1
|
Calin-Jageman RJ, Gonzalez Delgadillo B, Gamino E, Juarez Z, Kurkowski A, Musajeva N, Valdez L, Wittrock D, Wilsterman T, Zarate Torres J, Calin-Jageman IE. Evidence of Active-Forgetting Mechanisms? Blocking Arachidonic Acid Release May Slow Forgetting of Sensitization in Aplysia. eNeuro 2024; 11:ENEURO.0516-23.2024. [PMID: 38538086 PMCID: PMC10999730 DOI: 10.1523/eneuro.0516-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 02/02/2024] [Indexed: 04/07/2024] Open
Abstract
Long-term sensitization in Aplysia is accompanied by a persistent up-regulation of mRNA encoding the peptide neurotransmitter Phe-Met-Arg-Phe-amide (FMRFa), a neuromodulator that opposes the expression of sensitization through activation of the arachidonic acid second-messenger pathway. We completed a preregistered test of the hypothesis that FMRFa plays a critical role in the forgetting of sensitization. Aplysia received long-term sensitization training and were then given whole-body injections of vehicle (N = 27), FMRFa (N = 26), or 4-bromophenacylbromide (4-BPB; N = 31), a phospholipase inhibitor that prevents the release of arachidonic acid. FMRFa produced no changes in forgetting. 4-BPB decreased forgetting measured 6 d after training [d s = 0.55 95% CI(0.01, 1.09)], though the estimated effect size is uncertain. Our results provide preliminary evidence that forgetting of sensitization may be a regulated, active process in Aplysia, but could also indicate a role for arachidonic acid in stabilizing the induction of sensitization.
Collapse
Affiliation(s)
| | | | - Elise Gamino
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Zayra Juarez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Anna Kurkowski
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Nelly Musajeva
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Leslie Valdez
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Diana Wittrock
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | - Theresa Wilsterman
- Neuroscience Program, Dominican University, River Forest, Illinois 60305
| | | | | |
Collapse
|
2
|
Kleven H, Gillespie TH, Zehl L, Dickscheid T, Bjaalie JG, Martone ME, Leergaard TB. AtOM, an ontology model to standardize use of brain atlases in tools, workflows, and data infrastructures. Sci Data 2023; 10:486. [PMID: 37495585 PMCID: PMC10372146 DOI: 10.1038/s41597-023-02389-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 07/14/2023] [Indexed: 07/28/2023] Open
Abstract
Brain atlases are important reference resources for accurate anatomical description of neuroscience data. Open access, three-dimensional atlases serve as spatial frameworks for integrating experimental data and defining regions-of-interest in analytic workflows. However, naming conventions, parcellation criteria, area definitions, and underlying mapping methodologies differ considerably between atlases and across atlas versions. This lack of standardized description impedes use of atlases in analytic tools and registration of data to different atlases. To establish a machine-readable standard for representing brain atlases, we identified four fundamental atlas elements, defined their relations, and created an ontology model. Here we present our Atlas Ontology Model (AtOM) and exemplify its use by applying it to mouse, rat, and human brain atlases. We discuss how AtOM can facilitate atlas interoperability and data integration, thereby increasing compliance with the FAIR guiding principles. AtOM provides a standardized framework for communication and use of brain atlases to create, use, and refer to specific atlas elements and versions. We argue that AtOM will accelerate analysis, sharing, and reuse of neuroscience data.
Collapse
Affiliation(s)
- Heidi Kleven
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | | | - Lyuba Zehl
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
| | - Timo Dickscheid
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, Jülich, Germany
- Institute of Computer Science, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Jan G Bjaalie
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maryann E Martone
- Department of Neurosciences, University of California, San Diego, USA
| | - Trygve B Leergaard
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway.
| |
Collapse
|
3
|
Tapia GP, Agostinelli LJ, Chenausky SD, Padilla JVS, Navarro VI, Alagh A, Si G, Thompson RH, Balivada S, Khan AM. Glycemic Challenge Is Associated with the Rapid Cellular Activation of the Locus Ceruleus and Nucleus of Solitary Tract: Circumscribed Spatial Analysis of Phosphorylated MAP Kinase Immunoreactivity. J Clin Med 2023; 12:2483. [PMID: 37048567 PMCID: PMC10095283 DOI: 10.3390/jcm12072483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/24/2023] [Accepted: 03/02/2023] [Indexed: 03/31/2023] Open
Abstract
Rodent studies indicate that impaired glucose utilization or hypoglycemia is associated with the cellular activation of neurons in the medulla (Winslow, 1733) (MY), believed to control feeding behavior and glucose counterregulation. However, such activation has been tracked primarily within hours of the challenge, rather than sooner, and has been poorly mapped within standardized brain atlases. Here, we report that, within 15 min of receiving 2-deoxy-d-glucose (2-DG; 250 mg/kg, i.v.), which can trigger glucoprivic feeding behavior, marked elevations were observed in the numbers of rhombic brain (His, 1893) (RB) neuronal cell profiles immunoreactive for the cellular activation marker(s), phosphorylated p44/42 MAP kinases (phospho-ERK1/2), and that some of these profiles were also catecholaminergic. We mapped their distributions within an open-access rat brain atlas and found that 2-DG-treated rats (compared to their saline-treated controls) displayed greater numbers of phospho-ERK1/2+ neurons in the locus ceruleus (Wenzel and Wenzel, 1812) (LC) and the nucleus of solitary tract (>1840) (NTS). Thus, the 2-DG-activation of certain RB neurons is more rapid than perhaps previously realized, engaging neurons that serve multiple functional systems and which are of varying cellular phenotypes. Mapping these populations within standardized brain atlas maps streamlines their targeting and/or comparable mapping in preclinical rodent models of disease.
Collapse
Affiliation(s)
- Geronimo P. Tapia
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Lindsay J. Agostinelli
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Sarah D. Chenausky
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jessica V. Salcido Padilla
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- M.S. Program in Biology, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Vanessa I. Navarro
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Ph.D. Program in Bioscience, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Amy Alagh
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Gabriel Si
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | - Richard H. Thompson
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- School of Information, The University of Texas at Austin, Austin, TX 78701, USA
| | - Sivasai Balivada
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Arshad M. Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences, The University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Border Biomedical Research Center, The University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
4
|
Kleven H, Reiten I, Blixhavn CH, Schlegel U, Øvsthus M, Papp EA, Puchades MA, Bjaalie JG, Leergaard TB, Bjerke IE. A neuroscientist's guide to using murine brain atlases for efficient analysis and transparent reporting. Front Neuroinform 2023; 17:1154080. [PMID: 36970659 PMCID: PMC10033636 DOI: 10.3389/fninf.2023.1154080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 02/21/2023] [Indexed: 03/12/2023] Open
Abstract
Brain atlases are widely used in neuroscience as resources for conducting experimental studies, and for integrating, analyzing, and reporting data from animal models. A variety of atlases are available, and it may be challenging to find the optimal atlas for a given purpose and to perform efficient atlas-based data analyses. Comparing findings reported using different atlases is also not trivial, and represents a barrier to reproducible science. With this perspective article, we provide a guide to how mouse and rat brain atlases can be used for analyzing and reporting data in accordance with the FAIR principles that advocate for data to be findable, accessible, interoperable, and re-usable. We first introduce how atlases can be interpreted and used for navigating to brain locations, before discussing how they can be used for different analytic purposes, including spatial registration and data visualization. We provide guidance on how neuroscientists can compare data mapped to different atlases and ensure transparent reporting of findings. Finally, we summarize key considerations when choosing an atlas and give an outlook on the relevance of increased uptake of atlas-based tools and workflows for FAIR data sharing.
Collapse
Affiliation(s)
- Heidi Kleven
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingrid Reiten
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Camilla H Blixhavn
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ulrike Schlegel
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Martin Øvsthus
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Eszter A Papp
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Maja A Puchades
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Jan G Bjaalie
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Trygve B Leergaard
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Ingvild E Bjerke
- Neural Systems Laboratory, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway
| |
Collapse
|
5
|
An Analysis of Cholesteric Spherical Reflector Identifiers for Object Authenticity Verification. MACHINE LEARNING AND KNOWLEDGE EXTRACTION 2022. [DOI: 10.3390/make4010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Arrays of Cholesteric Spherical Reflectors (CSRs), microscopic cholesteric liquid crystals in a spherical shape, have been argued to become a game-changing technology in anti-counterfeiting. Used to build identifiable tags or coating, called CSR IDs, they can supply objects with unclonable fingerprint-like characteristics, making it possible to authenticate objects. In a previous study, we have shown how to extract minutiæ from CSR IDs. In this journal version, we build on that previous research, consolidate the methodology, and test it over CSR IDs obtained by different production processes. We measure the robustness and reliability of our procedure on large and variegate sets of CSR IDs’ images taken with a professional microscope (Laboratory Data set) and with a microscope that could be used in a realistic scenario (Realistic Data set). We measure intra-distance and interdistance, proving that we can distinguish images coming from the same CSR ID from images of different CSR IDs. However, without surprise, images in Laboratory Data set have an intra-distance that on average is less, and with less variance, than the intra-distance between responses from Realistic Data set. With this evidence, we discuss a few requirements for an anti-counterfeiting technology based on CSRs.
Collapse
|
6
|
Andree A, Li N, Butenko K, Kober M, Chen JZ, Higuchi T, Fauser M, Storch A, Ip CW, Kühn AA, Horn A, van Rienen U. Deep brain stimulation electrode modeling in rats. Exp Neurol 2022; 350:113978. [PMID: 35026227 DOI: 10.1016/j.expneurol.2022.113978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 11/13/2021] [Accepted: 01/06/2022] [Indexed: 11/26/2022]
Abstract
Deep Brain Stimulation (DBS) is an efficacious treatment option for an increasing range of brain disorders. To enhance our knowledge about the mechanisms of action of DBS and to probe novel targets, basic research in animal models with DBS is an essential research base. Beyond nonhuman primate, pig, and mouse models, the rat is a widely used animal model for probing DBS effects in basic research. Reconstructing DBS electrode placement after surgery is crucial to associate observed effects with modulating a specific target structure. Post-mortem histology is a commonly used method for reconstructing the electrode location. In humans, however, neuroimaging-based electrode localizations have become established. For this reason, we adapt the open-source software pipeline Lead-DBS for DBS electrode localizations from humans to the rat model. We validate our localization results by inter-rater concordance and a comparison with the conventional histological method. Finally, using the open-source software pipeline OSS-DBS, we demonstrate the subject-specific simulation of the VTA and the activation of axon models aligned to pathways representing neuronal fibers, also known as the pathway activation model. Both activation models yield a characterization of the impact of DBS on the target area. Our results suggest that the proposed neuroimaging-based method can precisely localize DBS electrode placements that are essentially rater-independent and yield results comparable to the histological gold standard. The advantages of neuroimaging-based electrode localizations are the possibility of acquiring them in vivo and combining electrode reconstructions with advanced imaging metrics, such as those obtained from diffusion or functional magnetic resonance imaging (MRI). This paper introduces a freely available open-source pipeline for DBS electrode reconstructions in rats. The presented initial validation results are promising.
Collapse
Affiliation(s)
- Andrea Andree
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059 Rostock, Germany.
| | - Ningfei Li
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Movement Disorders and Neuromodulation Unit, Department for Neurology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Konstantin Butenko
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059 Rostock, Germany.
| | - Maria Kober
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| | - Jia Zhi Chen
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Takahiro Higuchi
- Department of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital of Würzburg, Oberdürrbacher Straße 6, 97080 Würzburg, Germany.
| | - Mareike Fauser
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| | - Alexander Storch
- Department of Neurology, Rostock University Medical Center, Gehlsheimer Straße 20, 18147 Rostock, Germany; German Centre for Neurodegenerative Diseases (DZNE) Rostock/Greifswald, Gehlsheimer, Straße 20, 18147 Rostock, Germany; Department Ageing of Individuals and Society, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany.
| | - Chi Wang Ip
- Department of Neurology, University Hospital of Würzburg, Josef-Schneider-Straße 11, 97080 Würzburg, Germany.
| | - Andrea A Kühn
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Movement Disorders and Neuromodulation Unit, Department for Neurology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Andreas Horn
- Charité, Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Germany; Berlin Institute of Health, Movement Disorders and Neuromodulation Unit, Department for Neurology, Charitéplatz 1, 10117 Berlin, Germany.
| | - Ursula van Rienen
- Institute of General Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, 18059 Rostock, Germany; Department Ageing of Individuals and Society, University of Rostock, Gehlsheimer Straße 20, 18147 Rostock, Germany; Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany.
| |
Collapse
|
7
|
Maric D, Jahanipour J, Li XR, Singh A, Mobiny A, Van Nguyen H, Sedlock A, Grama K, Roysam B. Whole-brain tissue mapping toolkit using large-scale highly multiplexed immunofluorescence imaging and deep neural networks. Nat Commun 2021; 12:1550. [PMID: 33692351 PMCID: PMC7946933 DOI: 10.1038/s41467-021-21735-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/09/2021] [Indexed: 12/17/2022] Open
Abstract
Mapping biological processes in brain tissues requires piecing together numerous histological observations of multiple tissue samples. We present a direct method that generates readouts for a comprehensive panel of biomarkers from serial whole-brain slices, characterizing all major brain cell types, at scales ranging from subcellular compartments, individual cells, local multi-cellular niches, to whole-brain regions from each slice. We use iterative cycles of optimized 10-plex immunostaining with 10-color epifluorescence imaging to accumulate highly enriched image datasets from individual whole-brain slices, from which seamless signal-corrected mosaics are reconstructed. Specific fluorescent signals of interest are isolated computationally, rejecting autofluorescence, imaging noise, cross-channel bleed-through, and cross-labeling. Reliable large-scale cell detection and segmentation are achieved using deep neural networks. Cell phenotyping is performed by analyzing unique biomarker combinations over appropriate subcellular compartments. This approach can accelerate pre-clinical drug evaluation and system-level brain histology studies by simultaneously profiling multiple biological processes in their native anatomical context.
Collapse
Affiliation(s)
- Dragan Maric
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA.
| | - Jahandar Jahanipour
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Xiaoyang Rebecca Li
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Aditi Singh
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Aryan Mobiny
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Hien Van Nguyen
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Andrea Sedlock
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, 20892, USA
| | - Kedar Grama
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA
| | - Badrinath Roysam
- Cullen College of Engineering, University of Houston, Houston, TX, 77204, USA.
| |
Collapse
|
8
|
Hahn JD, Swanson LW, Bowman I, Foster NN, Zingg B, Bienkowski MS, Hintiryan H, Dong HW. An open access mouse brain flatmap and upgraded rat and human brain flatmaps based on current reference atlases. J Comp Neurol 2020; 529:576-594. [PMID: 32511750 DOI: 10.1002/cne.24966] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Here we present a flatmap of the mouse central nervous system (CNS) (brain) and substantially enhanced flatmaps of the rat and human brain. Also included are enhanced representations of nervous system white matter tracts, ganglia, and nerves, and an enhanced series of 10 flatmaps showing different stages of rat brain development. The adult mouse and rat brain flatmaps provide layered diagrammatic representation of CNS divisions, according to their arrangement in corresponding reference atlases: Brain Maps 4.0 (BM4, rat) (Swanson, The Journal of Comparative Neurology, 2018, 526, 935-943), and the first version of the Allen Reference Atlas (mouse) (Dong, The Allen reference atlas, (book + CD-ROM): A digital color brain atlas of the C57BL/6J male mouse, 2007). To facilitate comparative analysis, both flatmaps are scaled equally, and the divisional hierarchy of gray matter follows a topographic arrangement used in BM4. Also included with the mouse and rat brain flatmaps are cerebral cortex atlas level contours based on the reference atlases, and direct graphical and tabular comparison of regional parcellation. To encourage use of the brain flatmaps, they were designed and organized, with supporting reference tables, for ease-of-use and to be amenable to computational applications. We demonstrate how they can be adapted to represent novel parcellations resulting from experimental data, and we provide a proof-of-concept for how they could form the basis of a web-based graphical data viewer and analysis platform. The mouse, rat, and human brain flatmap vector graphics files (Adobe Reader/Acrobat viewable and Adobe Illustrator editable) and supporting tables are provided open access; they constitute a broadly applicable neuroscience toolbox resource for researchers seeking to map and perform comparative analysis of brain data.
Collapse
Affiliation(s)
- Joel D Hahn
- Department of Biological Sciences, University of Southern California, California, Los Angeles, USA.,Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Larry W Swanson
- Department of Biological Sciences, University of Southern California, California, Los Angeles, USA
| | - Ian Bowman
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Nicholas N Foster
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Brian Zingg
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Michael S Bienkowski
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Houri Hintiryan
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA
| | - Hong-Wei Dong
- Center for Integrated Connectomics (CIC), Keck School of Medicine of University of Southern California, University of Southern California Stevens Neuroimaging and Informatics Institute, Los Angeles, California, USA.,Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, California, USA.,Department of Physiology and Neuroscience, and Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| |
Collapse
|
9
|
D'Arcy CE, Martinez A, Khan AM, Olimpo JT. Cognitive and Non-Cognitive Outcomes Associated with Student Engagement in a Novel Brain Chemoarchitecture Mapping Course-Based Undergraduate Research Experience. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2019; 18:A15-A43. [PMID: 31983898 PMCID: PMC6973305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/25/2019] [Accepted: 09/20/2019] [Indexed: 06/10/2023]
Abstract
Course-based undergraduate research experiences (CUREs) engage emerging scholars in the authentic process of scientific discovery, and foster their development of content knowledge, motivation, and persistence in the science, technology, engineering, and mathematics (STEM) disciplines. Importantly, authentic research courses simultaneously offer investigators unique access to an extended population of students who receive education and mentoring in conducting scientifically relevant investigations and who are thus able to contribute effort toward big-data projects. While this paradigm benefits fields in neuroscience, such as atlas-based brain mapping of nerve cells at the tissue level, there are few documented cases of such laboratory courses offered in the domain. Here, we describe a curriculum designed to address this deficit, evaluate the scientific merit of novel student-produced brain atlas maps of immunohistochemically-identified nerve cell populations for the rat brain, and assess shifts in science identity, attitudes, and science communication skills of students engaged in the introductory-level Brain Mapping and Connectomics (BM&C) CURE. BM&C students reported gains in research and science process skills following participation in the course. Furthermore, BM&C students experienced a greater sense of science identity, including a greater likelihood to discuss course activities with non-class members compared to their non-CURE counterparts. Importantly, evaluation of student-generated brain atlas maps indicated that the course enabled students to produce scientifically valid products and make new discoveries to advance the field of neuroanatomy. Together, these findings support the efficacy of the BM&C course in addressing the relatively esoteric demands of chemoarchitectural brain mapping.
Collapse
Affiliation(s)
- Christina E D'Arcy
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX 79968, USA
- Biology Education Research Group, University of Texas at El Paso, El Paso, TX 79968, USA
- HHMI PERSIST Program, University of Texas at El Paso, El Paso, TX 79968, USA
- NIH BUILDing SCHOLARS Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Anais Martinez
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Doctoral Program in Pathobiology, University of Texas at El Paso, El Paso, TX 79968, USA
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX 79968, USA
- HHMI PERSIST Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Arshad M Khan
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- HHMI PERSIST Program, University of Texas at El Paso, El Paso, TX 79968, USA
- NIH BUILDing SCHOLARS Program, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jeffrey T Olimpo
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Biology Education Research Group, University of Texas at El Paso, El Paso, TX 79968, USA
- NIH BUILDing SCHOLARS Program, University of Texas at El Paso, El Paso, TX 79968, USA
| |
Collapse
|
10
|
Santarelli AJ, Khan AM, Poulos AM. Contextual fear retrieval-induced Fos expression across early development in the rat: An analysis using established nervous system nomenclature ontology. Neurobiol Learn Mem 2018; 155:42-49. [PMID: 29807127 DOI: 10.1016/j.nlm.2018.05.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 05/07/2018] [Accepted: 05/19/2018] [Indexed: 02/07/2023]
Abstract
The neural circuits underlying the acquisition, retention and retrieval of contextual fear conditioning have been well characterized in the adult animal. A growing body of work in younger rodents indicates that context-mediated fear expression may vary across development. However, it remains unclear how this expression may be defined across the full range of key developmental ages. Nor is it fully clear whether the structure of the adult context fear network generalizes to earlier ages. In this study, we compared context fear retrieval-induced behavior and neuroanatomically constrained immediate early-gene expression across infant (P19), early and late juvenile (P24 and P35), and adult (P90) male Long-Evans rats. We focused our analysis on neuroanatomically defined subregions and nuclei of the basolateral complex of the amygdala (BLA complex), dorsal and ventral portions of the hippocampus and the subregions of the medial prefrontal cortex as defined by the nomenclature of the Swanson (2004) adult rat brain atlas. Relative to controls and across all ages tested, there were greater numbers of Fos immunoreactive (Fos-ir) neurons in the posterior part of the basolateral amygdalar nuclei (BLAp) following context fear retrieval that correlated statistically with the expression of freezing. However, Fos-ir within regions having known connections with the BLA complex was differentially constrained by developmental age: early juvenile, but not adult rats exhibited an increase of context fear-dependent Fos-ir neurons in prelimbic and infralimbic areas, while adult, but not juvenile rats displayed increases in Fos-ir neurons within the ventral CA1 hippocampus. These results suggest that juvenile and adult rodents may recruit developmentally unique pathways in the acquisition and retrieval of contextual fear. This study extends prior work by providing a broader set of developmental ages and a rigorously defined neuroanatomical ontology within which the contextual fear network can be studied further.
Collapse
Affiliation(s)
- Anthony J Santarelli
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA
| | - Arshad M Khan
- UTEP Systems Neuroscience Laboratory, Department of Biological Sciences and Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Andrew M Poulos
- Department of Psychology, Center for Neuroscience, State University of New York, University at Albany, Albany, NY 12222, USA.
| |
Collapse
|
11
|
Khan AM, Grant AH, Martinez A, Burns GAPC, Thatcher BS, Anekonda VT, Thompson BW, Roberts ZS, Moralejo DH, Blevins JE. Mapping Molecular Datasets Back to the Brain Regions They are Extracted from: Remembering the Native Countries of Hypothalamic Expatriates and Refugees. ADVANCES IN NEUROBIOLOGY 2018; 21:101-193. [PMID: 30334222 PMCID: PMC6310046 DOI: 10.1007/978-3-319-94593-4_6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This article focuses on approaches to link transcriptomic, proteomic, and peptidomic datasets mined from brain tissue to the original locations within the brain that they are derived from using digital atlas mapping techniques. We use, as an example, the transcriptomic, proteomic and peptidomic analyses conducted in the mammalian hypothalamus. Following a brief historical overview, we highlight studies that have mined biochemical and molecular information from the hypothalamus and then lay out a strategy for how these data can be linked spatially to the mapped locations in a canonical brain atlas where the data come from, thereby allowing researchers to integrate these data with other datasets across multiple scales. A key methodology that enables atlas-based mapping of extracted datasets-laser-capture microdissection-is discussed in detail, with a view of how this technology is a bridge between systems biology and systems neuroscience.
Collapse
Affiliation(s)
- Arshad M Khan
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA.
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA.
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, USA.
| | - Alice H Grant
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Anais Martinez
- UTEP Systems Neuroscience Laboratory, University of Texas at El Paso, El Paso, TX, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
- Graduate Program in Pathobiology, University of Texas at El Paso, El Paso, TX, USA
| | - Gully A P C Burns
- Information Sciences Institute, Viterbi School of Engineering, University of Southern California, Marina del Rey, CA, USA
| | - Brendan S Thatcher
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Vishwanath T Anekonda
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Benjamin W Thompson
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Zachary S Roberts
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
| | - Daniel H Moralejo
- Division of Neonatology, Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA
| | - James E Blevins
- VA Puget Sound Health Care System, Office of Research and Development Medical Research Service, Department of Veterans Affairs Medical Center, Seattle, WA, USA
- Division of Metabolism, Endocrinology, and Nutrition, Department of Medicine, University of Washington School of Medicine, Seattle, WA, USA
| |
Collapse
|