1
|
Polat GP, Gumral N, Aslankoc R, Ozmen O, Çelik Ö, Kavrik O, Saygın M. Vetiveria zizanioides modulates experimental epilepsy-induced seizures, oxidative stress, and apoptosis in the brain of rats. Metab Brain Dis 2024; 40:36. [PMID: 39576294 DOI: 10.1007/s11011-024-01443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/17/2024] [Indexed: 11/24/2024]
Abstract
In this study, we investigated the protective actions of Vetiveria zizanioides oil (VET) against oxidative stress and apoptosis in a rat model of pentylenetetrazol (PTZ)-induced epilepsy model. Rats were divided into four groups: control (1 ml/kg saline, by gavage, 7 days + 1 ml/kg saline, i.p, single dose, 8th day), PTZ (1 ml/kg saline, by gavage, 7 days + 60 mg/kg, i.p, single dose, 8th day), PTZ + VET-200 (200 mg/kg VET, by gavage, 7 days + 60 mg/kg PTZ, i.p, single dose, 8th day), and PTZ + VET-400 (400 mg/kg VET, by gavage, 7 days + 60 mg/kg PTZ i.p, single dose, 8th day). Behavioral evaluation (Racine scale was used to classify the severity of seizures according to stages) and EEG recordings were taken. At the end of the experiment, the animals were sacrificed, and blood, hippocampus, and cerebral cortex tissues were removed for biochemical and histopathological examinations. PTZ injection increased the duration of the first epileptic spike and the total number of seizures and caused oxidative stress by increasing the total oxidant status (TOS). The treatment of PTZ induced neurodegenerative changes in the tissues such as increases of apoptosis, Bcl-2, Cyclin B1, and GABA expressions, but decreased Beta-tubulin. However, all the adverse changes of PTZ were modulated by the treatment of VET-200 and VET-400. In conclusion, these results showed that VET could ameliorate epileptic seiures, oxidative stress, and neuronal apoptosis in PTZ-induced seizures.
Collapse
Affiliation(s)
- Gurbet Pınar Polat
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Nurhan Gumral
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Rahime Aslankoc
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey.
| | - Ozlem Ozmen
- Department of Pathology, Faculty of Veterinary Medicine, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Ömer Çelik
- Department of Biophysics, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
| | - Oguzhan Kavrik
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| | - Mustafa Saygın
- Department of Physiology, Faculty of Medicine, Süleyman Demirel University, Isparta, 32260, Turkey
| |
Collapse
|
2
|
Hyder SK, Lazarini-Lopes W, Toib J, Williams G, Sukharev A, Forcelli PA. Optogenetic stimulation of dorsal striatum bidirectionally controls seizures. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.18.613710. [PMID: 39345377 PMCID: PMC11429780 DOI: 10.1101/2024.09.18.613710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Engagement of the striatum (caudate/putamen) and other basal ganglia nuclei during seizures was first observed over 75 years ago. Basal ganglia output nuclei, and the substantia nigra pars reticulata, in particular, have well-established anti-seizure effects across a large array of experimental models. However, striatal control of seizures is understudied. To address this gap, we used optogenetic approaches to activate and inactivate neurons in the dorsal striatum of Sprague-Dawley rats submitted to the gamma-butyrolactone (GBL) model of absence epilepsy, amygdala kindling model of temporal lobe epilepsy, and pilocarpine-induced Status Epilepticus (SE). All tests were performed on a within-subject basis. Animals were tested in two different light frequencies (5 Hz and 100 Hz). Open-loop (continuous light delivery) optogenetic activation of the dorsal striatal neurons robustly suppressed seizures in all models. On the other hand, optogenetic silencing of the dorsal striatal neurons increased absence seizure expression and facilitated SE onset but had no effect on kindled limbic seizures. In the GBL model, we also verified if the closed- loop strategy (light delivery in response to seizure detection) would be enough to induce antiseizure effects. On-demand light delivery in ChR2-expressing animals reduced SWD duration, while the same approach in ArchT-expressing animals increased SWD duration. These results demonstrated previously unrecognized anti-absence effects associated with striatal continuous and on-demand neuromodulation. Together, these findings document a robust, bidirectional role of the dorsal striatum in the control of seizure generation and propagation in a variety of seizure models, including focal seizure onset and generalized seizures.
Collapse
|
3
|
Pati S, Agashe S, Kheder A, Riley K, Gavvala J, McGovern R, Suresh S, Chaitanya G, Thompson S. Stereoelectroencephalography of the Deep Brain: Basal Ganglia and Thalami. J Clin Neurophysiol 2024; 41:423-429. [PMID: 38935656 DOI: 10.1097/wnp.0000000000001097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024] Open
Abstract
SUMMARY Stereoelectroencephalography (SEEG) has emerged as a transformative tool in epilepsy surgery, shedding light on the complex network dynamics involved in focal epilepsy. This review explores the role of SEEG in elucidating the role of deep brain structures, namely the basal ganglia and thalamus, in epilepsy. SEEG advances understanding of their contribution to seizure generation, propagation, and control by permitting precise and minimally invasive sampling of these brain regions. The basal ganglia, comprising the subthalamic nucleus, globus pallidus, substantia nigra, and striatum, have gained recognition for their involvement in both focal and generalized epilepsy. Electrophysiological recordings reveal hyperexcitability and increased synchrony within these structures, reinforcing their role as critical nodes within the epileptic network. Furthermore, low-frequency and high-frequency stimulation of the basal ganglia have demonstrated potential in modulating epileptogenic networks. Concurrently, the thalamus, a key relay center, has garnered prominence in epilepsy research. Disrupted thalamocortical connectivity in focal epilepsy underscores its significance in seizure maintenance. The thalamic subnuclei, including the anterior nucleus, centromedian, and medial pulvinar, present promising neuromodulatory targets, suggesting pathways for personalized epilepsy therapies. The prospect of multithalamic SEEG and thalamic SEEG stimulation trials has the potential to revolutionize epilepsy management, offering tailored solutions for challenging cases. SEEG's ability to unveil the dynamics of deep brain structures in epilepsy promises enhanced and personalized epilepsy care in our new era of precision medicine. Until deep brain SEEG is accepted as a standard of care, a rigorous informed consent process remains paramount for patients for whom such an exploration is proposed.
Collapse
Affiliation(s)
- Sandipan Pati
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Shruti Agashe
- Department of Neurology, Duke Comprehensive Epilepsy Center, Duke University, Durham, North Carolina, U.S.A
| | - Ammar Kheder
- Department of Neurology, Children's Healthcare of Atlanta, Emory University, Atlanta, Georgia, U.S.A
| | - Kristen Riley
- Department of Neurosurgery, Heersink School of Medicine, University of Alabama at Birmingham, Alabama, U.S.A
| | - Jay Gavvala
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Robert McGovern
- Department of Neurosurgery, University of Minnesota, Minnesota, U.S.A.; and
| | - Surya Suresh
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Ganne Chaitanya
- Texas Comprehensive Epilepsy Program, Department of Neurology, The University of Texas Health Science Center at Houston, Texas, U.S.A
| | - Stephen Thompson
- Neurology Division of the Department of Medicine, Hamilton Health Sciences and McMaster University, Canada
| |
Collapse
|
4
|
Vatsyayan R, Lee J, Bourhis AM, Tchoe Y, Cleary DR, Tonsfeldt KJ, Lee K, Montgomery-Walsh R, Paulk AC, U HS, Cash SS, Dayeh SA. Electrochemical and electrophysiological considerations for clinical high channel count neural interfaces. MRS BULLETIN 2023; 48:531-546. [PMID: 37476355 PMCID: PMC10357958 DOI: 10.1557/s43577-023-00537-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Accepted: 04/10/2023] [Indexed: 07/22/2023]
Abstract
Electrophysiological recording and stimulation are the gold standard for functional mapping during surgical and therapeutic interventions as well as capturing cellular activity in the intact human brain. A critical component probing human brain activity is the interface material at the electrode contact that electrochemically transduces brain signals to and from free charge carriers in the measurement system. Here, we summarize state-of-the-art electrode array systems in the context of translation for use in recording and stimulating human brain activity. We leverage parametric studies with multiple electrode materials to shed light on the varied levels of suitability to enable high signal-to-noise electrophysiological recordings as well as safe electrophysiological stimulation delivery. We discuss the effects of electrode scaling for recording and stimulation in pursuit of high spatial resolution, channel count electrode interfaces, delineating the electrode-tissue circuit components that dictate the electrode performance. Finally, we summarize recent efforts in the connectorization and packaging for high channel count electrode arrays and provide a brief account of efforts toward wireless neuronal monitoring systems.
Collapse
Affiliation(s)
- Ritwik Vatsyayan
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Jihwan Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Andrew M. Bourhis
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Youngbin Tchoe
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Daniel R. Cleary
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Neurological Surgery, School of Medicine, Oregon Health & Science University, Portland, USA
| | - Karen J. Tonsfeldt
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Obstetrics, Gynecology, and Reproductive Sciences, Center for Reproductive Science and Medicine, University of California, San Diego, San Diego, USA
| | - Keundong Lee
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Rhea Montgomery-Walsh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| | - Angelique C. Paulk
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Hoi Sang U
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA
| | - Sydney S. Cash
- Department of Neurology, Harvard Medical School, Boston, USA; Center for Neurotechnology and Neurorecovery, Department of Neurology, Massachusetts General Hospital, Boston, USA
| | - Shadi A. Dayeh
- Integrated Electronics and Biointerfaces Laboratory, Department of Electrical and Computer Engineering, University of California, San Diego, San Diego, USA; Department of Bioengineering, University of California, San Diego, San Diego, USA
| |
Collapse
|
5
|
Xiao F, Caciagli L, Wandschneider B, Fleury M, Binding L, Giampiccolo D, Hill A, Galovic M, Foong J, Zhou D, Sander JW, Duncan JS, Koepp MJ. Verbal fluency functional magnetic resonance imaging detects anti-seizure effects and affective side effects of perampanel in people with focal epilepsy. Epilepsia 2023; 64:e9-e15. [PMID: 36524702 PMCID: PMC10107311 DOI: 10.1111/epi.17493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/14/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
Perampanel, a noncompetitive antagonist of the postsynaptic a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic (AMPA) receptor, is effective for controlling focal to bilateral tonic-clonic seizures but is also known to increase feelings of anger. Using statistical parametric mapping-derived measures of activation and task-modulated functional connectivity (psychophysiologic interaction), we investigated 14 people with focal epilepsy who had verbal fluency functional magnetic resonance imaging (fMRI) twice, before and after the add-on treatment of perampanel. For comparison, we included 28 people with epilepsy, propensity-matched for clinical characteristics, who had two scans but no change in anti-seizure medication (ASM) regimen in-between. After commencing perampanel, individuals had higher task-related activations in left orbitofrontal cortex (OFC), fewer task-related activations in the subcortical regions including the left thalamus and left caudate, and lower task-related thalamocaudate and caudate-subtantial nigra connectivity. Decreased task-related connectivity is observed between the left OFC and precuneus and left medial frontal lobe. Our results highlight the brain regions associated with the beneficiary therapeutic effects on focal to bilateral tonic-clonic seizures (thalamus and caudate) but also the undesired affective side effects of perampanel with increased anger and aggression (OFC).
Collapse
Affiliation(s)
- Fenglai Xiao
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Lorenzo Caciagli
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Britta Wandschneider
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, The Royal London Hospital, London, UK
| | - Marine Fleury
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Lawrence Binding
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Davide Giampiccolo
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Andrea Hill
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Marian Galovic
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, Clinical Neuroscience Center, University Hospital Zurich, Zurich, Switzerland
| | - Jaqueline Foong
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Dong Zhou
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
| | - Josemir W Sander
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
- Department of Neurology, West China Hospital of Sichuan University, Chengdu, China
- Stichting Epilepsie Instellingen Nederland - (SEIN), Heemstede, The Netherlands
| | - John S Duncan
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| | - Matthias J Koepp
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
- Chalfont Centre for Epilepsy, Bucks, UK
| |
Collapse
|
6
|
Ebrahim AA, Tungu A. Neuromodulation for temporal lobe epilepsy: a scoping review. ACTA EPILEPTOLOGICA 2022. [DOI: 10.1186/s42494-022-00086-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AbstractTemporal lobe epilepsy (TLE) is difficult to treat as it is often refractory to treatment. Apart from traditional medical treatment, surgical resection is also a choice of treatment, but it may be associated with significant cognitive deficits. As a result, treatment strategies using targeted and adjustable stimulation of malfunctioning brain circuits have been developed. These neuromodulatory therapies using approaches of electric and magnetic neuromodulation are already in clinical use for refractory epilepsy while others such as optogenetics, chemo-genetics and ultrasound modulation are being tested in pre-clinical TLE animal models. In this review, we conducted an in-depth literature search on the clinically available neuromodulatory approaches for TLE, focusing on the possible mechanism of action and the clinical outcomes including adverse effects. Techniques that are currently explored in preclinical animal models but may have therapeutic applications in future are also discussed. The efficacy and subsequent adverse effects vary among the different neuromodulatory approaches and some still have unclear mechanisms of action in TLE treatment. Further studies evaluating the benefits and potential limitations are needed. Continued research on the therapeutic mechanisms and the epileptic brain network is critical for improving therapies for TLE.
Collapse
|
7
|
Partanen J, Achim K. Neurons gating behavior—developmental, molecular and functional features of neurons in the Substantia Nigra pars reticulata. Front Neurosci 2022; 16:976209. [PMID: 36148148 PMCID: PMC9485944 DOI: 10.3389/fnins.2022.976209] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNpr) is the major information output site of the basal ganglia network and instrumental for the activation and adjustment of movement, regulation of the behavioral state and response to reward. Due to both overlapping and unique input and output connections, the SNpr might also have signal integration capacity and contribute to action selection. How the SNpr regulates these multiple functions remains incompletely understood. The SNpr is located in the ventral midbrain and is composed primarily of inhibitory GABAergic projection neurons that are heterogeneous in their properties. In addition, the SNpr contains smaller populations of other neurons, including glutamatergic neurons. Here, we discuss regionalization of the SNpr, in particular the division of the SNpr neurons to anterior (aSNpr) and posterior (pSNpr) subtypes, which display differences in many of their features. We hypothesize that unique developmental and molecular characteristics of the SNpr neuron subtypes correlate with both region-specific connections and notable functional specializations of the SNpr. Variation in both the genetic control of the SNpr neuron development as well as signals regulating cell migration and axon guidance may contribute to the functional diversity of the SNpr neurons. Therefore, insights into the various aspects of differentiation of the SNpr neurons can increase our understanding of fundamental brain functions and their defects in neurological and psychiatric disorders, including movement and mood disorders, as well as epilepsy.
Collapse
|
8
|
The Therapeutic Role of Ketogenic Diet in Neurological Disorders. Nutrients 2022; 14:nu14091952. [PMID: 35565918 PMCID: PMC9102882 DOI: 10.3390/nu14091952] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 02/01/2023] Open
Abstract
The ketogenic diet (KD) is a high-fat, low-carbohydrate and adequate-protein diet that has gained popularity in recent years in the context of neurological diseases (NDs). The complexity of the pathogenesis of these diseases means that effective forms of treatment are still lacking. Conventional therapy is often associated with increasing tolerance and/or drug resistance. Consequently, more effective therapeutic strategies are being sought to increase the effectiveness of available forms of therapy and improve the quality of life of patients. For the moment, it seems that KD can provide therapeutic benefits in patients with neurological problems by effectively controlling the balance between pro- and antioxidant processes and pro-excitatory and inhibitory neurotransmitters, and modulating inflammation or changing the composition of the gut microbiome. In this review we evaluated the potential therapeutic efficacy of KD in epilepsy, depression, migraine, Alzheimer’s disease and Parkinson’s disease. In our opinion, KD should be considered as an adjuvant therapeutic option for some neurological diseases.
Collapse
|
9
|
Kohek SRB, Foresti ML, Blanco MM, Cavarsan CF, da Silva CS, Mello LE. Anxious Profile Influences Behavioral and Immunohistological Findings in the Pilocarpine Model of Epilepsy. Front Pharmacol 2021; 12:640715. [PMID: 34025410 PMCID: PMC8132119 DOI: 10.3389/fphar.2021.640715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/22/2021] [Indexed: 12/01/2022] Open
Abstract
Anxiety and epilepsy have a complex bidirectional relationship, where a depressive/anxious condition is a factor that can trigger seizures which in turn can aggravate the depressive/anxious condition. In addition, brain structures such as the hippocampus and amygdala might have a critical relevance in both epilepsy and anxiety. The aim of the present work was to investigate the influence of different anxious profiles to epileptogenesis. Initially, animals were screened through the elevated plus-maze anxiety test, and then seizure development was evaluated using the pilocarpine model of epilepsy. There were no differences in the susceptibility to status epilepticus, mortality rate or frequency of spontaneous recurrent seizures between animals characterized as anxious as compared to the non-anxious animals. Next, we evaluated immunohistological patterns related to seizures and anxiety in various related brain areas. Despite a decrease in the density of neuropeptide Y and parvalbumin expression in epileptic animals, those presenting greater neuropeptide Y immunoreactivity in various brain regions, also showed higher spontaneous recurrent seizures frequency. Differences on the anxious profile showed to interfere with some of these findings in some regions. In addition, animals that were injected with pilocarpine, but did not develop status epilepticus, had behavioral and neuroanatomical alterations as compared to control animals, indicating its importance as an additional tool for investigating the heterogeneity of the epileptogenic response after an initial insult. This study allowed to better understand the association between anxiety and temporal lobe epilepsy and might allow for therapeutic targets to be developed to minimize the negative impacts associated with it.
Collapse
Affiliation(s)
| | | | | | - Clarissa Fantin Cavarsan
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, United States.,George and Anne Ryan Institute for Neuroscience, University of Rhode Island, Kingston, RI, United States
| | | | - Luiz E Mello
- Physiology Department, Universidade Federal de São Paulo, São Paulo, Brazil.,Instituto D' Or de Pesquisa e Ensino, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Kim SG, Lee JS. Multiscale pore contained carbon nanofiber-based field-effect transistor biosensors for nesfatin-1 detection. J Mater Chem B 2021; 9:6076-6083. [PMID: 34286811 DOI: 10.1039/d1tb00582k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Nesfatin-1 (NES1) is a potential biomarker found in serum and saliva that indicates hyperpolarization and depolarization in the hypothalamic ventricle nucleus as well as an increase in epileptic conditions. However, real-time investigations have not been carried out to detect changes in the concentration of NES1. In this study, we develop a multiscale pore contained carbon nanofiber-based field-effect transistor (FET) biosensor to detect NES1. The activated multiscale pore contained carbon nanofiber (a-MPCNF) is generated using a single-nozzle co-electrospinning method and a subsequent steam-activation process to obtain a signal transducer and template for immobilization of bioreceptors. The prepared biosensor exhibits a high sensitivity to NES1. It can detect levels as low as 0.1 fM of NES1, even in the presence of other interfering biomolecules. Furthermore, the a-MPCNF-based FET sensor has significant potential for practical applications in non-invasive real-time diagnosis, as indicated by its sensing performance in artificial saliva.
Collapse
Affiliation(s)
- Sung Gun Kim
- Samsung Electronics, San #16 Banwol-Dong, Hwasung, Gyeonggi-Do18448, South Korea
| | - Jun Seop Lee
- Department of Materials Science and Engineering, Gachon University, 1342 Seongnam-Daero, Sujeong-Gu, Seongnam-Si, Gyeonggi-Do 13120, Republic of Korea.
| |
Collapse
|