1
|
England SJ, Campbell PC, Banerjee S, Bates RL, Grieb G, Fancher WF, Lewis KE. Transcriptional regulators with broad expression in the zebrafish spinal cord. Dev Dyn 2024; 253:1036-1055. [PMID: 38850245 DOI: 10.1002/dvdy.717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/12/2024] [Accepted: 05/15/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. RESULTS We analyzed the expression of aurkb, foxb1a, foxb1b, her8a, homeza, ivns1abpb, mybl2b, myt1a, nr2f1b, onecut1, sall1a, sall3a, sall3b, sall4, sox2, sox19b, sp8b, tsc22d1, wdhd1, zfhx3b, znf804a, and znf1032 in wild-type and MIB E3 ubiquitin protein ligase 1 zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post-mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. CONCLUSIONS Our data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.
Collapse
Affiliation(s)
| | - Paul C Campbell
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, New York, USA
| | - Richard L Bates
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, Syracuse, New York, USA
| | | | | |
Collapse
|
2
|
England SJ, Campbell PC, Banerjee S, Bates RL, Grieb G, Fancher WF, Lewis KE. Transcriptional Regulators with Broad Expression in the Zebrafish Spinal Cord. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.14.580357. [PMID: 38405913 PMCID: PMC10888778 DOI: 10.1101/2024.02.14.580357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background The spinal cord is a crucial part of the vertebrate CNS, controlling movements and receiving and processing sensory information from the trunk and limbs. However, there is much we do not know about how this essential organ develops. Here, we describe expression of 21 transcription factors and one transcriptional regulator in zebrafish spinal cord. Results We analyzed the expression of aurkb, foxb1a, foxb1b, her8a, homeza, ivns1abpb, mybl2b, myt1a, nr2f1b, onecut1, sall1a, sall3a, sall3b, sall4, sox2, sox19b, sp8b, tsc22d1, wdhd1, zfhx3b, znf804a, and znf1032 in wild-type and MIB E3 ubiquitin protein ligase 1 zebrafish embryos. While all of these genes are broadly expressed in spinal cord, they have distinct expression patterns from one another. Some are predominantly expressed in progenitor domains, and others in subsets of post-mitotic cells. Given the conservation of spinal cord development, and the transcription factors and transcriptional regulators that orchestrate it, we expect that these genes will have similar spinal cord expression patterns in other vertebrates, including mammals and humans. Conclusions Our data identify 22 different transcriptional regulators that are strong candidates for playing different roles in spinal cord development. For several of these genes, this is the first published description of their spinal cord expression.
Collapse
Affiliation(s)
- Samantha J. England
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Paul C. Campbell
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Santanu Banerjee
- Biological Sciences Department, SUNY-Cortland, Cortland, NY 13045, USA
| | - Richard L. Bates
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Ginny Grieb
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - William F. Fancher
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| | - Katharine E. Lewis
- Department of Biology, Syracuse University, 107 College Place, Syracuse, NY 13244, USA
| |
Collapse
|
3
|
Kumar M, Sahni S, A V, Kumar D, Kushwah N, Goel D, Kapoor H, Srivastava AK, Faruq M. Molecular clues unveiling spinocerebellar ataxia type-12 pathogenesis. iScience 2024; 27:109768. [PMID: 38711441 PMCID: PMC11070597 DOI: 10.1016/j.isci.2024.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 01/31/2024] [Accepted: 04/15/2024] [Indexed: 05/08/2024] Open
Abstract
Spinocerebellar Ataxia type-12 (SCA12) is a neurodegenerative disease caused by tandem CAG repeat expansion in the 5'-UTR/non-coding region of PPP2R2B. Molecular pathology of SCA12 has not been studied in the context of CAG repeats, and no appropriate models exist. We found in human SCA12-iPSC-derived neuronal lineage that expanded CAG in PPP2R2B transcript forms nuclear RNA foci and were found to sequester variety of proteins. Further, the ectopic expression of transcript containing varying length of CAG repeats exhibits non-canonical repeat-associated non-AUG (RAN) translation in multiple frames in HEK293T cells, which was further validated in patient-derived neural stem cells using specific antibodies. mRNA sequencing of the SCA12 and control neurons have shown a network of crucial transcription factors affecting neural fate, in addition to alteration of various signaling pathways involved in neurodevelopment. Altogether, this study identifies the molecular signatures of SCA12 disorder using patient-derived neuronal cell lines.
Collapse
Affiliation(s)
- Manish Kumar
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Shweta Sahni
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Vivekanand A
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| | - Deepak Kumar
- Division of Genomics and Molecular Medicine, CSIR - Institute of Genomics and Integrative Biology (IGIB), New Delhi 110007, India
- Department of Zoology, University of Allahabad, Prayagraj, Uttar Pradesh 211002, India
| | - Neetu Kushwah
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
| | - Divya Goel
- Department of Pharmacology, School of Pharmaceutical Education & Research (SPER), Jamia Hamdard, New Delhi 110062, India
| | - Himanshi Kapoor
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
| | - Achal K. Srivastava
- Department of Neurology, All India Institute of Medical Sciences, New Delhi 110029, India
| | - Mohammed Faruq
- Genomics and Molecular Medicine, CSIR-Institute of Genomics and Integrative Biology (CSIR -IGIB), Mall Road, Delhi 110007, India
- CSIR-HRDC Campus, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Genomics and Molecular Medicine Division, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India
| |
Collapse
|
4
|
Das A, Gupta S, Shaw P, Sinha S. Synthesis of Self Permeable Antisense PMO Using C5-Guanidino-Functionalized Pyrimidines at the 5'-End Enables Sox2 Downregulation in Triple Negative Breast Cancer Cells. Mol Pharm 2024; 21:1256-1271. [PMID: 38324380 DOI: 10.1021/acs.molpharmaceut.3c00924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Delivery of macromolecular drugs inside cells has been a huge challenge in the field of oligonucleotide therapeutics for the past few decades. Earliest natural inspirations included the arginine rich stretch of cell permeable HIV-TAT peptide, which led to the design of several molecular transporters with varying numbers of rigid or flexible guanidinium units with different tethering groups. These transporters have been shown to efficiently deliver phosphorodiamidate morpholino oligonucleotides, which have a neutral backbone and cannot form lipoplexes. In this report, PMO based delivery agents having 3 or 4 guanidinium groups at the C5 position of the nucleobases of cytosine and uracil have been explored, which can be assimilated within the desired stretch of the antisense oligonucleotide. Guanidinium units have been connected by varying the flexibility with either a saturated (propyl) or an unsaturated (propargyl) spacer, which showed different serum dependency along with varied cytoplasmic distribution. The effect of cholesterol conjugation in the delivery agent as well as at the 5'-end of full length PMO in cellular delivery has also been studied. Finally, the efficacy of the delivery has been studied by the PMO mediated downregulation of the stemness marker Sox2 in the triple-negative breast cancer cell line MDA-MB 231. These results have validated the use of this class of delivery agents, which permit at a stretch PMO synthesis where the modified bases can also participate in Watson-Crick-Franklin base pairing for enhanced mRNA binding and protein downregulation and could solve the delivery problem of PMO.
Collapse
Affiliation(s)
- Arnab Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Shalini Gupta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Pallab Shaw
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Surajit Sinha
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
5
|
Lee H, An G, Park J, You J, Song G, Lim W. Mevinphos induces developmental defects via inflammation, apoptosis, and altered MAPK and Akt signaling pathways in zebrafish. Comp Biochem Physiol C Toxicol Pharmacol 2024; 275:109768. [PMID: 37858660 DOI: 10.1016/j.cbpc.2023.109768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/11/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Mevinphos, an organophosphate insecticide, is widely used to control pests and enhance crop yield. Because of its high solubility, it can easily flow into water and threaten the aquatic environment, and it is known to be hazardous to non-target organisms. However, little is known about its developmental toxicity and the underlying toxic mechanisms. In this study, we utilized zebrafish, which is frequently used for toxicological research to estimate the toxicity in other aquatic organisms or vertebrates including humans, to elucidate the developmental defects induced by mevinphos. Here, we observed that mevinphos induced various phenotypical abnormalities, such as diminished eyes and head sizes, shortened body length, loss of swim bladder, and increased pericardiac edema. Also, exposure to mevinphos triggered inflammation, apoptosis, and DNA fragmentation in zebrafish larvae. In addition, MAPK and Akt signaling pathways, which control apoptosis, inflammation, and proper development of various organs, were also altered by the treatment of mevinphos. Furthermore, these factors induced various organ defects which were confirmed by various transgenic models. We identified neuronal toxicity through transgenic olig2:dsRed zebrafish, cardiovascular toxicity through transgenic fli1:eGFP zebrafish, and hepatotoxicity and pancreatic toxicity through transgenic lfabp:dsRed;elastase:GFP zebrafish. Overall, our results elucidated the developmental toxicities of mevinphos in zebrafish and provided the parameters for the assessment of toxicities in aquatic environments.
Collapse
Affiliation(s)
- Hojun Lee
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeankyoung You
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
6
|
Park J, An G, Park H, Hong T, Lim W, Song G. Developmental defects induced by thiabendazole are mediated via apoptosis, oxidative stress and alteration in PI3K/Akt and MAPK pathways in zebrafish. ENVIRONMENT INTERNATIONAL 2023; 176:107973. [PMID: 37196567 DOI: 10.1016/j.envint.2023.107973] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/19/2023]
Abstract
Thiabendazole, a benzimidazole fungicide, is widely used to prevent yield loss in agricultural land by inhibiting plant diseases derived from fungi. As thiabendazole has a stable benzimidazole ring structure, it remains in the environment for an extended period, and its toxic effects on non-target organisms have been reported, indicating the possibility that it could threaten public health. However, little research has been conducted to elucidate the comprehensive mechanisms of its developmental toxicity. Therefore, we used zebrafish, a representative toxicological model that can predict toxicity in aquatic organisms and mammals, to demonstrate the developmental toxicity of thiabendazole. Various morphological malformations were observed, including decreased body length, eye size, and increased heart and yolk sac edema. Apoptosis, reactive oxygen species (ROS) production, and inflammatory response were also triggered by thiabendazole exposure in zebrafish larvae. Furthermore, PI3K/Akt and MAPK signaling pathways important for appropriate organogenesis were significantly changed by thiabendazole. These results led to toxicity in various organs and a reduction in the expression of related genes, including cardiovascular toxicity, neurotoxicity, and hepatic and pancreatic toxicity, which were detected in flk1:eGFP, olig2:dsRED, and L-fabp:dsRed;elastase:GFP transgenic zebrafish models, respectively. Overall, this study partly determined the developmental toxicity of thiabendazole in zebrafish and provided evidence of the environmental hazards of this fungicide.
Collapse
Affiliation(s)
- Junho Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
7
|
An G, Hong T, Park H, Lim W, Song G. Oxamyl exerts developmental toxic effects in zebrafish by disrupting the mitochondrial electron transport chain and modulating PI3K/Akt and p38 Mapk signaling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160458. [PMID: 36435248 DOI: 10.1016/j.scitotenv.2022.160458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 11/15/2022] [Accepted: 11/20/2022] [Indexed: 06/16/2023]
Abstract
Oxamyl, a carbamate insecticide, is mainly used to control nematodes in the agricultural field. Although oxamyl is a widely used insecticide that is associated with ecological concerns, limited studies have examined the toxic effects of oxamyl on the developmental stage and the underlying mechanisms. In this study, the developmental toxicity of oxamyl was demonstrated using zebrafish, which is a representative model as it is associated with rapid embryogenesis and a toxic response similar to that of other vertebrates. The morphological alteration of zebrafish larvae was analyzed to confirm the sub-lethal toxicity of oxamyl. Analysis of transgenic zebrafish (olig2:dsRED and flk1:eGFP line) and mRNA levels of genes associated with individual organ development revealed that oxamyl exerted toxic effects on the development of neuron, notochord, and vascular system. Next, the adverse effect of oxamyl on the mitochondrial electron transport chain was examined. Treatment with oxamyl altered the PI3K/Akt signaling and p38 Mapk signaling pathways in zebrafish. Thus, this study elucidated the mechanisms underlying the developmental toxicity of oxamyl and provided information on the parameters to assess the developmental toxicity of other environmental contaminants.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hahyun Park
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology and Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
8
|
Cao S, Dong Z, Dong X, Jia W, Zhou F, Zhao Q. Zebrafish sox2 Is Required for the Swim Bladder Inflation by Controlling the Swim-Up Behavior. Zebrafish 2023; 20:10-18. [PMID: 36795618 PMCID: PMC9968866 DOI: 10.1089/zeb.2022.0043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
The swim bladder functions to maintain the fish balance at a certain position under water. Although the motoneuron-dependent swim-up behavior is important for swim bladder inflation, the underlying molecular mechanism remains largely unknown. We generated a sox2 KO zebrafish using TALEN and found that the posterior chamber of the swim bladder was uninflated. The tail flick and the swim-up behavior were absent in the mutant zebrafish embryos and the behavior could not be accomplished. As the tail flick behavior is absent, the mutant larvae therefore cannot reach the water surface to gulp air, ultimately leading to the uninflation of the swim bladder. To understand the mechanism underlying the swim-up defects, we crossed the sox2 null allele in the background of Tg(huc:eGFP) and Tg(hb9:GFP). The deficiency of sox2 in zebrafish resulted in abnormal motoneuron axons in the regions of trunk, tail, and swim bladder. To identify the downstream target gene of sox2 to control the motor neuron development, we performed RNA sequencing on the transcriber of mutant embryos versus wild type embryos and found that the axon guidance pathway was abnormal in the mutant embryos. RT-PCR demonstrated that the expression of sema3bl, ntn1b, and robo2 were decreased in the mutants.
Collapse
Affiliation(s)
- Shasha Cao
- Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Zhangji Dong
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Xiaohua Dong
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Wenshuang Jia
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Fuyou Zhou
- Anyang Tumor Hospital, The Affiliated Anyang Tumor Hospital of Henan University of Science and Technology, Anyang, China
| | - Qingshun Zhao
- The MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Nanjing University, Nanjing, China
| |
Collapse
|
9
|
Wang Z, Li K, Xu Y, Song Z, Lan X, Pan C, Zhang S, Foulkes NS, Zhao H. Ferroptosis contributes to nickel-induced developmental neurotoxicity in zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:160078. [PMID: 36372175 DOI: 10.1016/j.scitotenv.2022.160078] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/29/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Nickel (Ni) is a widely utilized heavy metal that can cause environmental pollution and health hazards. Its safety has attracted the attention of both the environmental ecology and public health fields. While the central nervous system (CNS) is one of the main targets of Ni, its neurotoxicity and the underlying mechanisms remain unclear. Here, by taking advantage of the zebrafish model for live imaging, genetic analysis and neurobehavioral studies, we reveal that the neurotoxic effects induced by exposure to environmentally relevant levels of Ni are closely related to ferroptosis, a newly-described form of iron-mediated cell death. In vivo two-photon imaging, neurobehavioral analysis and transcriptome sequencing consistently demonstrate that early neurodevelopment, neuroimmune function and vasculogenesis in zebrafish larvae are significantly affected by environmental Ni exposure. Importantly, exposure to various concentrations of Ni activates the ferroptosis pathway, as demonstrated by physiological/biochemical tests, as well as the expression of ferroptosis markers. Furthermore, pharmacological intervention of ferroptosis via deferoxamine (DFO), a classical iron chelating agent, strongly implicates iron dyshomeostasis and ferroptosis in these Ni-induced neurotoxic effects. Thus, this study elucidates the cellular and molecular mechanisms underlying Ni neurotoxicity, with implications for our understanding of the physiologically damaging effects of other environmental heavy metal pollutants.
Collapse
Affiliation(s)
- Zuo Wang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Kemin Li
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Yanyi Xu
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Zan Song
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, No. 22 Xinong Road, Yangling 712100, Shaanxi Province, China
| | - Shengxiang Zhang
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China
| | - Nicholas S Foulkes
- Institute of Biological and Chemical Systems, Biological Information Processing (IBCS-BIP), Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Haiyu Zhao
- School of Life Sciences, Gansu Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou University, No. 222 South Tianshui Road, Lanzhou 730000, Gansu Province, China.
| |
Collapse
|
10
|
Qi H, Kan K, Sticht C, Bennewitz K, Li S, Qian X, Poschet G, Kroll J. Acrolein-inducing ferroptosis contributes to impaired peripheral neurogenesis in zebrafish. Front Neurosci 2023; 16:1044213. [PMID: 36711148 PMCID: PMC9877442 DOI: 10.3389/fnins.2022.1044213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Introduction Diabetes mellitus (DM) is associated with physiological disorders such as delayed wound healing, diabetic retinopathy, diabetic nephropathy, and diabetic peripheral neuropathy (DPN). Over 50% of diabetic patients will develop DPN, characterized by motor dysfunction and impaired sensory nerve function. In a previous study, we have uncovered acrolein (ACR) as an upstream initiator which induced impaired glucose homeostasis and microvascular alterations in zebrafish. Whether ACR has specific effects on peripheral neurogenesis and mediates DPN, is still waiting for clarification. Methods To evaluate the function of ACR in peripheral nerve development, in vivo experiments were performed in Tg(hb9:GFP) zebrafish. In addition, a series of rescue experiments, metabolomics assessment, and bioinformatics analysis was performed aimed at identifying the molecular mechanisms behind ACR's function and impaired neurogenesis. Results Impaired motor neuron development was confirmed in wild-type embryos treated with external ACR. ACR treated embryos displayed ferroptosis and reduction of several amino acids and increased glutathione (GSH). Furthermore, ferroptosis inducer caused similarly suppressed neurogenesis in zebrafish embryos, while anti-ACR treatment or ferroptosis inhibitor could successfully reverse the detrimental phenotypes of ACR on neurogenesis in zebrafish. Discussion Our data indicate that ACR could directly activate ferroptosis and impairs peripheral neurogenesis. The data strongly suggest ACR and activated ferroptosis as inducers and promising therapeutic targets for future DPN studies.
Collapse
Affiliation(s)
- Haozhe Qi
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Kejia Kan
- Department of Vascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China,Department of Surgery, Universitätsmedizin Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Sticht
- The Next-Generation Sequencing (NGS) Core Facility, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Katrin Bennewitz
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Shu Li
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Xin Qian
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gernot Poschet
- Metabolomics Core Technology Platform, Centre for Organismal Studies, Heidelberg University, Heidelberg, Germany
| | - Jens Kroll
- Department of Vascular Biology and Tumor Angiogenesis, European Center for Angioscience, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany,*Correspondence: Jens Kroll,
| |
Collapse
|
11
|
Akter M, Ding B. Modeling Movement Disorders via Generation of hiPSC-Derived Motor Neurons. Cells 2022; 11:3796. [PMID: 36497056 PMCID: PMC9737271 DOI: 10.3390/cells11233796] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/19/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Generation of motor neurons (MNs) from human-induced pluripotent stem cells (hiPSCs) overcomes the limited access to human brain tissues and provides an unprecedent approach for modeling MN-related diseases. In this review, we discuss the recent progression in understanding the regulatory mechanisms of MN differentiation and their applications in the generation of MNs from hiPSCs, with a particular focus on two approaches: induction by small molecules and induction by lentiviral delivery of transcription factors. At each induction stage, different culture media and supplements, typical growth conditions and cellular morphology, and specific markers for validation of cell identity and quality control are specifically discussed. Both approaches can generate functional MNs. Currently, the major challenges in modeling neurological diseases using iPSC-derived neurons are: obtaining neurons with high purity and yield; long-term neuron culture to reach full maturation; and how to culture neurons more physiologically to maximize relevance to in vivo conditions.
Collapse
Affiliation(s)
| | - Baojin Ding
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center, Shreveport, LA 71130-3932, USA
| |
Collapse
|
12
|
Xing L, Chai R, Wang J, Lin J, Li H, Wang Y, Lai B, Sun J, Chen G. Expression of myelin transcription factor 1 and lamin B receptor mediate neural progenitor fate transition in the zebrafish spinal cord pMN domain. J Biol Chem 2022; 298:102452. [PMID: 36063998 PMCID: PMC9530849 DOI: 10.1016/j.jbc.2022.102452] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/17/2022] [Accepted: 08/20/2022] [Indexed: 02/05/2023] Open
Abstract
The pMN domain is a restricted domain in the ventral spinal cord, defined by the expression of the olig2 gene. Though it is known that the pMN progenitor cells can sequentially generate motor neurons and oligodendrocytes, the lineages of these progenitors are controversial and how their progeny are generated is not well understood. Using single-cell RNA sequencing, here, we identified a previously unknown heterogeneity among pMN progenitors with distinct fates and molecular signatures in zebrafish. Notably, we characterized two distinct motor neuron lineages using bioinformatic analysis. We then went on to investigate specific molecular programs that regulate neural progenitor fate transition. We validated experimentally that expression of the transcription factor myt1 (myelin transcription factor 1) and inner nuclear membrane integral proteins lbr (lamin B receptor) were critical for the development of motor neurons and neural progenitor maintenance, respectively. We anticipate that the transcriptome features and molecular programs identified in zebrafish pMN progenitors will not only provide an in-depth understanding of previous findings regarding the lineage analysis of oligodendrocyte progenitor cells and motor neurons but will also help in further understanding of the molecular programming involved in neural progenitor fate transition.
Collapse
Affiliation(s)
- Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China,For correspondence: Lingyan Xing; Gang Chen
| | - Rui Chai
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Jiaqi Wang
- Department of Physiology, School of Medicine, Nantong University, Nantong, China
| | - Jiaqi Lin
- Department of Physiology, School of Medicine, Nantong University, Nantong, China
| | - Hanyang Li
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Yueqi Wang
- School of Medicine, University of Utah, Salt Lake City, Utah, USA
| | - Biqin Lai
- Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China
| | - Gang Chen
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, China,Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China,For correspondence: Lingyan Xing; Gang Chen
| |
Collapse
|
13
|
Zheng YQ, Suo GH, Liu D, Li HY, Wu YJ, Ni H. Nexmifa Regulates Axon Morphogenesis in Motor Neurons in Zebrafish. Front Mol Neurosci 2022; 15:848257. [PMID: 35431796 PMCID: PMC9009263 DOI: 10.3389/fnmol.2022.848257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/21/2022] [Indexed: 11/13/2022] Open
Abstract
Nexmif is mainly expressed in the central nervous system (CNS) and plays important roles in cell migration, cell to cell and cell-matrix adhesion, and maintains normal synaptic formation and function. Nevertheless, it is unclear how nexmif is linked to motor neuron morphogenesis. Here, we provided in situ hybridization evidence that nexmifa (zebrafish paralog) was localized to the brain and spinal cord and acted as a vital regulator of motor neuron morphogenesis. Nexmifa deficiency in zebrafish larvae generated abnormal primary motor neuron (PMN) development, including truncated Cap axons and decreased branches in Cap axons. Importantly, RNA-sequencing showed that nexmifa-depleted zebrafish embryos caused considerable CNS related gene expression alterations. Differentially expressed genes (DEGs) were mainly involved in axon guidance and several synaptic pathways, including glutamatergic, GABAergic, dopaminergic, cholinergic, and serotonergic synapse pathways, according to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway annotation. In particular, when compared with other pathways, DEGs were highest (84) in the axon guidance pathway, according to Organismal Systems. Efna5b, bmpr2b, and sema6ba were decreased markedly in nexmifa-depleted zebrafish embryos. Moreover, both overexpression of efna5b mRNA and sema6ba mRNA could partially rescued motor neurons morphogenesis. These observations supported nexmifa as regulating axon morphogenesis of motor neurons in zebrafish. Taken together, nexmifa elicited crucial roles during motor neuron development by regulating the morphology of neuronal axons.
Collapse
Affiliation(s)
- Yu-qin Zheng
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Gui-hai Suo
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - Dong Liu
- School of Life Sciences, Nantong University, Nantong, China
| | - Hai-ying Li
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
| | - You-jia Wu
- Department of Pediatrics, Affiliated Hospital of Nantong University, Nantong, China
- You-jia Wu,
| | - Hong Ni
- Division of Brain Science, Institute of Pediatric Research, Children’s Hospital of Soochow University, Suzhou, China
- *Correspondence: Hong Ni,
| |
Collapse
|
14
|
Xu G, Huang Z, Sheng J, Gao X, Wang X, Garcia JQ, Wei G, Liu D, Gong J. FGF binding protein 3 is required for spinal cord motor neuron development and regeneration in zebrafish. Exp Neurol 2021; 348:113944. [PMID: 34896115 DOI: 10.1016/j.expneurol.2021.113944] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/10/2021] [Accepted: 11/30/2021] [Indexed: 01/10/2023]
Abstract
Fibroblast growth factor binding protein 3 (Fgfbp3) have been known to be crucial for the process of neural proliferation, differentiation, migration, and adhesion. However, the specific role and the molecular mechanisms of fgfbp3 in regulating the development of motor neurons remain unclear. In this study, we have investigated the function of fgfbp3 in morphogenesis and regeneration of motor neuron in zebrafish. Firstly, we found that fgfbp3 was localized in the motor neurons and loss of fgfbp3 caused the significant decrease of the length and branching number of the motor neuron axons, which could be partially rescued by fgfbp3 mRNA injection. Moreover, the fgfbp3 knockdown (KD) embryos demonstrated similar defects of motor neurons as identified in fgfbp3 knockout (KO) embryos. Furthermore, we revealed that the locomotion and startle response of fgfbp3 KO embryos were significantly restricted, which were partially rescued by the fgfbp3 overexpression. In addition, fgfbp3 KO remarkably compromised axonal regeneration of motor neurons after injury. Lastly, the malformation of motor neurons in fgfbp3 KO embryos was rescued by overexpressing drd1b or neurod6a, respectively, which were screened by transcriptome sequencing. Taken together, our results provide strong cellular and molecular evidence that fgfbp3 is crucial for the axonal morphogenesis and regeneration of motor neurons in zebrafish.
Collapse
Affiliation(s)
- Guangmin Xu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Zigang Huang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jiajing Sheng
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xiang Gao
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Xin Wang
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Jason Q Garcia
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Guanyun Wei
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| | - Jie Gong
- School of Life Science, Nantong Laboratory of Development and Diseases; Second Affiliated Hospital; Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China.
| |
Collapse
|
15
|
Gong J, Qian P, Hu Y, Guo C, Wei G, Wang C, Cai C, Wang H, Liu D. Claudin h Is Essential for Hair Cell Morphogenesis and Auditory Function in Zebrafish. Front Cell Dev Biol 2021; 9:663995. [PMID: 34046408 PMCID: PMC8147561 DOI: 10.3389/fcell.2021.663995] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 01/15/2023] Open
Abstract
Hereditary hearing loss caused by defective hair cells is one of the most common congenital diseases, whose nosogenesis is still unclear because many of the causative genes remain unidentified. Claudins are one kind of transmembrane proteins that constitute the most important components of the tight junctions and paracellular barrier and play important roles in neurodevelopment. In this study, we investigated the function of claudin h in morphogenesis and auditory function of the hair cell in zebrafish. The results of in situ hybridization showed that claudin h was specifically localized in the otic vesicle and neuromasts in zebrafish embryos. The deficiency of claudin h caused significant reduction of otic vesicle size and loss of utricle otolith. Moreover, the startle response and vestibulo-ocular reflex experiments revealed that loss of claudin h led to serious hearing loss and vestibular dysfunction. Importantly, the confocal microscopy observation found that compared to the control zebrafish, the claudin h morphants and mutants displayed significantly reduced the number of cristae hair cells and shortened kinocilia. Besides, the deficiency of claudin h also caused the loss of hair cells in neuromasts which could be rescued by injecting claudin h mRNA into the mutant embryos at one cell stage. Furthermore, the immunohistochemistry experiments demonstrated remarkable apoptosis of hair cells in the neuromasts, which might contribute to the loss of hair cells number. Overall, these data indicated that claudin h is indispensable for the development of hair cells, vestibular function, and hearing ability of zebrafish.
Collapse
Affiliation(s)
- Jie Gong
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Peipei Qian
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Yuebo Hu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chao Guo
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Guanyun Wei
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Cheng Wang
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Chengyun Cai
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| | - Haibo Wang
- Shandong Provincial ENT Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Dong Liu
- Nantong Laboratory of Development and Diseases, School of Life Sciences, Co-innovation Center of Neuroregeneration, Key Laboratory of Neuroregeneration of Jiangsu and MOE, Nantong University, Nantong, China
| |
Collapse
|