1
|
Păcularu-Burada B, Cîrîc AI, Begea M. Anti-Aging Effects of Flavonoids from Plant Extracts. Foods 2024; 13:2441. [PMID: 39123632 PMCID: PMC11311508 DOI: 10.3390/foods13152441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Aging is a natural and irreversible process, affecting living organisms by negatively impacting the tissues' and cells' morphology and functionality and consequently being responsible for aging-related diseases. Taking into account the actual preoccupations of both consumers and researchers, healthy anti-aging alternatives are being intensively studied in order to address such concerns. Due to their functional features, plant flavonoids can be considered valuable nutraceuticals. This paper highlights the possibilities to use flavonoids extracted from various plants for their anti-aging potential on the skin, brain, and heart. Moreover, their anticarcinogenic, anti-inflammatory, and anti-diabetic properties are summarized, along with the senescence-associated mechanisms. Both the nutraceutical and cosmeceutical fields are continuously developing and flavonoids originating from plants are promising candidates to obtain such products. Thus, the bioactive compounds' extraction and their subsequent involvement in innovative product manufacturing must be carefully performed while being aware of the various intrinsic and extrinsic factors that may affect the phytochemicals' structures, bioavailability, and health effects.
Collapse
Affiliation(s)
- Bogdan Păcularu-Burada
- ICA Research & Development S.R.L., 202 Splaiul Independenței, 060021 Bucharest, Romania;
- Dan Voiculescu Foundation for the Development of Romania, 011885 Bucharest, Romania
| | - Alexandru-Ionuț Cîrîc
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania;
| | - Mihaela Begea
- Faculty of Biotechnical Systems Engineering, National University of Science and Technology Politehnica Bucharest, 313 Splaiul Independenței, 060042 Bucharest, Romania;
| |
Collapse
|
2
|
Sarkar T, Salauddin M, Roy S, Chakraborty R, Rebezov M, Shariati MA, Thiruvengadam M, Rengasamy KRR. Underutilized green leafy vegetables: frontier in fortified food development and nutrition. Crit Rev Food Sci Nutr 2023; 63:11679-11733. [PMID: 35816152 DOI: 10.1080/10408398.2022.2095555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
From the ancient period, Green leafy vegetables (GLV) are part of the daily diet and were believed to have several health beneficial properties. Later it has been proved that GLV has outstanding nutritional value and can be used for medicinal benefits. GLV is particularly rich in minerals like iron, calcium, and zinc. These are also rich in vitamins like beta carotene, vitamin E, K, B and vitamin C. In addition, some anti-nutritional elements in GLV can be reduced if it is grown properly and processed properly before consumption. Tropical countries have a wide variety of these green plants such as Red Spinach, Amaranth, Malabar Spinach, Taro Leaf, Fenugreek leaf, Bengal Gram Leaves, Radish Leaves, Mustard Leaves, and many more. This review focuses on listing this wide range of GLVs (in total 54 underutilized GLVs) and their compositions in a comparative manner. GLV also possesses medicinal activities due to its rich bioactive and nutritional potential. Different processing techniques may alter the nutritional and bioactive potential of the GLVs significantly. The GLVs have been considered a food fortification agent, though not explored widely. All of these findings suggest that increasing GLV consumption could provide nutritional requirements necessary for proper growth as well as adequate protection against diseases caused by malnutrition.
Collapse
Affiliation(s)
- Tanmay Sarkar
- Department of Food Processing Technology, Malda Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Molla Salauddin
- Department of Food Processing Technology, Mir Madan Mohanlal Government Polytechnic, West Bengal State Council of Technical Education, West Bengal, India
| | - Sarita Roy
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Runu Chakraborty
- Department of Food Processing and Biochemical Engineering, Jadavpur University, Kolkata, India
| | - Maksim Rebezov
- Department of Scientific Research, V. M. Gorbatov Federal Research Center for Food Systems, Moscow, Russia
| | - Mohammad Ali Shariati
- Department of Scientific Research, K.G. Razumovsky Moscow State University of technologies and management, The First Cossack University, Moscow, Russia
| | - Muthu Thiruvengadam
- Department of Crop Science, College of Sanghuh Life Science, Konkuk University, Seoul, South Korea
| | - Kannan R R Rengasamy
- Centre for Transdisciplinary Research, Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, India
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
3
|
Pioltelli E, Sartirana C, Copetta A, Brioschi M, Labra M, Guzzetti L. Vigna unguiculata L. Walp. Leaves as a Source of Phytochemicals of Dietary Interest: Optimization of Ultrasound-Assisted Extraction and Assessment of Traditional Consumer Habits. Chem Biodivers 2023; 20:e202300797. [PMID: 37751377 DOI: 10.1002/cbdv.202300797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 09/21/2023] [Accepted: 09/25/2023] [Indexed: 09/28/2023]
Abstract
Vigna unguiculata L. Walp. is an African crop spread worldwide mainly for pulses production. Despite being a neglected and under-utilized food, cowpea leaves are a rich source of phytochemicals and micronutrients. The aim of the work is to characterize the phytochemical composition of cowpea leaves by an optimized ultrasound-assisted extraction (USAE) and to compare raw and boiled leaves. A three-level factorial design (Box-Behnken) was employed for the optimization of the USAE considering three different parameters (% ethanol, drug-to-solvent ratio, and number of cycles). The optimized extracts were characterized by LC/MS/MS. Finally, leaves were boiled at 100 °C for 30 min to simulate traditional cooking procedures and compared to raw leaves. The best extraction condition was EtOH/H2 O 1 : 2 v/v, drug to solvent ratio 1 : 47 w/v, and 3 extraction cycles. The phytochemicals identified mainly belong to the family of phenolic acids, flavonoids, terpenoids, and alkaloids. Boiled leaves revealed a significant loss of most phytochemicals and a net decrease of their antioxidant activity compared to the raw ones. The results highlight the potential nutraceutical value of cowpea leaves whilst the impoverishment triggered by traditional consumer habits pushes the need to evaluate alternative cooking procedures helpful in the maintenance of their phytochemical properties.
Collapse
Affiliation(s)
- E Pioltelli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, U3 Building, 20126, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - C Sartirana
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, U3 Building, 20126, Milan, Italy
| | - A Copetta
- CREA Research Center for Vegetable and Ornamental Crops, 18038, Sanremo (IM), Italy
| | - M Brioschi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, U3 Building, 20126, Milan, Italy
| | - M Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, U3 Building, 20126, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| | - L Guzzetti
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza, 2, U3 Building, 20126, Milan, Italy
- NBFC, National Biodiversity Future Center, Palermo, 90133, Italy
| |
Collapse
|
4
|
Fioroni N, Mouquet-Rivier C, Meudec E, Cheynier V, Boudard F, Hemery Y, Laurent-Babot C. Antioxidant Capacity of Polar and Non-Polar Extracts of Four African Green Leafy Vegetables and Correlation with Polyphenol and Carotenoid Contents. Antioxidants (Basel) 2023; 12:1726. [PMID: 37760029 PMCID: PMC10525563 DOI: 10.3390/antiox12091726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/25/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
In sub-Saharan Africa, chronic malnutrition is often associated with intestinal inflammation and oxidative stress. African green leafy vegetables (GLVs), commonly consumed by these populations and rich in bioactive compounds, may improve the antioxidant status. The aim of this study was to measure the antioxidant capacity using complementary assays (DPPH, FRAP, ABTS, ORAC and NO scavenging) in polar and non-polar leaf extracts of four African GLVs, cassava (Manihot esculenta), roselle (Hibiscus sabdariffa), jute mallow (Corchorus olitorius), and amaranth (Amaranthus spp.), with spinach (Spinacia oleracea) chosen as a reference. Their antioxidant capacity was correlated with their total polyphenol (TPC), flavonoid (TFC), condensed tannin, lutein, and β-carotene contents. Identification of phenolic compounds by UHPLC-DAD-MS/MS revealed the presence of three main classes of compound: flavonols, flavones, and hydroxycinnamic acids. Cassava and roselle leaves presented significantly higher TPC and TFC than amaranth, jute mallow, and spinach. They also exhibited the highest antioxidant capacity, even higher than that of spinach, which is known for its important antioxidant effect. The antioxidant capacity was 2 to 18 times higher in polar than non-polar extracts, and was more strongly correlated with TPC and TFC (R > 0.8) than with β-carotene and lutein contents. These findings provide new data especially for cassava and roselle leaves, for which studies are scarce, suggesting an appreciable antioxidant capacity compared with other leafy vegetables.
Collapse
Affiliation(s)
- Nelly Fioroni
- UMR QualiSud, University of Montpellier, Avignon University, CIRAD, Institut Agro, IRD, University of La Réunion, 34090 Montpellier, France; (C.M.-R.); (F.B.); (Y.H.)
| | - Claire Mouquet-Rivier
- UMR QualiSud, University of Montpellier, Avignon University, CIRAD, Institut Agro, IRD, University of La Réunion, 34090 Montpellier, France; (C.M.-R.); (F.B.); (Y.H.)
| | - Emmanuelle Meudec
- SPO, INRAE, University of Montpellier, Institut Agro, 34060 Montpellier, France; (E.M.); (V.C.)
- INRAE, PROBE Research Infrastructure, Polyphenol Analytical Facility, 34060 Montpellier, France
| | - Véronique Cheynier
- SPO, INRAE, University of Montpellier, Institut Agro, 34060 Montpellier, France; (E.M.); (V.C.)
- INRAE, PROBE Research Infrastructure, Polyphenol Analytical Facility, 34060 Montpellier, France
| | - Frédéric Boudard
- UMR QualiSud, University of Montpellier, Avignon University, CIRAD, Institut Agro, IRD, University of La Réunion, 34090 Montpellier, France; (C.M.-R.); (F.B.); (Y.H.)
| | - Youna Hemery
- UMR QualiSud, University of Montpellier, Avignon University, CIRAD, Institut Agro, IRD, University of La Réunion, 34090 Montpellier, France; (C.M.-R.); (F.B.); (Y.H.)
| | - Caroline Laurent-Babot
- UMR QualiSud, University of Montpellier, Avignon University, CIRAD, Institut Agro, IRD, University of La Réunion, 34090 Montpellier, France; (C.M.-R.); (F.B.); (Y.H.)
| |
Collapse
|
5
|
Alara OR, Abdurahman NH, Ali HA. Optimization of microwave-enhanced extraction parameters to recover phenolic compounds and antioxidants from Corchorus olitorius leaves. CHEMICKE ZVESTI 2023; 77:1-17. [PMID: 37362792 PMCID: PMC10088688 DOI: 10.1007/s11696-023-02771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/04/2023] [Indexed: 06/28/2023]
Abstract
Vegetables are industrial crops endowed with both nutritional and medicinal values. The overwhelming contributions of vegetables to human living in the form of nutrients and medicine cannot be under emphasised. Thus, this study examined the recoveries of phenolic compounds and antioxidants from Corchorus olitorius leaves using a microwave-enhanced extraction technique. Furthermore, the phenolic compounds in the leaf extract of C. olitorius were comprehensively identified using liquid chromatography-mass spectrometry quadrupole of flight (LC-QToF-MS). At the optimized conditions of microwave-enhanced extraction (extraction time of 131 s, microwave power 305 W, solvent/sample ratio of 12 mL/g, and ethanol concentration of 50%), total phenolic content (TPC) of 343.098 ± 3.05 mg GAE/10 g d.b., IC50 values of 68.89 ± 1.08 and 29.76 ± 1.00 µg/mL for 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2'-azino-bis(3-ethylbenzothiazoline-6'-sulfonic acid) (ABTS) assays, respectively, were achieved. Furthermore, an aggregate of fourteen phenolic compounds that include 1-galloyl-glucose, 1,3,5-O-tricaffeoylquinic acid, procyanidin C-1, 4,4',5,6-tetrahydroxystilbene, 3,4,5-O-tricaffeoylquinic acid, 5-desgalloylstachyurin, sanguiin H-4, corilagin_1, 1-O-galloylpedunculagin, laevigatin A, pedunculagin, 2,4,6-tri-O-galloyl-β-D-glucose, 1,3,6-trigalloyl-β-D-glucose, and 1,2,3,6-tetra-O-galloyl-β-D-glucose was tentatively identified in the leaf extract of C. olitorius. In general, this study has established C. olitorius leaves as sources of phenolic compounds and natural antioxidants. Thus, the intake can continue to be promoted as a way forward in solving the problem of food insecurity. Supplementary Information The online version contains supplementary material available at 10.1007/s11696-023-02771-x.
Collapse
Affiliation(s)
- Oluwaseun Ruth Alara
- Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang Malaysia
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang Malaysia
| | - Nour Hamid Abdurahman
- Centre for Research in Advanced Fluid and Processes (Fluid Centre), Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang Malaysia
- Department of Chemical Engineering, College of Engineering, Universiti Malaysia Pahang, Lebuhraya Tun Razak, 26300 Gambang, Pahang Malaysia
| | - Hassan Alsaggaf Ali
- Eastern Unity Technology, Suite 01, 12th Floor Plaza, 138 Annex Hotel Maya, Jalan Ampang, 50450 Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Mokgalaboni K, Phoswa WN. Corchorus olitorius extract exhibit anti-hyperglycemic and anti-inflammatory properties in rodent models of obesity and diabetes mellitus. Front Nutr 2023; 10:1099880. [PMID: 37090773 PMCID: PMC10113448 DOI: 10.3389/fnut.2023.1099880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are chronic conditions with detrimental impacts on the overall health of individuals. Presently, the use of pharmacological agents in obesity and T2D offers limited benefits and pose side effects. This warrant studies on remedies that are less toxic and inexpensive while effective in ameliorating secondary complications in obesity and T2D. Plant-based remedies have been explored increasingly due to their remarkable properties and safety profile. We searched for pre-clinical evidence published from inception until 2023 on PubMed, Scopus, Google, and Semantic scholar on Corchorus olitorius (C. olitorius) in both obesity and T2D. Our focus was to understand the beneficial impact of this plant-based remedy on basic glycemic, lipid, inflammatory, and biomarkers of oxidative stress. The evidence gathered in this review suggests that C. olitorius treatment may significantly reduce blood glucose, body weight, total cholesterol, triglycerides, and low-density lipoprotein (LDL) in concomitant with increasing high-density lipoprotein-cholesterol (HDL-c) in rodent models of obesity and T2D. Interestingly, this effect was consistent with the reduction of malonaldehyde, superoxide dismutase and catalases, tumor necrosis factor-alpha, interleukins, and leptin. Some of the mechanisms by which C. olitorius reduces blood glucose levels is through stimulation of insulin secretion, increasing β-cell proliferation, thus promoting insulin sensitivity; the process which is mediated by ascorbic acid present in this plant. C. olitorius anti-hyperlipidemia is attributable to the content of ferulic acid found in this plant, which inhibits 3-Hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors and thus results in reduced synthesis of cholesterol and increased hepatic LDL-c receptor expression, respectively. The present review provides extensive knowledge and further highlights the potential benefits of C. olitorius on basic metabolic parameters, lipid profile, inflammation, and oxidative stress in rodent models of obesity and T2D.
Collapse
|
7
|
Ncube B, Dlamini B, Beswa D. Effect of Common Cooking and Drying Methods on Phytochemical and Antioxidant Properties of Corchorus olitorius Identified Using Liquid Chromatography-Mass Spectrometry (LC-MS). Molecules 2022; 27:molecules27249052. [PMID: 36558185 PMCID: PMC9785860 DOI: 10.3390/molecules27249052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/23/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, Corchorus olitorius leaves were subjected to different thermal treatments (blanching, boiling, drying, frying, and steaming) and analyzed, total phenolic content (TPC), total flavonoid content (TFC), and antioxidant activity. Furthermore, Fourier transform infrared spectroscopy (FTIR) was used to identify functional groups, while metabolites were identified with LC-MC. The TPC and antioxidant activity of C. olitorius were significantly (p < 0.05) increased by cooking and drying. The steam-cooked sample had the highest TPC (18.89 mg GAE/g) and TFC (78.42 mg QE/g). With ABTS, FRAP, and DPPH assays, the steam-cooked sample exhibited the highest antioxidant activity of 119.58, 167.31, and 122.23 µM TE/g, respectively. LC-MS identified forty-two (42) metabolites in C. olitorius that included phenolic acid derivatives, flavonoid derivatives, and amino acid derivatives. Overall, steaming appears to be the best cooking method, with respect to the retention of phytochemical compounds and antioxidant activity.
Collapse
|
8
|
Pagliari S, Cannavacciuolo C, Celano R, Carabetta S, Russo M, Labra M, Campone L. Valorisation, Green Extraction Development, and Metabolomic Analysis of Wild Artichoke By-Product Using Pressurised Liquid Extraction UPLC-HRMS and Multivariate Data Analysis. Molecules 2022; 27:7157. [PMID: 36363983 PMCID: PMC9656714 DOI: 10.3390/molecules27217157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 08/13/2023] Open
Abstract
Valorisation of food by-products has recently attracted considerable attention due to the opportunities to improve the economic and environmental sustainability of the food production chain. Large quantities of non-edible parts of the artichoke plant (Cynara cardunculus L.) comprising leaves, stems, roots, bracts, and seeds are discarded annually during industrial processing. These by-products contain many phytochemicals such as dietary fibres, phenolic acids, and flavonoids, whereby the most challenging issue concerns about the recovery of high-added value components from these by-products. The aim of this work is to develop a novel valorisation strategy for the sustainable utilisation of artichoke leaves' waste, combining green pressurised-liquid extraction (PLE), spectrophotometric assays and UPLC-HRMS phytochemical characterization, to obtain bioactive-rich extract with high antioxidant capacity. Multivariate analysis of the major selected metabolites was used to compare different solvent extraction used in PLE.
Collapse
Affiliation(s)
- Stefania Pagliari
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| | - Ciro Cannavacciuolo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| | - Rita Celano
- Department of Pharmacy, University of Salerno, Via Giovanni Paola II 132, Fisciano, 84084 Salerno, Italy
| | - Sonia Carabetta
- Safety and Sensoromic Laboratory (FoCuSS Lab), Department of Agriculture Science, Food Chemistry, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy
| | - Mariateresa Russo
- Safety and Sensoromic Laboratory (FoCuSS Lab), Department of Agriculture Science, Food Chemistry, University of Reggio Calabria, Via dell’Università 25, 89124 Reggio Calabria, Italy
| | - Massimo Labra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| | - Luca Campone
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza Della Scienza 2, 20126 Milano, Italy
| |
Collapse
|
9
|
A Comprehensive Review of C. capsularis and C. olitorious: A Source of Nutrition, Essential Phytoconstituents and Pharmacological Activities. Antioxidants (Basel) 2022; 11:antiox11071358. [PMID: 35883849 PMCID: PMC9311623 DOI: 10.3390/antiox11071358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/07/2022] [Accepted: 07/08/2022] [Indexed: 02/06/2023] Open
Abstract
Plant bioactive compounds have gained global significance in terms of both medicinal and economic ramifications due to being easily accessible and are believed to be effective with fewer side effects. Growing relevant clinical and scientific evidence has become an important criterion for accepting traditional health claims of medicinal plants and also supports the traditional uses of Corchorus as folk medicine. C. capsularis and C. olitorius have broad applications ranging from textile to biocomposite, and young leaves and shoots are used as healthy vegetables and have long been used as traditional remedies for fever, ascites, algesia, liver disorders, piles, and tumors in many cultures. This review systematically summarized and emphasized the nutritional attributes, mostly available bioactive compounds, and biological and potential pharmaceutical properties of C. capsularis and C. olitorius, disclosed to users and non-users. Results suggest that various phytochemicals such as cardiac glycosides, phenols, flavonoids, sterols, lipids, and fatty acids were found or analytically identified in different plant parts (leaf, stem, seed, and root), and many of them are responsible for pharmacological properties and their antitumor, anticancer, antioxidant, antinociceptive, anti-inflammatory, analgesic, antipyretic, antiviral, antibacterial, anticonvulsant, antidiabetic and antiobesity, and cardiovascular properties help to prevent and cure many chronic diseases. In addition to their use in traditional food and medicine, their leaves have also been developed for skin care products, and some other possible uses are described. From this review, it is clear that the isolated compounds of both species have great potential to prevent and treat various diseases and be used as functional foods. In conclusion, this comprehensive review establishes a significant reference base for future research into various medical and functional food applications.
Collapse
|
10
|
Sarker U, Lin YP, Oba S, Yoshioka Y, Hoshikawa K. Prospects and potentials of underutilized leafy Amaranths as vegetable use for health-promotion. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:104-123. [PMID: 35487123 DOI: 10.1016/j.plaphy.2022.04.011] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 03/31/2022] [Accepted: 04/09/2022] [Indexed: 05/23/2023]
Abstract
Climate change causes environmental variation worldwide, which is one of the most serious threats to global food security. In addition, more than 2 billion people in the world are reported to suffer from serious malnutrition, referred to as 'hidden hunger.' Dependence on only a few crops could lead to the loss of genetic diversity and high fragility of crop breeding in systems adapting to global scale climate change. The exploitation of underutilized species and genetic resources, referred to as orphan crops, could be a useful approach for resolving the issue of adaptability to environmental alteration, biodiversity preservation, and improvement of nutrient quality and quantity to ensure food security. Moreover, the use of these alternative crops will help to increase the human health benefits and the income of farmers in developing countries. In this review, we highlight the potential of orphan crops, especially amaranths, for use as vegetables and health-promoting nutritional components. This review highlights promising diversified sources of amaranth germplasms, their tolerance to abiotic stresses, and their nutritional, phytochemical, and antioxidant values for vegetable purposes. Betalains (betacyanins and betaxanthins), unique antioxidant components in amaranth vegetables, are also highlighted regarding their chemodiversity across amaranth germplasms and their stability and degradation. In addition, we discuss the physiological functions, antioxidant, antilipidemic, anticancer, and antimicrobial activities, as well as the biosynthesis pathway, molecular, biochemical, genetics, and genomic mechanisms of betalains in detail.
Collapse
Affiliation(s)
- Umakanta Sarker
- Department of Genetics and Plant Breeding, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, 1706, Bangladesh.
| | - Ya-Ping Lin
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan
| | - Shinya Oba
- Faculty of Applied Biological Science, Gifu University, Gifu, 501-1193, Japan
| | - Yosuke Yoshioka
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tennodai 1-1-1, Tsukuba, 305-8572, Ibaraki, Japan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan
| | - Ken Hoshikawa
- World Vegetable Center, P.O. Box 42, Shanhua, Tainan, 74199, Taiwan; Tsukuba-Plant Innovation Research Center, University of Tsukuba, Tsukuba, 305-8572, Japan; Biological Resources and Post-harvest Division, Japan International Research Center for Agricultural Sciences, Ohwashi 1-1, Tsukuba, Ibaraki, 305-8686, Japan.
| |
Collapse
|
11
|
Stiller A, Garrison K, Gurdyumov K, Kenner J, Yasmin F, Yates P, Song BH. From Fighting Critters to Saving Lives: Polyphenols in Plant Defense and Human Health. Int J Mol Sci 2021; 22:8995. [PMID: 34445697 PMCID: PMC8396434 DOI: 10.3390/ijms22168995] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/10/2021] [Accepted: 08/13/2021] [Indexed: 02/08/2023] Open
Abstract
Polyphenols, such as flavonoids and phenolic acids, are a group of specialized metabolites in plants that largely aid in plant defense by deterring biotic stressors and alleviating abiotic stress. Polyphenols offer a wide range of medical applications, acting as preventative and active treatments for diseases such as cancers and diabetes. Recently, researchers have proposed that polyphenols may contribute to certain applications aimed at tackling challenges related to the COVID-19 pandemic. Understanding the beneficial impacts of phytochemicals, such as polyphenols, could potentially help prepare society for future pandemics. Thus far, most reviews have focused on polyphenols in cancer prevention and treatment. This review aims to provide a comprehensive discussion on the critical roles that polyphenols play in both plant chemical defense and human health based on the most recent studies while highlighting prospective avenues for future research, as well as the implications for phytochemical-based applications in both agricultural and medical fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Bao-Hua Song
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA; (A.S.); (K.G.); (K.G.); (J.K.); (F.Y.); (P.Y.)
| |
Collapse
|