1
|
Papadopoulos G, Legaki AI, Georgila K, Vorkas P, Giannousi E, Stamatakis G, Moustakas II, Petrocheilou M, Pyrina I, Gercken B, Kassi E, Chavakis T, Pateras IS, Panayotou G, Gika H, Samiotaki M, Eliopoulos AG, Chatzigeorgiou A. Integrated omics analysis for characterization of the contribution of high fructose corn syrup to non-alcoholic fatty liver disease in obesity. Metabolism 2023; 144:155552. [PMID: 36996933 DOI: 10.1016/j.metabol.2023.155552] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 03/17/2023] [Accepted: 03/18/2023] [Indexed: 04/01/2023]
Abstract
BACKGROUND High-Fructose Corn Syrup (HFCS), a sweetener rich in glucose and fructose, is nowadays widely used in beverages and processed foods; its consumption has been correlated to the emergence and progression of Non-Alcoholic Fatty Liver Disease (NAFLD). Nevertheless, the molecular mechanisms by which HFCS impacts hepatic metabolism remain scarce, especially in the context of obesity. Besides, the majority of current studies focuses either on the detrimental role of fructose in hepatic steatosis or compare separately the additive impact of fructose versus glucose in high fat diet-induced NAFLD. AIM By engaging combined omics approaches, we sought to characterize the role of HFCS in obesity-associated NAFLD and reveal molecular processes, which mediate the exaggeration of steatosis under these conditions. METHODS Herein, C57BL/6 mice were fed a normal-fat-diet (ND), a high-fat-diet (HFD) or a HFD supplemented with HFCS (HFD-HFCS) and upon examination of their metabolic and NAFLD phenotype, proteomic, lipidomic and metabolomic analyses were conducted to identify HFCS-related molecular alterations of the hepatic metabolic landscape in obesity. RESULTS Although HFD and HFD-HFCS mice displayed comparable obesity, HFD-HFCS mice showed aggravation of hepatic steatosis, as analysis of the lipid droplet area in liver sections revealed (12,15 % of total section area in HFD vs 22,35 % in HFD-HFCS), increased NAFLD activity score (3,29 in HFD vs 4,86 in HFD-HFCS) and deteriorated hepatic insulin resistance, as compared to the HFD mice. Besides, the hepatic proteome of HFD-HFCS mice was characterized by a marked upregulation of 5 core proteins implicated in de novo lipogenesis (DNL), while an increased phosphatidyl-cholines(PC)/phosphatidyl-ethanolamines(PE) ratio (2.01 in HFD vs 3.04 in HFD-HFCS) was observed in the livers of HFD-HFCS versus HFD mice. Integrated analysis of the omics datasets indicated that Tricarboxylic Acid (TCA) cycle overactivation is likely contributing towards the intensification of steatosis during HFD-HFCS-induced NAFLD. CONCLUSION Our results imply that HFCS significantly contributes to steatosis aggravation during obesity-related NAFLD, likely deriving from DNL upregulation, accompanied by TCA cycle overactivation and deteriorated hepatic insulin resistance.
Collapse
Affiliation(s)
- Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Konstantina Georgila
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Vorkas
- Institute of Applied Biosciences, Centre for Research and Technology, 57001, Thermi, Thessaloniki, Greece
| | - Eirini Giannousi
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - George Stamatakis
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Ioannis I Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Maria Petrocheilou
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001, Thermi, Thessaloniki, Greece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| | - Ioannis S Pateras
- 2nd Department of Pathology, "Attikon" University Hospital, Medical School, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - George Panayotou
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Helen Gika
- School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), 57001, Thermi, Thessaloniki, Greece
| | - Martina Samiotaki
- Institute for Bio-innovation, Biomedical Sciences Research Center "Alexander Fleming", Vari 16672, Greece
| | - Aristides G Eliopoulos
- Department of Biology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece; Center of Basic Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece; Center for New Biotechnologies and Precision Medicine, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str., 11527 Athens, Greece; Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany.
| |
Collapse
|
2
|
Wołyniec W, Szwarc A, Kasprowicz K, Zorena K, Jaskulak M, Renke M, Naczyk M, Ratkowski W. Impact of hydration with beverages containing free sugars or xylitol on metabolic and acute kidney injury markers after physical exercise. Front Physiol 2022; 13:841056. [PMID: 36338481 PMCID: PMC9632281 DOI: 10.3389/fphys.2022.841056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 09/23/2022] [Indexed: 11/17/2022] Open
Abstract
The proper fluid and carbohydrates intake is essential before and during physical exercise, and for this reason most athletes drink beverages containing a high amount of free sugars. Sweetened soft drinks are also commonly consumed by those not doing any sport, and this habit seems to be both unhealthy and also the cause of metabolic problems. Recently, several sweeteners have been proposed to replace sugars in popular beverages. To examine the impact of free sugars and the popular sweetener xylitol on metabolic profile and the markers of kidney function and injury after exercise the present study was conducted with semi-professional football players. All participants were healthy, with a mean age of 21.91 years. Their sports skills were on the level of the 4th-5th division of the league. The subjects took part in four football training sessions. During each session they drank a 7% solution of sugar (sucrose, fructose, glucose) or xylitol. The tolerability of these beverages and well-being during exercise was monitored. Before and after each training session, blood and urine were collected. The markers of kidney function and injury, uric acid, electrolytes, complete blood count, CRP, serum albumin, serum glucose and the lipid profile were analyzed. The main finding of this study was that the xylitol beverage is the least tolerated during exercise and 38.89% of participants experienced diarrhea after training and xylitol intake. Xylitol also led to unfavorable metabolic changes and a large increase in uric acid and creatinine levels. A mean increase of 1.8 mg/dl in the uric acid level was observed after xylitol intake. Increases in acute kidney injury markers were observed after all experiments, but changes in urine albumin and cystatin C were highest after xylitol. The other three beverages (containing “free sugars” - glucose, fructose and sucrose) had a similar impact on the variables studied, although the glucose solution seems to have some advantages over other beverages. The conclusion is that sweeteners are not a good alternative to sugars, especially during exercise. Pure water without sweeteners should be drunk by those who need to limit their calorie consumption. Clinical Trial Registration:ClinicalTrials.gov, (NCT04310514)
Collapse
Affiliation(s)
- Wojciech Wołyniec
- Division of Occupational, Metabolic and Internal Diseases, Medical University of Gdańsk, Gdańsk, Poland
- *Correspondence: Wojciech Wołyniec,
| | - Andrzej Szwarc
- Department of Sport Sciences, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Katarzyna Kasprowicz
- Faculty of Physical Education, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| | - Katarzyna Zorena
- Division of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Jaskulak
- Division of Immunobiology and Environmental Microbiology, Medical University of Gdańsk, Gdańsk, Poland
| | - Marcin Renke
- Division of Occupational, Metabolic and Internal Diseases, Medical University of Gdańsk, Gdańsk, Poland
| | - Marta Naczyk
- Laboratory of Nutritional Biochemistry, Department of Clinical Nutrition, Medical University of Gdańsk, Gdańsk, Poland
| | - Wojciech Ratkowski
- Department of Athletics, Gdańsk University of Physical Education and Sport, Gdańsk, Poland
| |
Collapse
|
3
|
Wilson T, Bendich A. Nutrition Guidelines for Improved Clinical Care. Med Clin North Am 2022; 106:819-836. [PMID: 36154702 PMCID: PMC9046061 DOI: 10.1016/j.mcna.2022.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Given the importance of poor nutrition as a cause for human chronic disease, it is surprising that nutrition receives so little attention during medical school training and in clinical practice. Specific vitamins, minerals, fatty acids, amino acids and water in the diet are essential for health, and deficiencies lead or contribute to many diseases. Proper use of the dietary guidelines and nutrition facts labeling can improve nutritional status and lead to the consumption of a healthy diet. COVID-19 has altered access to nutritious foods for millions and increased awareness of the importance of diet and immune function. An improved appreciation for nutrition will improve the outcomes of clinical care.
Collapse
Affiliation(s)
- Ted Wilson
- Department of Biology, Winona State University, Rm 232, Pasteur Hall, Winona, MN 55987, USA.
| | - Adrianne Bendich
- Springer/Nature Nutrition and Health Book Series Editor, retired, 8765 Via Brilliante Wellington, FL 33411, USA
| |
Collapse
|
5
|
Hafner E, Lavriša Ž, Hribar M, Krušič S, Kušar A, Žmitek K, Skrt M, Poklar Ulrih N, Pravst I. Verifying the Use of Food Labeling Data for Compiling Branded Food Databases: A Case Study of Sugars in Beverages. Front Nutr 2022; 9:794468. [PMID: 35187031 PMCID: PMC8850951 DOI: 10.3389/fnut.2022.794468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 01/10/2022] [Indexed: 11/18/2022] Open
Abstract
Branded food composition databases are an important tool for research, education, healthcare, and policy making, amongst others. Such databases are typically compiled using food labeling data without chemical analyses of specific products. This study aimed to verify whether the labeled sugar content in sugar-sweetened beverages (SSBs) corresponds to the actual sugar content in these products, thus enabling food monitoring studies to be conducted. A secondary objective was to determine the specific types of sugars in these SSBs. A case study was conducted using market share-driven sampling of these beverages from the Slovenian food supply. On the basis of nationwide yearly sales data, 51 best-selling products were sampled in 2020 and analyzed using high-performance liquid chromatography. This sales-driven approach to sampling has been shown to be very useful for conducting food monitoring studies. With the careful selection of a small proportion of available products, we finished with a manageable sample size, reflecting the composition of a majority (69%) of the national market share volume. The analyzed total sugar content was compared with labeled data, within the context of the European Union's regulatory labeling tolerances. In all samples, the sugar content was within the tolerance levels. The most common (N = 41) deviation was within ±10% of the labeled sugar content. In the subcategories, the differences between the analyzed and labeled median sugar contents were not statistically significant. Sucrose was most commonly (N = 36; 71%) used for sweetening, suggesting that the proportion of fructose in most SSBs was around 50%. A higher fructose content was only observed in beverages with fructose–glucose syrup or a higher content of fruit juice. The study results show that the labeled sugar content information in SSBs is reliable and can be used to compile branded food databases and monitor the nutritional quality of foods in the food supply.
Collapse
Affiliation(s)
- Edvina Hafner
- Nutrition and Public Health Research Group, Nutrition Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Živa Lavriša
- Nutrition and Public Health Research Group, Nutrition Institute, Ljubljana, Slovenia
| | - Maša Hribar
- Nutrition and Public Health Research Group, Nutrition Institute, Ljubljana, Slovenia
| | - Sanja Krušič
- Nutrition and Public Health Research Group, Nutrition Institute, Ljubljana, Slovenia
| | - Anita Kušar
- Nutrition and Public Health Research Group, Nutrition Institute, Ljubljana, Slovenia
| | - Katja Žmitek
- Nutrition and Public Health Research Group, Nutrition Institute, Ljubljana, Slovenia
- VIST–Faculty of Applied Sciences, Ljubljana, Slovenia
| | - Mihaela Skrt
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | | | - Igor Pravst
- Nutrition and Public Health Research Group, Nutrition Institute, Ljubljana, Slovenia
- Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
- VIST–Faculty of Applied Sciences, Ljubljana, Slovenia
- *Correspondence: Igor Pravst
| |
Collapse
|