1
|
Shulhai AM, Rotondo R, Petraroli M, Patianna V, Predieri B, Iughetti L, Esposito S, Street ME. The Role of Nutrition on Thyroid Function. Nutrients 2024; 16:2496. [PMID: 39125376 PMCID: PMC11314468 DOI: 10.3390/nu16152496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Thyroid function is closely linked to nutrition through the diet-gut-thyroid axis. This narrative review highlights the influence of nutritional components and micronutrients on thyroid development and function, as well as on the gut microbiota. Micronutrients such as iodine, selenium, iron, zinc, copper, magnesium, vitamin A, and vitamin B12 influence thyroid hormone synthesis and regulation throughout life. Dietary changes can alter the gut microbiota, leading not just to dysbiosis and micronutrient deficiency but also to changes in thyroid function through immunological regulation, nutrient absorption, and epigenetic changes. Nutritional imbalance can lead to thyroid dysfunction and/or disorders, such as hypothyroidism and hyperthyroidism, and possibly contribute to autoimmune thyroid diseases and thyroid cancer, yet controversial issues. Understanding these relationships is important to rationalize a balanced diet rich in essential micronutrients for maintaining thyroid health and preventing thyroid-related diseases. The synthetic comprehensive overview of current knowledge shows the importance of micronutrients and gut microbiota for thyroid function and uncovers potential gaps that require further investigation.
Collapse
Affiliation(s)
- Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
| | - Roberta Rotondo
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
| | - Maddalena Petraroli
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Viviana Patianna
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Barbara Predieri
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (B.P.); (L.I.)
| | - Lorenzo Iughetti
- Pediatric Unit, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, 41124 Modena, Italy; (B.P.); (L.I.)
| | - Susanna Esposito
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| | - Maria Elisabeth Street
- Department of Medicine and Surgery, University of Parma, 43121 Parma, Italy; (A.-M.S.); (R.R.); (S.E.)
- Paediatric Clinic, University Hospital of Parma, 43121 Parma, Italy; (M.P.); (V.P.)
| |
Collapse
|
2
|
Street ME, Shulhai AM, Petraroli M, Patianna V, Donini V, Giudice A, Gnocchi M, Masetti M, Montani AG, Rotondo R, Bernasconi S, Iughetti L, Esposito SM, Predieri B. The impact of environmental factors and contaminants on thyroid function and disease from fetal to adult life: current evidence and future directions. Front Endocrinol (Lausanne) 2024; 15:1429884. [PMID: 38962683 PMCID: PMC11219579 DOI: 10.3389/fendo.2024.1429884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 05/28/2024] [Indexed: 07/05/2024] Open
Abstract
The thyroid gland regulates most of the physiological processes. Environmental factors, including climate change, pollution, nutritional changes, and exposure to chemicals, have been recognized to impact thyroid function and health. Thyroid disorders and cancer have increased in the last decade, the latter increasing by 1.1% annually, suggesting that environmental contaminants must play a role. This narrative review explores current knowledge on the relationships among environmental factors and thyroid gland anatomy and function, reporting recent data, mechanisms, and gaps through which environmental factors act. Global warming changes thyroid function, and living in both iodine-poor areas and volcanic regions can represent a threat to thyroid function and can favor cancers because of low iodine intake and exposure to heavy metals and radon. Areas with high nitrate and nitrite concentrations in water and soil also negatively affect thyroid function. Air pollution, particularly particulate matter in outdoor air, can worsen thyroid function and can be carcinogenic. Environmental exposure to endocrine-disrupting chemicals can alter thyroid function in many ways, as some chemicals can mimic and/or disrupt thyroid hormone synthesis, release, and action on target tissues, such as bisphenols, phthalates, perchlorate, and per- and poly-fluoroalkyl substances. When discussing diet and nutrition, there is recent evidence of microbiome-associated changes, and an elevated consumption of animal fat would be associated with an increased production of thyroid autoantibodies. There is some evidence of negative effects of microplastics. Finally, infectious diseases can significantly affect thyroid function; recently, lessons have been learned from the SARS-CoV-2 pandemic. Understanding how environmental factors and contaminants influence thyroid function is crucial for developing preventive strategies and policies to guarantee appropriate development and healthy metabolism in the new generations and for preventing thyroid disease and cancer in adults and the elderly. However, there are many gaps in understanding that warrant further research.
Collapse
Affiliation(s)
- Maria E. Street
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Anna-Mariia Shulhai
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Maddalena Petraroli
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Viviana Patianna
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Valentina Donini
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Antonella Giudice
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Margherita Gnocchi
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
| | - Marco Masetti
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Anna G. Montani
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Roberta Rotondo
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | | | - Lorenzo Iughetti
- Unit of Pediatrics, University Hospital of Modena, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| | - Susanna M. Esposito
- Department of Medicine and Surgery, University of Parma and Unit of Pediatrics, University Hospital of Parma, Parma, Italy
- Unit of Paediatrics, University Hospital of Parma, P. Barilla Children’s Hospital, Parma, Italy
| | - Barbara Predieri
- Unit of Pediatrics, University Hospital of Modena, Department of Medical and Surgical Sciences for Mothers, Children and Adults, University of Modena and Reggio Emilia, Reggio Emilia, Italy
| |
Collapse
|
3
|
Qi Z, Zhang Z, Jin R, Zhang L, Zheng M, Li J, Wu Y, Li C, Lin B, Liu Y, Liu G. Target Analysis of Polychlorinated Naphthalenes and Nontarget Screening of Organic Chemicals in Bovine Milk, Infant Formula, and Adult Milk Powder by High-Resolution Mass Spectrometry. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:773-782. [PMID: 38109498 DOI: 10.1021/acs.jafc.3c07579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Infant formula is intended as an effective substitute for breast milk but is the main source of polychlorinated naphthalenes (PCNs) to nonbreastfed infants. We performed target and nontarget analyses to determine PCNs and identify other organic contaminants in infant formula. The mean PCN concentrations in infant formula, milk powder, and bovine milk were 106.1, 88.8, and 78.2 μg kg-1 of dry weight, respectively. The PCN congener profiles indicated that thermal processes and raw materials were probably the main sources of PCNs in infant formula. A health risk assessment indicated that PCNs in infant formula do not pose health risks to infants. Using gas chromatography-Orbitrap mass spectrometry, 352, 372, and 161 organic chemicals were identified in the infant formula, milk powder, and bovine milk samples, respectively. Phthalate esters were detected in all four plastic-packed milk powder samples. The results indicated milk becomes more contaminated with organic chemicals during manufacturing, processing, and packaging.
Collapse
Affiliation(s)
- Ziyuan Qi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zherui Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong Jin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Lei Zhang
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingguang Li
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Yongning Wu
- China National Center for Food Safety Risk Assessment, Beijing 100021, P. R. China
| | - Cheng Li
- Institute of Quality Standard and Testing Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, P. R. China
| | - Bingcheng Lin
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Yahui Liu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- College of Resource and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Martínez-Martínez M, Martínez-Martínez M, Soria-Guerra R, Gamiño-Gutiérrez S, Senés-Guerrero C, Santacruz A, Flores-Ramírez R, Salazar-Martínez A, Portales-Pérez D, Bach H, Martínez-Gutiérrez F. Influence of feeding practices in the composition and functionality of infant gut microbiota and its relationship with health. PLoS One 2024; 19:e0294494. [PMID: 38170702 PMCID: PMC10763948 DOI: 10.1371/journal.pone.0294494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 11/02/2023] [Indexed: 01/05/2024] Open
Abstract
Establishing the infant's gut microbiota has long-term implications on health and immunity. Breastfeeding is recognized as the best practice of infant nutrition in comparison with formula feeding. We evaluated the effects of the primary feeding practices by analyzing the infant growth and the potential association with gut diseases. A cross-sectional and observational study was designed. This study included 55 mothers with infants, who were divided according to their feeding practices in breastfeeding (BF), formula feeding (FF), and combined breast and formula feeding (CF). Anthropometric measurements of the participants were recorded. Additionally, non-invasive fecal samples from the infants were collected to analyze the microbiota by sequencing, immunoglobulin A (IgA) concentration (ELISA), and volatile organic compounds (gas chromatography with an electronic nose). Results showed that the microbiota diversity in the BF group was the highest compared to the other two groups. The IgA levels in the BF group were twice as high as those in the FF group. Moreover, the child´s growth in the BF group showed the best infant development when the data were compared at birth to the recollection time, as noted by the correlation with a decreased concentration of toxic volatile organic compounds. Interestingly, the CF group showed a significant difference in health status when the data were compared with the FF group. We conclude that early health practices influence children's growth, which is relevant to further research about how those infants' health evolved.
Collapse
Affiliation(s)
| | | | - Ruth Soria-Guerra
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosí, SLP, Mexico
| | | | | | - Arlette Santacruz
- Posgrado en Biotecnología, Centro de Biotecnología FEMSA, Tecnológico de Monterrey, Monterrey, Mexico
| | - Rogelio Flores-Ramírez
- Laboratorio de Salud Total, Centro de Investigación Aplicada en Ambiente y Salud -CIACYT, Universidad Autónoma de San Luis Potosí, SLP, Mexico
| | | | - Diana Portales-Pérez
- Instituto Mexicano del Seguro Social, Torreón, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, SLP, Mexico
| | - Horacio Bach
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, Vancouver, BC, Canada
| | - Fidel Martínez-Gutiérrez
- Facultad de Ciencias Quimicas, Universidad Autonoma de San Luis Potosí, SLP, Mexico
- Centro de Investigación en Ciencias de la Salud y Biomedicina, Universidad Autonoma de San Luis Potosí, SLP, Mexico
| |
Collapse
|