1
|
Hamidpour SK, Amiri M, Ketabforoush AHME, Saeedi S, Angaji A, Tavakol S. Unraveling Dysregulated Cell Signaling Pathways, Genetic and Epigenetic Mysteries of Parkinson's Disease. Mol Neurobiol 2024; 61:8928-8966. [PMID: 38573414 DOI: 10.1007/s12035-024-04128-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 04/05/2024]
Abstract
Parkinson's disease (PD) is a prevalent and burdensome neurodegenerative disorder that has been extensively researched to understand its complex etiology, diagnosis, and treatment. The interplay between genetic and environmental factors in PD makes its pathophysiology difficult to comprehend, emphasizing the need for further investigation into genetic and epigenetic markers involved in the disease. Early diagnosis is crucial for optimal management of the disease, and the development of novel diagnostic biomarkers is ongoing. Although many efforts have been made in the field of recognition and interpretation of the mechanisms involved in the pathophysiology of the disease, the current knowledge about PD is just the tip of the iceberg. By scrutinizing genetic and epigenetic patterns underlying PD, new avenues can be opened for dissecting the pathology of the disorder, leading to more precise and efficient diagnostic and therapeutic approaches. This review emphasizes the importance of studying dysregulated cell signaling pathways and molecular processes associated with genes and epigenetic alterations in understanding PD, paving the way for the development of novel therapeutic strategies to combat this devastating disease.
Collapse
Affiliation(s)
- Shayesteh Kokabi Hamidpour
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mobina Amiri
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | | | - Saeedeh Saeedi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, USA
| | - Abdolhamid Angaji
- Department of Cell and Molecular Biology, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
- Department of Research and Development, Tavakol BioMimetic Technologies Company, Tehran, Iran.
| |
Collapse
|
2
|
Simula ER, Jasemi S, Paulus K, Sechi LA. Upregulation of microRNAs correlates with downregulation of HERV-K expression in Parkinson's disease. J Neurovirol 2024:10.1007/s13365-024-01234-7. [PMID: 39424758 DOI: 10.1007/s13365-024-01234-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Human endogenous retroviruses (HERVs) involvement in neurological diseases has been extensively documented, although the etiology of HERV reactivation remains unclear. MicroRNAs represent one of the potential regulatory mechanisms of HERV reactivation. We identified fourteen microRNAs predicted to bind the HERV-K transcript, and subsequently analyzed for their gene expression levels alongside those of HERV-K. We documented an increased expression of four microRNAs in patients with Parkinson's disease compared to healthy controls, which correlated with a downregulation of HERV-K transcripts. We hypothesize that specific microRNAs may bind to HERV-K transcripts, leading to its downregulation.
Collapse
Affiliation(s)
- Elena Rita Simula
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Somaye Jasemi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy
| | - Kay Paulus
- Servizio di neuroabilitazione, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy
| | - Leonardo Antonio Sechi
- Department of Biomedical Sciences, Division of Microbiology and Virology, University of Sassari, Sassari, Italy.
- Struttura Complessa Microbiologia e Virologia, Azienda Ospedaliera Universitaria Sassari, Sassari, Italy.
| |
Collapse
|
3
|
Pooshani S, Azadmehr A, Saadat P, Sepidarkish M, Daraei A. Regulatory miR-SNP rs4636297A > G in miR-126 is linked to increased risk of rigidity feature in patients with Parkinson's disease. Int J Neurosci 2024:1-10. [PMID: 39207776 DOI: 10.1080/00207454.2024.2398571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 07/22/2024] [Accepted: 08/24/2024] [Indexed: 09/04/2024]
Abstract
INTRODUCTION A growing body of strong evidence shows that the dysfunction of miRNAs plays key roles in the development and progression of Parkinson's disease (PD), however, little data has been reported on the association of their SNPs with PD susceptibility. In this study, we investigated the association of regulatory miR-SNP rs4636297A > G with a functional effect on the expression of miRNA-126, as a key dysregulated miRNA in the PD, with the susceptibility and clinical features of the PD. METHODS AND MATERIALS In current study, we included a population consisting of 120 patients with PD and 120 clinically healthy individuals, and their blood samples were taken. After extracting the DNAs, the genotyping of the miR-SNP rs4636297A > G was done through RFLP-PCR technique. Finally, the association of this SNP with the risk and clinical features of PD was determined. RESULTS Although the results showed that the two groups did not differ significantly in terms of allelic and genotype frequencies, it was clinically found that individuals with genotypes carrying the minor allele G (AG and GG genotypes) of the miR-SNP rs4636297A > G had an increased risk of developing rigidity feature in the PD compared to its homozygous major AA genotype (GG genotype; OR = 5.14, p = 0.038 & GA genotype; OR = 4.32, p = 0.032). CONCLUSION We report for the first time a significant association of functional regulatory SNP rs4636297A > G in the miR-126 with the Parkinson's clinicopathology. Therefore, this miR-SNP can have a potential predictive biomarker capacity for rigidity in PD, although this hypothesis needs further investigation in the future.
Collapse
Affiliation(s)
- Sheyda Pooshani
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Abbas Azadmehr
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Payam Saadat
- Mobility Impairment Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| | - Mahdi Sepidarkish
- Department of Biostatistics and Epidemiology, School of Public Health, Babol University of Medical Sciences, Babol, Iran
| | - Abdolreza Daraei
- Cellular and Molecular Biology Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
4
|
Salama RM, Darwish SF, Yehia R, Eissa N, Elmongy NF, Abd-Elgalil MM, Schaalan MF, El Wakeel SA. Apilarnil exerts neuroprotective effects and alleviates motor dysfunction by rebalancing M1/M2 microglia polarization, regulating miR-155 and miR-124 expression in a rotenone-induced Parkinson's disease rat model. Int Immunopharmacol 2024; 137:112536. [PMID: 38909495 DOI: 10.1016/j.intimp.2024.112536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/15/2024] [Accepted: 06/18/2024] [Indexed: 06/25/2024]
Abstract
Microglial activation contributes to the neuropathology of Parkinson's disease (PD). Inhibiting M1 while simultaneously boosting M2 microglia activation may therefore be a potential treatment for PD. Apilarnil (API) is a bee product produced from drone larvae. Recent research has demonstrated the protective effects of API on multiple body systems. Nevertheless, its impact on PD or the microglial M1/M2 pathway has not yet been investigated. Thus, we intended to evaluate the dose-dependent effects of API in rotenone (ROT)-induced PD rat model and explore the role of M1/M2 in mediating its effect. Seventy-two Wistar rats were equally grouped as; control, API, ROT, and groups in which API (200, 400, and 800 mg/kg, p.o.) was given simultaneously with ROT (2 mg/kg, s.c.) for 28 days. The high dose of API (800 mg/kg) showed enhanced motor function, higher expression of tyrosine hydroxylase and dopamine levels, less dopamine turnover and α-synuclein expression, and a better histopathological picture when compared to the ROT group and the lower two doses. API's high dose exerted its neuroprotective effects through abridging the M1 microglial activity, illustrated in the reduced expression of miR-155, Iba-1, CD36, CXCL10, and other pro-inflammatory markers' levels. Inversely, API high dose enhanced M2 microglial activity, witnessed in the elevated expression of miR-124, CD206, Ym1, Fizz1, arginase-1, and other anti-inflammatory indices, in comparison to the diseased group. To conclude, our study revealed a novel neuroprotective impact for API against experimentally induced PD, where the high dose showed the highest protection via rebalancing M1/M2 polarization.
Collapse
Affiliation(s)
- Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Cairo, Egypt.
| | - Rana Yehia
- Pharmacology and Toxicology Department, Faculty of Pharmacy, British University in Egypt (BUE), Cairo, Egypt.
| | - Nermin Eissa
- Department of Biomedical Sciences, College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates.
| | - Noura F Elmongy
- Physiology Department, Damietta Faculty of Medicine, Al-Azhar University, Damietta, Egypt.
| | - Mona M Abd-Elgalil
- Histology and Cell Biology Department, Faculty of Medicine for Girls, Al-Azhar University, Cairo, Egypt.
| | - Mona F Schaalan
- Clinical Pharmacy Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| | - Sara A El Wakeel
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt.
| |
Collapse
|
5
|
Vaitkienė P, Pranckevičienė A, Radžiūnas A, Mišeikaitė A, Miniotaitė G, Belickienė V, Laucius O, Deltuva V. Association of Serum Extracellular Vesicle miRNAs with Cognitive Functioning and Quality of Life in Parkinson's Disease. Biomolecules 2024; 14:1000. [PMID: 39199388 PMCID: PMC11352584 DOI: 10.3390/biom14081000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024] Open
Abstract
The identification of mechanisms associated with Parkinson disease (PD) development in cognitive functioning would be of great usefulness to clarify PD pathogenesis and to develop preventive and therapeutic strategies. In this study, blood serum extracellular vesicle (EV) levels of the candidate microRNAs (small noncoding RNAs that play a role in gene expression regulation):,miR-7, miR-21, miR-153, miR-155, miR-200a and miR-214, have been investigated for association with PD in a group of 93 patients with cognitive parameters, PD symptoms, affected quality of life and some clinical characteristics. MiRNA was extracted from patients' blood serum EVs, transcribed into cDNA and their expression was evaluated using RT-PCR. The miR-153 and miR-200a showed the most plausible correlations with cognitive functioning parameters such as general intellectual functioning, psychomotor speed, mental flexibility, and nonverbal executive functions. Moreover, lower levels of miR-153 were associated with attention span, working memory and psychomotor speed with learning. Increased levels of miR-200a, miR-7, miR-214, and miR-155 were also linked with neurological functioning, such as bradykinesia, tremor, balance and others. Despite the fact that due to small sample size, our results should be considered as preliminary, our study suggests that miRNA expression in EVs could be associated with symptom severity, cognitive impairment and quality of life in PD.
Collapse
Affiliation(s)
- Paulina Vaitkienė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| | - Aistė Pranckevičienė
- Health Psychology Department, Faculty of Public Health, Medical Academy, Lithuania University of Health Sciences, Tilžės g. 18, LT-47181 Kaunas, Lithuania;
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| | - Andrius Radžiūnas
- Department of Neurosurgery, Medical Academy, Lithuanian University of Health Sciences, Kauno Klinikos, Eiveniu Str. 2, LT-50009 Kaunas, Lithuania
| | - Augustina Mišeikaitė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| | - Giedrė Miniotaitė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Violeta Belickienė
- Laboratory of Molecular Neurobiology, Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
- Faculty of Medicine, Medical Academy, Lithuanian University of Health Sciences, A. Mickeviciaus g. 9, LT-44307 Kaunas, Lithuania
| | - Ovidijus Laucius
- Neurology Department, Lithuanian University of Health Sciences, Kauno Klinikos, Eiveniu Str. 2, LT-50009 Kaunas, Lithuania
| | - Vytenis Deltuva
- Neuroscience Institute, Medical Academy, Lithuanian University of Health Sciences, Eiveniu Str. 4, LT-50009 Kaunas, Lithuania
| |
Collapse
|
6
|
Xu K, Li Y, Zhou Y, Zhang Y, Shi Y, Zhang C, Bai Y, Wang S. Neuroinflammation in Parkinson's disease: focus on the relationship between miRNAs and microglia. Front Cell Neurosci 2024; 18:1429977. [PMID: 39131043 PMCID: PMC11310010 DOI: 10.3389/fncel.2024.1429977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/11/2024] [Indexed: 08/13/2024] Open
Abstract
Parkinson's disease (PD) is a prevalent neurodegenerative disorder that affects the central nervous system (CNS). Neuroinflammation is a crucial factor in the pathological advancement of PD. PD is characterized by the presence of activated microglia and increased levels of proinflammatory factors, which play a crucial role in its pathology. During the immune response of PD, microglia regulation is significantly influenced by microRNA (miRNA). The excessive activation of microglia, persistent neuroinflammation, and abnormal polarization of macrophages in the brain can be attributed to the dysregulation of certain miRNAs. Additionally, there are miRNAs that possess the ability to inhibit neuroinflammation. miRNAs, which are small non-coding epigenetic regulators, have the ability to modulate microglial activity in both normal and abnormal conditions. They also have a significant impact on promoting communication between neurons and microglia.
Collapse
Affiliation(s)
- Ke Xu
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yuan Li
- Department of Acupuncture and Moxibustion, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yan Zhou
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yu Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yue Shi
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Chengguang Zhang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| | - Yan Bai
- Institute of Acupuncture and Moxibustion, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, China
| | - Shun Wang
- The Second Clinical Medical College, Heilongjiang University of Traditional Chinese Medicine, Harbin, China
| |
Collapse
|
7
|
Pala M, Meral I, Pala Acikgoz N, Mengi M, Erdim Gokce MB, Unsal R, Polat Y, Akbas F, Gorucu Yilmaz S. Thymoquinone ameliorates symptoms of Parkinson's disease in a 6-OHDA rat model by downregulation of miR-204-3p. Behav Pharmacol 2024; 35:201-210. [PMID: 38660812 DOI: 10.1097/fbp.0000000000000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
microRNAs (miRNAs) play a significant role in the pathophysiology of Parkinson's disease. In this study, we evaluated the neuroprotective effect of thymoquinone on the expression profiles of miRNA and cognitive functions in the 6-hydroxydopamine (6-OHDA)-induced Parkinson's model. Male adult Wistar albino rats (200-230 g, n = 36) were randomly assigned to six groups: Sham, thymoquinone (10 mg/kg, p.o.), 6-OHDA, 6-OHDA + thymoquinone (10 mg/kg), 6-OHDA + thymoquinone (20 mg/kg), and 6-OHDA + thymoquinone (50 mg/kg). Behavioral changes were detected using the open field and the elevated plus maze tests. The mature 728 miRNA expressions were evaluated by miRNA microarray (GeneChip miRNA 4.0). Ten miRNAs were selected (rno-miR-212-5p, rno-miR-146b-5p, rno-miR-150-5p, rno-miR-29b-2-5p, rno-miR-126a-3p, rno-miR-187-3p, rno-miR-34a-5p, rno-miR-181d-5p, rno-miR-204-3p, and rno-miR-30c-2-3p) and confirmed by real-time PCR. Striatum samples were stained with hematoxylin-eosin to determine the effect of dopaminergic lesions. One-way ANOVA test and independent sample t -test were used for statistical analyses. rno-miR-204-3p was upregulated at 6-OHDA and downregulated at the 50 mg/kg dose of thymoquinone. In conclusion, thymoquinone at a dose of 50 mg/kg ameliorates symptoms of Parkinson's disease in a 6-OHDA rat model by downregulation of miR-204-3p. Also, the results showed that thymoquinone can improve locomotor activity and willing exploration and decreased anxiety. Therefore, thymoquinone can be used as a therapeutic agent.
Collapse
Affiliation(s)
- Mukaddes Pala
- Department of Physiology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya
| | | | - Nilgün Pala Acikgoz
- Department of Neurology, Faculty of Medicine, Bezmialem Vakif University, Istanbul
| | - Murat Mengi
- Department of Physiology, Faculty of Medicine, Namik Kemal University, Tekirdag
| | | | - Rumeysa Unsal
- Bakirkoy Prof. Dr. Mazhar Osman Mental Health and Nervous Diseases Training and Research Hospital
| | - Yalcin Polat
- Department of Pathology, Faculty of Medicine, Biruni University
| | - Fahri Akbas
- Department of Medical Biology, Faculty of Medicine, Bezmialem Vakif University, Istanbul
| | - Senay Gorucu Yilmaz
- Department of Nutrition and Dietetics, Faculty of Health Science, Gaziantep University, Gaziantep, Turkey
| |
Collapse
|
8
|
Azam HMH, Rößling RI, Geithe C, Khan MM, Dinter F, Hanack K, Prüß H, Husse B, Roggenbuck D, Schierack P, Rödiger S. MicroRNA biomarkers as next-generation diagnostic tools for neurodegenerative diseases: a comprehensive review. Front Mol Neurosci 2024; 17:1386735. [PMID: 38883980 PMCID: PMC11177777 DOI: 10.3389/fnmol.2024.1386735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/12/2024] [Indexed: 06/18/2024] Open
Abstract
Neurodegenerative diseases (NDs) are characterized by abnormalities within neurons of the brain or spinal cord that gradually lose function, eventually leading to cell death. Upon examination of affected tissue, pathological changes reveal a loss of synapses, misfolded proteins, and activation of immune cells-all indicative of disease progression-before severe clinical symptoms become apparent. Early detection of NDs is crucial for potentially administering targeted medications that may delay disease advancement. Given their complex pathophysiological features and diverse clinical symptoms, there is a pressing need for sensitive and effective diagnostic methods for NDs. Biomarkers such as microRNAs (miRNAs) have been identified as potential tools for detecting these diseases. We explore the pivotal role of miRNAs in the context of NDs, focusing on Alzheimer's disease, Parkinson's disease, Multiple sclerosis, Huntington's disease, and Amyotrophic Lateral Sclerosis. The review delves into the intricate relationship between aging and NDs, highlighting structural and functional alterations in the aging brain and their implications for disease development. It elucidates how miRNAs and RNA-binding proteins are implicated in the pathogenesis of NDs and underscores the importance of investigating their expression and function in aging. Significantly, miRNAs exert substantial influence on post-translational modifications (PTMs), impacting not just the nervous system but a wide array of tissues and cell types as well. Specific miRNAs have been found to target proteins involved in ubiquitination or de-ubiquitination processes, which play a significant role in regulating protein function and stability. We discuss the link between miRNA, PTM, and NDs. Additionally, the review discusses the significance of miRNAs as biomarkers for early disease detection, offering insights into diagnostic strategies.
Collapse
Affiliation(s)
- Hafiz Muhammad Husnain Azam
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Rosa Ilse Rößling
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Christiane Geithe
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| | - Muhammad Moman Khan
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Franziska Dinter
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- PolyAn GmbH, Berlin, Germany
| | - Katja Hanack
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| | - Harald Prüß
- German Center for Neurodegenerative Diseases (DZNE), Berlin, Germany
- Department of Neurology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Britta Husse
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Dirk Roggenbuck
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Peter Schierack
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
| | - Stefan Rödiger
- Institute of Biotechnology, Faculty of Environment and Natural Sciences, Brandenburg University of Technology Cottbus-Senftenberg, Senftenberg, Germany
- Faculty of Health Sciences, Joint Faculty of the Brandenburg University of Technology Cottbus - Senftenberg, The Brandenburg Medical School Theodor Fontane and the University of Potsdam, Berlin, Germany
| |
Collapse
|
9
|
Sasikumar DSN, Thiruselvam P, Sundararajan V, Ravindran R, Gunasekaran S, Madathil D, Kaliamurthi S, Peslherbe GH, Selvaraj G, Sudhakaran SL. Insights into dietary phytochemicals targeting Parkinson's disease key genes and pathways: A network pharmacology approach. Comput Biol Med 2024; 172:108195. [PMID: 38460310 DOI: 10.1016/j.compbiomed.2024.108195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/26/2024] [Accepted: 02/18/2024] [Indexed: 03/11/2024]
Abstract
Parkinson's disease (PD) is a complex neurological disease associated with the degeneration of dopaminergic neurons. Oxidative stress is a key player in instigating apoptosis in dopaminergic neurons. To improve the survival of neurons many dietary phytochemicals have gathered significant attention recently. Thus, the present study implements a comprehensive network pharmacology approach to unravel the mechanisms of action of dietary phytochemicals that benefit disease management. A literature search was performed to identify ligands (i.e., comprising dietary phytochemicals and Food and Drug Administration pre-approved PD drugs) in the PubMed database. Targets associated with selected ligands were extracted from the search tool for interactions of chemicals (STITCH) database. Then, the construction of a gene-gene interaction (GGI) network, analysis of hub-gene, functional and pathway enrichment, associated transcription factors, miRNAs, ligand-target interaction network, docking were performed using various bioinformatics tools together with molecular dynamics (MD) simulations. The database search resulted in 69 ligands and 144 unique targets. GGI and subsequent topological measures indicate histone acetyltransferase p300 (EP300), mitogen-activated protein kinase 1 (MAPK1) or extracellular signal-regulated kinase (ERK)2, and CREB-binding protein (CREBBP) as hub genes. Neurodegeneration, MAPK signaling, apoptosis, and zinc binding are key pathways and gene ontology terms. hsa-miR-5692a and SCNA gene-associated transcription factors interact with all the 3 hub genes. Ligand-target interaction (LTI) network analysis suggest rasagiline and baicalein as candidate ligands targeting MAPK1. Rasagiline and baicalein form stable complexes with the Y205, K330, and V173 residues of MAPK1. Computational molecular insights suggest that baicalein and rasagiline are promising preclinical candidates for PD management.
Collapse
Affiliation(s)
- Devi Soorya Narayana Sasikumar
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Premkumar Thiruselvam
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Vino Sundararajan
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India
| | - Radhika Ravindran
- Department of Biotechnology, Indian Institute of Technology (Madras), Chennai, TN, 600036, India
| | - Shoba Gunasekaran
- Department of Biotechnology, Dwaraka Doss Goverdhan Doss Vaishnav College, Chennai, TN, 600106, India
| | - Deepa Madathil
- Jindal Institute of Behavioral Sciences, O.P Jindal Global University, Sonipat, Haryana, 131001, India
| | - Satyavani Kaliamurthi
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gilles H Peslherbe
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada
| | - Gurudeeban Selvaraj
- Centre for Research in Molecular Modeling (CERMM), Department of Chemistry and Biochemistry, Concordia University, Loyola Campus, Montreal, QC, H4B 1R6, Canada; Bioinformatics Unit, Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS) University, Chennai, TN, 600077, India.
| | - Sajitha Lulu Sudhakaran
- Integrative Multiomics Lab, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, TN, 632014, India.
| |
Collapse
|
10
|
Das S, Ramteke H. A Comprehensive Review of the Role of Biomarkers in Early Diagnosis of Parkinson's Disease. Cureus 2024; 16:e54337. [PMID: 38500934 PMCID: PMC10945043 DOI: 10.7759/cureus.54337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 02/16/2024] [Indexed: 03/20/2024] Open
Abstract
Parkinson's disease (PD) is a complex neurological, degenerative clinical condition depicted by the advancing loss of dopaminergic neurons in the substantia nigra pars compacta, which manifests itself as a myriad of sensorimotor and non-motor signs in patients. The disease occurs due to the reduced levels of the neurotransmitter dopamine in the brain, which is primarily associated with functional characteristics regarding mobility and cognition. The basal ganglion is mainly involved in the generation of cognitive functions and therefore is the most significantly associated area in PD. Since the classical diagnosis and assessment of PD depends majorly on the appearance of motor characteristics, which only arise when ~60-80% of the dopamine neuronal cell death has already occurred, it is imperative we focus on identifying biomarkers that can help us assess and diagnose PD in the earlier stages of disease progression, thus providing a better prognosis for the patients. This review article will focus on the different biomarkers that are currently available and in use, divided under the headings of clinical, biological, imaging, and genetic biomarkers, and assess their specificity and sensitivity toward providing an early assessment of Parkinson's for the patients and the future of preclinical diagnostics using molecular biomarkers. PD affects over 1% of the population worldwide and only ranks second to Alzheimer's disease in the context of its incidence and consequent socioeconomic burden. While recent breakthroughs in biomarkers have dramatically improved patients' odds of survival and prognosis, it still remains primarily a symptomatic diagnostic tool. It is an area of research that requires to focus on creating more advanced approaches toward diagnosing PD early, involving clinical diagnostics, neuroimaging technology, and molecular biology collaborations to provide the highest degree of care and quality of life that a Parkinson's patient deserves.
Collapse
Affiliation(s)
- Somdutta Das
- Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Harshal Ramteke
- General Surgery, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
11
|
Nassar A, Kodi T, Satarker S, Gurram PC, Fayaz SM, Nampoothiri M. Astrocytic transcription factors REST, YY1, and putative microRNAs in Parkinson's disease and advanced therapeutic strategies. Gene 2024; 892:147898. [PMID: 37832803 DOI: 10.1016/j.gene.2023.147898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Transcription factors (TF) and microRNAs are regulatory factors in astrocytes and are linked to several Parkinson's disease (PD) progression causes, such as disruption of glutamine transporters in astrocytes and concomitant disrupted glutamine uptake and inflammation. REST, a crucial TF, has been documented as an epigenetic repressor that limits the expression of neuronal genes in non-neural cells. REST activity is significantly linked to its corepressors in astrocytes, specifically histone deacetylases (HDACs), CoREST, and MECP2. Another REST-regulating TF, YY1, has been studied in astrocytes, and its interaction with REST has been investigated. In this review, the molecular processes that support the astrocytic control of REST and YY1 in terms of the regulation of glutamate transporter EAAT2 were addressed in a more detailed and comprehensive manner. Both TFs' function in astrocytes and how astrocyte abnormalities cause PD is still a mystery. Moreover, microRNAs (short non-coding RNAs) are key regulators that have been correlated to the expression and regulation of numerous genes linked to PD. The identification of numerous miRs that are engaged in astrocyte dysfunction that triggers PD has been shown. The term "Gut-brain axis" refers to the two systems' mutual communication. Gut microbial dysbiosis, which mediates an imbalance of the gut-brain axis, might contribute to neurodegenerative illnesses through altered astrocytic regulation. New treatment approaches to modify the gut-brain axis and prevent astrocytic repercussions have also been investigated in this review.
Collapse
Affiliation(s)
- Ajmal Nassar
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Triveni Kodi
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Sairaj Satarker
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Prasada Chowdari Gurram
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - S M Fayaz
- Department of Biotechnology, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| | - Madhavan Nampoothiri
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India.
| |
Collapse
|
12
|
Wang D, Gao H, Qin Q, Li J, Zhao J, Qu Y, Li J, Xiong Y, Min Z, Mao Z, Xue Z. MicroRNA-218-5p-Ddx41 axis restrains microglia-mediated neuroinflammation through downregulating type I interferon response in a mouse model of Parkinson's disease. J Transl Med 2024; 22:63. [PMID: 38229084 PMCID: PMC10792813 DOI: 10.1186/s12967-024-04881-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/10/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic (DA) neurons in the substantia nigra (SN). Microglia-mediated neuroinflammation has been largely considered one of main factors to the PD pathology. MicroRNA-218-5p (miR-218-5p) is a microRNA that plays a role in neurodevelopment and function, while its potential function in PD and neuroinflammation remains unclear. METHODS We explore the involvement of miR-218-5p in the PD in a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced mouse model. The miR-218-5p agomir used for overexpression was delivered into the substantia nigra (SN) by bilateral stereotaxic infusions. The loss of dopaminergic (DA) neurons and microglial inflammation in the SN was determined using Western blotting and immunofluorescence. Motor function was assessed using the rotarod test. RNA sequencing (RNA-seq) was performed to explore the pathways regulated by miR-218-5p. The target genes of miR-218-5p were predicted using TargetScan and confirmed using dual luciferase reporter assays. The effects of miR-218-5p on microglial inflammation and related pathways were verified in murine microglia-like BV2 cells. To stimulate BV2 cells, SH-SY5Y cells were treated with 1-methyl-4-phenylpyridinium (MPP+) and the conditioned media (CM) were collected. RESULTS MiR-218-5p expression was reduced in both the SN of MPTP-induced mice and MPP+-treated BV2 cells. MiR-218-5p overexpression significantly alleviated MPTP-induced microglial inflammation, loss of DA neurons, and motor dysfunction. RNA sequence and gene set enrichment analysis showed that type I interferon (IFN-I) pathways were upregulated in MPTP-induced mice, while this upregulation was reversed by miR-218-5p overexpression. A luciferase reporter assay verified that Ddx41 was a target gene of miR-218-5p. In vitro, miR-218-5p overexpression or Ddx41 knockdown inhibited the IFN-I response and expression of inflammatory cytokines in BV2 cells stimulated with MPP+-CM. CONCLUSIONS MiR-218-5p suppresses microglia-mediated neuroinflammation and preserves DA neurons via Ddx41/IFN-I. Hence, miR-218-5p-Ddx41 is a promising therapeutic target for PD.
Collapse
Affiliation(s)
- Danlei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongling Gao
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Qixiong Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingyi Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingwei Zhao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Qu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiangting Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yongjie Xiong
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhe Min
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhijuan Mao
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Xue
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of General Practice, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Zamanian MY, Ivraghi MS, Gupta R, Prasad KDV, Alsaab HO, Hussien BM, Ahmed H, Ramadan MF, Golmohammadi M, Nikbakht N, Oz T, Kujawska M. miR-221 and Parkinson's disease: A biomarker with therapeutic potential. Eur J Neurosci 2024; 59:283-297. [PMID: 38043936 DOI: 10.1111/ejn.16207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 11/09/2023] [Accepted: 11/10/2023] [Indexed: 12/05/2023]
Abstract
Parkinson's disease (PD) is a neurodegenerative disorder characterized by the loss of dopaminergic neurons in the substantia nigra, leading to various motor and non-motor symptoms. Several cellular and molecular mechanisms such as alpha-synuclein (α-syn) accumulation, mitochondrial dysfunction, oxidative stress and neuroinflammation are involved in the pathogenesis of this disease. MicroRNAs (miRNAs) play important roles in post-transcriptional gene regulation. They are typically about 21-25 nucleotides in length and are involved in the regulation of gene expression by binding to the messenger RNA (mRNA) molecules. miRNAs like miR-221 play important roles in various biological processes, including development, cell proliferation, differentiation and apoptosis. miR-221 promotes neuronal survival against oxidative stress and neurite outgrowth and neuronal differentiation. Additionally, the role of miR-221 in PD has been investigated in several studies. According to the results of these studies, (1) miR-221 protects PC12 cells against oxidative stress induced by 6-hydroxydopamine; (2) miR-221 prevents Bax/caspase-3 signalling activation by stopping Bim; (3) miR-221 has moderate predictive power for PD; (4) miR-221 directly targets PTEN, and PTEN over-expression eliminates the protective action of miR-221 on p-AKT expression in PC12 cells; and (5) miRNA-221 controls cell viability and apoptosis by manipulating the Akt signalling pathway in PD. This review study suggested that miR-221 has the potential to be used as a clinical biomarker for PD diagnosis and stage assignment.
Collapse
Affiliation(s)
- Mohammad Yasin Zamanian
- Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Physiology, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | | | - Reena Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| | - K D V Prasad
- Symbiosis Institute of Business Management (SIBM), Hyderabad, India
- Symbiosis International (Deemed University) (SIU), Hyderabad, Telangana, India
| | - Hashem O Alsaab
- Pharmaceutics and Pharmaceutical Technology, Taif University, Taif, Saudi Arabia
| | - Beneen M Hussien
- Medical Laboratory Technology Department, College of Medical Technology, Islamic University, Najaf, Iraq
| | - Hazem Ahmed
- Medical Technical College, Al-Farahidi University, Baghdad, Iraq
| | | | - Maryam Golmohammadi
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nikta Nikbakht
- Department of Physical Medicine and Rehabilitation, School of Pharmacy, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Tuba Oz
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
14
|
Mohammed OA, Elballal MS, El-Husseiny AA, Khidr EG, El Tabaa MM, Elazazy O, Abd-Elmawla MA, Elesawy AE, Ibrahim HM, Abulsoud AI, El-Dakroury WA, Abdel Mageed SS, Elrebehy MA, Nomier Y, Abdel-Reheim MA, El-Husseiny HM, Mahmoud AMA, Saber S, Doghish AS. Unraveling the role of miRNAs in the diagnosis, progression, and therapeutic intervention of Parkinson's disease. Pathol Res Pract 2024; 253:155023. [PMID: 38081104 DOI: 10.1016/j.prp.2023.155023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/24/2024]
Abstract
Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.
Collapse
Affiliation(s)
- Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A El-Husseiny
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Department of Biochemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City, 11829 Cairo, Egypt
| | - Emad Gamil Khidr
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt
| | - Manar Mohammed El Tabaa
- Pharmacology & Environmental Toxicology, Environmental Studies & Research Institute (ESRI), University of Sadat City, Sadat City, 32897 Menoufia, Egypt
| | - Ola Elazazy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mai A Abd-Elmawla
- Biochemistry, Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Henwa M Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed I Abulsoud
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt; Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Yousra Nomier
- Department of Pharmacology and Clinical Pharmacy, College of Medicine and Health Sciences, Sultan Qaboos University, Oman
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Hussein M El-Husseiny
- Laboratory of Veterinary Surgery, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai Cho, Fuchu-shi, Tokyo 183-8509, Japan; Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Benha University, Moshtohor, Toukh, Elqaliobiya 13736, Egypt
| | - Abdulla M A Mahmoud
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa 11152, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
15
|
Khish NS, Ghiasizadeh P, Rasti A, Moghimi O, Zadeh AZ, Bahiraee A, Ebrahimi R. Regulatory Non-coding RNAs Involved in Oxidative Stress and Neuroinflammation: An Intriguing Crosstalk in Parkinson's Disease. Curr Med Chem 2024; 31:5576-5597. [PMID: 37592769 DOI: 10.2174/0929867331666230817102135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 05/23/2023] [Accepted: 06/01/2023] [Indexed: 08/19/2023]
Abstract
Parkinson's disease (PD) is a common neurodegenerative disorder characterized by the accumulation of α-synuclein and the degeneration of dopaminergic neurons in the substantia nigra. Although the molecular bases for PD development are not fully recognized, extensive evidence has suggested that the development of PD is strongly associated with neuroinflammation. It is noteworthy that while neuroinflammation might not be a primary factor in all patients with PD, it seems to be a driving force for disease progression, and therefore, exploring the role of pathways involved in neuroinflammation is of great importance. Besides, the importance of non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and competing endogenous RNAs (ceRNAs), has been widely studied with a focus on the pathogenesis of PD. However, there is no comprehensive review regarding the role of neuroinflammation- related ncRNAs as prospective biomarkers and therapeutic targets involved in the pathogenesis of PD, even though the number of studies connecting ncRNAs to neuroinflammatory pathways and oxidative stress has markedly increased in the last few years. Hence, the present narrative review intended to describe the crosstalk between regulatory ncRNAs and neuroinflammatory targets with respect to PD to find and propose novel combining biomarkers or therapeutic targets in clinical settings.
Collapse
Affiliation(s)
- Naser Salari Khish
- Department of Biology, Payam Noor University International, Center of Gheshm, Hormozgan, Iran
| | - Pooran Ghiasizadeh
- Student Research Committee, Arak University of Medical Science, Arak, Iran
| | - Abolhasan Rasti
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Omid Moghimi
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Arash Zeynali Zadeh
- Student Research Committee, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Alireza Bahiraee
- Department of Medical Genetics, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reyhane Ebrahimi
- Department of Neurogenetics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| |
Collapse
|
16
|
Rezaee D, Saadatpour F, Akbari N, Zoghi A, Najafi S, Beyranvand P, Zamani-Rarani F, Rashidi MA, Bagheri-Mohammadi S, Bakhtiari M. The role of microRNAs in the pathophysiology of human central nervous system: A focus on neurodegenerative diseases. Ageing Res Rev 2023; 92:102090. [PMID: 37832609 DOI: 10.1016/j.arr.2023.102090] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/15/2023]
Abstract
microRNAs (miRNAs) are suggested to play substantial roles in regulating the development and various physiologic functions of the central nervous system (CNS). These include neurogenesis, cell fate and differentiation, morphogenesis, formation of dendrites, and targeting non-neural mRNAs. Notably, deregulation of an increasing number of miRNAs is associated with several neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and CNS tumors. They are particularly known to affect the amyloid β (Aβ) cleavage and accumulation, tau protein homeostasis, and expression of alpha-synuclein (α-syn), Parkin, PINK1, and brain-derived neurotrophic factor (BDNF) that play pivotal roles in the pathogenesis of neurodegenerative diseases. These include miR-16, miR-17-5p, miR-20a, miR-106a, miR-106b, miR-15a, miR-15b, miR-103, miR-107, miR-298, miR-328, miR-195, miR-485, and miR-29. In CNS tumors, several miRNAs, including miR-31, miR-16, and miR-21 have been identified to modulate tumorigenesis through impacting tumor invasion and apoptosis. In this review article, we have a look at the recent advances on our knowledge about the role of miRNAs in human brain development and functions, neurodegenerative diseases, and their clinical potentials.
Collapse
Affiliation(s)
- Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Saadatpour
- Molecular Virology Laboratory, Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Nayyereh Akbari
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Anahita Zoghi
- Brain Mapping Research Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Parisa Beyranvand
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Fahimeh Zamani-Rarani
- Department of Anatomical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Rashidi
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Bakhtiari
- Department of Anatomical Sciences, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| |
Collapse
|
17
|
Hsu YL, Chen HJ, Gao JX, Yang MY, Fu RH. Chiisanoside Mediates the Parkin/ZNF746/PGC-1α Axis by Downregulating MiR-181a to Improve Mitochondrial Biogenesis in 6-OHDA-Caused Neurotoxicity Models In Vitro and In Vivo: Suggestions for Prevention of Parkinson's Disease. Antioxidants (Basel) 2023; 12:1782. [PMID: 37760085 PMCID: PMC10525196 DOI: 10.3390/antiox12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
The degeneration of dopamine (DA) neurons is known to be associated with defects in mitochondrial biogenesis caused by aging, environmental factors, or mutations in genes, leading to Parkinson's disease (PD). As PD has not yet been successfully cured, the strategy of using small molecule drugs to protect and restore mitochondrial biogenesis is a promising direction. This study evaluated the efficacy of synthetic chiisanoside (CSS) identified in the leaves of Acanthopanax sessiliflorus to prevent PD symptoms. The results show that in the 6-hydroxydopamine (6-OHDA) model, CSS pretreatment can effectively alleviate the reactive oxygen species generation and apoptosis of SH-SY5Y cells, thereby lessening the defects in the C. elegans model including DA neuron degeneration, dopamine-mediated food sensitivity behavioral disorders, and shortened lifespan. Mechanistically, we found that CSS could restore the expression of proliferator-activated receptor gamma coactivator-1-alpha (PGC-1α), a key molecule in mitochondrial biogenesis, and its downstream related genes inhibited by 6-OHDA. We further confirmed that this is due to the enhanced activity of parkin leading to the ubiquitination and degradation of PGC-1α inhibitor protein Zinc finger protein 746 (ZNF746). Parkin siRNA treatment abolished this effect of CSS. Furthermore, we found that CSS inhibited 6-OHDA-induced expression of miR-181a, which targets parkin. The CSS's ability to reverse the 6-OHDA-induced reduction in mitochondrial biogenesis and activation of apoptosis was abolished after the transfection of anti-miR-181a and miR-181a mimics. Therefore, the neuroprotective effect of CSS mainly promotes mitochondrial biogenesis by regulating the miR-181a/Parkin/ZNF746/PGC-1α axis. CSS potentially has the opportunity to be developed into PD prevention agents.
Collapse
Affiliation(s)
- Yu-Ling Hsu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Department of Laboratory Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
| | - Hui-Jye Chen
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Jia-Xin Gao
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
| | - Ming-Yang Yang
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
| | - Ru-Huei Fu
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan; (Y.-L.H.); (H.-J.C.); (J.-X.G.)
- Ph.D. Program for Aging, China Medical University, Taichung 40402, Taiwan;
- Translational Medicine Research Center, China Medical University Hospital, Taichung 40447, Taiwan
| |
Collapse
|
18
|
Spanos F, Deleidi M. Glycolipids in Parkinson's disease: beyond neuronal function. FEBS Open Bio 2023; 13:1558-1579. [PMID: 37219461 PMCID: PMC10476577 DOI: 10.1002/2211-5463.13651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 05/10/2023] [Accepted: 05/22/2023] [Indexed: 05/24/2023] Open
Abstract
Glycolipid balance is key to normal body function, and its alteration can lead to a variety of diseases involving multiple organs and tissues. Glycolipid disturbances are also involved in Parkinson's disease (PD) pathogenesis and aging. Increasing evidence suggests that glycolipids affect cellular functions beyond the brain, including the peripheral immune system, intestinal barrier, and immunity. Hence, the interplay between aging, genetic predisposition, and environmental exposures could initiate systemic and local glycolipid changes that lead to inflammatory reactions and neuronal dysfunction. In this review, we discuss recent advances in the link between glycolipid metabolism and immune function and how these metabolic changes can exacerbate immunological contributions to neurodegenerative diseases, with a focus on PD. Further understanding of the cellular and molecular mechanisms that control glycolipid pathways and their impact on both peripheral tissues and the brain will help unravel how glycolipids shape immune and nervous system communication and the development of novel drugs to prevent PD and promote healthy aging.
Collapse
Affiliation(s)
- Fokion Spanos
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
| | - Michela Deleidi
- Institut Imagine, INSERM UMR1163Paris Cité UniversityFrance
- Aligning Science Across Parkinson's (ASAP) Collaborative Research NetworkChevy ChaseMDUSA
- Department of Neurodegenerative Diseases, Center of Neurology, Hertie Institute for Clinical Brain ResearchUniversity of TübingenGermany
| |
Collapse
|
19
|
Vallés AS, Barrantes FJ. Nicotinic Acetylcholine Receptor Dysfunction in Addiction and in Some Neurodegenerative and Neuropsychiatric Diseases. Cells 2023; 12:2051. [PMID: 37626860 PMCID: PMC10453526 DOI: 10.3390/cells12162051] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 07/20/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
The cholinergic system plays an essential role in brain development, physiology, and pathophysiology. Herein, we review how specific alterations in this system, through genetic mutations or abnormal receptor function, can lead to aberrant neural circuitry that triggers disease. The review focuses on the nicotinic acetylcholine receptor (nAChR) and its role in addiction and in neurodegenerative and neuropsychiatric diseases and epilepsy. Cholinergic dysfunction is associated with inflammatory processes mainly through the involvement of α7 nAChRs expressed in brain and in peripheral immune cells. Evidence suggests that these neuroinflammatory processes trigger and aggravate pathological states. We discuss the preclinical evidence demonstrating the therapeutic potential of nAChR ligands in Alzheimer disease, Parkinson disease, schizophrenia spectrum disorders, and in autosomal dominant sleep-related hypermotor epilepsy. PubMed and Google Scholar bibliographic databases were searched with the keywords indicated below.
Collapse
Affiliation(s)
- Ana Sofía Vallés
- Bahía Blanca Institute of Biochemical Research (UNS-CONICET), Bahía Blanca 8000, Argentina;
| | - Francisco J. Barrantes
- Biomedical Research Institute (BIOMED), Faculty of Medical Sciences, Pontifical Catholic University of Argentina—National Scientific and Technical Research Council, Av. Alicia Moreau de Justo 1600, Buenos Aires C1107AFF, Argentina
| |
Collapse
|
20
|
Yang R, Yang B, Liu W, Tan C, Chen H, Wang X. Emerging role of non-coding RNAs in neuroinflammation mediated by microglia and astrocytes. J Neuroinflammation 2023; 20:173. [PMID: 37481642 PMCID: PMC10363317 DOI: 10.1186/s12974-023-02856-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
Neuroinflammation has been implicated in the initiation and progression of several central nervous system (CNS) disorders, including Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, multiple sclerosis, ischemic stroke, traumatic brain injury, spinal cord injury, viral encephalitis, and bacterial encephalitis. Microglia and astrocytes are essential in neural development, maintenance of synaptic connections, and homeostasis in a healthy brain. The activation of astrocytes and microglia is a defense mechanism of the brain against damaged tissues and harmful pathogens. However, their activation triggers neuroinflammation, which can exacerbate or induce CNS injury. Non-coding RNAs (ncRNAs) are functional RNA molecules that lack coding capabilities but can actively regulate mRNA expression and function through various mechanisms. ncRNAs are highly expressed in astrocytes and microglia and are potential mediators of neuroinflammation. We reviewed the recent research progress on the role of miRNAs, lncRNAs, and circRNAs in regulating neuroinflammation in various CNS diseases. Understanding how these ncRNAs affect neuroinflammation will provide important therapeutic insights for preventing and managing CNS dysfunction.
Collapse
Affiliation(s)
- Ruicheng Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Bo Yang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Keqian Biological Co., Ltd., Wuhan, 430070, China
| | - Wei Liu
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Wuhan Academy of Agricultural Sciences, Wuhan, 430070, China
| | - Chen Tan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Huanchun Chen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China
| | - Xiangru Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, 430070, China.
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, 430070, China.
- Frontiers Science Center for Animal Breeding and Sustainable Production, Wuhan, 430070, China.
| |
Collapse
|
21
|
Chen K, Wang H, Ilyas I, Mahmood A, Hou L. Microglia and Astrocytes Dysfunction and Key Neuroinflammation-Based Biomarkers in Parkinson's Disease. Brain Sci 2023; 13:brainsci13040634. [PMID: 37190599 DOI: 10.3390/brainsci13040634] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/26/2023] [Accepted: 04/03/2023] [Indexed: 05/17/2023] Open
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disease, with symptoms such as tremor, bradykinesia with rigidity, and depression appearing in the late stage of life. The key hallmark of PD is the loss or death of dopaminergic neurons in the region substantia nigra pars compacta. Neuroinflammation plays a key role in the etiology of PD, and the contribution of immunity-related events spurred the researchers to identify anti-inflammatory agents for the treatment of PD. Neuroinflammation-based biomarkers have been identified for diagnosing PD, and many cellular and animal models have been used to explain the underlying mechanism; however, the specific cause of neuroinflammation remains uncertain, and more research is underway. So far, microglia and astrocyte dysregulation has been reported in PD. Patients with PD develop neural toxicity, inflammation, and inclusion bodies due to activated microglia and a-synuclein-induced astrocyte conversion into A1 astrocytes. Major phenotypes of PD appear in the late stage of life, so there is a need to identify key early-stage biomarkers for proper management and diagnosis. Studies are under way to identify key neuroinflammation-based biomarkers for early detection of PD. This review uses a constructive analysis approach by studying and analyzing different research studies focused on the role of neuroinflammation in PD. The review summarizes microglia, astrocyte dysfunction, neuroinflammation, and key biomarkers in PD. An approach that incorporates multiple biomarkers could provide more reliable diagnosis of PD.
Collapse
Affiliation(s)
- Kun Chen
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Haoyang Wang
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| | - Iqra Ilyas
- National Centre of Excellence in Molecular Biology (CEMB), University of The Punjab, Lahore 53700, Pakistan
| | - Arif Mahmood
- Center for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Lijun Hou
- Department of Neurosurgery, Changzheng Hospital, Naval Medical University, Shanghai 200003, China
| |
Collapse
|
22
|
Lee YZ, Cheng SH, Chang MY, Lin YF, Wu CC, Tsai YC. Neuroprotective Effects of Lactobacillus plantarum PS128 in a Mouse Model of Parkinson’s Disease: The Role of Gut Microbiota and MicroRNAs. Int J Mol Sci 2023; 24:ijms24076794. [PMID: 37047769 PMCID: PMC10095543 DOI: 10.3390/ijms24076794] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease characterized by motor deficits and marked neuroinflammation in various brain regions. The pathophysiology of PD is complex and mounting evidence has suggested an association with the dysregulation of microRNAs (miRNAs) and gut dysbiosis. Using a rotenone-induced PD mouse model, we observed that administration of Lactobacillus plantarum PS128 (PS128) significantly improved motor deficits in PD-like mice, accompanied by an increased level of dopamine, reduced dopaminergic neuron loss, reduced microglial activation, reduced levels of inflammatory factors, and enhanced expression of neurotrophic factor in the brain. Notably, the inflammation-related expression of miR-155-5p was significantly upregulated in the proximal colon, midbrain, and striatum of PD-like mice. PS128 reduced the level of miR-155-5p, whereas it increased the expression of suppressor of cytokine signaling 1 (SOCS1), a direct target of miR-155-5p and a critical inhibitor of the inflammatory response in the brain. Alteration of the fecal microbiota in PD-like mice was partially restored by PS128 administration. Among them, Bifidobacterium, Ruminiclostridium_6, Bacteroides, and Alistipes were statistically correlated with the improvement of rotenone-induced motor deficits and the expression of miR-155-5p and SOCS1. Our findings suggested that PS128 ameliorates motor deficits and exerts neuroprotective effects by regulating the gut microbiota and miR-155-5p/SOCS1 pathway in rotenone-induced PD-like mice.
Collapse
Affiliation(s)
- Yan Zhang Lee
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| | | | - Min-Yu Chang
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | - Yu-Fen Lin
- Bened Biomedical Co., Ltd., Taipei 10448, Taiwan
| | | | - Ying-Chieh Tsai
- Biomedical Industry Ph.D. Program, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
| |
Collapse
|
23
|
Rajan S, Tryphena KP, Khan S, Vora L, Srivastava S, Singh SB, Khatri DK. Understanding the involvement of innate immunity and the Nrf2-NLRP3 axis on mitochondrial health in Parkinson's disease. Ageing Res Rev 2023; 87:101915. [PMID: 36963313 DOI: 10.1016/j.arr.2023.101915] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 02/01/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Parkinson's disease (PD), a multifactorial movement disorder, is interlinked with numerous molecular pathways, including neuroinflammation, which is a critical factor in the development and progression of PD. Microglia play a central role in driving neuroinflammation through activation and overexpression of the M1 phenotype, which has a significant impact on mitochondria. Multiple regulators converge together, and among these, the NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasomes have been implicated in transmitting inflammatory and deleterious components to the mitochondria. Nuclear factor erythroid 2-related factor 2 (Nrf2) regulates the NLRP3 inflammasome and acts as the saviour of the mitochondria. Together, the NLRP3-Nrf2 axis functions in regulating mitochondrial function in the case of PD. It regulates fundamental processes such as oxidative stress, mitochondrial respiratory function, and mitochondrial dynamics. In this review, we discuss the contributions that a variety of miRNAs make to the regulation of the NLRP3 inflammasome and Nrf2, which can be used to target this important axis and contribute to the preservation of mitochondrial integrity. This axis may prove to be a crucial target for extending the lives of Parkinson's patients by deferring neuroinflammatory damage to mitochondria.
Collapse
Affiliation(s)
- Shruti Rajan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Kamatham Pushpa Tryphena
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Sabiya Khan
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Lalitkumar Vora
- School of Pharmacy, Queen's University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Saurabh Srivastava
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| | - Shashi Bala Singh
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Molecular and Cellular Neuroscience Lab, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER)-Hyderabad, Telangana 500037, India.
| |
Collapse
|
24
|
Yan X, Yang K, Xiao Q, Hou R, Pan X, Zhu X. Central role of microglia in sepsis-associated encephalopathy: From mechanism to therapy. Front Immunol 2022; 13:929316. [PMID: 35958583 PMCID: PMC9361477 DOI: 10.3389/fimmu.2022.929316] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/22/2022] [Indexed: 11/20/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is a cognitive impairment associated with sepsis that occurs in the absence of direct infection in the central nervous system or structural brain damage. Microglia are thought to be macrophages of the central nervous system, devouring bits of neuronal cells and dead cells in the brain. They are activated in various ways, and microglia-mediated neuroinflammation is characteristic of central nervous system diseases, including SAE. Here, we systematically described the pathogenesis of SAE and demonstrated that microglia are closely related to the occurrence and development of SAE. Furthermore, we comprehensively discussed the function and phenotype of microglia and summarized their activation mechanism and role in SAE pathogenesis. Finally, this review summarizes recent studies on treating cognitive impairment in SAE by blocking microglial activation and toxic factors produced after activation. We suggest that targeting microglial activation may be a putative treatment for SAE.
Collapse
Affiliation(s)
- Xiaoqian Yan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Kaiying Yang
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Qi Xiao
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Rongyao Hou
- Department of Neurology, The Affiliated Hiser Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xudong Pan
- Department of Neurology, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| | - Xiaoyan Zhu
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Rongyao Hou, ; Xudong Pan, ; Xiaoyan Zhu,
| |
Collapse
|
25
|
Dysregulated miRNAs as Biomarkers and Therapeutical Targets in Neurodegenerative Diseases. J Pers Med 2022; 12:jpm12050770. [PMID: 35629192 PMCID: PMC9143965 DOI: 10.3390/jpm12050770] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/06/2022] [Accepted: 05/07/2022] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD), Parkinson’s disease (PD), and Amyotrophic Lateral Sclerosis (ALS) are representative neurodegenerative diseases (NDs) characterized by degeneration of selective neurons, as well as the lack of effective biomarkers and therapeutic treatments. In the last decade, microRNAs (miRNAs) have gained considerable interest in diagnostics and therapy of NDs, owing to their aberrant expression and their ability to target multiple molecules and pathways. Here, we provide an overview of dysregulated miRNAs in fluids (blood or cerebrospinal fluid) and nervous tissue of AD, PD, and ALS patients. By emphasizing those that are commonly dysregulated in these NDs, we highlight their potential role as biomarkers or therapeutical targets and describe the use of antisense oligonucleotides as miRNA therapies.
Collapse
|
26
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|