1
|
Shen YR, Cheng L, Zhang DF. TRPV1: A novel target for the therapy of diabetes and diabetic complications. Eur J Pharmacol 2024; 984:177021. [PMID: 39362389 DOI: 10.1016/j.ejphar.2024.177021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
BACKGROUND Diabetes mellitus is a chronic metabolic disease characterized by abnormally elevated blood glucose levels. Type II diabetes accounts for approximately 90% of all cases. Several drugs are available for hyperglycemia treatment. However, the current therapies for managing high blood glucose do not prevent or reverse the disease progression, which may result in complications and adverse effects, including diabetic neuropathy, retinopathy, and nephropathy. Hence, developing safer and more effective methods for lowering blood glucose levels is imperative. Transient receptor potential vanilloid-1 (TRPV1) is a significant member of the transient receptor potential family. It is present in numerous body tissues and organs and performs vital physiological functions. PURPOSE This review aimed to develop new targeted TRPV1 hypoglycemic drugs by systematically summarizing the mechanism of action of the TRPV1-based signaling pathway in preventing and treating diabetes and its complications. METHODS Literature searches were performed in the PubMed, Web of Science, Google Scholar, Medline, and Scopus databases for 10 years from 2013 to 2023. The search terms included "diabetes," "TRPV1," "diabetic complications," and "capsaicin." RESULTS TRPV1 is an essential potential target for treating diabetes mellitus and its complications. It reduces hepatic glucose production and food intake and promotes thermogenesis, metabolism, and insulin secretion. Activation of TRPV1 ameliorates diabetic nephropathy, retinopathy, myocardial infarction, vascular endothelial dysfunction, gastroparesis, and bladder dysfunction. Suppression of TRPV1 improves diabetes-related osteoporosis. However, the therapeutic effects of activating or suppressing TRPV1 may vary when treating diabetic neuropathy and periodontitis. CONCLUSION This review demonstrates that TRPV1 is a potential therapeutic target for diabetes and its complications. Additionally, it provides a theoretical basis for developing new hypoglycemic drugs that target TRPV1.
Collapse
Affiliation(s)
- Yu-Rong Shen
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Long Cheng
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| | - Dong-Fang Zhang
- Department of Pharmacognosy, School of Pharmacy, China Medical University, Shenyang 110122, China.
| |
Collapse
|
2
|
Maximiano TKE, Carneiro JA, Fattori V, Verri WA. TRPV1: Receptor structure, activation, modulation and role in neuro-immune interactions and pain. Cell Calcium 2024; 119:102870. [PMID: 38531262 DOI: 10.1016/j.ceca.2024.102870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/06/2024] [Accepted: 03/06/2024] [Indexed: 03/28/2024]
Abstract
In the 1990s, the identification of a non-selective ion channel, especially responsive to capsaicin, revolutionized the studies of somatosensation and pain that were to follow. The TRPV1 channel is expressed mainly in neuronal cells, more specifically, in sensory neurons responsible for the perception of noxious stimuli. However, its presence has also been detected in other non-neuronal cells, such as immune cells, β- pancreatic cells, muscle cells and adipocytes. Activation of the channel occurs in response to a wide range of stimuli, such as noxious heat, low pH, gasses, toxins, endocannabinoids, lipid-derived endovanilloid, and chemical agents, such as capsaicin and resiniferatoxin. This activation results in an influx of cations through the channel pore, especially calcium. Intracellular calcium triggers different responses in sensory neurons. Dephosphorylation of the TRPV1 channel leads to its desensitization, which disrupts its function, while its phosphorylation increases the channel's sensitization and contributes to the channel's rehabilitation after desensitization. Kinases, phosphoinositides, and calmodulin are the main signaling pathways responsible for the channel's regulation. Thus, in this review we provide an overview of TRPV1 discovery, its tissue expression as well as on the mechanisms by which TRPV1 activation (directly or indirectly) induces pain in different disease models.
Collapse
Affiliation(s)
- Thaila Kawane Euflazio Maximiano
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Jessica Aparecida Carneiro
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil
| | - Victor Fattori
- Vascular Biology Program, Department of Surgery, Boston Children's Hospital-Harvard Medical School, Karp Research Building, 300 Longwood Ave, 02115, Boston, Massachusetts, United States.
| | - Waldiceu A Verri
- Laboratory of Pain, Inflammation, Neuropathy, and Cancer, Department of Pathology, Center of Biological Sciences, Londrina State University, Londrina, Paraná, Brazil.
| |
Collapse
|
3
|
Wu F, Bu S, Wang H. Role of TRP Channels in Metabolism-Related Diseases. Int J Mol Sci 2024; 25:692. [PMID: 38255767 PMCID: PMC10815096 DOI: 10.3390/ijms25020692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/27/2023] [Accepted: 12/29/2023] [Indexed: 01/24/2024] Open
Abstract
Metabolic syndrome (MetS), with its high prevalence and significant impact on cardiovascular disease, poses a substantial threat to human health. The early identification of pathological abnormalities related to MetS and prevention of the risk of associated diseases is of paramount importance. Transient Receptor Potential (TRP) channels, a type of nonselective cation channel, are expressed in a variety of tissues and have been implicated in the onset and progression of numerous metabolism-related diseases. This study aims to review and discuss the expression and function of TRP channels in metabolism-related tissues and blood vessels, and to elucidate the interactions and mechanisms between TRP channels and metabolism-related diseases. A comprehensive literature search was conducted using keywords such as TRP channels, metabolic syndrome, pancreas, liver, oxidative stress, diabetes, hypertension, and atherosclerosis across various academic databases including PubMed, Google Scholar, Elsevier, Web of Science, and CNKI. Our review of the current research suggests that TRP channels may be involved in the development of metabolism-related diseases by regulating insulin secretion and release, lipid metabolism, vascular functional activity, oxidative stress, and inflammatory response. TRP channels, as nonselective cation channels, play pivotal roles in sensing various intra- and extracellular stimuli and regulating ion homeostasis by osmosis. They present potential new targets for the diagnosis or treatment of metabolism-related diseases.
Collapse
Affiliation(s)
| | | | - Hongmei Wang
- School of Medicine, Southeast University, Nanjing 210009, China; (F.W.); (S.B.)
| |
Collapse
|
4
|
Wang J, Kumar P, Engelmann C. Comprehensive insights into the multifaceted roles of the transient receptor potential vanilloid 1 channel in the digestive system. Life Sci 2023; 334:122207. [PMID: 37883862 DOI: 10.1016/j.lfs.2023.122207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/11/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
The transient receptor potential vanilloid (TRPV) channel, a family of calcium transporters comprising six distinct members (TRPV1-6), takes on a paramount role in maintaining intracellular Ca2+ homeostasis in mammalian cells. Notably, TRPV1, among its counterparts, has emerged as the subject of extensive scrutiny, owing to its pervasive presence in diverse cellular, tissue, and organ settings. This ubiquitous distribution underscores its fundamental involvement in the genesis of pain, making it a central focus in pain-related research. However, recent investigations have unveiled that TRPV1's functional significance transcends the realm of pain modulation, extending its influence to encompass a wide spectrum of physiological and pathological processes. The ambit of TRPV1's influence encompasses not only pain responses but also embraces the intricate domains of nervous system disorders, cancer metastasis, as well as afflictions pertaining to the skin and heart. Moreover, compelling evidence now demonstrates that TRPV1 also wields substantial sway in the domain of digestive diseases, further highlighting its versatility and far-reaching impact on human health. Therefore, this comprehensive review endeavors to delve into the multifaceted roles played by TRPV1 in the various organs constituting the digestive system.
Collapse
Affiliation(s)
- Juan Wang
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Pavitra Kumar
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany.
| | - Cornelius Engelmann
- Department of Hepatology and Gastroenterology, Charité-Universitätsmedizin Berlin, 13353 Berlin, Germany; Berlin Institute of Health (BIH), 10178 Berlin, Germany.
| |
Collapse
|
5
|
Li Q, Chang M, Lai R, Zhang H, Song L, Wang X, Guan B, Zhang J, Zhao L, Chen K, Wang A, Xu H. Potential benefits of spicy food consumption on cardiovascular outcomes in patients with diabetes: A cohort study of the China Kadoorie Biobank. Nutrition 2023; 112:112062. [PMID: 37236043 DOI: 10.1016/j.nut.2023.112062] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 03/16/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
OBJECTIVES Dietary capsaicin from spicy foods has potential benefits for those with cardiometabolic diseases (CMDs). However, there is no evidence linking spicy food consumption with cardiovascular outcomes in individuals with diabetes. The aim of this study was to explore the association between spicy food consumption and the incidence of major adverse cardiovascular events (MACEs) in individuals with diabetes from the CKB (China Kadoorie Biobank) study and to provide evidence-based dietary recommendations for those with CMDs. METHODS This prospective study enrolled 26 163 patients with diabetes without coronary heart disease, stroke, or cancer from the CKB study. Of the 26 163 patients enrolled, 17 326 never or rarely ate spicy food (non-spicy group), and 8837 ate spicy food ≥1 d/wk (spicy group). The primary outcomes were MACEs, including cardiac death, non-fatal myocardial infarction, and stroke. Cox proportional hazards models were used to estimate the hazard ratio (HR) of MACEs and their associated 95% confidence intervals (CIs). RESULTS During a median follow-up of 8.5 y, MACEs occurred in 5465 participants (20.9%), with 3820 (22%) and 1645 (18.6%) cases occurring in the non-spicy and spicy groups, respectively. Spicy food consumption was independently associated with a decreased tendency for MACEs, with an adjusted HR of 0.94 (95% CI, 0.89-1.00; P = 0.041). Subgroup analysis showed consistency in the results that the regular spicy eating groups were associated with significantly lower incidence of MACEs than the non-spicy group. There was no statistical difference in the incidence of MACEs among the three different spicy eating frequency groups. CONCLUSION This cohort study revealed that the consumption of spicy food was independently associated with a reduced incidence of adverse cardiovascular events in Chinese adults with diabetes, suggesting a beneficial effect on cardiovascular health. Further studies are needed to confirm the association between the consumption of different doses of spicy food and cardiovascular outcomes and the exact mechanism of action.
Collapse
Affiliation(s)
- Qiuyi Li
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Meiying Chang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Runmin Lai
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - He Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Luxia Song
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xinyi Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Baoyi Guan
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jie Zhang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Lin Zhao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Keji Chen
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Anlu Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China; Intensive care unit, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| | - Hao Xu
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
6
|
Szallasi A. Dietary Capsaicin: A Spicy Way to Improve Cardio-Metabolic Health? Biomolecules 2022; 12:biom12121783. [PMID: 36551210 PMCID: PMC9775666 DOI: 10.3390/biom12121783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/03/2022] Open
Abstract
Today's sedentary lifestyle with too much food and too little exercise has made metabolic syndrome a pandemic. Metabolic syndrome is a major risk factor for type-2 diabetes and cardiovascular disease. New knowledge of medical and nutraceutical intervention in the early stages of metabolic syndrome is central to prevent these deadly complications. People who eat chili pepper on a regular basis seem to stay healthier and live longer than those who do not. Animal experiments suggest a therapeutic potential for dietary capsaicin, the active principle in hot chili pepper, to reduce the risk of developing metabolic syndrome. This is an attractive theory since capsaicin has been a culinary staple for thousands of years, and is generally deemed safe when consumed in hedonically acceptable doses. The broad expression of the capsaicin receptor TRPV1 in metabolically active tissues lends experimental support to this theory. This review critically evaluates the available experimental and clinical evidence for and against dietary capsaicin being an effective dietary means to improve cardio-metabolic health. It comes to the conclusion that although a chili pepper-rich diet is associated with a reduced risk of dying due to cardiovascular disease, dietary capsaicin has no clear effect on blood glucose or lipid profiles. Therefore, the reduced mortality risk may reflect the beneficial action of digested capsaicin on gut microbiota.
Collapse
Affiliation(s)
- Arpad Szallasi
- Department of Pathology and Experimental Cancer Research, Semmelweis University, 1085 Budapest, Hungary
| |
Collapse
|
7
|
Lacerda JT, Gomes PRL, Zanetti G, Mezzalira N, Lima OG, de Assis LVM, Guler A, Castrucci AM, Moraes MN. Lack of TRPV1 Channel Modulates Mouse Gene Expression and Liver Proteome with Glucose Metabolism Changes. Int J Mol Sci 2022; 23:ijms23137014. [PMID: 35806020 PMCID: PMC9266899 DOI: 10.3390/ijms23137014] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 06/18/2022] [Accepted: 06/20/2022] [Indexed: 02/04/2023] Open
Abstract
To investigate the role of the transient receptor potential channel vanilloid type 1 (TRPV1) in hepatic glucose metabolism, we analyzed genes related to the clock system and glucose/lipid metabolism and performed glycogen measurements at ZT8 and ZT20 in the liver of C57Bl/6J (WT) and Trpv1 KO mice. To identify molecular clues associated with metabolic changes, we performed proteomics analysis at ZT8. Liver from Trpv1 KO mice exhibited reduced Per1 expression and increased Pparα, Pparγ, Glut2, G6pc1 (G6pase), Pck1 (Pepck), Akt, and Gsk3b expression at ZT8. Liver from Trpv1 KO mice also showed reduced glycogen storage at ZT8 but not at ZT20 and significant proteomics changes consistent with enhanced glycogenolysis, as well as increased gluconeogenesis and inflammatory features. The network propagation approach evidenced that the TRPV1 channel is an intrinsic component of the glucagon signaling pathway, and its loss seems to be associated with increased gluconeogenesis through PKA signaling. In this sense, the differentially identified kinases and phosphatases in WT and Trpv1 KO liver proteomes show that the PP2A phosphatase complex and PKA may be major players in glycogenolysis in Trpv1 KO mice.
Collapse
Affiliation(s)
- José Thalles Lacerda
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Patrícia R. L. Gomes
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
| | - Giovanna Zanetti
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Nathana Mezzalira
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Otoniel G. Lima
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
| | - Leonardo V. M. de Assis
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Institute of Neurobiology, University of Lübeck, 23562 Lübeck, Germany
| | - Ali Guler
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Ana Maria Castrucci
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Department of Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Maria Nathália Moraes
- Laboratory of Comparative Physiology of Pigmentation, Department of Physiology, Institute of Biosciences, University of São Paulo, São Paulo 05508-090, Brazil; (J.T.L.); (G.Z.); (N.M.); (O.G.L.); (L.V.M.d.A.); (A.M.C.)
- Laboratory of Neurobiology, Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of São Paulo, São Paulo 05508-000, Brazil;
- Correspondence:
| |
Collapse
|