1
|
Leonard BT, Kark SM, Granger SJ, Adams JG, McMillan L, Yassa MA. Anhedonia is associated with higher functional connectivity between the nucleus accumbens and paraventricular nucleus of thalamus. J Affect Disord 2024; 366:1-7. [PMID: 39197547 DOI: 10.1016/j.jad.2024.08.113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 06/17/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024]
Abstract
BACKGROUND Anhedonia stands as a life-threatening transdiagnostic feature of many mental illnesses, most notably major depression and involves neural circuits for processing reward information. The paraventricular nucleus of the thalamus (PVT) is associated with reward-seeking behavior, however, links between the PVT circuit and anhedonia have not been investigated in humans. METHODS In a sample of adults with and without psychiatric symptoms (n = 75, 18-41 years, 55 female), we generated an anhedonia factor score for each participant using a latent factor analysis, utilizing data from depression and anxiety assessments. Functional connectivity between the PVT and the nucleus accumbens (NAc) was calculated from high-resolution (1.5 mm) resting state fMRI. RESULTS Anhedonia factor scores showed a positive relationship with functional connectivity between the PVT and the NAc, principally in males and in those with psychiatric symptoms. In males, connectivity between other midline thalamic nuclei and the NAc did not show these relationships, suggesting that this link may be specific to PVT. LIMITATIONS This cohort was originally recruited to study depression and not anhedonia per se. The distribution of male and female participants in our cohort was not equal. Partial acquisition in high-resolution fMRI scans restricted regions of interest outside of the thalamus and reward networks. CONCLUSIONS We report evidence that anhedonia is associated with enhanced functional connectivity between the PVT and the NAc, regions that are relevant to reward processing. These results offer clues as to the potential prevention and prevention and treatment of anhedonia.
Collapse
Affiliation(s)
- Bianca T Leonard
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Sarah M Kark
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Steven J Granger
- Division of Depression and Anxiety Disorders, McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02115, USA
| | - Joren G Adams
- Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA; VA HSR&D Center to Improve Veteran Involvement in Care, VA Portland Health Care System, Portland, OR 97239, USA
| | - Liv McMillan
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA
| | - Michael A Yassa
- Center for the Neurobiology of Learning and Memory, University of California, Irvine 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine 92697, USA; Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Alonso-Caraballo Y, Li Y, Constantino NJ, Neal MA, Driscoll GS, Mavrikaki M, Bolshakov VY, Chartoff EH. Sex-specific behavioral and thalamo-accumbal circuit adaptations after oxycodone abstinence. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.01.605459. [PMID: 39149276 PMCID: PMC11326127 DOI: 10.1101/2024.08.01.605459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Opioid use disorder is marked by a progressive change in the motivation to administer the drug even in the presence of negative consequences. After long periods of abstinence, the urge to return to taking the drug intensifies over time, known as incubation of craving. Conditioned responses to drug-related stimuli, can acquire motivational properties and exert control over motivated behaviors leading to relapse. Although, preclinical data suggest that the behavioral expression of opioid use is similar between male and female rodents, we do not have conclusive results on sex differences on craving and relapse across abstinence periods. Here, we investigated the effects of abstinence from oxycodone self-administration on neurotransmission in the paraventricular thalamus (PVT) to nucleus accumbens shell (NAcSh) pathway in male and female rats. Using optogenetics and ex vivo electrophysiology, we assessed synaptic strength and glutamate release probability in this pathway, as well as NAcSh medium spiny neurons (MSN) intrinsic excitability, in slices from rats which were subjected to either 1 (acute) or 14 (prolonged) days of forced abstinence after self-administration. Our results revealed no sex differences in oxycodone self-administration or somatic withdrawal symptoms following acute abstinence. However, we found a sex-specific enhancement in cue-induced relapse after prolonged, but not acute, abstinence from oxycodone self-administration, with females exhibiting higher relapse rates. Notably, prolonged abstinence led to similar increases in synaptic strength at PVT-NAcSh inputs compared to saline controls in both sexes, which was not observed after acute abstinence. Thus, prolonged abstinence results in a time-dependent increase in PVT-NAcSh synaptic strength and sex-specific effects on cue-induced relapse rates. These findings suggest that prolonged abstinence leads to significant synaptic changes, contributing to heightened relapse vulnerability, highlighting the need for targeted therapeutic strategies in opioid use disorder.
Collapse
Affiliation(s)
- Y Alonso-Caraballo
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Neuroscience & Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, MN, USA
| | - Y Li
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - N J Constantino
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Neuroscience, University of Kentucky, Lexington, KY, USA
| | - M A Neal
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - G S Driscoll
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, USA
| | - M Mavrikaki
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - V Y Bolshakov
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| | - E H Chartoff
- Department of Psychiatry, McLean Hospital, Harvard Medical School, Belmont, MA, USA
| |
Collapse
|
3
|
Bramlett SN, Fitzmaurice SM, Harbin NH, Yan W, Bandlamudi C, Van Doorn GE, Smith Y, Hepler JR. Regulator of G Protein Signaling 14 protein expression profile in the adult mouse brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.22.600169. [PMID: 38979272 PMCID: PMC11230234 DOI: 10.1101/2024.06.22.600169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Regulator of G protein signaling 14 (RGS14) is a multifunctional signaling protein that serves as a natural suppressor of synaptic plasticity in the mouse brain. Our previous studies showed that RGS14 is highly expressed in postsynaptic dendrites and spines of pyramidal neurons in hippocampal area CA2 of the developing mouse brain. However, our more recent work with adult rhesus macaque brain shows that RGS14 is found in multiple neuron populations throughout hippocampal area CA1 and CA2, caudate nucleus, putamen, globus pallidus, substantia nigra, and amygdala in the adult rhesus monkey brain. In the mouse brain, we also have observed RGS14 protein in discrete limbic regions linked to reward behavior and addiction, including the central amygdala and the nucleus accumbens, but a comprehensive mapping of RGS14 protein expression in the adult mouse brain is lacking. Here, we report that RGS14 is more broadly expressed in mouse brain than previously known. Intense RGS14 staining is observed in specific neuron populations of the hippocampal formation, amygdala, septum, bed nucleus of stria terminalis and ventral striatum/nucleus accumbens. RGS14 is also observed in axon fiber tracts including the dorsal fornix, fimbria, stria terminalis, and the ventrohippocampal commissure. Moderate RGS14 staining is observed in various other adjacent regions not previously reported. These findings show that RGS14 is expressed in brain regions that govern aspects of core cognitive functions such as sensory perception, emotion, memory, motivation, and execution of actions, and suggests that RGS14 may serve to suppress plasticity and filter inputs in these brain regions to set the overall tone on experience-to-action processes.
Collapse
|
4
|
McDevitt DS, Wade QW, McKendrick GE, Nelsen J, Starostina M, Tran N, Blendy JA, Graziane NM. The Paraventricular Thalamic Nucleus and Its Projections in Regulating Reward and Context Associations. eNeuro 2024; 11:ENEURO.0524-23.2024. [PMID: 38351131 PMCID: PMC10883411 DOI: 10.1523/eneuro.0524-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/23/2024] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
The paraventricular thalamic nucleus (PVT) is a brain region that mediates aversive and reward-related behaviors as shown in animals exposed to fear conditioning, natural rewards, or drugs of abuse. However, it is unknown whether manipulations of the PVT, in the absence of external factors or stimuli (e.g., fear, natural rewards, or drugs of abuse), are sufficient to drive reward-related behaviors. Additionally, it is unknown whether drugs of abuse administered directly into the PVT are sufficient to drive reward-related behaviors. Here, using behavioral as well as pathway and cell-type specific approaches, we manipulate PVT activity as well as the PVT-to-nucleus accumbens shell (NAcSh) neurocircuit to explore reward phenotypes. First, we show that bath perfusion of morphine (10 µM) caused hyperpolarization of the resting membrane potential, increased rheobase, and decreased intrinsic membrane excitability in PVT neurons that project to the NAcSh. Additionally, we found that direct injections of morphine (50 ng) in the PVT of mice were sufficient to generate conditioned place preference (CPP) for the morphine-paired chamber. Mimicking the inhibitory effect of morphine, we employed a chemogenetic approach to inhibit PVT neurons that projected to the NAcSh and found that pairing the inhibition of these PVT neurons with a specific context evoked the acquisition of CPP. Lastly, using brain slice electrophysiology, we found that bath-perfused morphine (10 µM) significantly reduced PVT excitatory synaptic transmission on both dopamine D1 and D2 receptor-expressing medium spiny neurons in the NAcSh, but that inhibiting PVT afferents in the NAcSh was not sufficient to evoke CPP.
Collapse
Affiliation(s)
- Dillon S McDevitt
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Quinn W Wade
- Department of Anesthesiology and Perioperative Medicine, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Greer E McKendrick
- Neuroscience Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Jacob Nelsen
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Mariya Starostina
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Nam Tran
- Doctor of Medicine Program, Penn State College of Medicine, Hershey, Pennsylvania 17033
| | - Julie A Blendy
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Nicholas M Graziane
- Departments of Anesthesiology and Perioperative Medicine and Pharmacology, Penn State College of Medicine, Hershey, Pennsylvania 17033
| |
Collapse
|
5
|
Chirokoff V, Dupuy M, Abdallah M, Fatseas M, Serre F, Auriacombe M, Misdrahi D, Berthoz S, Swendsen J, Sullivan EV, Chanraud S. Craving dynamics and related cerebral substrates predict timing of use in alcohol, tobacco, and cannabis use disorders. ADDICTION NEUROSCIENCE 2023; 9:100138. [PMID: 38389954 PMCID: PMC10883348 DOI: 10.1016/j.addicn.2023.100138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Background Patients treated for Substance Use Disorders exhibit highly fluctuating patterns of craving that could reveal novel prognostic markers of use. Accordingly, we 1) measured fluctuations within intensively repeated measures of craving and 2) linked fluctuations of craving to connectivity indices within resting-state (rs) brain regions to assess their relation to use among patients undergoing treatment for Alcohol, Tobacco and Cannabis Use Disorders. Method Participants -64 individuals with SUD for tobacco, alcohol, or cannabis and 35 healthy controls-completed a week of Ecological Momentary Assessment (EMA) during which they reported craving intensity and substance use five times daily. Before EMA, a subsample of 50 patients, and 34 healthy controls also completed resting-state (rs)-MRI acquisitions. Craving temporal dynamics within each day were characterized using Standard Deviation (SD), Auto-Correlation Factor (ACF), and Mean Successive Square Difference (MSSD). Absolute Difference (AD) in craving between assessments was a prospective prediction measure. Results Within-day, higher MSSD predicted greater substance use while controlling for mean craving. Prospectively higher AD predicted later increased substance use independently of previous use or craving level. Moreover, MSSD was linked to strength in five functional neural connections, most involving frontotemporal systems. Cerebello-thalamic and thalamo-frontal connectivity were also linked to substance use and distinguished the SUD from the controls. Conclusion To the best of our knowledge, this is the first study to indicate that instability in craving may be a trigger for use in several SUD types, beyond the known effect of craving intensity.
Collapse
Affiliation(s)
- Valentine Chirokoff
- University of Bordeaux, CNRS-UMR 5287 – Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), Bordeaux, France
- EPHE, PSL Research University, Paris, France
| | - Maud Dupuy
- University of Bordeaux, CNRS-UMR 5287 – Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), Bordeaux, France
| | - Majd Abdallah
- Bordeaux University, CNRS, Bordeaux Bioinformatics Center, IBGC UMR 5095, Bordeaux, France
- Groupe d’Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, Univeristy of Bordeaux, Bordeaux, France
| | - Melina Fatseas
- University of Bordeaux, CNRS-UMR 5287 – Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), Bordeaux, France
- CH Charles Perrens, Bordeaux, France
- CHU Bordeaux, Bordeaux, France
| | - Fuschia Serre
- University of Bordeaux, CNRS UMR 6033– Sleep, Addiction and Neuropsychiatry (SANPSY), Bordeaux, France
| | - Marc Auriacombe
- CH Charles Perrens, Bordeaux, France
- University of Bordeaux, CNRS UMR 6033– Sleep, Addiction and Neuropsychiatry (SANPSY), Bordeaux, France
| | - David Misdrahi
- University of Bordeaux, CNRS-UMR 5287 – Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), Bordeaux, France
- CH Charles Perrens, Bordeaux, France
| | - Sylvie Berthoz
- University of Bordeaux, CNRS-UMR 5287 – Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), Bordeaux, France
- Institut Mutualiste Montsouris, Department of Psychiatry for Adolescents and Young Adults, Paris, France
| | - Joel Swendsen
- University of Bordeaux, CNRS-UMR 5287 – Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), Bordeaux, France
- EPHE, PSL Research University, Paris, France
| | - Edith V. Sullivan
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, United States
| | - Sandra Chanraud
- University of Bordeaux, CNRS-UMR 5287 – Institut de Neurosciences Cognitives et Intégratives d’Aquitaine (INCIA), Bordeaux, France
- EPHE, PSL Research University, Paris, France
| |
Collapse
|
6
|
Dubey H, Roychoudhury R, Alex A, Best C, Liu S, White A, Carlson A, Azcarate-Peril MA, Mansfield LS, Knickmeyer R. Effect of Human Infant Gut Microbiota on Mouse Behavior, Dendritic Complexity, and Myelination. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.24.563309. [PMID: 37961091 PMCID: PMC10634763 DOI: 10.1101/2023.10.24.563309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
The mammalian gut microbiome influences numerous developmental processes. In human infants it has been linked with cognition, social skills, hormonal responses to stress, and brain connectivity. Yet, these associations are not necessarily causal. The present study tested whether two microbial stool communities, common in human infants, affected behavior, myelination, dendritic morphology, and spine density when used to colonize mouse models. Humanized animals were more like specific-pathogen free mice than germ-free mice for most phenotypes, although in males, both humanized groups were less social. Both humanized groups had thinner myelin sheaths in the hippocampus, than did germ-free animals. Humanized animals were similar to each other except for dendritic morphology and spine density where one group had greater dendritic length in the prefrontal cortex, greater dendritic volume in the nucleus accumbens, and greater spine density in both regions, compared to the other. Results add to a body of literature suggesting the gut microbiome impacts brain development. Teaser Fecal transplants from human infants with highly abundant Bifidobacterium , an important inhabitant of the intestinal tract of breastfed newborns, may promote brain connectivity in mice.
Collapse
|
7
|
Hwang SB, Lee JG, Lee Y, Kook WA, Kim SK, Donio AL, Min HW, Kim YJ, Lee SY, Jang CG. Adinazolam, a Benzodiazepine-Type New Psychoactive Substance, Has Abuse Potential and Induces Withdrawal Symptoms in Rodents. ACS Chem Neurosci 2023; 14:3487-3498. [PMID: 37695876 DOI: 10.1021/acschemneuro.3c00346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023] Open
Abstract
Adinazolam (ADZ) is a benzodiazepine-type new psychoactive substance (NPS) with anxiolytic, anticonvulsant, and antidepressant effects. High ADZ doses have been reported to impair psychomotor performance and memory; however, the abuse potential and drug dependence of ADZ have not yet been fully investigated. In this study, we evaluated whether ADZ has abuse potential and leads to drug dependence and withdrawal symptoms. The intravenous self-administration (IVSA) test revealed that ADZ (0.01, 0.03, and 0.1 mg/kg/infusion) was self-administered significantly above vehicle levels, suggesting the reinforcing effect of ADZ. Furthermore, we revealed that treatment discontinuation following chronic ADZ administration (3 and 6 mg/kg) caused several somatic withdrawal symptoms in mice, including body tremor. Moreover, it induced motivational withdrawal signs, such as anxiety-related behavior in the elevated plus maze (EPM) test and memory deficits in the Y-maze test. After the IVSA test, an enzyme-linked immunosorbent assay (ELISA) showed that ADZ administration significantly increased the dopamine contents in the thalamus, nucleus accumbens (NAc), and ventral tegmental area (VTA). This finding was also supported by the results of the Western blot. Taken together, our results suggest that ADZ has abuse potential and can lead to drug dependence and withdrawal syndrome.
Collapse
Affiliation(s)
- Su-Bin Hwang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Jae-Gyeong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youyoung Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Wun-A Kook
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seon-Kyung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Audrey Lynn Donio
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Hee-Won Min
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Young-Jung Kim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
8
|
Chen X, Chen H, Liu J, Tang H, Zhou J, Liu P, Tian Y, Wang X, Lu F, Zhou J. Functional connectivity alterations in reward-related circuits associated with non-suicidal self-injury behaviors in drug-naïve adolescents with depression. J Psychiatr Res 2023; 163:270-277. [PMID: 37244065 DOI: 10.1016/j.jpsychires.2023.05.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/26/2023] [Accepted: 05/19/2023] [Indexed: 05/29/2023]
Abstract
Non-suicidal self-injury (NSSI) behaviors are a major public health concern among adolescents with depression. Such behaviors may be associated with the reward system. However, the underlying mechanism in patients with depression and NSSI still remains unclear. A total of 56 drug-naïve adolescents with depression, including 23 patients with NSSI (the NSSI group) and 33 patients without NSSI (the nNSSI group), and 25 healthy controls (HCs) were recruited in this study. Seed-based functional connectivity (FC) was used to explore the NSSI-related FC alterations in the reward circuit. Correlation analysis was conducted between the altered FCs and clinical data. Compared with the nNSSI group, the NSSI group showed greater FC between left nucleus accumbens (NAcc) and right lingual gyrus and between right putamen accumbens and right angular gyrus (ANG). The NSSI group also had declined FC between right NAcc and left inferior cerebellum, between left cingulate gyrus (CG) and right ANG, between left CG and left middle temporal gyrus (MTG), and between right CG and bilateral MTG (voxel-wise p < 0.01, cluster-wise p < 0.05, Gaussian random field correction). The FC between right NAcc and left inferior cerebellum was found positively correlated with the score of addictive features of NSSI (r = 0.427, p = 0.042). Our findings indicated that the regions in the reward circuit with NSSI-related FC alterations included bilateral NAcc, right putamen and bilateral CG, which may provide new evidence on the neural mechanisms of NSSI behaviors in adolescents with depression.
Collapse
Affiliation(s)
- Xianliang Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Hui Chen
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiali Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Huajia Tang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Jiawei Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Peiqu Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Yusheng Tian
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Xiaoping Wang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, 611731, China.
| | - Jiansong Zhou
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, and National Center for Mental Disorders, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
| |
Collapse
|
9
|
Fanni G, Kagios C, Roman E, Sundbom M, Wikström J, Haller S, Eriksson JW. Effects of gastric bypass surgery on brain connectivity responses to hypoglycemia. Endocrine 2023; 79:304-312. [PMID: 36459336 PMCID: PMC9892147 DOI: 10.1007/s12020-022-03253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/03/2022] [Indexed: 12/03/2022]
Abstract
INTRODUCTION Roux-en-Y gastric bypass (RYGB) leads to beneficial effects on glucose homeostasis, and attenuated hormonal counterregulatory responses to hypoglycemia are likely to contribute. RYGB also induces alterations in neural activity of cortical and subcortical brain regions. We aimed to characterize RYGB-induced changes in resting-state connectivity of specific brain regions of interest for energy homeostasis and behavioral control during hypoglycemia. METHOD Ten patients with BMI > 35 kg/m2 were investigated with brain PET/MR imaging during a hyperinsulinemic normo- and hypoglycemic clamp, before and 4 months after RYGB. Hormonal levels were assessed throughout the clamp. Resting-state (RS) fMRI scans were acquired in the glucose-lowering phase of the clamp, and they were analyzed with a seed-to-voxel approach. RESULTS RS connectivity during initiation of hypoglycemia was significantly altered after RYGB between nucleus accumbens, thalamus, caudate, hypothalamus and their crosstalk with cortical and subcortical regions. Connectivity between the nucleus accumbens and the frontal pole was increased after RYGB, and this was associated with a reduction of ACTH (r = -0.639, p = 0.047) and cortisol (r = -0.635, p = 0.048) responses. Instead, connectivity between the caudate and the frontal pole after RYGB was reduced and this was associated with less attenuation of glucagon response during the hypoglycemic clamp (r = -0.728, p = 0.017), smaller reduction in fasting glucose (r = -0.798, p = 0.007) and less excess weight loss (r = 0.753, p = 0.012). No other significant associations were found between post-RYGB changes in ROI-to-voxel regional connectivity hormonal responses and metabolic or anthropometric outcomes. CONCLUSION RYGB alters brain connectivity during hypoglycemia of several neural pathways involved in reward, inhibitory control, and energy homeostasis. These changes are associated with altered hormonal responses to hypoglycemia and may be involved in the glucometabolic outcome of RYGB.
Collapse
Affiliation(s)
- Giovanni Fanni
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Christakis Kagios
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden
| | - Erika Roman
- Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Surgery, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
| | - Sven Haller
- Department of Surgical Sciences, Neuroradiology, Uppsala University, Uppsala, Sweden
- CIMC-Centre d'Imagerie Médicale de Cornavin, Geneva, Switzerland
| | - Jan W Eriksson
- Department of Medical Sciences, Clinical Diabetes and Metabolism, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Gan J, Liu S, Chen Z, Yang Y, Ma L, Meng Q, Wang XD, Liu C, Li X, Zhang W, Ji Y. Elevated Plasma Orexin-A Levels in Prodromal Dementia with Lewy Bodies. J Alzheimers Dis 2022; 88:1037-1048. [PMID: 35723094 DOI: 10.3233/jad-220082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND Studies on plasma orexin-A levels in prodromal dementia with Lewy bodies (DLB) and the relationship with clinical manifestations are rare. OBJECTIVE To assess plasma orexin-A levels and evaluate the correlation with clinical features in patients with mild cognitive impairment with Lewy bodies (MCI-LB) and DLB. METHODS Plasma orexin-A levels were measured in 41 patients with MCI-LB, 53 with DLB, and 48 healthy controls (HCs). Informant-based history, neurological examinations, neuropsychological assessments, laboratory tests, and neuroimaging were collected and the correlation between orexin-A and various indicators evaluated. RESULTS Plasma orexin-A levels in patients with MCI-LB (1.18±0.33 ng/mL, p = 0.014) or DLB (1.20±0.44 ng/mL, p = 0.011) were significantly higher than in HCs (1.02±0.32 ng/mL) and associated with gender and age. DLB patients with fluctuating cognition (FC) (1.01±0.23 versus 1.31±0.50, p = 0.007) or parkinsonism (PARK) (0.98±0.19 versus 1.25±0.47, p = 0.030) had significantly lower plasma orexin-A levels than subjects without FC or PARK. Plasma orexin-A levels were significantly negatively correlated with irritability and UPDRS-III scores and significantly positively correlated with disinhibition scores. CONCLUSION This is the first report in which elevated plasma orexin-A levels were observed in patients with MCI-LB or DLB. In addition, lower orexin-A levels were found in patients with DLB and FC or PARK compared with HCs. The plasma orexin-A levels were associated with the presence of core features and motor and neuropsychiatric symptoms in patients with MCI-LB and DLB.
Collapse
Affiliation(s)
- Jinghuan Gan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China.,NationalClinical Research Center for Neurological Diseases, Beijing, China
| | - Shuai Liu
- Department of Neurology, Tianjin DementiaInstitute, Tianjin Key Laboratory of Cerebrovascular andNeurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Zhichao Chen
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China.,NationalClinical Research Center for Neurological Diseases, Beijing, China
| | - Yaqi Yang
- Tianjin Medical University, Tianjin, China
| | - Lingyun Ma
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China.,NationalClinical Research Center for Neurological Diseases, Beijing, China
| | | | - Xiao-Dan Wang
- Department of Neurology, Tianjin DementiaInstitute, Tianjin Key Laboratory of Cerebrovascular andNeurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| | - Chunyan Liu
- Department of Neurology, Aviation GeneralHospital, Beijing, China
| | - Xudong Li
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China.,NationalClinical Research Center for Neurological Diseases, Beijing, China
| | - Wei Zhang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China.,NationalClinical Research Center for Neurological Diseases, Beijing, China
| | - Yong Ji
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, China.,NationalClinical Research Center for Neurological Diseases, Beijing, China.,Department of Neurology, Tianjin DementiaInstitute, Tianjin Key Laboratory of Cerebrovascular andNeurodegenerative Diseases, Tianjin Huanhu Hospital, Tianjin, China
| |
Collapse
|
11
|
Becker-Krail DD, Walker WH, Nelson RJ. The Ventral Tegmental Area and Nucleus Accumbens as Circadian Oscillators: Implications for Drug Abuse and Substance Use Disorders. Front Physiol 2022; 13:886704. [PMID: 35574492 PMCID: PMC9094703 DOI: 10.3389/fphys.2022.886704] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms convergently evolved to allow for optimal synchronization of individuals’ physiological and behavioral processes with the Earth’s 24-h periodic cycling of environmental light and temperature. Whereas the suprachiasmatic nucleus (SCN) is considered the primary pacemaker of the mammalian circadian system, many extra-SCN oscillatory brain regions have been identified to not only exhibit sustainable rhythms in circadian molecular clock function, but also rhythms in overall region activity/function and mediated behaviors. In this review, we present the most recent evidence for the ventral tegmental area (VTA) and nucleus accumbens (NAc) to serve as extra-SCN oscillators and highlight studies that illustrate the functional significance of the VTA’s and NAc’s inherent circadian properties as they relate to reward-processing, drug abuse, and vulnerability to develop substance use disorders (SUDs).
Collapse
Affiliation(s)
- Darius D Becker-Krail
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - William H Walker
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Randy J Nelson
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
12
|
Strigo IA, Spadoni AD, Simmons AN. Understanding Pain and Trauma Symptoms in Veterans From Resting-State Connectivity: Unsupervised Modeling. FRONTIERS IN PAIN RESEARCH 2022; 3:871961. [PMID: 35620636 PMCID: PMC9127988 DOI: 10.3389/fpain.2022.871961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/07/2022] [Indexed: 01/19/2023] Open
Abstract
Trauma and posttraumatic stress are highly comorbid with chronic pain and are often antecedents to developing chronic pain conditions. Pain and trauma are associated with greater utilization of medical services, greater use of psychiatric medication, and increased total cost of treatment. Despite the high overlap in the clinic, the neural mechanisms of pain and trauma are often studied separately. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) scans were completed among a diagnostically heterogeneous sample of veterans with a range of back pain and trauma symptoms. Using Group Iterative Multiple Model Estimation (GIMME), an effective functional connectivity analysis, we explored an unsupervised model deriving subgroups based on path similarity in a priori defined regions of interest (ROIs) from brain regions implicated in the experience of pain and trauma. Three subgroups were identified by patterns in functional connection and differed significantly on several psychological measures despite similar demographic and diagnostic characteristics. The first subgroup was highly connected overall, was characterized by functional connectivity from the nucleus accumbens (NAc), the anterior cingulate cortex (ACC), and the posterior cingulate cortex (PCC) to the insula and scored low on pain and trauma symptoms. The second subgroup did not significantly differ from the first subgroup on pain and trauma measures but was characterized by functional connectivity from the ACC and NAc to the thalamus and from ACC to PCC. The third subgroup was characterized by functional connectivity from the thalamus and PCC to NAc and scored high on pain and trauma symptoms. Our results suggest that, despite demographic and diagnostic similarities, there may be neurobiologically dissociable biotypes with different mechanisms for managing pain and trauma. These findings may have implications for the determination of appropriate biotype-specific interventions that target these neurological systems.
Collapse
Affiliation(s)
- Irina A. Strigo
- Emotion and Pain Laboratory, San Francisco Veterans Affairs Health Care Center, San Francisco, CA, United States
- Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Andrea D. Spadoni
- Stress and Neuroimaging Laboratory, San Diego Veterans Affairs Health Care Center, San Francisco, CA, United States
- Center of Excellence in Stress and Mental Health, San Diego Veterans Affairs Health Care Center, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Alan N. Simmons
- Stress and Neuroimaging Laboratory, San Diego Veterans Affairs Health Care Center, San Francisco, CA, United States
- Center of Excellence in Stress and Mental Health, San Diego Veterans Affairs Health Care Center, San Diego, CA, United States
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
13
|
Cheron J, Kerchove d'Exaerde AD. Drug addiction: from bench to bedside. Transl Psychiatry 2021; 11:424. [PMID: 34385417 PMCID: PMC8361217 DOI: 10.1038/s41398-021-01542-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/14/2021] [Accepted: 07/23/2021] [Indexed: 02/06/2023] Open
Abstract
Drug addiction is responsible for millions of deaths per year around the world. Still, its management as a chronic disease is shadowed by misconceptions from the general public. Indeed, drug consumers are often labelled as "weak", "immoral" or "depraved". Consequently, drug addiction is often perceived as an individual problem and not societal. In technical terms, drug addiction is defined as a chronic, relapsing disease resulting from sustained effects of drugs on the brain. Through a better characterisation of the cerebral circuits involved, and the long-term modifications of the brain induced by addictive drugs administrations, first, we might be able to change the way the general public see the patient who is suffering from drug addiction, and second, we might be able to find new treatments to normalise the altered brain homeostasis. In this review, we synthetise the contribution of fundamental research to the understanding drug addiction and its contribution to potential novel therapeutics. Mostly based on drug-induced modifications of synaptic plasticity and epigenetic mechanisms (and their behavioural correlates) and after demonstration of their reversibility, we tried to highlight promising therapeutics. We also underline the specific temporal dynamics and psychosocial aspects of this complex psychiatric disease adding parameters to be considered in clinical trials and paving the way to test new therapeutic venues.
Collapse
Affiliation(s)
- Julian Cheron
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium
| | - Alban de Kerchove d'Exaerde
- Laboratory of Neurophysiology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, B-1070, Belgium.
| |
Collapse
|