1
|
Levichkina E, Pigareva ML, Limanskaya A, Pigarev IN. Somatovisceral Convergence in Sleep-Wake Cycle: Transmitting Different Types of Information via the Same Pathway. FRONTIERS IN NETWORK PHYSIOLOGY 2022; 2:840565. [PMID: 36926092 PMCID: PMC10013007 DOI: 10.3389/fnetp.2022.840565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022]
Abstract
Convergence of somatic and visceral inputs occurs at the levels of nervous system ranging from spinal cord to cerebral cortex. This anatomical organization gave explanation to a referred pain phenomenon. However, it also presents a problem: How does the brain know what information is coming for processing-somatic or visceral - if both are transferred by the same spinal cord fibers by means of the standard neuronal spikes? Recent studies provided evidence for cortical processing of interoceptive information largely occurring in sleep, when somatosensation is suppressed, and for the corresponding functional brain networks rearrangement. We suggest that convergent units of the spinal cord would be able to collectively provide mainly somatosensory information in wakefulness and mainly visceral in sleep, solving the puzzle of somatovisceral convergence. We recorded spiking activity from the spinal cord lemniscus pathway during multiple sleep-wake cycles in freely behaving rabbits. In wakefulness high increased spiking corresponded to movements. When animals stopped moving this activity ceased, the fibers remained silent during passive wakefulness. However, upon transition to sleep fibers began firing again. Analysis of spiking patterns of individual fibers revealed that in the majority of them spiking rates recovered in slow wave sleep. Thus, despite cessation of motion and a corresponding decrease of somatic component of the convergent signal, considerable ascending signaling occurs during sleep, that is likely to be visceral. We also recorded evoked responses of the lemniscus pathway to innocuous electrostimulation of the abdominal viscera, and uncovered the existence of two groups of responses depending upon the state of vigilance. Response from an individual fiber could be detected either during wakefulness or in sleep, but not in both states. Wakefulness-responsive group had lower spiking rates in wakefulness and almost stopped spiking in sleep. Sleep-responsive retained substantial spiking during sleep. These groups also differed in spike amplitudes, indicative of fiber diameter differences; however, both had somatic responses during wakefulness. We suggest a mechanism that utilizes differences in somatic and visceral activities to extract both types of information by varying transmission thresholds, and discuss the implications of this mechanism on functional networks under normal and pathological conditions.
Collapse
Affiliation(s)
- Ekaterina Levichkina
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Marina L. Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Alexandra Limanskaya
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Ivan N. Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
2
|
Taillard J, Gronfier C, Bioulac S, Philip P, Sagaspe P. Sleep in Normal Aging, Homeostatic and Circadian Regulation and Vulnerability to Sleep Deprivation. Brain Sci 2021; 11:1003. [PMID: 34439622 PMCID: PMC8392749 DOI: 10.3390/brainsci11081003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 12/30/2022] Open
Abstract
In the context of geriatric research, a growing body of evidence links normal age-related changes in sleep with many adverse health outcomes, especially a decline in cognition in older adults. The most important sleep alterations that continue to worsen after 60 years involve sleep timing, (especially early wake time, phase advance), sleep maintenance (continuity of sleep interrupted by numerous awakenings) and reduced amount of sigma activity (during non-rapid eye movement (NREM) sleep) associated with modifications of sleep spindle characteristics (density, amplitude, frequency) and spindle-Slow Wave coupling. After 60 years, there is a very clear gender-dependent deterioration in sleep. Even if there are degradations of sleep after 60 years, daytime wake level and especially daytime sleepiness is not modified with age. On the other hand, under sleep deprivation condition, older adults show smaller cognitive impairments than younger adults, suggesting an age-related lower vulnerability to extended wakefulness. These sleep and cognitive age-related modifications would be due to a reduced homeostatic drive and consequently a reduced sleep need, an attenuation of circadian drive (reduction of sleep forbidden zone in late afternoon and wake forbidden zone in early morning), a modification of the interaction of the circadian and homeostatic processes and/or an alteration of subcortical structures involved in generation of circadian and homeostatic drive, or connections to the cerebral cortex with age. The modifications and interactions of these two processes with age are still uncertain, and still require further investigation. The understanding of the respective contribution of circadian and homeostatic processes in the regulation of neurobehavioral function with aging present a challenge for improving health, management of cognitive decline and potential early chronobiological or sleep-wake interventions.
Collapse
Affiliation(s)
- Jacques Taillard
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
| | - Claude Gronfier
- Lyon Neuroscience Research Center (CRNL), Integrative Physiology of the Brain Arousal Systems (Waking) Team, Inserm UMRS 1028, CNRS UMR 5292, Université Claude Bernard Lyon 1, Université de Lyon, F-69000 Lyon, France;
| | - Stéphanie Bioulac
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Pierre Philip
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| | - Patricia Sagaspe
- Sommeil, Addiction et Neuropsychiatrie, Université de Bordeaux, SANPSY, USR 3413, F-33000 Bordeaux, France; (S.B.); (P.P.); (P.S.)
- CNRS, SANPSY, USR 3413, F-33000 Bordeaux, France
- Pôle Neurosciences Cliniques, CHU de Bordeaux, F-33076 Bordeaux, France
| |
Collapse
|
3
|
Levichkina EV, Busygina II, Pigareva ML, Pigarev IN. The Mysterious Island: Insula and Its Dual Function in Sleep and Wakefulness. Front Syst Neurosci 2021; 14:592660. [PMID: 33643002 PMCID: PMC7904873 DOI: 10.3389/fnsys.2020.592660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/18/2020] [Indexed: 12/30/2022] Open
Abstract
In the recent sleep studies, it was shown that afferentation of many cortical areas switches during sleep to the interoceptive one. However, it was unclear whether the insular cortex, which is often considered as the main cortical visceral representation, maintains the same effective connectivity in both states of vigilance, or processes interoceptive information predominantly in one state. We investigated neuronal responses of the cat insular cortex to electrical stimulations of the intestinal wall delivered during wakefulness and natural sleep. Marked increase was observed in the number of insular neurons responding to this stimulation in sleep comparing to wakefulness, and enlarged amplitudes of evoked local field potentials were found as well. Moreover, most of the cells responding to intestinal stimulation in wakefulness never responded to identical stimuli during sleep and vice versa. It was also shown that applied low intensity intestinal stimulations had never compromised sleep quality. In addition, experiments with microstimulation of the insular cortex and recording of intestinal myoelectric activity demonstrated that effective insula-to-gut propagation also happened only during sleep. On the other hand, the same insular stimulations in wakefulness led to contractions of orofacial muscles. The evoked face movements gradually disappeared in the course of sleep development. These findings demonstrate that pattern of efficient afferent and efferent connections of the insular cortex changes with transition from wakefulness to sleep.
Collapse
Affiliation(s)
- Ekaterina V. Levichkina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Irina I. Busygina
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Marina L. Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ivan N. Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
4
|
Limanskaya AV, Busygina II, Levichkina EV, Pigarev IN. Complex Visceral Coupling During Central Sleep Apnea in Cats. Front Neurosci 2020; 14:568. [PMID: 32625050 PMCID: PMC7311805 DOI: 10.3389/fnins.2020.00568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 05/08/2020] [Indexed: 11/13/2022] Open
Abstract
Central sleep apnea is a sudden arrest of breathing during sleep caused by the central commands to the thoracoabdominal muscles. It is a widespread phenomenon in both healthy and diseased people, as well as in some animals. However, there is an ongoing debate whether it can be considered as a pathological deviation of the respiratory function or an adaptive mechanism of an unclear function. We performed chronic recordings from six behaving cats over multiple sleep/wake cycles, which included electroencephalogram, ECG, eye movements, air flow, and thoracic respiratory muscle movements, and in four cats combined that with the registration of myoelectric activity of the stomach and the duodenum. In these experiments, we observed frequent central cessations of breathing (for 5-13 s) during sleep. Each of the sleep apnea episodes was accompanied by a stereotypical complex of somatic and visceral effects. The heart rate increased 3-5 s before the respiration arrest and strongly decreased during the absence of respiration. The myoelectric activity of the stomach and the duodenum also often demonstrated a strong suppression during the apnea episodes. The general composition of the visceral effects was stable during all periods of observation (up to 3 years in one cat). We hypothesize that the stereotypic coupling of activities in various visceral systems during episodes of central sleep apnea most likely reflects a complex adaptive behavior rather than an isolated respiratory pathology and discuss the probable function of this phenomenon.
Collapse
Affiliation(s)
- Alexandra V. Limanskaya
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- Department of Higher Nervous Activity, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Irina I. Busygina
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Ekaterina V. Levichkina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
- Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Ivan N. Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
5
|
Pigarev IN, Pigareva ML, Levichkina EV. Probable Mechanism of Antiepileptic Effect of the Vagus Nerve Stimulation in the Context of the Recent Results in Sleep Research. Front Neurosci 2020; 14:160. [PMID: 32180701 PMCID: PMC7059639 DOI: 10.3389/fnins.2020.00160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 02/11/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ivan N Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Marina L Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ekaterina V Levichkina
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia.,Department of Optometry and Vision Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
6
|
Pigarev I, Pigareva M. The history of observations and some methodological features of the studies on local sleep. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:91-97. [DOI: 10.17116/jnevro202012009291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Alteration of coupling between brain and heart induced by sedation with propofol and midazolam. PLoS One 2019; 14:e0219238. [PMID: 31314775 PMCID: PMC6636731 DOI: 10.1371/journal.pone.0219238] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 06/20/2019] [Indexed: 11/19/2022] Open
Abstract
For a comprehensive understanding of the nervous system, several previous studies have examined the network connections between the brain and the heart in diverse conditions. In this study, we identified coupling between the brain and the heart along the continuum of sedation levels, but not in discrete sedation levels (e. g., wakefulness, conscious sedation, and deep sedation). To identify coupling between the brain and the heart during sedation, we induced several depths of sedation using patient-controlled sedation with propofol and midazolam. We performed electroencephalogram (EEG) spectral analysis and extracted the instantaneous heart rate (HR) from the electrocardiogram (ECG). EEG spectral power dynamics and mean HR were compared along the continuum of sedation levels. We found that EEG sigma power was the parameter most sensitive to changes in the sedation level and was correlated with the mean HR under the effect of sedative agents. Moreover, we calculated the Granger causality (GC) value to quantify brain-heart coupling at each sedation level. Additionally, the GC analysis revealed noticeably different strengths and directions of causality among different sedation levels. In all the sedation levels, GC values from the brain to the heart (GCb→h) were higher than GC values from the heart to the brain (GCh→b). Moreover, the mean GCb→h increased as the sedation became deeper, resulting in higher GCb→h values in deep sedation (1.97 ± 0.18 in propofol, 2.02 ± 0.15 in midazolam) than in pre-sedation (1.71 ± 0.13 in propofol, 1.75 ± 0.11 in midazolam; p < 0.001). These results show that coupling between brain and heart activities becomes stronger as sedation becomes deeper, and that this coupling is more attributable to the brain-heart direction than to the heart-brain direction. These findings provide a better understanding of the relationship between the brain and the heart under specific conditions, namely, different sedation states.
Collapse
|
8
|
Pigarev IN, Pigareva ML. Historical view on the attempts to understand the function of sleep in the school of Ivan Pavlov and his Russian forerunners and followers. CLINICAL AND TRANSLATIONAL NEUROSCIENCE 2019. [DOI: 10.1177/2514183x19834764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We reviewed the ideas of Ivan Pavlov and his Russian forerunners (Ivan Tarkhanov and Maria Manaseina) and followers (Nikolai Rozjanskiy and Konstantin Bykov) on the functional role of sleep. This analysis led to the conclusion that the state of sleep is connected with functional operations that have not been considered in the past and are also not being investigated in present neuroscience. Thus, a real understanding of the function of sleep may only come with a new neurophysiological paradigm.
Collapse
Affiliation(s)
- Ivan N Pigarev
- Institute for Information Transmission Problems, Kharkevich Institute, Russian Academy of Sciences, Moscow, Russia
| | - Marina L Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
9
|
Pigarev IN, Pigareva ML, Levichkina EV. On the mechanism of therapeutic effects of electrostimulation. Interpretations and predictions based on the results of sleep studies. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:15-21. [DOI: 10.17116/jnevro201911904215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Morchiladze MM, Silagadze TK, Silagadze ZK. Visceral theory of sleep and origins of mental disorders. Med Hypotheses 2018; 120:22-27. [PMID: 30220335 DOI: 10.1016/j.mehy.2018.07.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/12/2018] [Accepted: 07/25/2018] [Indexed: 10/28/2022]
Abstract
Visceral theory of sleep states that the same brain neurons, which process external information in wakefulness, during sleep switch to the processing of internal information coming from various visceral systems. Here we hypothesize that a failure in the commutation of exteroceptive and interoceptive information flows in the brain can manifest itself as a mental illness.
Collapse
Affiliation(s)
| | | | - Zurab K Silagadze
- Novosibirsk State University and Budker Institute of Nuclear Physics, 630 090 Novosibirsk, Russia.
| |
Collapse
|
11
|
Pigarev IN, Pigareva ML. Association of sleep impairments and gastrointestinal disorders in the context of the visceral theory of sleep. J Integr Neurosci 2018; 16:143-156. [PMID: 28891506 DOI: 10.3233/jin-170005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
It was noticed long ago that sleep disorders or interruptions to the normal sleep pattern were associated with various gastrointestinal disorders. We review the studies which established the causal link between these disorders and sleep impairment. However, the mechanism of interactions between the quality of sleep and gastrointestinal pathophysiology remained unclear. Recently, the visceral theory of sleep was formulated. This theory proposes that the same brain structures, and particularly the same cortical sensory areas, which in wakefulness are involved in processing of the exteroceptive information, switch during sleep to the processing of information coming from various visceral systems. We review the studies which demonstrated that neurons of the various cortical areas (occipital, parietal, frontal) during sleep began to fire in response to activation coming from the stomach and small intestine. These data demonstrate that, during sleep, the computational power of the central nervous system, including all cortical areas, is engaged in restoration of visceral systems. Thus, the general mechanism of the interaction between quality of sleep and health became clear.
Collapse
Affiliation(s)
- Ivan N Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Bol'shoy Karetniy st. 19, Moscow, 127994, Russia. E-mail:
| | - Marina L Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerova st. 5-a, Moscow, 117485, Russia. E-mail:
| |
Collapse
|
12
|
Pigarev IN, Pigareva ML. Therapeutic Effects of Electrical Stimulation: Interpretations and Predictions Based on the Visceral Theory of Sleep. Front Neurosci 2018; 12:65. [PMID: 29483861 PMCID: PMC5816067 DOI: 10.3389/fnins.2018.00065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 01/26/2018] [Indexed: 11/21/2022] Open
Affiliation(s)
- Ivan N. Pigarev
- Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of Sciences, Moscow, Russia
| | - Marina L. Pigareva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
13
|
Pigarev IN, Pigareva ML. [Long and difficult way towards the understanding of sleep function. Period before the age of electrophysiology]. Zh Nevrol Psikhiatr Im S S Korsakova 2017; 117:91-97. [PMID: 28777371 DOI: 10.17116/jnevro20171174291-97] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
It was proposed that historical analysis of ideas concerning the function of sleep will help to evaluate the tendencies in this field of science and will show the probable direction for further approach to understanding of this problem. We reviewed ideas of Ivan Pavlov and his Russian forerunners (Ivan Tarkhanoff and Maria Manaceine) and followers (Nikolay Rozjanskiy and Konstantin Bykov) on the functional role of sleep. This analysis led to the conclusion that state of sleep have been connected with realization of such functional operations, which have not been considered in the past and are not under consideration in the present neuroscience. Thus, one can expect that real understanding of sleep function will come only with new neurophysiologic paradigm.
Collapse
Affiliation(s)
- I N Pigarev
- Institute for Information Transmission Problems of Russian Academy of Sciences, Moscow, Russia
| | - M L Pigareva
- Institute of Higher Nervous Activity and Neurophysiology of Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
14
|
Pigarev IN, Pigareva ML. The state of sleep and the current brain paradigm. Front Syst Neurosci 2015; 9:139. [PMID: 26528146 PMCID: PMC4602122 DOI: 10.3389/fnsys.2015.00139] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 09/22/2015] [Indexed: 01/27/2023] Open
Abstract
Up to the present time cerebral cortex was considered as substrate for realization of the highest psychical functions including consciousness. Cortical sensory areas were regarded as structures specialized for processing of information coming from one particular modality (visual, auditory, somatosensory, and so on). However, studies of cortical activity in sleep-wake cycle demonstrated that during sleep the same neurons in the same cortical areas switch to processing of signals coming from the various visceral systems. After awakening these visceral responses disappear and the neurons return to processing of the information coming from the exteroreceptors. These observations indicate that most likely cortical areas are universal processors, which perform particular operations with incoming information independent of its origin. During wakefulness, results of the information processing on the cortical level should be directed to structures connected with organization of behavior and consciousness, while during sleep cortical outputs should be redirected to structures performing integration of the visceral information. Thus, results of sleep studies indicate that current brain paradigm should be changed.
Collapse
Affiliation(s)
- Ivan N. Pigarev
- Laboratory of Sensory Information Processing, Institute for Information Transmission Problems (Kharkevich Institute), Russian Academy of SciencesMoscow, Russia
| | - Marina L. Pigareva
- Laboratory of Neuroontogenesis, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of SciencesMoscow, Russia
| |
Collapse
|
15
|
Giuditta A. Sleep memory processing: the sequential hypothesis. Front Syst Neurosci 2014; 8:219. [PMID: 25565985 PMCID: PMC4267175 DOI: 10.3389/fnsys.2014.00219] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 10/19/2014] [Indexed: 11/13/2022] Open
Abstract
According to the sequential hypothesis (SH) memories acquired during wakefulness are processed during sleep in two serial steps respectively occurring during slow wave sleep (SWS) and rapid eye movement (REM) sleep. During SWS memories to be retained are distinguished from irrelevant or competing traces that undergo downgrading or elimination. Processed memories are stored again during REM sleep which integrates them with preexisting memories. The hypothesis received support from a wealth of EEG, behavioral, and biochemical analyses of trained rats. Further evidence was provided by independent studies of human subjects. SH basic premises, data, and interpretations have been compared with corresponding viewpoints of the synaptic homeostatic hypothesis (SHY). Their similarities and differences are presented and discussed within the framework of sleep processing operations. SHY's emphasis on synaptic renormalization during SWS is acknowledged to underline a key sleep effect, but this cannot marginalize sleep's main role in selecting memories to be retained from downgrading traces, and in their integration with preexisting memories. In addition, SHY's synaptic renormalization raises an unsolved dilemma that clashes with the accepted memory storage mechanism exclusively based on modifications of synaptic strength. This difficulty may be bypassed by the assumption that SWS-processed memories are stored again by REM sleep in brain subnuclear quantum particles. Storing of memories in quantum particles may also occur in other vigilance states. Hints are provided on ways to subject the quantum hypothesis to experimental tests.
Collapse
|