, Nanning, China
| |
Collapse
|
19
|
Shan R, Liu N, Yan Y, Liu B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res 2020; 166:105169. [PMID: 33053445 DOI: 10.1016/j.phrs.2020.105169] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 08/16/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Atherosclerosis is a multifactorial chronic inflammatory disease of the arterial wall, and an important pathological basis of coronary heart disease. Endothelial cells, vascular smooth muscle cells, and macrophages play important roles in the development of atherosclerosis. Of note, apoptosis and autophagy, two types of programmed cell death, influence the development and progression of atherosclerosis via the modulation of such cells. The small heat shock protein Hsp27 is a multifunctional protein induced by various stress factors and has a protective effect on cells. A large number of studies have demonstrated that Hsp27 plays an important role in regulating apoptosis. Recently, some studies have suggested that Hsp27 also participates in the autophagic process. Moreover, Hsp27 is closely related to the occurrence and development of atherosclerosis. Here, we summarize the molecular mechanisms of apoptosis and autophagy and discuss their effects on endothelial cells, vascular smooth muscle cells, and macrophages in the context of atherosclerotic procession. We further explore the involvement of Hsp27 in apoptosis, autophagy, and atherosclerosis. We speculate that Hsp27 may exert its anti-atherosclerotic role via the regulation of apoptosis and autophagy; this may provide the basis for the development of new approaches for the prevention and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Ruiting Shan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Ning Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Youyou Yan
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China
| | - Bin Liu
- Department of Cardiology, The Second Hospital of Jilin University, Changchun, 130041, China.
| |
Collapse
|
20
|
Anisodamine Hydrobromide Protects Glycocalyx and Against the Lipopolysaccharide-Induced Increases in Microvascular Endothelial Layer Permeability and Nitric Oxide Production. Cardiovasc Eng Technol 2020; 12:91-100. [PMID: 32935201 DOI: 10.1007/s13239-020-00486-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/08/2020] [Indexed: 02/08/2023]
Abstract
PURPOSE Anisodamine hydrobromide (Ani HBr) has been used to improve the microcirculation during cardiovascular disorders and sepsis. Glycocalyx plays an important role in preserving the endothelial cell (EC) barrier permeability and nitric oxide (NO) production. We aimed to test the hypothesis that Ani HBr could protect the EC against permeability and NO production via preventing glycocalyx shedding. METHODS A human cerebral microvascular EC hCMEC/D3 injury model induced by lipopolysaccharide (LPS) was established. Ani HBr was administrated to ECs with the LPS challenge. Cell viability was performed by Cell Counting Kit-8 assay. Cell proliferation and apoptosis were detected by EdU and Hoechst 33342 staining. Apoptosis and cell cycle were also assessed by flow cytometry with annexin V staining and propidium iodide staining, respectively. Then, adherens junction integrity was evaluated basing on the immunofluorescence staining of vascular endothelial cadherin (VE-cadherin). The glycocalyx component heparan sulfate (HS) was stained in ECs. The cell permeability was evaluated by leakage of fluorescein isothiocyanate (FITC)-dextran. Cellular NO production was measured by the method of nitric acid reductase. RESULTS Ani HBr at 20 μg/mL significantly increased the viability of ECs with LPS challenge, but significantly inhibited the cell viability at 80 μg/mL, showing a bidirectional regulation of cell viability by Ani HBr. Ani HBr had not significantly change the LPS-induced EC proliferation. Ani HBr significantly reversed the induction of LPS on EC apoptosis. Ani HBr reinstated the LPS-induced glycocalyx and VE-cadherin shedding and adherens junction disruption. Ani HBr significantly alleviated LPS-induced EC layer permeability and NO production. CONCLUSION Ani HBr protects ECs against LPS-induced increase in cell barrier permeability and nitric oxide production via preserving the integrity of glycocalyx. Ani HBr is a promising drug to rescue or protect the glycocalyx.
Collapse
|
21
|
Wang P, Wang W, Hu Y, Li Y. Prolonged Soluble Epoxide Hydrolase Reactivity in Brain Endothelial Cells Is Associated with Long Cognitive Deficits in Sepsis. Mol Neurobiol 2020; 57:2846-2855. [PMID: 32378122 DOI: 10.1007/s12035-020-01925-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/22/2020] [Indexed: 02/06/2023]
Abstract
Sepsis-associated encephalopathy (SAE) is known to cause long-term cognitive deficits which are related to sustained microglial activation, but the mechanisms are unclear. Recently, studies have shown soluble epoxide hydrolase (sEH) affects the chronic cognitive function or participates in long-term neuropsychiatric illness. We hypothesized that sEH may be involved in the long-term cognitive deficits of SAE. Male C57BL/6 mice were subjected to cecal ligation and puncture (CLP) and were administered vehicle or sEH inhibitor TPPU. CLP induced prolonged endothelial sEH reactivity and sustained activation of microglia in close vicinity to blood vessels at 14 days. We also observed that persistent loss of endothelial BBB function at 14 days following CLP. However, TPPU-treated septic mice exhibited improved BBB function and declined neuro-inflammation. We confirmed these beneficial effects in vitro, which indicated TPPU resulted in a significant improvement in IL-1β-induced loss of BBB integrity on hCMEC/D3 cell monolayers. Animals were also given a behavior test at 14 days after CLP. Mice showed normal basal locomotor activity in the open field compared with sham-operated animals, but performed fewer entries to the center zone, indicating increased anxiety-like behavior as avoidance of the center. TPPU-treated CLP mice showed normal crossing into the center zone during an open-field test and improved recovery of the ability to learn the novel object recognition (NOR) task compared with saline-treated CLP animals. Our data indicated that prolonged sEH reactivity in brain endothelial cells is associated with long cognitive deficits in sepsis. sEHIs such as TPPU can improve the endothelial barrier function and decrease CLP-induced long-term encephalopathy, at least in part, through anti-inflammatory effects.
Collapse
Affiliation(s)
- Pengfei Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wenyue Wang
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yueyu Hu
- Department of Neurology, Shanghai Fourth People's Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Yousheng Li
- Department of General Surgery, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| |
Collapse
|
22
|
Cong X, Kong W. Endothelial tight junctions and their regulatory signaling pathways in vascular homeostasis and disease. Cell Signal 2019; 66:109485. [PMID: 31770579 DOI: 10.1016/j.cellsig.2019.109485] [Citation(s) in RCA: 156] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/13/2022]
Abstract
Endothelial tight junctions (TJs) regulate the transport of water, ions, and molecules through the paracellular pathway, serving as an important barrier in blood vessels and maintaining vascular homeostasis. In endothelial cells (ECs), TJs are highly dynamic structures that respond to multiple external stimuli and pathological conditions. Alterations in the expression, distribution, and structure of endothelial TJs may lead to many related vascular diseases and pathologies. In this review, we provide an overview of the assessment methods used to evaluate endothelial TJ barrier function both in vitro and in vivo and describe the composition of endothelial TJs in diverse vascular systems and ECs. More importantly, the direct phosphorylation and dephosphorylation of TJ proteins by intracellular kinases and phosphatases, as well as the signaling pathways involved in the regulation of TJs, including and the protein kinase C (PKC), PKA, PKG, Ras homolog gene family member A (RhoA), mitogen-activated protein kinase (MAPK), phosphatidylinositol 3-kinase (PI3K)/Akt, and Wnt/β-catenin pathways, are discussed. With great advances in this area, targeting endothelial TJs may provide novel treatment for TJ-related vascular pathologies.
Collapse
Affiliation(s)
- Xin Cong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| | - Wei Kong
- Department of Physiology and Pathophysiology, Peking University School of Basic Medical Sciences, Key Laboratory of Molecular Cardiovascular Sciences, Ministry of Education, Beijing Key Laboratory of Cardiovascular Receptors Research, Beijing 100191, China.
| |
Collapse
|