1
|
Wang Y, Huang L, Cen X, Liang Y, Chen K. Canonical MAPK signaling in auditory neuropathy. Biochim Biophys Acta Mol Basis Dis 2024; 1871:167619. [PMID: 39662753 DOI: 10.1016/j.bbadis.2024.167619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 11/27/2024] [Accepted: 12/06/2024] [Indexed: 12/13/2024]
Abstract
Auditory neuropathy (AN) is an under-recognized form of hearing loss characterized by lesions in inner hair cells (IHCs), ribbon synapses and spiral ganglion neurons (SGNs). The lack of a targeted therapy for AN has increased the need for a better understanding of the pathogenic mechanism of AN. As mitogen-activated protein kinase (MAPK) signaling is ubiquitous in many biological processes, its alteration may facilitate the pathogenesis of multiple sites in AN. Here, we summaries the characteristics of AN under different molecular bases and first explore the mechanism of MAPK at different lesion sites. Alterations of extracellular signal-regulated kinase (ERK)/MAPK occur in IHCs and SGNs, whereas modulations of p38 and c-Jun NH2-terminal kinase (JNK) were found in ribbon synapses and SGNs. In conclusion, inductive MAPK alterations in the pathogenesis and development of AN are likely to represent a potential therapeutic target to guide the development of treatments.
Collapse
Affiliation(s)
- Yueying Wang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Lusha Huang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaoqing Cen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Yue Liang
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China
| | - Kaitian Chen
- Otorhinolaryngology Hospital, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Institute of Otorhinolaryngology, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
2
|
Yeo XY, Kwon S, Rinai KR, Lee S, Jung S, Park R. A Consolidated Understanding of the Contribution of Redox Dysregulation in the Development of Hearing Impairment. Antioxidants (Basel) 2024; 13:598. [PMID: 38790703 PMCID: PMC11118506 DOI: 10.3390/antiox13050598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/26/2024] [Accepted: 05/09/2024] [Indexed: 05/26/2024] Open
Abstract
The etiology of hearing impairment is multifactorial, with contributions from both genetic and environmental factors. Although genetic studies have yielded valuable insights into the development and function of the auditory system, the contribution of gene products and their interaction with alternate environmental factors for the maintenance and development of auditory function requires further elaboration. In this review, we provide an overview of the current knowledge on the role of redox dysregulation as the converging factor between genetic and environmental factor-dependent development of hearing loss, with a focus on understanding the interaction of oxidative stress with the physical components of the peripheral auditory system in auditory disfunction. The potential involvement of molecular factors linked to auditory function in driving redox imbalance is an important promoter of the development of hearing loss over time.
Collapse
Affiliation(s)
- Xin Yi Yeo
- Department of Psychological Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Soohyun Kwon
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
- Department of BioNanotechnology, Gachon University, Seongnam 13120, Republic of Korea
| | - Kimberley R. Rinai
- Department of Life Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Sungsu Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Hospital and Medical School, Gwangju 61469, Republic of Korea;
| | - Sangyong Jung
- Department of Medical Science, College of Medicine, CHA University, Seongnam 13488, Republic of Korea;
| | - Raekil Park
- Department of Biomedical Science and Engineering, Gwangju Institute of Science & Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
3
|
Brotto D, Greggio M, De Filippis C, Trevisi P. Autosomal Recessive Non-Syndromic Deafness: Is AAV Gene Therapy a Real Chance? Audiol Res 2024; 14:239-253. [PMID: 38525683 PMCID: PMC10961695 DOI: 10.3390/audiolres14020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/01/2024] [Accepted: 02/15/2024] [Indexed: 03/26/2024] Open
Abstract
The etiology of sensorineural hearing loss is heavily influenced by genetic mutations, with approximately 80% of cases attributed to genetic causes and only 20% to environmental factors. Over 100 non-syndromic deafness genes have been identified in humans thus far. In non-syndromic sensorineural hearing impairment, around 75-85% of cases follow an autosomal recessive inheritance pattern. In recent years, groundbreaking advancements in molecular gene therapy for inner-ear disorders have shown promising results. Experimental studies have demonstrated improvements in hearing following a single local injection of adeno-associated virus-derived vectors carrying an additional normal gene or using ribozymes to modify the genome. These pioneering approaches have opened new possibilities for potential therapeutic interventions. Following the PRISMA criteria, we summarized the AAV gene therapy experiments showing hearing improvement in the preclinical phases of development in different animal models of DFNB deafness and the AAV gene therapy programs currently in clinical phases targeting autosomal recessive non syndromic hearing loss. A total of 17 preclinical studies and 3 clinical studies were found and listed. Despite the hurdles, there have been significant breakthroughs in the path of HL gene therapy, holding great potential for providing patients with novel and effective treatment.
Collapse
Affiliation(s)
- Davide Brotto
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
- Otolaryngology Unit, Azienda Ospedale Università Padova, 35128 Padova, Italy
| | - Marco Greggio
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
- Otolaryngology Unit, Azienda Ospedale Università Padova, 35128 Padova, Italy
| | - Cosimo De Filippis
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
| | - Patrizia Trevisi
- Department of Neuroscience DNS, Otolaryngology Section, Padova University, 35128 Padova, Italy; (D.B.); (C.D.F.); (P.T.)
- Otolaryngology Unit, Azienda Ospedale Università Padova, 35128 Padova, Italy
| |
Collapse
|
4
|
Li L, Shen T, Liu S, Qi J, Zhao Y. Advancements and future prospects of adeno-associated virus-mediated gene therapy for sensorineural hearing loss. Front Neurosci 2024; 18:1272786. [PMID: 38327848 PMCID: PMC10847333 DOI: 10.3389/fnins.2024.1272786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Sensorineural hearing loss (SNHL), a highly prevalent sensory impairment, results from a multifaceted interaction of genetic and environmental factors. As we continually gain insights into the molecular basis of auditory development and the growing compendium of deafness genes identified, research on gene therapy for SNHL has significantly deepened. Adeno-associated virus (AAV), considered a relatively secure vector for gene therapy in clinical trials, can deliver various transgenes based on gene therapy strategies such as gene replacement, gene silencing, gene editing, or gene addition to alleviate diverse types of SNHL. This review delved into the preclinical advances in AAV-based gene therapy for SNHL, spanning hereditary and acquired types. Particular focus is placed on the dual-AAV construction method and its application, the vector delivery route of mouse inner ear models (local, systemic, fetal, and cerebrospinal fluid administration), and the significant considerations in transforming from AAV-based animal model inner ear gene therapy to clinical implementation.
Collapse
Affiliation(s)
- Linke Li
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Tian Shen
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Shixi Liu
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Jieyu Qi
- State Key Laboratory of Bioelectronics, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, China
| | - Yu Zhao
- Department of Otorhinolaryngology Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Moser T, Karagulyan N, Neef J, Jaime Tobón LM. Diversity matters - extending sound intensity coding by inner hair cells via heterogeneous synapses. EMBO J 2023; 42:e114587. [PMID: 37800695 PMCID: PMC10690447 DOI: 10.15252/embj.2023114587] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 10/07/2023] Open
Abstract
Our sense of hearing enables the processing of stimuli that differ in sound pressure by more than six orders of magnitude. How to process a wide range of stimulus intensities with temporal precision is an enigmatic phenomenon of the auditory system. Downstream of dynamic range compression by active cochlear micromechanics, the inner hair cells (IHCs) cover the full intensity range of sound input. Yet, the firing rate in each of their postsynaptic spiral ganglion neurons (SGNs) encodes only a fraction of it. As a population, spiral ganglion neurons with their respective individual coding fractions cover the entire audible range. How such "dynamic range fractionation" arises is a topic of current research and the focus of this review. Here, we discuss mechanisms for generating the diverse functional properties of SGNs and formulate testable hypotheses. We postulate that an interplay of synaptic heterogeneity, molecularly distinct subtypes of SGNs, and efferent modulation serves the neural decomposition of sound information and thus contributes to a population code for sound intensity.
Collapse
Affiliation(s)
- Tobias Moser
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Cluster of Excellence “Multiscale Bioimaging of Excitable Cells”GöttingenGermany
| | - Nare Karagulyan
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| | - Jakob Neef
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
| | - Lina María Jaime Tobón
- Institute for Auditory Neuroscience and InnerEarLabUniversity Medical Center GöttingenGöttingenGermany
- Auditory Neuroscience and Synaptic Nanophysiology GroupMax Planck Institute for Multidisciplinary SciencesGöttingenGermany
- Hertha Sponer CollegeCluster of Excellence “Multiscale Bioimaging of Excitable Cells” Cluster of ExcellenceGöttingenGermany
| |
Collapse
|
6
|
Petit C, Bonnet C, Safieddine S. Deafness: from genetic architecture to gene therapy. Nat Rev Genet 2023; 24:665-686. [PMID: 37173518 DOI: 10.1038/s41576-023-00597-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/15/2023]
Abstract
Progress in deciphering the genetic architecture of human sensorineural hearing impairment (SNHI) or loss, and multidisciplinary studies of mouse models, have led to the elucidation of the molecular mechanisms underlying auditory system function, primarily in the cochlea, the mammalian hearing organ. These studies have provided unparalleled insights into the pathophysiological processes involved in SNHI, paving the way for the development of inner-ear gene therapy based on gene replacement, gene augmentation or gene editing. The application of these approaches in preclinical studies over the past decade has highlighted key translational opportunities and challenges for achieving effective, safe and sustained inner-ear gene therapy to prevent or cure monogenic forms of SNHI and associated balance disorders.
Collapse
Affiliation(s)
- Christine Petit
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France.
- Collège de France, F-75005, Paris, France.
| | - Crystel Bonnet
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
| | - Saaïd Safieddine
- Institut Pasteur, Université Paris Cité, Inserm, Institut de l'Audition, F-75012, Paris, France
- Centre National de la Recherche Scientifique, F-75016, Paris, France
| |
Collapse
|
7
|
Cottrell J, Dixon P, Cao X, Kiss A, Smilsky K, Kaminskas K, Ng A, Shipp D, Dimitrijevic A, Chen J, Lin V, Kyriakopoulou L, Le T. Gene mutations as a non-invasive measure of adult cochlear implant performance: Variable outcomes in patients with select TMPRSS3 mutations. PLoS One 2023; 18:e0291600. [PMID: 37713394 PMCID: PMC10503761 DOI: 10.1371/journal.pone.0291600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/04/2023] [Indexed: 09/17/2023] Open
Abstract
BACKGROUND The cochlear implant (CI) has proven to be a successful treatment for patients with severe-to-profound sensorineural hearing loss, however outcome variance exists. We sought to evaluate particular mutations discovered in previously established sensory and neural partition genes and compare post-operative CI outcomes. MATERIALS AND METHODS Utilizing a prospective cohort study design, blood samples collected from adult patients with non-syndromic hearing loss undergoing CI were tested for 54 genes of interest with high-throughput sequencing. Patients were categorized as having a pathogenic variant in the sensory partition, pathogenic variant in the neural partition, pathogenic variant in both sensory and neural partition, or with no variant identified. Speech perception performance was assessed pre- and 12 months post-operatively. Performance measures were compared to genetic mutation and variant status utilizing a Wilcoxon rank sum test, with P<0.05 considered statistically significant. RESULTS Thirty-six cochlear implant patients underwent genetic testing and speech understanding measurements. Of the 54 genes that were interrogated, three patients (8.3%) demonstrated a pathogenic mutation in the neural partition (within TMPRSS3 genes), one patient (2.8%) demonstrated a pathogenic mutation in the sensory partition (within the POU4F3 genes). In addition, 3 patients (8.3%) had an isolated neural partition variance of unknown significance (VUS), 5 patients (13.9%) had an isolated sensory partition VUS, 1 patient (2.8%) had a variant in both neural and sensory partition, and 23 patients (63.9%) had no mutation or variant identified. There was no statistically significant difference in speech perception scores between patients with sensory or neural partition pathogenic mutations or VUS. Variable performance was found within patients with TMPRSS3 gene mutations. CONCLUSION The impact of genetic mutations on post-operative outcomes in CI patients was heterogenous. Future research and dissemination of mutations and subsequent CI performance is warranted to elucidate exact mutations within target genes providing the best non-invasive prognostic capability.
Collapse
Affiliation(s)
- Justin Cottrell
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Peter Dixon
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Xingshan Cao
- Department of Research Design and Biostatistics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alex Kiss
- Department of Research Design and Biostatistics, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Kari Smilsky
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Kassandra Kaminskas
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Amy Ng
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - David Shipp
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Andrew Dimitrijevic
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Chen
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Vincent Lin
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Lianna Kyriakopoulou
- Department of Laboratory Medicine & Pathology–Clinical Chemistry, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Trung Le
- Department of Otolaryngology–Head and Neck Surgery, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
Saidia AR, Ruel J, Bahloul A, Chaix B, Venail F, Wang J. Current Advances in Gene Therapies of Genetic Auditory Neuropathy Spectrum Disorder. J Clin Med 2023; 12:jcm12030738. [PMID: 36769387 PMCID: PMC9918155 DOI: 10.3390/jcm12030738] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) refers to a range of hearing impairments characterized by an impaired transmission of sound from the cochlea to the brain. This defect can be due to a lesion or defect in the inner hair cell (IHC), IHC ribbon synapse (e.g., pre-synaptic release of glutamate), postsynaptic terminals of the spiral ganglion neurons, or demyelination and axonal loss within the auditory nerve. To date, the only clinical treatment options for ANSD are hearing aids and cochlear implantation. However, despite the advances in hearing-aid and cochlear-implant technologies, the quality of perceived sound still cannot match that of the normal ear. Recent advanced genetic diagnostics and clinical audiology made it possible to identify the precise site of a lesion and to characterize the specific disease mechanisms of ANSD, thus bringing renewed hope to the treatment or prevention of auditory neurodegeneration. Moreover, genetic routes involving the replacement or corrective editing of mutant sequences or defected genes to repair damaged cells for the future restoration of hearing in deaf people are showing promise. In this review, we provide an update on recent discoveries in the molecular pathophysiology of genetic lesions, auditory synaptopathy and neuropathy, and gene-therapy research towards hearing restoration in rodent models and in clinical trials.
Collapse
Affiliation(s)
- Anissa Rym Saidia
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Jérôme Ruel
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Cognitive Neuroscience Laboratory, Aix-Marseille University, CNRS, UMR 7291, 13331 Marseille, France
| | - Amel Bahloul
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
| | - Benjamin Chaix
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Frédéric Venail
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
| | - Jing Wang
- Institute for Neurosciences of Montpellier (INM), University Montpellier, INSERM, 34295 Montpellier, France
- Department of ENT and Head and Neck Surgery, University Hospital of Montpellier, 34295 Montpellier, France
- Correspondence: ; Tel.: +33-499-63-60-48
| |
Collapse
|
9
|
Qi J, Fu X, Zhang L, Tan F, Li N, Sun Q, Hu X, He Z, Xia M, Chai R. Current AAV-mediated gene therapy in sensorineural hearing loss. FUNDAMENTAL RESEARCH 2022. [DOI: 10.1016/j.fmre.2022.08.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
10
|
Abstract
Current estimates suggest that nearly half a billion people worldwide are affected by hearing loss. Because of the major psychological, social, economic, and health ramifications, considerable efforts have been invested in identifying the genes and molecular pathways involved in hearing loss, whether genetic or environmental, to promote prevention, improve rehabilitation, and develop therapeutics. Genomic sequencing technologies have led to the discovery of genes associated with hearing loss. Studies of the transcriptome and epigenome of the inner ear have characterized key regulators and pathways involved in the development of the inner ear and have paved the way for their use in regenerative medicine. In parallel, the immense preclinical success of using viral vectors for gene delivery in animal models of hearing loss has motivated the industry to work on translating such approaches into the clinic. Here, we review the recent advances in the genomics of auditory function and dysfunction, from patient diagnostics to epigenetics and gene therapy.
Collapse
Affiliation(s)
- Shahar Taiber
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
| | - Kathleen Gwilliam
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, USA; ,
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; ,
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
11
|
Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea. Mol Cell Neurosci 2022; 120:103720. [DOI: 10.1016/j.mcn.2022.103720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023] Open
|