1
|
Roth S, Ferrante T, Walt DR. Efficient discovery of antibody binding pairs using a photobleaching strategy for bead encoding. LAB ON A CHIP 2024; 24:4060-4072. [PMID: 39081159 DOI: 10.1039/d4lc00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Dye-encoded bead-based assays are widely used for diagnostics. Multiple bead populations are required for multiplexing and can be produced using different dye colors, labeling levels, or combinations of dye ratios. Ready-to-use multiplex bead populations restrict users to specific targets, are costly, or require specialized instrumentation. In-house methods produce few bead plexes or require many fine-tuning steps. To expand bead encoding strategies, we present a simple, safe, and cost-effective bench-top system for generating bead populations using photobleaching. By photobleaching commercially available dye-encoded magnetic beads for different durations, we produce three times as many differentiable bead populations on flow cytometry from a single dye color. Our photobleaching system uses a high-power LED module connected to a light concentrator and a heat sink. The beads are photobleached in solution homogeneously by constant mixing. We demonstrate this photobleaching method can be utilized for cross-testing antibodies, which is the first step in developing immunoassays. The assay uses multiple photobleached encoded beads conjugated with capture antibodies to test many binding pairs simultaneously. To further expand the number of antibodies that can be tested at once, several antibodies were conjugated to the same bead, forming a pooled assay. Our assay predicts the performance of antibody pairs used in ultrasensitive Simoa assays, narrowing the number of cross-tested pairs that need to be tested by at least two-thirds and, therefore, providing a rapid alternative for an initial antibody pair screening. The photobleaching system can be utilized for other applications, such as multiplexing, and for photobleaching other particles in solution.
Collapse
Affiliation(s)
- Shira Roth
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA
| | - Tom Ferrante
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - David R Walt
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
- Department of Pathology, Brigham and Women's Hospital, Boston, MA 02115, USA.
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
2
|
Roet JEG, Mikula AM, de Kok M, Chadick CH, Garcia Vallejo JJ, Roest HP, van der Laan LJW, de Winde CM, Mebius RE. Unbiased method for spectral analysis of cells with great diversity of autofluorescence spectra. Cytometry A 2024. [PMID: 38863410 DOI: 10.1002/cyto.a.24856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 03/12/2024] [Accepted: 05/29/2024] [Indexed: 06/13/2024]
Abstract
Autofluorescence is an intrinsic feature of cells, caused by the natural emission of light by photo-excitatory molecular content, which can complicate analysis of flow cytometry data. Different cell types have different autofluorescence spectra and, even within one cell type, heterogeneity of autofluorescence spectra can be present, for example, as a consequence of activation status or metabolic changes. By using full spectrum flow cytometry, the emission spectrum of a fluorochrome is captured by a set of photo detectors across a range of wavelengths, creating an unique signature for that fluorochrome. This signature is then used to identify, or unmix, that fluorochrome's unique spectrum from a multicolor sample containing different fluorescent molecules. Importantly, this means that this technology can also be used to identify intrinsic autofluorescence signal of an unstained sample, which can be used for unmixing purposes and to separate the autofluorescence signal from the fluorophore signals. However, this only works if the sample has a singular, relatively homogeneous and bright autofluorescence spectrum. To analyze samples with heterogeneous autofluorescence spectral profiles, we setup an unbiased workflow to more quickly identify differing autofluorescence spectra present in a sample to include as "autofluorescence signatures" during the unmixing of the full stained samples. First, clusters of cells with similar autofluorescence spectra are identified by unbiased dimensional reduction and clustering of unstained cells. Then, unique autofluorescence clusters are determined and are used to improve the unmixing accuracy of the full stained sample. Independent of the intensity of the autofluorescence and immunophenotyping of cell subsets, this unbiased method allows for the identification of most of the distinct autofluorescence spectra present in a sample, leading to less confounding autofluorescence spillover and spread into extrinsic phenotyping markers. Furthermore, this method is equally useful for spectral analysis of different biological samples, including tissue cell suspensions, peripheral blood mononuclear cells, and in vitro cultures of (primary) cells.
Collapse
Affiliation(s)
- Janna E G Roet
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Aleksandra M Mikula
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| | - Michael de Kok
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Microscopy and Cytometry Core Facility, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Cora H Chadick
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Microscopy and Cytometry Core Facility, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Juan J Garcia Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Microscopy and Cytometry Core Facility, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Henk P Roest
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Luc J W van der Laan
- Department of Surgery, Erasmus MC Transplant Institute, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Charlotte M de Winde
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Reina E Mebius
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Amsterdam Institute for Immunology and Infectious Diseases, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Zheng J, Wu YC, Phillips EH, Cai X, Wang X, Seung-Young Lee S. Increased Multiplexity in Optical Tissue Clearing-Based Three-Dimensional Immunofluorescence Microscopy of the Tumor Microenvironment by Light-Emitting Diode Photobleaching. J Transl Med 2024; 104:102072. [PMID: 38679160 PMCID: PMC11240282 DOI: 10.1016/j.labinv.2024.102072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/29/2024] [Accepted: 04/19/2024] [Indexed: 05/01/2024] Open
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy is transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only 3 or 4 cellular and noncellular TME components can be localized in cleared tumor tissue. Here we report a light-emitting diode (LED) photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through 3 work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
Affiliation(s)
- Jingtian Zheng
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Yi-Chien Wu
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Evan H Phillips
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xiaoying Cai
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Xu Wang
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois
| | - Steve Seung-Young Lee
- Department of Pharmaceutical Sciences, University of Illinois, Chicago, Chicago, Illinois; University of Illinois Cancer Center, University of Illinois Chicago, Chicago, Illinois.
| |
Collapse
|
4
|
Futagawa A, Tsuneoka Y, Lazarus M, Oishi Y. Comprehensive mapping of histamine H 1 receptor mRNA in the mouse brain. J Comp Neurol 2024; 532:e25622. [PMID: 38712635 DOI: 10.1002/cne.25622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/11/2024] [Accepted: 04/19/2024] [Indexed: 05/08/2024]
Abstract
Histamine H1 receptor (H1R) in the central nervous system plays an important role in various functions, including learning and memory, aggression, feeding behaviors, and wakefulness, as evidenced by studies utilizing H1R knockout mice and pharmacological interventions. Although previous studies have reported the widespread distribution of H1R in the brains of rats, guinea pigs, monkeys, and humans, the detailed distribution in the mouse brain remains unclear. This study provides a comprehensive description of the distribution of H1R mRNA in the mouse brain using two recently developed techniques: RNAscope and in situ hybridization chain reaction, both of which offer enhanced sensitivity and resolution compared to traditional methodologies such as radioisotope labeling, which were used in previous studies. The H1R mRNA expression was observed throughout the entire brain, including key regions implicated in sleep-wake regulatory functions, such as the pedunculopontine tegmental nucleus and dorsal raphe. Additionally, strong H1R mRNA signals were identified in the paraventricular hypothalamus and ventromedial hypothalamus, which may explain the potential mechanisms underlying histamine-mediated feeding regulation. Notably, we identified strong H1R mRNA expression in previously unreported cerebral regions, such as the dorsal endopiriform nucleus, bed nucleus of the accessory olfactory tract, and postsubiculum. These findings significantly contribute to our understanding of the multifaceted roles of H1R in diverse brain functions.
Collapse
Affiliation(s)
- Asako Futagawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yo Oishi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
5
|
Tagawa N, Mori K, Koebis M, Aiba A, Iino Y, Tsuneoka Y, Funato H. Activation of lateral preoptic neurons is associated with nest-building in male mice. Sci Rep 2024; 14:8346. [PMID: 38594484 PMCID: PMC11004109 DOI: 10.1038/s41598-024-59061-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 04/06/2024] [Indexed: 04/11/2024] Open
Abstract
Nest-building behavior is a widely observed innate behavior. A nest provides animals with a secure environment for parenting, sleep, feeding, reproduction, and temperature maintenance. Since animal infants spend their time in a nest, nest-building behavior has been generally studied as parental behaviors, and the medial preoptic area (MPOA) neurons are known to be involved in parental nest-building. However, nest-building of singly housed male mice has been less examined. Here we show that male mice spent longer time in nest-building at the early to middle dark phase and at the end of the dark phase. These two periods are followed by sleep-rich periods. When a nest was removed and fresh nest material was introduced, both male and female mice built nests at Zeitgeber time (ZT) 6, but not at ZT12. Using Fos-immunostaining combined with double in situ hybridization of Vgat and Vglut2, we found that Vgat- and Vglut2-positive cells of the lateral preoptic area (LPOA) were the only hypothalamic neuron population that exhibited a greater number of activated cells in response to fresh nest material at ZT6, compared to being naturally awake at ZT12. Fos-positive LPOA neurons were negative for estrogen receptor 1 (Esr1). Both Vgat-positive and Vglut2-positive neurons in both the LPOA and MPOA were activated at pup retrieval by male mice. Our findings suggest the possibility that GABAergic and glutamatergic neurons in the LPOA are associated with nest-building behavior in male mice.
Collapse
Affiliation(s)
- Natsuki Tagawa
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Keita Mori
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Michinori Koebis
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Atsu Aiba
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Laboratory of Animal Resources, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Yuichi Iino
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan.
| | - Hiromasa Funato
- Department of Anatomy, Graduate School of Medicine, Toho University, Tokyo, 143-8540, Japan.
- International Institute for Integrative Sleep Medicine (IIIS), University of Tsukuba, Tsukuba, Japan.
| |
Collapse
|
6
|
Tsuneoka Y, Funato H. Whole Brain Mapping of Orexin Receptor mRNA Expression Visualized by Branched In Situ Hybridization Chain Reaction. eNeuro 2024; 11:ENEURO.0474-23.2024. [PMID: 38199807 PMCID: PMC10883752 DOI: 10.1523/eneuro.0474-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 12/21/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024] Open
Abstract
Orexins, which are produced within neurons of the lateral hypothalamic area, play a pivotal role in the regulation of various behaviors, including sleep/wakefulness, reward behavior, and energy metabolism, via orexin receptor type 1 (OX1R) and type 2 (OX2R). Despite the advanced understanding of orexinergic regulation of behavior at the circuit level, the precise distribution of orexin receptors in the brain remains unknown. Here, we develop a new branched in situ hybridization chain reaction (bHCR) technique to visualize multiple target mRNAs in a semiquantitative manner, combined with immunohistochemistry, which provided comprehensive distribution of orexin receptor mRNA and neuron subtypes expressing orexin receptors in mouse brains. Only a limited number of cells expressing both Ox1r and Ox2r were observed in specific brain regions, such as the dorsal raphe nucleus and ventromedial hypothalamic nucleus. In many brain regions, Ox1r-expressing cells and Ox2r-expressing cells belong to different cell types, such as glutamatergic and GABAergic neurons. Moreover, our findings demonstrated considerable heterogeneity in Ox1r- or Ox2r-expressing populations of serotonergic, dopaminergic, noradrenergic, cholinergic, and histaminergic neurons. The majority of orexin neurons did not express orexin receptors. This study provides valuable insights into the mechanism underlying the physiological and behavioral regulation mediated by the orexin system, as well as the development of therapeutic agents targeting orexin receptors.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 145-854, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 145-854, Japan
- International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| |
Collapse
|
7
|
Zheng J, Wu YC, Phillips EH, Wang X, Lee SSY. Increased multiplexity in optical tissue clearing-based 3D immunofluorescence microscopy of the tumor microenvironment by LED photobleaching. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.29.569277. [PMID: 38076864 PMCID: PMC10705380 DOI: 10.1101/2023.11.29.569277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Optical tissue clearing and three-dimensional (3D) immunofluorescence (IF) microscopy have been transforming imaging of the complex tumor microenvironment (TME). However, current 3D IF microscopy has restricted multiplexity; only three or four cellular and non-cellular TME components can be localized in a cleared tumor tissue. Here we report a LED photobleaching method and its application for 3D multiplexed optical mapping of the TME. We built a high-power LED light irradiation device and temperature-controlled chamber for completely bleaching fluorescent signals throughout optically cleared tumor tissues without compromise of tissue and protein antigen integrity. With newly developed tissue mounting and selected region-tracking methods, we established a cyclic workflow involving IF staining, tissue clearing, 3D confocal microscopy, and LED photobleaching. By registering microscope channel images generated through three work cycles, we produced 8-plex image data from individual 400 μm-thick tumor macrosections that visualize various vascular, immune, and cancer cells in the same TME at tissue-wide and cellular levels in 3D. Our method was also validated for quantitative 3D spatial analysis of cellular remodeling in the TME after immunotherapy. These results demonstrate that our LED photobleaching system and its workflow offer a novel approach to increase the multiplexing power of 3D IF microscopy for studying tumor heterogeneity and response to therapy.
Collapse
|
8
|
Stillman JM, Mendes Lopes F, Lin JP, Hu K, Reich DS, Schafer DP. Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment. Nat Commun 2023; 14:7060. [PMID: 37923732 PMCID: PMC10624656 DOI: 10.1038/s41467-023-42809-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023] Open
Abstract
Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF) likely due to lipofuscin (lipo-AF) and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipo-AF signal accumulates first within microglia and it occurs earliest in white versus gray matter. Importantly, in gray matter, lipo-AF signal can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. We further show that there is an age-dependent accumulation of lipo-AF inside and outside of microglia, which is not affected by amyloid plaques. We finally implement a robust and cost-effective strategy to quench AF in mouse, marmoset, and human brain tissue.
Collapse
Affiliation(s)
- Jacob M Stillman
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
- University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| | - Francisco Mendes Lopes
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA
| | - Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kevin Hu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Daniel S Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Dorothy P Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
9
|
Tsuneoka Y, Nishikawa T, Furube E, Okamoto K, Yoshimura R, Funato H, Miyata S. Characterization of TRPM8-expressing neurons in the adult mouse hypothalamus. Neurosci Lett 2023; 814:137463. [PMID: 37640249 DOI: 10.1016/j.neulet.2023.137463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/12/2023] [Accepted: 08/22/2023] [Indexed: 08/31/2023]
Abstract
Transient receptor potential melastatin 8 (TRPM8) is a menthol receptor that detects cold temperatures and influences behaviors and autonomic functions under cold stimuli. Despite the well-documented peripheral roles of TRPM8, the evaluation of its central functions is still of great interest. The present study clarifies the nature of a subpopulation of TRPM8-expressing neurons in the adult mice. Combined in situ hybridization and immunohistochemistry revealed that TRPM8-expressing neurons are exclusively positive for glutamate decarboxylase 67 mRNA signals in the lateral septal nucleus (LS) and preoptic area (POA) but produced no positive signal for vesicular glutamate transporter 2. Double labeling immunohistochemistry showed the colocalization of TRPM8 with vesicular GABA transporter at axonal terminals. Immunohistochemistry further revealed that TRPM8-expressing neurons frequently expressed calbindin and calretinin in the LS, but not in the POA. TRPM8-expressing neurons in the POA expressed a prostaglandin E2 receptor, EP3, and neurotensin, whereas expression in the LS was minimal. These results indicate that hypothalamic TRPM8-expressing neurons are inhibitory GABAergic, while the expression profile of calcium-binding proteins, neurotensin, and EP3 differs between the POA and LS.
Collapse
Affiliation(s)
- Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan
| | - Taichi Nishikawa
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Eriko Furube
- Department of Anatomy, Asahikawa Medical University School of Medicine, Midorigaoka, Asahikawa, Hokkaido 078-8510, Japan
| | - Kaho Okamoto
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Ryoichi Yoshimura
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan
| | - Hiromasa Funato
- Department of Anatomy, Faculty of Medicine, Toho University, Tokyo 143-8540, Japan; International Institutes for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Ibaraki 305-8575, Japan
| | - Seiji Miyata
- Department of Applied Biology, Kyoto Institute of Technology, Matsugasaki, Sakyo-ku, Kyoto 606-8585, Japan.
| |
Collapse
|
10
|
Wong MKS, Tsuneoka Y, Tsukada T. Subcellular localization of Na +/K +-ATPase isoforms resolved by in situ hybridization chain reaction in the gill of chum salmon at freshwater and seawater. FISH PHYSIOLOGY AND BIOCHEMISTRY 2023; 49:751-767. [PMID: 37464181 PMCID: PMC10415477 DOI: 10.1007/s10695-023-01212-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 06/22/2023] [Indexed: 07/20/2023]
Abstract
The Na+/K+-ATPase (NKA) α1-isoforms were examined by in situ hybridization chain reaction (ISHCR) using short hairpin DNAs, and we showed triple staining of NKA α1a, α1b, and α1c transcripts in the gill of chum salmon acclimated to freshwater (FW) and seawater (SW). The NKA α1-isoforms have closely resembled nucleotide sequences, which could not be differentiated by conventional in situ hybridization. The ISHCR uses a split probe strategy to allow specific hybridization using regular oligo DNA, resulting in high specificity at low cost. The results showed that NKA α1c was expressed ubiquitously in gill tissue and no salinity effects were observed. FW lamellar ionocytes (type-I ionocytes) expressed cytoplasmic NKA α1a and nuclear NKA α1b transcripts. However, both transcripts of NKA α1a and α1b were present in the cytoplasm of immature type-I ionocytes. The developing type-I ionocytes increased the cytoplasmic volume and migrated to the distal region of the lamellae. SW filament ionocytes (type-II ionocytes) expressed cytoplasmic NKA α1b transcripts as the major isoform. Results from morphometric analysis and nonmetric multidimensional scaling indicated that a large portion of FW ionocytes was NKA α1b-rich, suggesting that isoform identity alone cannot mark the ionocyte types. Both immature or residual type-II ionocytes and type-I ionocytes were found on the FW and SW gills, suggesting that the chum salmon retains the potential to switch the ionocyte population to fit the ion-transporting demands, which contributes to their salinity tolerance and osmoregulatory plasticity.
Collapse
Affiliation(s)
- Marty Kwok Shing Wong
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510 Japan
- Center for Earth Surface System Dynamics, Atmosphere and Ocean Research Institute, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8564 Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, Faculty of Medicine, Toho University, 5-21-16 Omori-nishi, Ota, Tokyo, 143-8540 Japan
| | - Takehiro Tsukada
- Department of Biomolecular Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510 Japan
| |
Collapse
|
11
|
Stillman JM, Lopes FM, Lin JP, Hu K, Reich DS, Schafer DP. Lipofuscin-like autofluorescence within microglia and its impact on studying microglial engulfment. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530224. [PMID: 36909485 PMCID: PMC10002639 DOI: 10.1101/2023.02.28.530224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Engulfment of cellular material and proteins is a key function for microglia, a resident macrophage of the central nervous system (CNS). Among the techniques used to measure microglial engulfment, confocal light microscopy has been used the most extensively. Here, we show that autofluorescence (AF), likely due to lipofuscin and typically associated with aging, can also be detected within microglial lysosomes in the young mouse brain by light microscopy. This lipofuscin-AF signal accumulates first within microglia and increases with age, but it is not exacerbated by amyloid beta-related neurodegeneration. We further show that this lipofuscin-AF signal within microglia can confound the interpretation of antibody-labeled synaptic material within microglia in young adult mice. Finally, we implement a robust strategy to quench AF in mouse, marmoset, and human brain tissue.
Collapse
Affiliation(s)
- Jacob M. Stillman
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Neurobiology, Brudnik Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA; University of Massachusetts Chan Morningside Graduate School of Biomedical Sciences, Neuroscience Program, Worcester, MA, USA
| | - Francisco M. Lopes
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jing-Ping Lin
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Kevin Hu
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Daniel S. Reich
- Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Dorothy P. Schafer
- Department of Neurobiology, Brudnick Neuropsychiatric Research Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|