1
|
Justil-Guerrero HJ, Arroyo-Acevedo JL, Rojas-Armas JP, García-Bustamante CO, Palomino-Pacheco M, Almonacid-Román RD, Calva Torres JW. Evaluation of Bioactive Compounds, Antioxidant Capacity, and Anti-Inflammatory Effects of Lipophilic and Hydrophilic Extracts of the Pericarp of Passiflora tripartita var. mollissima at Two Stages of Ripening. Molecules 2024; 29:4964. [PMID: 39459332 PMCID: PMC11510094 DOI: 10.3390/molecules29204964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic disease inflammation requires safe complementary treatments. The pericarp of Passiflora tripartita var. mollissima (PTM) contains potential anti-inflammatory metabolites. This study aimed to evaluate the bioactive components, antioxidant capacity, and anti-inflammatory effects of PTM extracts at two ripening stages. The bioactive compounds in the hydrophilic and lipophilic extracts of mature and green pericarps were identified by GC-MS and UV-VIS, while the antioxidant capacity was measured by free radical reduction. Anti-inflammatory effects were tested using a rat paw edema model with carrageenan-induced edema, indomethacin, or PTM extracts (100, 250, and 500 mg/kg). The effect of mature hydrophilic extract was further evaluated in an air pouch model, where rats received the placebo, carrageenan, indomethacin, or the extract (500 and 1000 mg/kg). Leukocytes, cytokines, and markers of oxidative stress were evaluated. The results showed the presence of organic compounds, total phenols, and flavonoids. The mature hydrophilic extract exhibited the highest antioxidant activity. At 500 mg/kg, it reduced edema, leukocyte migration, and levels of IL-1β, IL-6, and TNF-α while managing oxidative stress and preventing histological damage. In conclusion, PTM contains bioactive compounds with potential pharmacological properties. The hydrophilic extract of the mature pericarp, at a dose of 500 mg/kg, exhibits an enhanced antioxidant and anti-inflammatory effect.
Collapse
Affiliation(s)
- Hugo Jesús Justil-Guerrero
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Jorge Luis Arroyo-Acevedo
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Juan Pedro Rojas-Armas
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Carlos Orlando García-Bustamante
- Laboratory of Pharmacology, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Av. Miguel Grau 755, Lima 15001, Peru; (J.L.A.-A.); (J.P.R.-A.); (C.O.G.-B.)
| | - Miriam Palomino-Pacheco
- Laboratory of Biochemistry, Faculty of Medicine, Universidad Nacional Mayor de San Marcos, Lima 15001, Peru;
| | - Robert Dante Almonacid-Román
- Laboratory of Microbiology, Faculty of Pharmacy and Biochemistry, Universidad Nacional Mayor de San Marcos, Jr. Huanta 1182, Lima 15001, Peru;
| | - James Willan Calva Torres
- Departamento de Química, Universidad Técnica Particular de Loja, San Cayetano Alto s/n, Loja 1101608, Ecuador;
| |
Collapse
|
2
|
Schleiff M, Chen J, Yang J, Sommers C, Shen X, Rodriguez J, Keire D, Shu Q. An isocratic HPLC-UV analytical procedure for assessment of glutathione and its related substances. J Pharm Biomed Anal 2024; 249:116374. [PMID: 39068812 DOI: 10.1016/j.jpba.2024.116374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/01/2024] [Accepted: 07/19/2024] [Indexed: 07/30/2024]
Abstract
Reduced glutathione (GSH) is an endogenous tripeptide antioxidant which plays a crucial role in a variety of physiological and pathological activities. Although GSH is not present in any FDA-approved drug product, GSH dietary supplement products and compounded GSH drugs are available to patients in the US. Several incidents of toxicity have occurred in recent years due to endotoxin or otherwise contaminated GSH in compounded drugs. Efficient and sensitive analytical methods are needed for assessing and ensuring the quality of GSH substance and associated drug or dietary supplement products. Impurities A (L-cysteinylglycine), B (cysteine), C (oxidized L-glutathione) and D (γ-L-glutamyl-L-cysteine) are the main related impurities for GSH drug substance which have been detected and quantified by capillary electrophoresis and qNMR analytical procedures. However, there are no reported HPLC methods for detecting or quantifying the three main related impurities A, B and D even though numerous HPLC analytical methods have been reported for analyzing GSH and impurity C. In this report, an isocratic HPLC-UV analytical procedure was developed and validated for separating and identifying GSH and related impurities A-D as well as a newly identified degradant, L-pyroglutamic acid (pGlu), within 10 minutes with resolution (RS) more than 3. The LOD and LOQ were determined to be 0.02 % w/w and 0.05 % w/w, respectively, for impurities A-D and pGlu. Importantly, the optimized HPLC analytical procedure for GSH assay does not have interference from impurities A, B and D, providing highly specific results compared to the commonly used iodine titration method. The newly validated analytical procedure was applied to assess different commercial GSH bulk substance samples. The results suggest that the analytical procedure described in this work is suitable for quality assessment of GSH samples.
Collapse
Affiliation(s)
- Mary Schleiff
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States
| | - Jingfan Chen
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States
| | - Jingyue Yang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States
| | - Cynthia Sommers
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States
| | - Xiaohui Shen
- Office of Compounding Quality and Compliance, Office of Compliance, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, United States
| | - Jason Rodriguez
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States
| | - David Keire
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States
| | - Qin Shu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, United States.
| |
Collapse
|
3
|
Albalawi AS, Alkhamali A, El-Wekil MM, Ali R. A ratiometric fluorescence nanosensor for glutathione detection based on spatially confined dual-emission of α-lipoic acid-modified gold nanoclusters and silicon nanoparticles. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024. [PMID: 39397654 DOI: 10.1039/d4ay01525h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
The development of dual-emission ratiometric fluorescent probes with aggregation-induced emission enhancement (AIEE) overcomes the limitations of gold nanocluster (Au NC)-based probes, particularly their weak intrinsic fluorescence, in real-world applications. These AIEE probes also exhibit superior detection limits and enhanced sensitivity. A novel combination for the reliable fluorometric detection of glutathione (GSH) was proposed, utilizing aggregation-induced emission enhancement (AIEE) facilitated by electrostatic interaction and spatial confinement. The probe consists of a ratiometric combination of negatively charged α-lipoic acid-modified Au NCs (LA@Au NCs) and positively charged silicon nanoparticles (SiNPs). The addition of SiNPs causes aggregation of LA@Au NCs, enhancing the fluorescence of LA@Au NCs through the AIE effect under electrostatic interaction and spatial confinement. The addition of Cu2+ quenched the emission of LA@Au NCs as a result of charge transfer. The fluorescence emissions of LA@Au NCs were restored upon the addition of GSH due to the interaction between GSH and Cu2+. Simultaneously, the emission signal of SiNPs remains unchanged, serving as an internal reference signal during GSH measurement. It was found that the fluorescence ratio (F680/F465) is directly proportional to the concentration of GSH in the range of 0.05-100 μM, with a detection limit of 1.7 nM (S/N = 3). The proposed system was applied to detect GSH in real samples, including dietary supplements, human serum, and saliva samples. This work opens new avenues for constructing novel sensors based on AIEE for detecting biomolecules.
Collapse
Affiliation(s)
- Abdullah S Albalawi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Alanoud Alkhamali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| | - Mohamed M El-Wekil
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Assiut University, Assiut, 71526, Egypt.
| | - Ramadan Ali
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia.
| |
Collapse
|
4
|
Chen Y, Gao Y, Yin J. Ascorbic Acid Enhances the Inhibitory Effect of Theasaponins against Candida albicans. Int J Mol Sci 2024; 25:10661. [PMID: 39408989 PMCID: PMC11476360 DOI: 10.3390/ijms251910661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
Candida albicans (C. albicans) is a main cause of hospital-acquired fungal infections. Combination therapy is promising as a novel anti-C. albicans strategy because of its better efficacy. Theasaponins are pentacyclic triterpenes in the Camellia genus with multiple biological activities. Our previous studies prove that theasaponins display inhibitory activity against C. albicans. Ascorbic acid (VC) is a vitamin found in many plants that shows potential in combination therapy. However, whether VC enhances the activity of theasaponins remains unclear. In this study, the checkerboard micro-dilution method was used to assess the effect of VC (0-80 mmol/L) on the anti-C. albicans effect of theasaponins (0-1000 μg/mL). Then, the effects of theasaponins (31.25 μg/mL), VC (80 mmol/L), and theasaponins (31.25 μg/mL) + VC (80 mmol/L) on C. albicans planktonic cells and different stages of biofilm formation were assessed. Transcriptomic analysis was conducted to investigate the molecular mechanisms. According to the results, VC enhanced the anti-planktonic and anti-biofilm effect of theasaponins against C. albicans. The minimum inhibitory concentration of theasaponins was significantly decreased and the fungicidal efficiency was increased with the addition of VC. VC remarkably aggravated the suppression of theasaponins with regard to various virulence factors of C. albicans, including adhesion, early biofilm formation, mature biofilm, cell surface hydrophobicity, and phospholipase activity. Compared with the theasaponins or VC groups, the level of intracellular reactive oxygen species was higher, while the levels of mitochondrial membrane potential and adenosine triphosphate were lower in the combination group, suggesting more severe oxidative stress, mitochondrial injury, and energy deficiency. Transcriptomic analysis revealed that the combination predominantly suppressed the pathways of glycolysis, glycerophospholipid metabolism, glutathione metabolism, and cysteine and methionine metabolism. This implied that energy deficiency and redox imbalance were associated with the anti-C. albicans activity of the combination. These results prove that VC enhances the inhibitory effect of theasaponins against C. albicans and that the combination has the potential to be used as a topical antifungal therapy or disinfectant.
Collapse
Affiliation(s)
- Yuhong Chen
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
- Tea Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ying Gao
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| | - Junfeng Yin
- Key Laboratory of Tea Biology and Resources Utilization, Tea Research Institute, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, 9 South Meiling Road, Hangzhou 310008, China;
| |
Collapse
|
5
|
Amenta A, Comi S, Kravicz M, Sesana S, Antoniou A, Passarella D, Seneci P, Pellegrino S, Re F. A novel, glutathione-activated prodrug of pimasertib loaded in liposomes for targeted cancer therapy. RSC Med Chem 2024:d4md00517a. [PMID: 39430954 PMCID: PMC11485093 DOI: 10.1039/d4md00517a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Pimasertib, a potent antiproliferative drug, has been extensively studied for treating cancers characterized by dysregulation in the ERK/MAPK signaling pathway, such as melanoma. However, its therapeutic efficacy would greatly benefit from an increased selectivity for tumour cells and a longer half-life. Such improvements may be achieved by combining the rational design of a prodrug with its encapsulation in a potential nanodelivery system. For this reason, we synthesized a glutathione (GSH)-responsive putative prodrug of pimasertib (PROPIMA), which contains a redox-sensitive disulphide linker that can be processed by GSH to activate pimasertib. The synthesis of PROPIMA and its in vitro biological activity on a human melanoma cell line as a model are described. The results showed that PROPIMA, either free or embedded in liposomes, selectively inhibits cell proliferation and cell viability, reducing by about 5-fold the levels of pERK. Additionally, PROPIMA shows stronger inhibition of the cancer cell migration than the parent drug.
Collapse
Affiliation(s)
- Arianna Amenta
- Department of Chemistry, University of Milan Milan Italy
| | - Susanna Comi
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Marcelo Kravicz
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Silvia Sesana
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| | - Antonia Antoniou
- Department of Pharmaceutical Sciences, University of Milan Milan Italy
| | | | | | - Sara Pellegrino
- Department of Pharmaceutical Sciences, University of Milan Milan Italy
| | - Francesca Re
- School of Medicine and Surgery, University of Milano-Bicocca Monza Italy
| |
Collapse
|
6
|
Yutani R, Venketaraman V, Sheren N. Treatment of Acute and Long-COVID, Diabetes, Myocardial Infarction, and Alzheimer's Disease: The Potential Role of a Novel Nano-Compound-The Transdermal Glutathione-Cyclodextrin Complex. Antioxidants (Basel) 2024; 13:1106. [PMID: 39334765 PMCID: PMC11429141 DOI: 10.3390/antiox13091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Oxidative stress (OS) occurs from excessive reactive oxygen species or a deficiency of antioxidants-primarily endogenous glutathione (GSH). There are many illnesses, from acute and post-COVID-19, diabetes, myocardial infarction to Alzheimer's disease, that are associated with OS. These dissimilar illnesses are, in order, viral infections, metabolic disorders, ischemic events, and neurodegenerative disorders. Evidence is presented that in many illnesses, (1) OS is an early initiator and significant promotor of their progressive pathophysiologic processes, (2) early reduction of OS may prevent later serious and irreversible complications, (3) GSH deficiency is associated with OS, (4) GSH can likely reduce OS and restore adaptive physiology, (5) effective administration of GSH can be accomplished with a novel nano-product, the GSH/cyclodextrin (GC) complex. OS is an overlooked pathological process of many illnesses. Significantly, with the GSH/cyclodextrin (GC) complex, therapeutic administration of GSH is now available to reduce OS. Finally, rigorous prospective studies are needed to confirm the efficacy of this therapeutic approach.
Collapse
Affiliation(s)
- Ray Yutani
- Department of Family Medicine, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- Department of Basic Medical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Nisar Sheren
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
7
|
Qin J, Wang C, Zhou X. Glutathione regulates CIA-activated splenic-lymphocytes via NF-κB/MMP-9 and MAPK/PCNA pathways manipulating immune response. Cell Immunol 2024; 405-406:104866. [PMID: 39250860 DOI: 10.1016/j.cellimm.2024.104866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/02/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024]
Abstract
Reduced glutathione (GSH) is an antioxidant involved in redox homeostasis, and recently regarded as an inducer of Reductive stress. Its immune-regulatory effects on lymphocytes have not been extensively studied. This study is based on the finding that much increased GSH level in collagen-induced arthritis (CIA) rat spleen, and aimed to investigate the effects of GSH (0, 1, 10, 100 mM) on normal and immune-stimulated spleen lymphocytes respectively. The elevated GSH level is associated with the increased levels of inflammatory factors; especially the increased DPP1 activity indicated immune-granulocytes activation in CIA rat spleen. Exogenous GSH had different influences on normal and CIA lymphocytes, affecting intracellular levels of GSH, Glutathione-S-transferases (GSTs) and Reactive oxygen species (ROS); as well as the expressions of NF-κB, MMP-9, Bcl-2, GST, P38, PCNA and TLR4. The increased extracellular GSH level disturbed redox homeostasis and induces reductive stress to spleen lymphocytes, which decreased intracellular GSH concentration and influenced the MAPK/PCNA and NF-κB/MMP-9 signaling pathways, as well as cell cycles respectively, leading to cell senescence/ferroptosis/apoptosis. This study also revealed the multiple faces of GSH in regulating spleen lymphocytes, which depended on its levels in tissue or in cells, and the activation status of lymphocytes. These findings indicate the immune-regulatory role of GSH on spleen-lymphocytes, and the high level GSH in CIA rat spleens may contribute to CIA development.
Collapse
Affiliation(s)
- Jingying Qin
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Cheli Wang
- School of Pharmacy, Changzhou University, Jiangsu 213164, China
| | - Xiaoying Zhou
- School of Pharmacy, Changzhou University, Jiangsu 213164, China.
| |
Collapse
|
8
|
Zhang M, Li J, Hu W. The complex interplay between ferroptosis and atherosclerosis. Biomed Pharmacother 2024; 178:117183. [PMID: 39079265 DOI: 10.1016/j.biopha.2024.117183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/25/2024] Open
Abstract
Atherosclerosis, characterized by the accumulation of plaque within the arterial walls, is an intricate cardiovascular disease that often results in severe health issues. Recent studies have emphasized the importance of ferroptosis, a controlled type of cell death dependent on iron, as a critical factor in this disease state. Ferroptosis, distinguished by its reliance on iron and the accumulation of lipid hydroperoxides, offers a unique insight into the pathology of atherosclerotic lesions. This summary encapsulates the current knowledge of the intricate role ferroptosis plays in the onset and progression of atherosclerosis. It explores the molecular processes through which lipid peroxidation and iron metabolism contribute to the development of atheromatous plaques and evaluates the possibility of utilizing ferroptosis as a novel treatment approach for atherosclerosis. By illuminating the intricate relationship between ferroptosis-related processes and atherosclerosis, this review paves the way for future clinical applications and personalized medicine approaches aimed at alleviating the effects of atherosclerosis.
Collapse
Affiliation(s)
- Mao Zhang
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jiangping Li
- Department of Oncological Radiotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Hu
- Department of Vascular Surgery, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.
| |
Collapse
|
9
|
Zhang LY, Chu YH, You YF, Dong MH, Pang XW, Chen L, Zhu LF, Yang S, Zhou LQ, Shang K, Deng G, Xiao J, Wang W, Qin C, Tian DS. Systematic Druggable Genome-Wide Mendelian Randomization Identifies Therapeutic Targets for Functional Outcome After Ischemic Stroke. J Am Heart Assoc 2024; 13:e034749. [PMID: 39119979 DOI: 10.1161/jaha.124.034749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 07/15/2024] [Indexed: 08/10/2024]
Abstract
BACKGROUND Stroke is a leading cause of death worldwide, with a lack of effective treatments for improving the prognosis. The aim of the present study was to identify novel therapeutic targets for functional outcome after ischemic stroke . METHODS AND RESULTS Cis-expression quantitative trait loci data for druggable genes were used as instrumental variables. The primary outcome was the modified Rankin Scale score at 3 months after ischemic stroke, evaluated as a dichotomous variable (3-6 versus 0-2) and also as an ordinal variable. Drug target Mendelian randomization, Steiger filtering analysis, and colocalization analysis were performed. Additionally, phenome-wide Mendelian randomization analysis was performed to identify the safety of the drug target genes at the genetic level. Among >2600 druggable genes, genetically predicted expression of 16 genes (ABCC2, ATRAID, BLK, CD93, CHST13, NR1H3, NRBP1, PI3, RIPK4, SEMG1, SLC22A4, SLC22A5, SLCO3A1, TEK, TLR4, and WNT10B) demonstrated the causal associations with ordinal modified Rankin Scale (P<1.892×10-5) or poor functional outcome (modified Rankin Scale 3-6 versus 0-2, P<1.893×10-5). Steiger filtering analysis suggested potential directional stability (P<0.05). Colocalization analysis provided further support for the associations between genetically predicted expression of ABCC2, NRBP1, PI3, and SEMG1 with functional outcome after ischemic stroke. Furthermore, phenome-wide Mendelian randomization revealed additional beneficial indications and few potential safety concerns of therapeutics targeting ABCC2, NRBP1, PI3, and SEMG1, but the robustness of these results was limited by low power. CONCLUSIONS The present study revealed 4 candidate therapeutic targets for improving functional outcome after ischemic stroke, while the underlying mechanisms need further investigation.
Collapse
Affiliation(s)
- Lu-Yang Zhang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yun-Hui Chu
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Yun-Fan You
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ming-Hao Dong
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Xiao-Wei Pang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Lian Chen
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Li-Fang Zhu
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Sheng Yang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Luo-Qi Zhou
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Ke Shang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Gang Deng
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Jun Xiao
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Wei Wang
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Chuan Qin
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| | - Dai-Shi Tian
- Department of Neurology, Tongji Hospital, Tongji Medical College Huazhong University of Science and Technology Wuhan China
- Hubei Key Laboratory of Neural Injury and Functional Reconstruction Huazhong University of Science and Technology Wuhan China
- Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College Huazhong University of Science and Technology Wuhan China
| |
Collapse
|
10
|
Lu J, Zhang L, Zhang J, Sun Y, Wang H, Wang W, Wang K, Qin L, Jia J. Oxidative stress plays an important role in the central regulatory mechanism of orofacial hyperalgesia under low estrogen conditions. Behav Brain Res 2024; 469:115047. [PMID: 38759799 DOI: 10.1016/j.bbr.2024.115047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
Hyperalgesia occurs in the orofacial region of rats when estrogen levels are low, although the specific mechanism needs to be investigated further. Furthermore, oxidative stress plays an important role in the transmission of pain signals. This study aimed to explore the role of oxidative stress in orofacial hyperalgesia under low estrogen conditions. We firstly found an imbalance between oxidative and antioxidant capacity within the spinal trigeminal subnucleus caudalis (SP5C) of rats after ovariectomy (OVX), resulting in oxidative stress and then a decrease in the orofacial pain threshold. To investigate the mechanism by which oxidative stress occurs, we used virus as a tool to silence or overexpress the excitatory amino acid transporter 3 (EAAT3) gene. Further investigation revealed that the regulation of glutathione (GSH) and reactive oxygen species (ROS) can be achieved by regulating EAAT3, which in turn impacts the occurrence of oxidative stress. In summary, our findings suggest that reduced expression of EAAT3 within the SP5C of rats in the low estrogen state may decrease GSH content and increase ROS levels, resulting in oxidative stress and ultimately lead to orofacial hyperalgesia. This suggests that antioxidants could be a potential therapeutic direction for orofacial hyperalgesia under low estrogen conditions, though more research is needed to understand its mechanism.
Collapse
Affiliation(s)
- Jiali Lu
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Linqian Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China
| | - Jinglin Zhang
- Yuncheng Vocational Nursing College, Yuncheng, China
| | - Yanrong Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hanfei Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenjuan Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Ke Wang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Lihua Qin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.
| | - Jing Jia
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, China; Department of Stomatology, The Third Medical Center, Chinese PLA (People's Liberation Army) General Hospital, Beijing, China.
| |
Collapse
|
11
|
Haddad MJ, Zuluaga-Arango J, Mathieu H, Barbezier N, Anton PM. Intestinal Epithelial Co-Culture Sensitivity to Pro-Inflammatory Stimuli and Polyphenols Is Medium-Independent. Int J Mol Sci 2024; 25:7360. [PMID: 39000465 PMCID: PMC11242137 DOI: 10.3390/ijms25137360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/23/2024] [Accepted: 07/02/2024] [Indexed: 07/16/2024] Open
Abstract
The complexification of in vitro models requires the compatibility of cells with the same medium. Since immune cells are the most sensitive to growth conditions, growing intestinal epithelial cells in their usual medium seems to be necessary. This work was aimed at comparing the sensitivity of these epithelial cells to pro-inflammatory stimuli but also to dietary polyphenols in both DMEM and RPMI-1640 media. Co-cultures of Caco-2 and HT29-MTX cells were grown for 21 days in the two media before their stimulation with a cocktail of TNF-α (20 ng/mL), IL-1β (1 ng/mL), and IFN-γ (10 ng/mL) or with LPS (10 ng/mL) from E. coli (O111:B4). The role of catechins (15 µM), a dietary polyphenol, was evaluated after its incubation with the cells before their stimulation for 6 h. The RPMI-1640 medium did not alter the intensity of the inflammatory response observed with the cytokines. By contrast, LPS failed to stimulate the co-culture in inserts regardless of the medium used. Lastly, catechins were unable to prevent the pro-inflammatory response observed with the cytokines in the two media. The preservation of the response of this model of intestinal epithelium in RPMI-1640 medium is promising when considering its complexification to evaluate the complex cellular crosstalk leading to intestinal homeostasis.
Collapse
Affiliation(s)
- Michelle J Haddad
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
- HCS Pharma, 59120 Loos, France
| | - Juanita Zuluaga-Arango
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| | - Hugo Mathieu
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| | - Nicolas Barbezier
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| | - Pauline M Anton
- Transformations et Agroressources, ULR 7519, Institut Polytechnique UniLaSalle, Université d'Artois, 60000 Beauvais, France
| |
Collapse
|
12
|
Kathirvel B, AlSalhi MS, Ha HA, Nguyen-Thi TH. Anti-inflammatory, anti-diabetic, and biocompatibility properties of aqueous extract of Tamarindus indica L. fruit coat analyses by in-vitro and in-vivo approaches. ENVIRONMENTAL RESEARCH 2024; 251:118702. [PMID: 38503381 DOI: 10.1016/j.envres.2024.118702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/21/2024]
Abstract
The anti-inflammatory, anti-diabetic, and biocompatibility nature of Tamarindus indica L. fruit coat aqueous extract were investigated in this research through in-vitro and in-vivo studies. The anti-inflammatory property was determined through albumin denaturation inhibition and antiprotease activities as up to 39.5% and 41.2% respectively at 30 mg mL-1 concentration. Furthermore, the antidiabetic activity was determined through α-amylase and α-glucosidase inhibition as up to 62.15% and 67.35% respectively at 30 mg mL-1 dosage. The albino mice based acute toxicity study was performed by different treatment groups (group I-V) with different dosages of aqueous extract to detect the biocompatibility of sample. Surprisingly, findings revealed that the T. indica L. fruit coat aqueous extract had no harmful impacts on any of the groups. Urine, as well as serum parameter analysis, confirmed this. Moreover, the findings of SOD (Superoxide Dismutase), GST (Glutathione-S-transferase), & CAT (Catalase) as well as glutathione peroxidase as well as reduced glutathione antioxidant enzymes studies stated that the aqueous extract possess high antioxidant ability via a dose-dependent way. These findings indicate that T. indica fruit coat aqueous extract contains medicinally important phytochemicals with anti-inflammatory and anti-diabetic properties, as well as being biocompatible in nature.
Collapse
Affiliation(s)
- Brindhadevi Kathirvel
- University Centre for Research & Development, Department of Chemistry, Chandigarh University, Mohali, 140103, India
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box: 2455, Riyadh, 11451, Saudi Arabia
| | - Hai-Anh Ha
- Faculty of Pharmacy, Duy Tan University, Da Nang, 550000, Vietnam
| | | |
Collapse
|
13
|
Brodzka S, Baszyński J, Rektor K, Hołderna-Bona K, Stanek E, Kurhaluk N, Tkaczenko H, Malukiewicz G, Woźniak A, Kamiński P. Immunogenetic and Environmental Factors in Age-Related Macular Disease. Int J Mol Sci 2024; 25:6567. [PMID: 38928273 PMCID: PMC11203563 DOI: 10.3390/ijms25126567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 06/10/2024] [Indexed: 06/28/2024] Open
Abstract
Age-related macular degeneration (AMD) is a chronic disease, which often develops in older people, but this is not the rule. AMD pathogenesis changes include the anatomical and functional complex. As a result of damage, it occurs, in the retina and macula, among other areas. These changes may lead to partial or total loss of vision. This disease can occur in two clinical forms, i.e., dry (progression is slowly and gradually) and exudative (wet, progression is acute and severe), which usually started as dry form. A coexistence of both forms is possible. AMD etiology is not fully understood. Extensive genetic studies have shown that this disease is multifactorial and that genetic determinants, along with environmental and metabolic-functional factors, are important risk factors. This article reviews the impact of heavy metals, macro- and microelements, and genetic factors on the development of AMD. We present the current state of knowledge about the influence of environmental factors and genetic determinants on the progression of AMD in the confrontation with our own research conducted on the Polish population from Kuyavian-Pomeranian and Lubusz Regions. Our research is concentrated on showing how polluted environments of large agglomerations affects the development of AMD. In addition to confirming heavy metal accumulation, the growth of risk of acute phase factors and polymorphism in the genetic material in AMD development, it will also help in the detection of new markers of this disease. This will lead to a better understanding of the etiology of AMD and will help to establish prevention and early treatment.
Collapse
Affiliation(s)
- Sylwia Brodzka
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Jędrzej Baszyński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Katarzyna Rektor
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| | - Karolina Hołderna-Bona
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Emilia Stanek
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
| | - Natalia Kurhaluk
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Halina Tkaczenko
- Institute of Biology, Pomeranian University in Słupsk, Arciszewski St. 22 B, PL 76-200 Słupsk, Poland; (N.K.); (H.T.)
| | - Grażyna Malukiewicz
- Department of Eye Diseases, University Hospital No. 1, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-092 Bydgoszcz, Poland;
| | - Alina Woźniak
- Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Karłowicz St. 24, PL 85-092 Bydgoszcz, Poland;
| | - Piotr Kamiński
- Division of Ecology and Environmental Protection, Department of Medical Biology and Biochemistry, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, M. Skłodowska-Curie St. 9, PL 85-094 Bydgoszcz, Poland; (S.B.); (J.B.); (K.H.-B.); (E.S.)
- Department of Biotechnology, Institute of Biological Sciences, Faculty of Biological Sciences, University of Zielona Góra, Prof. Z. Szafran St. 1, PL 65-516 Zielona Góra, Poland;
| |
Collapse
|
14
|
Moosavian H, Gholikhani M, Tamai IA, Fazli M. Moderate to advanced periodontitis contributes to increased oxidative stress in cats: a case-control study. BMC Vet Res 2024; 20:248. [PMID: 38849865 PMCID: PMC11157746 DOI: 10.1186/s12917-024-04110-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 06/03/2024] [Indexed: 06/09/2024] Open
Abstract
BACKGROUND Periodontal diseases are the most frequently diagnosed problem in cats. It has been well-established that periodontal diseases could not only cause various oral health issues but could also contribute to systemic diseases. Oxidative stress is a possible link between systemic diseases and periodontitis. Our study aimed to illustrate the influence of periodontitis on oxidative stress development in cats. Furthermore, the changes in the bacterial flora of the gums were investigated. METHODS Based on the clinical and laboratory examinations, fifty cats were divided into two groups normal (n = 25) and moderate to advanced periodontitis (n = 25). Serum total antioxidant capacity (TAC), total oxidant status (TOS), reduced (GSH) and oxidized glutathione (GSSG) were measured. In addition, samples were taken from the subgingival plaques of all cats for bacterial culture. RESULTS Serum TOS, GSSG, GSSG to GSH ratio, and oxidative stress index (OSI), calculated as the ratio of TOS to TAC in cats with periodontal disease were significantly higher, and TAC was significantly lower (p < 0.05) compared with controls. The results of bacterial culture indicated that the number of isolated bacterial colonies is higher in patients than in the control group. Additionally, the analysis of these data showed a positive association between periodontal index and oxidative stress. CONCLUSIONS Our results revealed that periodontitis in cats is related to a main oxidative stress. Furthermore, oxidant factors such as TOS and OSI, compared to antioxidant factors, may better indicate the presence of oxidative stress conditions in patients with periodontitis.
Collapse
Affiliation(s)
- Hamidreza Moosavian
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Marzie Gholikhani
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Iraj Ashrafi Tamai
- Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mahsa Fazli
- Department of Biology, Faculty of Basic Science, Islamic Azad University, Tehran, Iran
| |
Collapse
|
15
|
Mons C, Salameh M, Botzanowski T, Clémancey M, Dorlet P, Vallières C, Erb S, Vernis L, Guittet O, Lepoivre M, Huang ME, Cianferani S, Latour JM, Blondin G, Golinelli-Cohen MP. Regulations of mitoNEET by the key redox homeostasis molecule glutathione. J Inorg Biochem 2024; 255:112535. [PMID: 38527404 DOI: 10.1016/j.jinorgbio.2024.112535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/29/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Human mitoNEET (mNT) and CISD2 are two NEET proteins characterized by an atypical [2Fe-2S] cluster coordination involving three cysteines and one histidine. They act as redox switches with an active state linked to the oxidation of their cluster. In the present study, we show that reduced glutathione but also free thiol-containing molecules such as β-mercaptoethanol can induce a loss of the mNT cluster under aerobic conditions, while CISD2 cluster appears more resistant. This disassembly occurs through a radical-based mechanism as previously observed with the bacterial SoxR. Interestingly, adding cysteine prevents glutathione-induced cluster loss. At low pH, glutathione can bind mNT in the vicinity of the cluster. These results suggest a potential new regulation mechanism of mNT activity by glutathione, an essential actor of the intracellular redox state.
Collapse
Affiliation(s)
- Cécile Mons
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Myriam Salameh
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Thomas Botzanowski
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67000, France
| | - Martin Clémancey
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), Grenoble 38000, France
| | - Pierre Dorlet
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette cedex 91198, France; CNRS, Aix Marseille Université, BIP, IMM, Marseille cedex 09 13402, France
| | - Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Stéphane Erb
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67000, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Sarah Cianferani
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, Strasbourg 67000, France; Infrastructure Nationale de Protéomique ProFI - FR2048, Strasbourg 67000, France
| | - Jean-Marc Latour
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), Grenoble 38000, France
| | - Geneviève Blondin
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux (LCBM), Grenoble 38000, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
16
|
Shu Q, Schleiff M, Sommers C, Yang J, Shen X, Rodriguez JD, Keire D. Qualitative and quantitative analysis of glutathione and related impurities in pharmaceuticals by qNMR. J Pharm Biomed Anal 2024; 242:116010. [PMID: 38364345 DOI: 10.1016/j.jpba.2024.116010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 02/01/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024]
Abstract
In this study, an alternative method to compendial analytical procedures with enhanced detection and separation capabilities was validated for the quality assessment of glutathione (GSH) drug substance. The related impurities A, B, C, and D present in GSH drug substance were characterized using a one-dimension proton nuclear magnetic resonance (1D 1H NMR) method on a 600 MHz spectrometer equipped with a liquid nitrogen cryoprobe. Two sample preparations at different pH were optimized to ensure the unambiguous identification of different impurities in the GSH samples. Specifically, impurities A and C in a GSH sample can be tested at pH 3.0, while pH 7.4 is more suitable for testing impurities B and D. The quantitative NMR (qNMR) method was validated following International Council for Harmonisation (ICH) guidelines. The limit of detection (LOD) was less than 0.1% wt for an individual impurity, and the limit of quantitation (LOQ) ranged from 0.14 to 0.24% wt, using about 14 min experimental time per spectrum. Following validation, the qNMR method was applied to assess different commercial GSH bulk substance samples, an in-house compounded GSH drug product, and a GSH dietary supplement product. The method was also applied to monitor GSH degradation (hydrolysis and oxidation) over time to provide quantitative information on GSH degradation and stability. The results suggest that the qNMR method can serve as a highly specific and efficient orthogonal tool for assessing the quality of GSH pharmaceuticals, providing both qualitative and quantitative information on GSH and its related impurities A-D.
Collapse
Affiliation(s)
- Qin Shu
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, USA.
| | - Mary Schleiff
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, USA
| | - Cynthia Sommers
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, USA
| | - Jingyue Yang
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, USA
| | - Xiaohui Shen
- Office of Compounding Quality and Compliance, Office of Compliance, Center for Drug Evaluation and Research, US Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Jason D Rodriguez
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, USA
| | - David Keire
- Office of Pharmaceutical Quality Research, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, US Food and Drug Administration, St. Louis, MO 63110, USA
| |
Collapse
|
17
|
Roy N, Paira P. Glutathione Depletion and Stalwart Anticancer Activity of Metallotherapeutics Inducing Programmed Cell Death: Opening a New Window for Cancer Therapy. ACS OMEGA 2024; 9:20670-20701. [PMID: 38764686 PMCID: PMC11097382 DOI: 10.1021/acsomega.3c08890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 05/21/2024]
Abstract
The cellular defense system against exogenous substances makes therapeutics inefficient as intracellular glutathione (GSH) exhibits an astounding antioxidant activity in scavenging reactive oxygen species (ROS) or reactive nitrogen species (RNS) or other free radicals produced by the therapeutics. In the cancer cell microenvironment, the intracellular GSH level becomes exceptionally high to fight against oxidative stress created by the production of ROS/RNS or any free radicals, which are the byproducts of intracellular redox reactions or cellular respiration processes. Thus, in order to maintain redox homeostasis for survival of cancer cells and their rapid proliferation, the GSH level starts to escalate. In this circumstance, the administration of anticancer therapeutics is in vain, as the elevated GSH level reduces their potential by reduction or by scavenging the ROS/RNS they produce. Therefore, in order to augment the therapeutic potential of anticancer agents against elevated GSH condition, the GSH level must be depleted by hook or by crook. Hence, this Review aims to compile precisely the role of GSH in cancer cells, the importance of its depletion for cancer therapy and examples of anticancer activity of a few selected metal complexes which are able to trigger cancer cell death by depleting the GSH level.
Collapse
Affiliation(s)
- Nilmadhab Roy
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| | - Priyankar Paira
- Department of Chemistry, School of
Advanced Sciences, Vellore Institute of
Technology, Vellore-632014, Tamilnadu, India
| |
Collapse
|
18
|
Kabeer SW, Riaz A, Ul-Rahman A, Shahbakht RM, Anjum A, Khera HURA, Haider A, Riaz F, Yasin R, Yaseen M, Saleem M, Bano N, Raza MA, Khan JA. Effect of different concentrations of resveratrol on nuclear maturation and in-vitro development competence of oocytes of Nili Ravi buffalo. Trop Anim Health Prod 2024; 56:105. [PMID: 38502249 DOI: 10.1007/s11250-024-03952-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 03/01/2024] [Indexed: 03/21/2024]
Abstract
Buffaloes are considered animals of the future with the ability to survive under unfavorable conditions. However, the lack of access to superior germplasm poses a significant challenge to increasing buffalo production. Resveratrol has been shown to improve oocyte quality and developmental competence in various animals during in vitro embryo development. However, limited information is available on the use of resveratrol to improve the in vitro maturation and development competence of Nili Ravi buffalo oocytes. Therefore, the current study aimed to investigate the influence of different concentrations of resveratrol on the maturation, fertilization, and development of buffalo oocytes under in vitro conditions. Oocytes were collected from ovaries and subjected to in vitro maturation (IVM) using varying concentrations of resveratrol (0 µM, 0.5 µM, 1 µM, 1.5 µM, and 2 µM), and the maturation process was assessed using a fluorescent staining technique. Results indicated no significant differences in oocyte maturation, morula rate, and blastocyst rate among the various resveratrol concentrations. However, the cleavage rate notably increased with 1 µM and 1.5 µM concentrations of resveratrol (p < 0.05). In conclusion, the study suggests that adding 1 µM of resveratrol into the maturation media may enhance the cleavage and blastocyst hatching of oocytes of Nili Ravi buffaloes. These findings hold promise for advancing buffalo genetics, reproductive performance, and overall productivity, offering potential benefits to the dairy industry, especially in Asian countries.
Collapse
Affiliation(s)
- Samar Wafa Kabeer
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan.
| | - Amjad Riaz
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Aziz Ul-Rahman
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan.
| | - Rana Muhammad Shahbakht
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Ahsan Anjum
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Hafeez Ur Rehman Ali Khera
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Ali Haider
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Faisal Riaz
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Riffat Yasin
- Department of Zoology, University of Education, D.G Khan Campus, Dera Ghazi Khan, Pakistan
| | - Muhammad Yaseen
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Muhammad Saleem
- Department of Theriogenology, University of Veterinary and Animal Sciences, Lahore, 54000, Pakistan
| | - Naheed Bano
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Muhammad Asif Raza
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| | - Junaid Ali Khan
- Faculty of Veterinary and Animal Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| |
Collapse
|
19
|
Huo Q, Yue T, Li W, Wang X, Dong Y, Li D. Empagliflozin attenuates radiation-induced hematopoietic damage via NOX-4/ROS/p38 pathway. Life Sci 2024; 341:122486. [PMID: 38331314 DOI: 10.1016/j.lfs.2024.122486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/21/2024] [Accepted: 01/31/2024] [Indexed: 02/10/2024]
Abstract
PURPOSE Damage to the hematopoietic system and functional inhibition are severe consequences of radiation exposure. In this study, we have investigated the effect of empagliflozin on radiation-induced hematopoietic damage, with the aim of providing new preventive approach to such injuries. METHODS AND MATERIALS Mice were given 4 Gy total body irradiation (TBI) 1 h after the oral administration of empagliflozin, followed by the continuous administration of the same dose of empagliflozin for 6d, and then sacrificed on the 10th day after irradiation. The reactive oxygen species (ROS) levels in hematopoietic cells and their regulatory mechanisms were also been investigated. Colony forming unit granulocyte macrophage assay and bone marrow transplantation assays were performed to detect the function of the bone marrow cells. KEY FINDINGS Empagliflozin increased the cell viability, reduced ROS levels, and attenuated apoptosis in vitro after the bone marrow cells were exposed to 1 Gy radiation. Empagliflozin significantly attenuated ionizing radiation injuries to the hematopoietic system, increased the peripheral blood cell count, and enhanced the proportion and function of hematopoietic stem cells in mice exposed to 4 Gy TBI. These effects may be related to the NOX-4/ROS/p38 pathway-mediated suppression of MAPK in hematopoietic stem cells. Empagliflozin also influenced the expression of Nrf-2 and increased glutathione peroxidase activity, thereby promoting the clearance of reactive oxygen species. Furthermore, empagliflozin mitigated metabolic abnormalities by inhibiting the mammalian target of rapamycin. SIGNIFICANCE Our study has demonstrated that empagliflozin can reduce radiation-induced injury in hematopoietic stem cells. This finding suggests that empagliflozin is a promising novel agent for preventing radiation-induced damage to the hematopoietic system.
Collapse
Affiliation(s)
- Qidong Huo
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Tongpeng Yue
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Wenxuan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Xinyue Wang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Yinping Dong
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| | - Deguan Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China.
| |
Collapse
|
20
|
Takakura Y, Machida M, Terada N, Katsumi Y, Kawamura S, Horie K, Miyauchi M, Ishikawa T, Akiyama N, Seki T, Miyao T, Hayama M, Endo R, Ishii H, Maruyama Y, Hagiwara N, Kobayashi TJ, Yamaguchi N, Takano H, Akiyama T, Yamaguchi N. Mitochondrial protein C15ORF48 is a stress-independent inducer of autophagy that regulates oxidative stress and autoimmunity. Nat Commun 2024; 15:953. [PMID: 38296961 PMCID: PMC10831050 DOI: 10.1038/s41467-024-45206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024] Open
Abstract
Autophagy is primarily activated by cellular stress, such as starvation or mitochondrial damage. However, stress-independent autophagy is activated by unclear mechanisms in several cell types, such as thymic epithelial cells (TECs). Here we report that the mitochondrial protein, C15ORF48, is a critical inducer of stress-independent autophagy. Mechanistically, C15ORF48 reduces the mitochondrial membrane potential and lowers intracellular ATP levels, thereby activating AMP-activated protein kinase and its downstream Unc-51-like kinase 1. Interestingly, C15ORF48-dependent induction of autophagy upregulates intracellular glutathione levels, promoting cell survival by reducing oxidative stress. Mice deficient in C15orf48 show a reduction in stress-independent autophagy in TECs, but not in typical starvation-induced autophagy in skeletal muscles. Moreover, C15orf48-/- mice develop autoimmunity, which is consistent with the fact that the stress-independent autophagy in TECs is crucial for the thymic self-tolerance. These results suggest that C15ORF48 induces stress-independent autophagy, thereby regulating oxidative stress and self-tolerance.
Collapse
Affiliation(s)
- Yuki Takakura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Moeka Machida
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Natsumi Terada
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Yuka Katsumi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Seika Kawamura
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Kenta Horie
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Maki Miyauchi
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Tatsuya Ishikawa
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Nobuko Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takao Seki
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Takahisa Miyao
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Mio Hayama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Rin Endo
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Hiroto Ishii
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Yuya Maruyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan
| | - Naho Hagiwara
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan
| | - Tetsuya J Kobayashi
- Institute of Industrial Science, The University of Tokyo, Tokyo, 153-8505, Japan
| | - Naoto Yamaguchi
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Hiroyuki Takano
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan
| | - Taishin Akiyama
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
- Immunobiology, Graduate School of Medical Life Science, Yokohama City University, Yokohama, 230-0045, Japan.
| | - Noritaka Yamaguchi
- Department of Molecular Cardiovascular Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
- Laboratory of Molecular Cell Biology, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, 260-8675, Japan.
- Laboratory for Immune Homeostasis, RIKEN Center for Integrative Medical Sciences, Yokohama, 230-0045, Japan.
| |
Collapse
|
21
|
Chen TH, Wang HC, Chang CJ, Lee SY. Mitochondrial Glutathione in Cellular Redox Homeostasis and Disease Manifestation. Int J Mol Sci 2024; 25:1314. [PMID: 38279310 PMCID: PMC10816320 DOI: 10.3390/ijms25021314] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 01/28/2024] Open
Abstract
Mitochondria are critical for providing energy to maintain cell viability. Oxidative phosphorylation involves the transfer of electrons from energy substrates to oxygen to produce adenosine triphosphate. Mitochondria also regulate cell proliferation, metastasis, and deterioration. The flow of electrons in the mitochondrial respiratory chain generates reactive oxygen species (ROS), which are harmful to cells at high levels. Oxidative stress caused by ROS accumulation has been associated with an increased risk of cancer, and cardiovascular and liver diseases. Glutathione (GSH) is an abundant cellular antioxidant that is primarily synthesized in the cytoplasm and delivered to the mitochondria. Mitochondrial glutathione (mGSH) metabolizes hydrogen peroxide within the mitochondria. A long-term imbalance in the ratio of mitochondrial ROS to mGSH can cause cell dysfunction, apoptosis, necroptosis, and ferroptosis, which may lead to disease. This study aimed to review the physiological functions, anabolism, variations in organ tissue accumulation, and delivery of GSH to the mitochondria and the relationships between mGSH levels, the GSH/GSH disulfide (GSSG) ratio, programmed cell death, and ferroptosis. We also discuss diseases caused by mGSH deficiency and related therapeutics.
Collapse
Affiliation(s)
- Tsung-Hsien Chen
- Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan;
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, National Chung Cheng University, Chiayi 62102, Taiwan;
| | - Chia-Jung Chang
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| | - Shih-Yu Lee
- Division of Critical Care Medicine, Department of Internal Medicine, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chiayi 60002, Taiwan
| |
Collapse
|
22
|
Saito S, Shahbaz S, Luo X, Osman M, Redmond D, Cohen Tervaert JW, Li L, Elahi S. Metabolomic and immune alterations in long COVID patients with chronic fatigue syndrome. Front Immunol 2024; 15:1341843. [PMID: 38304426 PMCID: PMC10830702 DOI: 10.3389/fimmu.2024.1341843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 02/03/2024] Open
Abstract
Introduction A group of SARS-CoV-2 infected individuals present lingering symptoms, defined as long COVID (LC), that may last months or years post the onset of acute disease. A portion of LC patients have symptoms similar to myalgic encephalomyelitis or chronic fatigue syndrome (ME/CFS), which results in a substantial reduction in their quality of life. A better understanding of the pathophysiology of LC, in particular, ME/CFS is urgently needed. Methods We identified and studied metabolites and soluble biomarkers in plasma from LC individuals mainly exhibiting ME/CFS compared to age-sex-matched recovered individuals (R) without LC, acute COVID-19 patients (A), and to SARS-CoV-2 unexposed healthy individuals (HC). Results Through these analyses, we identified alterations in several metabolomic pathways in LC vs other groups. Plasma metabolomics analysis showed that LC differed from the R and HC groups. Of note, the R group also exhibited a different metabolomic profile than HC. Moreover, we observed a significant elevation in the plasma pro-inflammatory biomarkers (e.g. IL-1α, IL-6, TNF-α, Flt-1, and sCD14) but the reduction in ATP in LC patients. Our results demonstrate that LC patients exhibit persistent metabolomic abnormalities 12 months after the acute COVID-19 disease. Of note, such metabolomic alterations can be observed in the R group 12 months after the acute disease. Hence, the metabolomic recovery period for infected individuals with SARS-CoV-2 might be long-lasting. In particular, we found a significant reduction in sarcosine and serine concentrations in LC patients, which was inversely correlated with depression, anxiety, and cognitive dysfunction scores. Conclusion Our study findings provide a comprehensive metabolomic knowledge base and other soluble biomarkers for a better understanding of the pathophysiology of LC and suggests sarcosine and serine supplementations might have potential therapeutic implications in LC patients. Finally, our study reveals that LC disproportionally affects females more than males, as evidenced by nearly 70% of our LC patients being female.
Collapse
Affiliation(s)
- Suguru Saito
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Shima Shahbaz
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
| | - Xian Luo
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Osman
- Department of Medicine, Division of Rheumatology, Edmonton, AB, Canada
| | - Desiree Redmond
- Department of Medicine, Division of Rheumatology, Edmonton, AB, Canada
| | | | - Liang Li
- The Metabolomics Innovation Centre, University of Alberta, Edmonton, AB, Canada
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Shokrollah Elahi
- School of Dentistry, Division of Foundational Sciences, Edmonton, AB, Canada
- Li Ka Shing Institute of Virology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
23
|
Dong Q, Hua D, Wang X, Jiao Y, Liu L, Deng Q, Wu T, Zou H, Zhao C, Wang C, Reng J, Ding L, Hu S, Shi J, Wang Y, Zhang H, Sheng Y, Sun W, Shen Y, Tang L, Kong X, Chen L. Temporal colonization and metabolic regulation of the gut microbiome in neonatal oxen at single nucleotide resolution. THE ISME JOURNAL 2024; 18:wrad022. [PMID: 38365257 PMCID: PMC10833086 DOI: 10.1093/ismejo/wrad022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/19/2023] [Accepted: 12/06/2023] [Indexed: 02/18/2024]
Abstract
The colonization of microbes in the gut is key to establishing a healthy host-microbiome symbiosis for newborns. We longitudinally profiled the gut microbiome in a model consisting of 36 neonatal oxen from birth up to 2 months postpartum and carried out microbial transplantation to reshape their gut microbiome. Genomic reconstruction of deeply sequenced fecal samples resulted in a total of 3931 metagenomic-assembled genomes from 472 representative species, of which 184 were identified as new species when compared with existing databases of oxen. Single nucleotide level metagenomic profiling shows a rapid influx of microbes after birth, followed by dynamic shifts during the first few weeks of life. Microbial transplantation was found to reshape the genetic makeup of 33 metagenomic-assembled genomes (FDR < 0.05), mainly from Prevotella and Bacteroides species. We further linked over 20 million microbial single nucleotide variations to 736 plasma metabolites, which enabled us to characterize 24 study-wide significant associations (P < 4.4 × 10-9) that identify the potential microbial genetic regulation of host immune and neuro-related metabolites, including glutathione and L-dopa. Our integration analyses further revealed that microbial genetic variations may influence the health status and growth performance by modulating metabolites via structural regulation of their encoded proteins. For instance, we found that the albumin levels and total antioxidant capacity were correlated with L-dopa, which was determined by single nucleotide variations via structural regulations of metabolic enzymes. The current results indicate that temporal colonization and transplantation-driven strain replacement are crucial for newborn gut development, offering insights for enhancing newborn health and growth.
Collapse
Affiliation(s)
- Quanbin Dong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Dongxu Hua
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Xiuchao Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou 213164, China
| | - Yuwen Jiao
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou 213164, China
| | - Lu Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Qiufeng Deng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Tingting Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Huayiyang Zou
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chen Zhao
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Chengkun Wang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Jiafa Reng
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Luoyang Ding
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Shixian Hu
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China
| | - Jing Shi
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yifeng Wang
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China
| | - Haifeng Zhang
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China
| | - Yanhui Sheng
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China
| | - Wei Sun
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
| | - Yizhao Shen
- College of Animal Science and Technology, Hebei Agricultural University, Baoding 071000, China
| | - Liming Tang
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou 213164, China
| | - Xiangqing Kong
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
- Cardiovascular Research Center, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, Suzhou 215006, China
| | - Lianmin Chen
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing Medical University, Nanjing 210029, China
- Changzhou Medical Center, The Affiliated Changzhou No.2 People's Hospital of Nanjing Medical University, Nanjing Medical University, Changzhou 213164, China
| |
Collapse
|
24
|
Nagabooshanam S, Kumar A, Ramamoorthy S, Saravanan N, Sundaramurthy A. Rapid and sensitive electrochemical detection of oxidized form of glutathione in whole blood samples using Bi-metallic nanocomposites. CHEMOSPHERE 2024; 346:140517. [PMID: 37879374 DOI: 10.1016/j.chemosphere.2023.140517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/07/2023] [Accepted: 10/20/2023] [Indexed: 10/27/2023]
Abstract
We report a facile one-pot synthesis of bimetallic nickel-gold (Ni-Au) nanocomposite for ultra-sensitive and selective electrochemical detection of oxidized glutathione (GSSG) by electrochemical deposition on fluorine doped tin oxide (FTO) substrate. The electrodeposition of Ni-Au nanocomposite on FTO was confirmed by various characterization techniques such as field emission scanning electron microscopy (FE-SEM), X-ray diffractometer (XRD) and Fourier transform infra-red (FTIR) spectroscopy. The cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) was utilized for the electrochemical characterization of glutathione reductase (GR)/Ni-Au/FTO working electrode at each stage of modification. The GR enzyme immobilized on the Ni-Au/FTO working electrode via glutaraldehyde cross-linking exhibited excellent selectivity against GSSG in the presence of nicotinamide adenine dinucleotide phosphate (NADPH). The immobilized GR enzyme breaks down the GSSG to reduced glutathione (GSH) and converting NADPH to NADP+ whereby generating an electron for the electrochemical sensing of GSSG. The synergistic behavior of bimetals and good electro-catalytic property of the fabricated sensor provided a broad linear detection range from 1 fM to 1 μM with a limit of detection (LOD) of 6.8 fM, limit of quantification (LOQ) of 20.41 fM and sensitivity of 0.024 mA/μM/cm2. The interference with other molecules such as dopamine, glycine, ascorbic acid, uric acid and glucose was found to be negligible due to the better selectivity of GR enzyme towards GSSG. The shelf-life and response time of the fabricated electrode was found to be 30 days and 32 s, respectively. The real sample analysis of GSSG in whole blood samples showed average recovery percentage from 95 to 101% which matched well with the standard calibration plot of the fabricated sensor with relative standard deviation (RSD) below 10%.
Collapse
Affiliation(s)
- Shalini Nagabooshanam
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India; Department of Mechanical Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tenpaku-cho, Toyohashi, Aichi, 441-8580, Japan
| | - Akash Kumar
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Sharmiladevi Ramamoorthy
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Nishakavya Saravanan
- Department of Physics and Nanotechnology, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India
| | - Anandhakumar Sundaramurthy
- Biomaterials Research Laboratory (BMRL), Department of Chemical Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603203, Chengalpattu, Tamil Nadu, India.
| |
Collapse
|
25
|
Wellems D, Hu Y, Jennings S, Wang G. Loss of CFTR function in macrophages alters the cell transcriptional program and delays lung resolution of inflammation. Front Immunol 2023; 14:1242381. [PMID: 38035088 PMCID: PMC10687418 DOI: 10.3389/fimmu.2023.1242381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive genetic disorder caused by mutations in the CF Transmembrane-conductance Regulator (CFTR) gene. The most severe pathologies of CF occur in the lung, manifesting as chronic bacterial infection, persistent neutrophilic inflammation, and mucopurulent airway obstruction. Despite increasing knowledge of the CF primary defect and the resulting clinical sequelae, the relationship between the CFTR loss of function and the neutrophilic inflammation remains incompletely understood. Here, we report that loss of CFTR function in macrophages causes extended lung inflammation. After intratracheal inoculation with Pseudomonas aeruginosa, mice with a macrophage-specific Cftr-knockout (Mac-CF) were able to mount an effective host defense to clear the bacterial infection. However, three days post-inoculation, Mac-CF lungs demonstrated significantly more neutrophil infiltration and higher levels of inflammatory cytokines, suggesting that Mac-CF mice had a slower resolution of inflammation. Single-cell RNA sequencing revealed that absence of CFTR in the macrophages altered the cell transcriptional program, affecting the cell inflammatory and immune responses, antioxidant system, and mitochondrial respiration. Thus, loss of CFTR function in macrophages influences cell homeostasis, leading to a dysregulated cellular response to infection that may exacerbate CF lung disease.
Collapse
Affiliation(s)
| | | | | | - Guoshun Wang
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| |
Collapse
|
26
|
Draxler A, Blaschke A, Binar J, Weber M, Haslacher M, Bartak V, Bragagna L, Mare G, Maqboul L, Klapp R, Herzog T, Széll M, Petrera A, Laky B, Wagner KH, Thell R. Age-related influence on DNA damage, proteomic inflammatory markers and oxidative stress in hospitalized COVID-19 patients compared to healthy controls. Redox Biol 2023; 67:102914. [PMID: 37832397 PMCID: PMC10585323 DOI: 10.1016/j.redox.2023.102914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/29/2023] [Accepted: 10/01/2023] [Indexed: 10/15/2023] Open
Abstract
COVID-19 infections are accompanied by adverse changes in inflammatory pathways that are also partly influenced by increased oxidative stress and might result in elevated DNA damage. The aim of this case-control study was to examine whether COVID-19 patients show differences in oxidative stress-related markers, unconjugated bilirubin (UCB), an inflammation panel and DNA damage compared to healthy, age-and sex-matched controls. The Comet assay with and without the treatment of formamidopyrimidine DNA glycosylase (FPG) and H2O2 challenge was used to detect DNA damage in whole blood. qPCR was applied for gene expression, UCB was analyzed via HPLC, targeted proteomics were applied using Olink® inflammation panel and various oxidative stress as well as clinical biochemistry markers were analyzed in plasma. Hospitalized COVID-19 patients (n = 48) demonstrated higher serum levels of 55 inflammatory proteins (p < 0.001), including hs-C-reactive protein levels (p < 0.05), compared to healthy controls (n = 48). Interestingly, significantly increased age-related DNA damage (%-DNA in tail) after formamidopyrimidine DNA glycosylase (FPG) treatment was measured in younger (n = 24, average age 55.7 years; p < 0.05) but not in older COVID-19 patients (n = 24, average age 83.5 years; p > 0.05). Although various oxidative stress markers were not altered (e.g., FRAP, malondialdehyde, p > 0.05), a significant increased ratio of oxidized to reduced glutathione was detected in COVID-19 patients compared to healthy controls (p < 0.05). UCB levels were significantly lower in individuals with COVID-19, especially in younger COVID-19 patients (p < 0.05). These results suggest that COVID-19 infections exert effects on DNA damage related to age in hospitalized COVID-19 patients that might be driven by changes in inflammatory pathways but are not altered by oxidative stress parameters.
Collapse
Affiliation(s)
- Agnes Draxler
- Department of Nutritional Sciences, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | | | - Jessica Binar
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Maria Weber
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | | | - Viktoria Bartak
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Laura Bragagna
- Department of Nutritional Sciences, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - George Mare
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Lina Maqboul
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Rebecca Klapp
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Theresa Herzog
- Klinik Donaustadt, Emergency Department, Langobardenstraße 122, 1220, Vienna, Austria.
| | - Marton Széll
- Klinik Donaustadt, Emergency Department, Langobardenstraße 122, 1220, Vienna, Austria.
| | - Agnese Petrera
- Metabolomics and Proteomics Core, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Neuherberg, Germany
| | - Brenda Laky
- Medical University of Vienna, Austria; Austrian Society of Regenerative Medicine, Vienna, Austria.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Rainer Thell
- Medical University of Vienna, Austria; Klinik Donaustadt, Emergency Department, Langobardenstraße 122, 1220, Vienna, Austria.
| |
Collapse
|
27
|
Kotepui M, Kotepui K, Mahittikorn A, Majima HJ, Tangpong J, Yen HC. Association of reduced glutathione levels with Plasmodium falciparum and Plasmodium vivax malaria: a systematic review and meta-analysis. Sci Rep 2023; 13:16483. [PMID: 37777547 PMCID: PMC10542361 DOI: 10.1038/s41598-023-43583-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023] Open
Abstract
Reduced glutathione (GSH) is a crucial antioxidant with recognized roles in malaria pathogenesis and host response. Despite its importance, reports on the association of GSH with malaria are inconsistent. Therefore, this systematic review and meta-analysis investigated the differences in GSH levels in relation to Plasmodium infection. A comprehensive literature search of six electronic databases (Embase, MEDLINE, Ovid, PubMed, Scopus, and ProQuest) was conducted. Of the 2158 initially identified records, 18 met the eligibility criteria. The majority of studies reported a significant decrease in GSH levels in malaria patients compared with uninfected controls, and this was confirmed by meta-analysis (P < 0.01, Hedges g: - 1.47, 95% confidence interval [CI] - 2.48 to - 0.46, I2: 99.12%, 17 studies). Additionally, there was no significant difference in GSH levels between Plasmodium falciparum malaria and P. vivax malaria (P = 0.80, Hedges g: 0.11, 95% CI - 0.76 to 0.98, I2: 93.23%, three studies). Similarly, no significant variation was observed between symptomatic and asymptomatic malaria cases (P = 0.78, Hedges g: 0.06, 95% CI - 0.34 to 0.46, I2: 48.07%, two studies). In conclusion, although GSH levels appear to be generally lower in malaria patients, further detailed studies are necessary to fully elucidate this complex relationship.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand.
| | - Kwuntida Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Aongart Mahittikorn
- Department of Protozoology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Hideyuki J Majima
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Jitbanjong Tangpong
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat, Thailand
| | - Hsiu-Chuan Yen
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Nephrology, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
28
|
Zhao T, Zheng F, Liu Y, Khan A, Wang Z, Cheng G. A Comparative Analysis of Chemical Constituents and Antioxidant Effects of Dendrobium fimbriatum Hook Fractions with Different Polarities. Int J Mol Sci 2023; 24:12646. [PMID: 37628832 PMCID: PMC10454342 DOI: 10.3390/ijms241612646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 07/29/2023] [Accepted: 07/30/2023] [Indexed: 08/27/2023] Open
Abstract
The aim of this study was to investigate the chemical composition and antioxidant capacity of various polar fractions obtained from Dendrobium fimbriatum Hook (DH). First, a 90% ethanol-aqueous extract of DH (CF) was subjected to sequential fractionation using different organic solvents, resulting in the isolation of a methylene chloride fraction (DF), an ethyl acetate fraction (EF), an n-butanol fraction (BF), and a remaining water fraction (WF) after condensation. Additionally, the CF was also subjected to column chromatography via a D101 macroreticular resin column, eluted with ethanol-aqueous solution to yield six fractions (0%, 20%, 40%, 60%, 80%, and 100%). UPLC-Q-Exactive Orbitrap-MS/MS analysis identified a total of 47 chemical compounds from these polar fractions, including fatty acids, amino acids, phenolic acids, flavonoids, organic heterocyclic molecules, and aromatic compounds. Moreover, DF, EF, and the 60%, 80%, and 100% ethanol-aqueous fractions had higher total phenol content (TPC) and total flavonoid content (TFC) values and greater 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt (ABTS-) and 1,1-diphenyl-2-picrylhydrazyl (DPPH)-scavenging abilities. In H2O2-induced HepG2 cells, the aforementioned fractions could increase the activities of antioxidative enzymes NAD(P)H: quinone oxidoreductase 1 (NQO1), superoxide dismutase (SOD), heme oxygenase-1 (HO-1) and catalase (CAT), stimulate glutathione (GSH) synthesis by increasing the activities of glutamic acid cysteine ligase (GCL) and glutathione synthetase (GS), regulate GSH metabolism by increasing glutathione peroxidase (GSH-Px) and glutathione reductase (GR) activities, and reduce levels of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, the antioxidative stress effect of the DH fractions was found to be positively correlated with the activation of nuclear factor-erythroid 2-related factor 2 (Nrf2) protein and the presence of antioxidative chemical constituents. In conclusion, this study highlights the efficacy of both liquid-liquid extraction and macroporous resin purification techniques in the enrichment of bioactive compounds from natural food resources. The comprehensive analysis of chemical constituents and antioxidant effects of different polar fractions from Dendrobium fimbriatum Hook contributes to the understanding of its potential application in functional foods and nutraceuticals.
Collapse
Affiliation(s)
- Tianrui Zhao
- Faculty of Food Science and Engineering, Kunming University of Science and Technology (KUST), Kunming 650500, China; (T.Z.); (F.Z.); (Y.L.)
| | - Fangyuan Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology (KUST), Kunming 650500, China; (T.Z.); (F.Z.); (Y.L.)
| | - Yaping Liu
- Faculty of Food Science and Engineering, Kunming University of Science and Technology (KUST), Kunming 650500, China; (T.Z.); (F.Z.); (Y.L.)
| | - Afsar Khan
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22060, Pakistan;
| | - Zhengxuan Wang
- Faculty of Food Science and Engineering, Kunming University of Science and Technology (KUST), Kunming 650500, China; (T.Z.); (F.Z.); (Y.L.)
| | - Guiguang Cheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology (KUST), Kunming 650500, China; (T.Z.); (F.Z.); (Y.L.)
| |
Collapse
|
29
|
Marini HR, Facchini BA, di Francia R, Freni J, Puzzolo D, Montella L, Facchini G, Ottaiano A, Berretta M, Minutoli L. Glutathione: Lights and Shadows in Cancer Patients. Biomedicines 2023; 11:2226. [PMID: 37626722 PMCID: PMC10452337 DOI: 10.3390/biomedicines11082226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/28/2023] [Accepted: 08/01/2023] [Indexed: 08/27/2023] Open
Abstract
In cases of cellular injury, there is an observed increase in the production of reactive oxygen species (ROS). When this production becomes excessive, it can result in various conditions, including cancerogenesis. Glutathione (GSH), the most abundant thiol-containing antioxidant, is fundamental to re-establishing redox homeostasis. In order to evaluate the role of GSH and its antioxi-dant effects in patients affected by cancer, we performed a thorough search on Medline and EMBASE databases for relevant clinical and/or preclinical studies, with particular regard to diet, toxicities, and pharmacological processes. The conjugation of GSH with xenobiotics, including anti-cancer drugs, can result in either of two effects: xenobiotics may lose their harmful effects, or GSH conjugation may enhance their toxicity by inducing bioactivation. While being an interesting weapon against chemotherapy-induced toxicities, GSH may also have a potential protective role for cancer cells. New studies are necessary to better explain the relationship between GSH and cancer. Although self-prescribed glutathione (GSH) implementation is prevalent among cancer patients with the intention of reducing the toxic effects of anticancer treatments and potentially preventing damage to normal tissues, this belief lacks substantial scientific evidence for its efficacy in reducing toxicity, except in the case of cisplatin-related neurotoxicity. Therefore, the use of GSH should only be considered under medical supervision, taking into account the appropriate timing and setting.
Collapse
Affiliation(s)
- Herbert Ryan Marini
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Bianca Arianna Facchini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80133 Napoli, Italy;
| | - Raffaele di Francia
- Gruppo Oncologico Ricercatori Italiani (GORI-ONLUS), 33170 Pordenone, Italy;
| | - José Freni
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Domenico Puzzolo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy; (J.F.); (D.P.)
| | - Liliana Montella
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Gaetano Facchini
- Division of Medical Oncology, “Santa Maria delle Grazie” Hospital, ASL Napoli 2 Nord, 80078 Pozzuoli, Italy; (L.M.); (G.F.)
| | - Alessandro Ottaiano
- Istituto Nazionale Tumori di Napoli, IRCCS “G. Pascale”, 80131 Napoli, Italy;
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| | - Letteria Minutoli
- Department of Clinical and Experimental Medicine, University of Messina, 98125 Messina, Italy; (H.R.M.); (L.M.)
| |
Collapse
|
30
|
Diaz-Del Cerro E, Martinez de Toda I, Félix J, Baca A, De la Fuente M. Components of the Glutathione Cycle as Markers of Biological Age: An Approach to Clinical Application in Aging. Antioxidants (Basel) 2023; 12:1529. [PMID: 37627524 PMCID: PMC10451878 DOI: 10.3390/antiox12081529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/18/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
The oxidative-inflammatory theory of aging states that aging is the result of the establishment of a chronic oxidative-inflammatory stress situation in which the immune system is implicated. Among the redox parameters, those involved in the glutathione cycle have been suggested as essential in aging. Thus, the first objective of this study was to determine if several components of the glutathione cycle (glutathione reductase (GR) and glutathione peroxidase (GPx) activities, and concentrations of oxidized glutathione (GSSG) and reduced glutathione (GSH)) in leukocytes) are associated with the biological age (ImmunolAge) estimated using the Immunity Clock in 190 men and women. The second objective was to identify the best blood fraction (whole blood, blood cells, erythrocytes, or plasma) to quantify these components and correlate them with the estimated ImmunolAge. The results show that the oxidative state of peripheral leukocytes correlates with their functionality, supporting the idea that this is the basis of immunosenescence. In blood, the correlations are more significant in the fraction of blood cells with respect to ImmunolAge (positive correlations with GSSG concentration and the GSSG/GSH ratio, and negative correlations with GPx and GR activities). Therefore, blood cells are proposed as the most effective sample to estimate the biological age of individuals in clinical settings.
Collapse
Affiliation(s)
- Estefania Diaz-Del Cerro
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Irene Martinez de Toda
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Judith Félix
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| | - Adriana Baca
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
| | - Monica De la Fuente
- Unit of Animal Physiology, Department of Genetics, Physiology, and Microbiology, Faculty of Biological Sciences, Complutense University of Madrid, José Antonio Novais, 12, 28040 Madrid, Spain; (I.M.d.T.); (J.F.); (A.B.); (M.D.l.F.)
- Institute of Investigation Hospital 12 Octubre (imas12), 28041 Madrid, Spain
| |
Collapse
|
31
|
Poladian N, Navasardyan I, Narinyan W, Orujyan D, Venketaraman V. Potential Role of Glutathione Antioxidant Pathways in the Pathophysiology and Adjunct Treatment of Psychiatric Disorders. Clin Pract 2023; 13:768-779. [PMID: 37489419 PMCID: PMC10366746 DOI: 10.3390/clinpract13040070] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/26/2023] Open
Abstract
Oxidative stress is defined as the imbalance between the production of free radicals and their removal by antioxidants, leading to accumulation and subsequent organ and tissue damage. Antioxidant status and its role in the accumulation of free radicals has been observed in a number of psychological disorders. Glutathione is commonly referred to as the principal antioxidant of the brain and, therefore, plays a critical role in maintaining redox homeostasis. Reduced levels of glutathione in the brain increase its vulnerability to oxidative stress, and may be associated with the development and progression of several psychiatric disorders. Within this review, we focus on analyzing potential associations between the glutathione antioxidant pathway and psychiatric disorders: major depressive disorder, schizophrenia, bipolar disorder, and generalized anxiety disorder. Our research suggests that studies regarding these four disorders have shown decreased levels of GSH in association with diseased states; however, conflicting results note no significant variance in glutathione pathway enzymes and/or metabolites based on diseased state. In studying the potential of NAC administration as an adjunct therapy, various studies have shown NAC to augment therapy and/or aid in symptomatic management for psychiatric disorders, while contrasting results exist within the literature. Based on the conflicting findings throughout this review, there is room for study regarding the potential role of glutathione in the development and progression of psychiatric disorders. Our findings further suggest a need to study such pathways with consideration of the interactions with first-line pharmacotherapy, and the potential use of antioxidants as supplemental therapy.
Collapse
Affiliation(s)
- Nicole Poladian
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Inesa Navasardyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - William Narinyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Davit Orujyan
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA
| |
Collapse
|
32
|
Panda C, Komarnytsky S, Fleming MN, Marsh C, Barron K, Le Brun-Blashka S, Metzger B. Guided Metabolic Detoxification Program Supports Phase II Detoxification Enzymes and Antioxidant Balance in Healthy Participants. Nutrients 2023; 15:2209. [PMID: 37432335 DOI: 10.3390/nu15092209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 07/12/2023] Open
Abstract
Adequate antioxidant supply is essential for maintaining metabolic homeostasis and reducing oxidative stress during detoxification. The emerging evidence suggests that certain classes of phytonutrients can help support the detoxification process by stimulating the liver to produce detoxification enzymes or acting as antioxidants that neutralize the harmful effects of free radicals. This study was designed to examine the effects of a guided 28-day metabolic detoxification program in healthy adults. The participants were randomly assigned to consume a whole food, multi-ingredient supplement (n = 14, education and intervention) or control (n = 18, education and healthy meal) daily for the duration of the trial. The whole food supplement contained 37 g/serving of a proprietary, multicomponent nutritional blend in the form of a rehydratable shake. Program readiness was ensured at baseline using a validated self-perceived wellness score and a blood metabolic panel, indicating stable emotional and physical well-being in both groups. No significant changes or adverse effects were found on physical or emotional health, cellular glutathione (GSH) and the GSH:GSSG ratio, porphyrin, and hepatic detoxification biomarkers in urine. The intervention was positively associated with a 23% increase in superoxide dismutase (p = 0.06) and a 13% increase in glutathione S-transferase (p = 0.003) activities in the blood. This resulted in a 40% increase in the total cellular antioxidant capacity (p = 0.001) and a 13% decrease in reactive oxygen species (p = 0.002) in isolated PBMCs from participants in the detoxification group. Our findings indicate that consuming a whole food nutritional intervention as a part of the guided detoxification program supported phase II detoxification, in part, by promoting enhanced free radical scavenging and maintaining redox homeostasis under the body's natural glutathione recycling capacity.
Collapse
Affiliation(s)
- Chinmayee Panda
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Slavko Komarnytsky
- Plants for Human Health Institute, NC State University, 600 Laureate Way, Kannapolis, NC 28081, USA
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, 400 Dan Allen Drive, Raleigh, NC 27695, USA
| | - Michelle Norton Fleming
- College of Chiropractic, Northwestern Health Sciences University, 2501 W 84th Street, Bloomington, MN 55431, USA
| | - Carissa Marsh
- College of Chiropractic, Northwestern Health Sciences University, 2501 W 84th Street, Bloomington, MN 55431, USA
| | - Keri Barron
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Sara Le Brun-Blashka
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| | - Brandon Metzger
- Nutrition Innovation Center, Standard Process Inc., 150 N Research Campus Dr, Kannapolis, NC 28081, USA
| |
Collapse
|
33
|
Draxler A, Franzke B, Kelecevic S, Maier A, Pantic J, Srienc S, Cellnigg K, Solomon SM, Zötsch C, Aschauer R, Unterberger S, Zöhrer PA, Bragagna L, Strasser EM, Wessner B, Wagner KH. The influence of vitamin D supplementation and strength training on health biomarkers and chromosomal damage in community-dwelling older adults. Redox Biol 2023; 61:102640. [PMID: 36857929 PMCID: PMC9986641 DOI: 10.1016/j.redox.2023.102640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
Older adults lack of proper physical activity which is often accompanied by vitamin D deficiency. Those factors are known to contribute to health issues in the later years of life. The main goal of this intervention study was to investigate the effect of different vitamin D supplementation strategies for 4 weeks solely or combined with a 10-week strength training program on chromosomal stability in peripheral blood mononuclear cells in community-dwelling older people. One hundred women and men (65-85 years) received either vitamin D3 daily (800 IU), a monthly dose (50.000 IU) or placebo for 17 weeks. All groups received 400 mg calcium daily. The fitness status of the study participants was measured using the 30- second chair stand test, the handgrip strength test and the 6-min walk test. The cytokinesis block micronucleus cytome (CBMN) assay was applied to analyze chromosomal anomalies, including cytotoxic and genotoxic parameters. Changes in antioxidant markers were measured in plasma. Walking distance and chair stand performance improved significantly. Increased levels of the parameters of the CBMN assay were detected for all intervention groups at study end. At baseline micronuclei (MNi) frequency correlated significantly with BMI in both sexes (females: r = 0.369, p = 0.034; males: r = 0.265, p = 0.035), but not with vitamin D serum levels. In females, body fat (r = 0.372, p < 0.001) and functional parameter using the 30-s chair stand test (r = 0.311, p = 0.002) correlated significantly with MNi frequency. Interestingly, not vitamin D supplementation but 10 weeks of resistance training increased MNi frequency indicating elevated chromosomal instability and also adverse effects on antioxidant markers including glutathione and FRAP were detected in the group of community-dwelling older adults.
Collapse
Affiliation(s)
- Agnes Draxler
- Department of Nutritional Sciences, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Bernhard Franzke
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| | - Sanja Kelecevic
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Alexander Maier
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Jelena Pantic
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Simon Srienc
- Department of Nutritional Sciences, University of Vienna, Austria.
| | | | | | - Carina Zötsch
- Department of Nutritional Sciences, University of Vienna, Austria.
| | - Rudolf Aschauer
- Department of Nutritional Sciences, University of Vienna, Austria; Centre for Sport Science and University Sports, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Sandra Unterberger
- Department of Nutritional Sciences, University of Vienna, Austria; Centre for Sport Science and University Sports, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Patrick A Zöhrer
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Laura Bragagna
- Department of Nutritional Sciences, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Eva-Maria Strasser
- Karl Landsteiner Institute for Remobilization and Functional Health/Institute for Physical Medicine and Rehabilitation, Kaiser Franz Joseph Hospital, Social Medical Center South, Vienna, Austria.
| | - Barbara Wessner
- Research Platform Active Ageing, University of Vienna, Austria; Centre for Sport Science and University Sports, University of Vienna, Austria; Vienna Doctoral School for Pharmaceutical, Nutritional and Sport Sciences (PhaNuSpo), University of Vienna, Josef Holaubek-Platz 2, 1090, Vienna, Austria.
| | - Karl-Heinz Wagner
- Department of Nutritional Sciences, University of Vienna, Austria; Research Platform Active Ageing, University of Vienna, Austria.
| |
Collapse
|
34
|
Tsarkova E, Filippova K, Afanasyeva V, Ermakova O, Kolotova A, Blagodatski A, Ermakov A. A Study on the Planarian Model Confirms the Antioxidant Properties of Tameron against X-ray- and Menadione-Induced Oxidative Stress. Antioxidants (Basel) 2023; 12:antiox12040953. [PMID: 37107327 PMCID: PMC10136237 DOI: 10.3390/antiox12040953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Ionizing radiation and radiation-related oxidative stress are two important factors responsible for the death of actively proliferating cells, thus drastically reducing the regeneration capacity of living organisms. Planarian flatworms are freshwater invertebrates that are rich in stem cells called neoblasts and, therefore, present a well-established model for studies on regeneration and the testing of novel antioxidant and radioprotective substances. In this work, we tested an antiviral and antioxidant drug Tameron (Monosodium α-Luminol or 5-amino-2,3-dihydro-1,4-phthalazinedione sodium salt) for its ability to reduce the harm of X-ray- and chemically induced oxidative stress on a planarian model. Our study has revealed the ability of Tameron to effectively protect planarians from oxidative stress while enhancing their regenerative capacity by modulating the expression of neoblast marker genes and NRF-2-controlled oxidative stress response genes.
Collapse
Affiliation(s)
- Elena Tsarkova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Kristina Filippova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Vera Afanasyeva
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Olga Ermakova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| | - Anastasia Kolotova
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Artem Blagodatski
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
| | - Artem Ermakov
- Institute of Theoretical and Experimental Biophysics of the Russian Academy of Sciences, 142290 Pushchino, Moscow Region, Russia
- ANO Engineering Physics Institute, Bolshoi Udarny Pereulok, 142210 Serpukhov, Moscow Region, Russia
| |
Collapse
|
35
|
Vázquez-Meza H, Vilchis-Landeros MM, Vázquez-Carrada M, Uribe-Ramírez D, Matuz-Mares D. Cellular Compartmentalization, Glutathione Transport and Its Relevance in Some Pathologies. Antioxidants (Basel) 2023; 12:antiox12040834. [PMID: 37107209 PMCID: PMC10135322 DOI: 10.3390/antiox12040834] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/24/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Reduced glutathione (GSH) is the most abundant non-protein endogenous thiol. It is a ubiquitous molecule produced in most organs, but its synthesis is predominantly in the liver, the tissue in charge of storing and distributing it. GSH is involved in the detoxification of free radicals, peroxides and xenobiotics (drugs, pollutants, carcinogens, etc.), protects biological membranes from lipid peroxidation, and is an important regulator of cell homeostasis, since it participates in signaling redox, regulation of the synthesis and degradation of proteins (S-glutathionylation), signal transduction, various apoptotic processes, gene expression, cell proliferation, DNA and RNA synthesis, etc. GSH transport is a vital step in cellular homeostasis supported by the liver through providing extrahepatic organs (such as the kidney, lung, intestine, and brain, among others) with the said antioxidant. The wide range of functions within the cell in which glutathione is involved shows that glutathione’s role in cellular homeostasis goes beyond being a simple antioxidant agent; therefore, the importance of this tripeptide needs to be reassessed from a broader metabolic perspective.
Collapse
|
36
|
Liu P, Hao L, Liu M, Hu S. Glutathione-responsive and -exhausting metal nanomedicines for robust synergistic cancer therapy. Front Bioeng Biotechnol 2023; 11:1161472. [PMID: 36970628 PMCID: PMC10036587 DOI: 10.3389/fbioe.2023.1161472] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 02/24/2023] [Indexed: 03/12/2023] Open
Abstract
Due to their rapid and uncontrolled proliferation, cancer cells are characterized by overexpression of glutathione (GSH), which impairs reactive oxygen species (ROS)-based therapy and weakens the chemotherapeutic agent-induced toxification. Extensive efforts have been made in the past few years to improve therapeutic outcomes by depleting intracellular GSH. Special focus has been given to the anticancer applications of varieties of metal nanomedicines with GSH responsiveness and exhaustion capacity. In this review, we introduce several GSH-responsive and -exhausting metal nanomedicines that can specifically ablate tumors based on the high concentration of intracellular GSH in cancer cells. These include inorganic nanomaterials, metal-organic frameworks (MOFs), and platinum-based nanomaterials. We then discuss in detail the metal nanomedicines that have been extensively applied in synergistic cancer therapy, including chemotherapy, photodynamic therapy (PDT), sonodynamic therapy (SDT), chemodynamic therapy (CDT), ferroptotic therapy, and radiotherapy. Finally, we present the horizons and challenges in the field for future development.
Collapse
Affiliation(s)
- Peng Liu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology, Changsha, China
| | - Lu Hao
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Min Liu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- *Correspondence: Min Liu, ; Shuo Hu,
| | - Shuo Hu
- Department of Nuclear Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Biological Nanotechnology, Changsha, China
- *Correspondence: Min Liu, ; Shuo Hu,
| |
Collapse
|
37
|
A Preclinical Model for Parkinson’s Disease Based on Transcriptional Gene Activation via KEAP1/NRF2 to Develop New Antioxidant Therapies. Antioxidants (Basel) 2023; 12:antiox12030673. [PMID: 36978921 PMCID: PMC10045214 DOI: 10.3390/antiox12030673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/01/2023] [Accepted: 03/04/2023] [Indexed: 03/11/2023] Open
Abstract
Investigations of the effect of antioxidants on idiopathic Parkinson’s disease have been unsuccessful because the preclinical models used to propose these clinical studies do not accurately represent the neurodegenerative process of the disease. Treatment with certain exogenous neurotoxins induces massive and extremely rapid degeneration; for example, MPTP causes severe Parkinsonism in just three days, while the degenerative process of idiopathic Parkinson´s disease proceeds over many years. The endogenous neurotoxin aminochrome seems to be a good alternative target since it is formed in the nigrostriatal system neurons where the degenerative process occurs. Aminochrome induces all the mechanisms reported to be involved in the degenerative processes of idiopathic Parkinson’s disease. The presence of neuromelanin-containing dopaminergic neurons in the postmortem brain of healthy elderly people suggests that neuromelanin synthesis is a normal and harmless process despite the fact that it requires oxidation of dopamine to three ortho-quinones that are potentially toxic, especially aminochrome. The apparent contradiction that neuromelanin synthesis is harmless, despite its formation via neurotoxic ortho-quinones, can be explained by the protective roles of DT-diaphorase and glutathione transferase GSTM2-2 as well as the neuroprotective role of astrocytes secreting exosomes loaded with GSTM2-2. Increasing the expression of DT-diaphorase and GSTM2-2 may be a therapeutic goal to prevent the degeneration of new neuromelanin-containing dopaminergic neurons. Several phytochemicals that induce DT-diaphorase have been discovered and, therefore, an interesting question is whether these phytochemical KEAP1/NRF2 activators can inhibit or decrease aminochrome-induced neurotoxicity.
Collapse
|